INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Reactive Local Search for the
Maximum Clique Problem

R. Battiti * M. Protasi T
TR-95-052

September 1995

Abstract
A new Reactive Local Search (RLS) algorithm is proposed for the solution of the
Maximum-Clique problem. RLS is based on local search complemented by a feedback
(memory-based) scheme to determine the amount of diversification. The reaction acts
on the single parameter that decides the temporary prohibition of selected moves in
the neighborhood, in a manner inspired by Tabu Search. The performance obtained
in computational tests appears to be significantly better with respect to all algorithms
tested at the the second DIMACS implementation challenge. The worst-case com-
plexity per iteration of the algorithm is O(max{n, m}) where n and m are the number
of nodes and edges of the graph. In practice, when a vertex is moved, the number of
operations tends to be proportional to its number of missing edges and therefore the
iterations are particularly fast in dense graphs.
Key words: maximum clique problem, heuristic algorithms, tabu search, reactive
search.

*Dipartimento di Matematica, Universita’ di Trento, Via Sommarive 14, 38050 Povo (Trento) - Italy,
battiti@science.unitn.it

"Dipartimento di Matematica, Universita’ di Roma “Tor Vergata”, Via della ricerca scientifica, 00133
Roma - Italy, protasi@mat .utovrm. it Work partially done while visiting the International Computer Science
Institute, Berkeley, Ca

i

1 Introduction

Maximum Clique (MC for short) is a paradigmatic combinatorial optimization problem with
relevant applications and, because of its computational intractability, it has been extensively
studied in the last years [19].

Let G = (V,F) be an arbitrary undirected graph, V' = {1,2,...,n} its vertex set,
E CV xV its edge set, and G(5) = (5, EN S x 5) the subgraph induced by S, where S
is a subset of V. A graph G = (V, E) is complete if all its vertices are pairwise adjacent,
ie. Vi,j eV, (i,7) € E. A cliqgue K is a subset of V such that G(K') is complete. The
Maximum Clique (MC) problem asks for a clique of maximum cardinality.

MC is an NP-hard problem, furthermore strong negative results have been shown about
its approximation properties (for a survey on the approximability of NP-hard problems
see [1]). In particular, if P # NP, no polynomial time algorithm can approximate the

Maximum Clique problem within a factor n%, where n is the number of nodes of the graph
[8].

These theoretical results stimulated a research effort to design efficient heuristics for
this problem. Consequently, computational experiments have been executed to show that
the optimal values or close approximate values can be efficiently obtained for significant
families of graphs related to practical situations [17, 19].

In this paper a new reactive heuristic is proposed for the Maximum Clique problem: Re-
active Local Search (RLS). RLS complements local-neighborhood-search with prohibition-
based diversification techniques, where the amount of diversification is determined in an
automated way through a feedback scheme.

Local search is a well known technique that can be very effective in searching for good
locally optimal solutions. On the other hand, local search can be trapped in local optima
and be unable to reach a global optimum or even good approximate solutions. Many
improvements have been proposed, in particular F. Glover’s Tabu Search [10] (TS for short)
has been successfully applied to a growing number of problems, including MC [20, 21]. TS
is based on prohibitions: some local moves are temporarily prohibited in order to avoid
cycles in the search trajectory and to explore new parts of the total search space.

Although powerful, some algorithmic schemes based on TS are complex and contain
many possible choices and parameters, whose appropriate setting is a problem shared by
many heuristic techniques [4]. In some cases the parameters are tuned through a feedback
loop that includes the user as a crucial learning component: depending on preliminary
tests, some values are changed and different options are tested until acceptable results are
obtained. The quality of results is not automatically transferred to different instances and
the feedback loop can require a lengthy “trial and error” process.

Reactive schemes aim at obtaining algorithms with an internal feedback (learning) loop,
so that the tuning is automated. Reactive schemes are therefore based on memory: infor-
mation about past events is collected and used in the future part of the search algorithm. A
TS-based reactive scheme (RTS) has been introduced in [5]. RLS adopts a reactive strat-
egy that is appropriate for the neighborhood structure of MC: the feedback acts on a single
parameter (the prohibition period) that regulates the search diversification and an explicit
memory-influenced restart is activated periodically.

The quality of the experimental results obtained by RLS is very satisfactory. Standard

benchmark instances and timing codes for MC have been designed as part of the interna-
tional Implementation Challenge, organized in 1993 by the Center for Discrete Mathematics
and Theoretical Computer Science to study effective optimization and approximation algo-
rithms for Maximum Clique, Graph Coloring, and Satisfiability. Thirtyseven significant MC
instances have been selected by the organizers to provide a “snapshot” of the algorithm’s
effectiveness (see Table 1), and the results obtained by the participants on a benchmark
containing a wide spectrum of graphs have been presented at a DIMACS workshop [17].

The results obtained by RLS on these instances are as follows: if one considers the
best among all values found by the fifteen heuristic algorithms presented at the DIMACS
workshop, RLS reaches the same value or a better one in 34 out of 37 cases. In two
instances corresponding to large graphs RLS finds new values (in one case better by one, in
the other by three vertices). In the three cases where the current best value is not obtained,
the difference is of one vertex in two cases, of four vertices in one case (corresponding to a
graph designed to “fool” local-search based algorithms).

As a comparison, the best four competitors obtained the best value in 23 + 27 instances
(21 + 25 after considering the two new values found by RLS). The scaled times needed by
three of them are larger than RLS times by at least a factor of ten. The fourth algorithm is
slightly faster than RLS but found only 24 best values (22 if the new values are considered),
by executing hundreds of runs for most tasks.

The experimental efficacy and efficiency of RLS is strengthened by an analysis of the
complexity of a single iteration. It is shown that the worst-case cost is O(max{n, m}) where
n and m are the number of nodes and edges, respectively. In practice, the cost analysis is
pessimistic and the measured number of operations tends to be a small constant times the
average degree of nodes in G, the complement of the original graph.

The remaining part of this paper is organized as follows. After a short review of exist-
ing approaches for Max-Clique based on Tabu Search (Sec. 2) the motivation for reactive
schemes is discussed (Sec. 3) and the RLS algorithm is presented (Sec. 4). The realization
of RLS with data structures with minimal computational complexity is studied in Sec. 5.
Then the experimental results obtained on a series of tasks recently proposed in the DI-
MACS challenge [17] are presented and discussed in Sec. 6. Two variants studied during
the development of RLS are discussed in Sec. 7. A final discussion concludes the paper

(Sec. 8).

2 Tabu Search heuristics for Max-Clique

As a recent bibliography about max-clique is present in [19], let us only mention some
examples and results that are needed in the following discussion. Heuristics are powerful
tools to search for good sub-optimal solutions of MC instances, and clearly they are a valued
option if an exact solution (or an approximated solution within the requirements) cannot be
guaranteed in the allotted number of iterations, as it is the case for large-size problems, given
the theoretical results summarized in the Introduction. In addition, heuristics are crucial
instrument to diminish the size of the search tree in exact branch and bound algorithms (as
an example, coloring heuristics are used in the seminal work of Balas and Yu [3]).

Here the scope is limited to methods based on local search with prohibition-based di-
versification techniques. In particular, in the Tabu Search (TS) framework, diversification

is obtained through the temporary prohibition of some moves. Based on ideas developed
independently by Glover [10] and Hansen and Jaumard [13], TS aims at maximizing a func-
tion f by using an iterative modified local search. At each step of the iterative process,
the selected move is the one that produces the highest f value in the neighborhood. This
move is executed even if f decreases with respect to the value at the current point, to exit
from local optima. As soon as a move is applied, the inverse move is prohibited (i.e., not
considered during the neighborhood evaluation) for the next 7" iterations. Prohibitions can
be realized by using a first-in first-out list of length 7" (the “tabu list”), where the inverse of
moves enter immediately after their execution, are shifted at each iteration, and therefore
exit after T steps. A move is prohibited at a given iteration if and only if it is located in
the “tabu list.” This realization explains the traditional term [ist size for the parameter T,
here the term prohibition period is preferred because it does not refer to a specific imple-
mentation. As a final remark, it is useful to contrast reactive memory-based schemes with
algorithms based on Markov (i.e., memory-less) processes like Simulated Annealing [18],
where the next configuration during the search is chosen with a probability that depends
only on the current configuration.

Tabu Search has been used in Frieden et al. [9] for finding large stable sets (STABULUS).
The size s, of the independent set to search for is fixed, and the algorithm tries to minimize
the number of edges contained in the current subset of s; nodes (while aiming at reducing
this number to zero).

Gendreau et al. [12] consider a different framework: the search space consists of legal
cliques, whose size has to be maximized. Three different versions of TS are introduced and
successfully compared with an iterated version of STABULUS. In the “iterated STABU-
LUS” algorithm, an initial clique is found with a greedy technique (let k be its size), then
STABULUS is applied to the complement graph G, trying to find cliques of size E+1,k+2, ...,
until it fails to find one of the target size in a given maximum number of iterations. Two
of the newly introduced TS versions are deterministic, one (ST) based on a single tabu
list of the last |77 solutions visited, the other (DT) adding a second list of the last |773]
vertices deleted. Only additions of nodes to the current clique can be restricted (deletions
are always possible). The third version (PT) is stochastic: let S; be the set of the vertices
that can be added to the current clique I, if |S¢| > 0 a random sample of 5; is considered
for a possible (non-tabu) addition, otherwise, if the current solution /; is a local optimum
and no nodes can be added, a number of randomly extracted nodes in I; are removed from
it. Additional diversification strategies are considered in [20] and used in [21].

3 Reactive search: the framework

One of the frequently raised criticisms about heuristic techniques is that it is difficult to
judge about the intrinsic quality of schemes that contain many possible choices and free
parameters [4]. As an example, Genetic Algorithms [14, 2] and advanced Simulated Anneal-
ing [16] versions with about five free parameters are not unusual, and one finds versions in
the literature with up to about ten parameters. Tabu Search is not an exception: in the last
years many versions with widely different characteristics have been studied and used [11].
In some cases parameters are tuned through a feedback loop that includes the user as a
crucial learning component: depending on preliminary tests, some values are changed and

different options are tested until acceptable results on a set of instances are obtained. The
quality of results is not automatically transferred to different instances and the feedback
loop can require a lengthy “trial and error” process before acceptable results are obtained.

Reactive schemes aim at obtaining algorithms with an internal feedback loop. These
schemes maintain the flexibility needed to cover in an efficient and effective way different
instances of a problem, but the tuning is automated through feedback schemes that consider
the past history of the search. Reaction is therefore memory-based: relevant information
about past events is collected and used to influence the future part of the search.

In particular, it is of interest to study reactive algorithms based on local-neighborhood
search. Local search is one of the most widely used heuristics, in which, after starting from
an initial point (possibly randomly selected), one generates a search trajectory X® (tis the
iteration counter) in the admissible search space X’. At each iteration, the successor X (t+1)
of a point is selected from a neighborhood N(X(t)) that associates to the current point
X 3 subset of X. Local search can be classified as an intensification scheme, and, if the
neighborhood structure is appropriate, it can be very effective in searching for good locally
optimal configurations. Nonetheless, for many optimization problems of interest, a closer
approximation to the global optimum is required, and therefore more complex schemes are
needed (an example of a straightforward modification are multiple runs of local search, in
which one starts from a different random point after reaching a local optimum).

Our research is focussed onto automated diversification schemes: diversification is en-
forced only when there is evidence — obtained from the past history — that diversification is
needed. The basic Tabu Search cannot guarantee the absence of cycles and depends on an
appropriate choice of 7" for its success. Reactive Tabu Search (RTS) [5] adapts 7" during
the search so that its value is appropriate to the local structure of the problem, and uses
a second long-term reactive mechanism to deal with confinements of the search trajectory
that are not avoided by the use of temporary prohibitions: if too many configurations are
repeated too often a sequence of random steps is executed. Hashing is used for the memory
look-up and insertion operations. In the computational tests RTS generally outperforms
non-reactive versions of TS and competitive algorithms like Simulated Annealing, Genetic
Algorithms, Neural Networks [6, 7].

4 Reactive Local Search for Max-Clique

The RLS algorithm modifies RTS by taking into account the particular neighborhood struc-
ture of MC. This is reflected in the following two facts: feedback from the search history
determines the prohibition parameter T, and an explicit memory-influenced restart is acti-
vated periodically as a long-term diversification tool (to assure that each vertex is eventually
tried as a member of the current solution). Both building blocks of RLS use the memory
about the past history of the search (set of visited cliques).

The admissible search space X is the set of all cliques X in an instance graph G(V, F).
The function to be maximized is the clique size f(X) = |X|, and the neighborhood N(X)
consists of all cliques that can be obtained from X by adding or dropping a single vertex.
The neighborhood can be partitioned into N~(X') obtained by applying drop moves, and

N*(X) obtained by applying add moves.

NT(X) = {X':X'isaclique ,X'= X U{z},z €V \ X} (1)
N7 (X) = {X':X'isaclique ,X'= X \{z},z € X} (2)

Let us note that the neighborhood structure is symmetric (X’ € N7 (X)iff X € N*t(X")).
The same neighborhood is exploited by many branch and bound algorithms and is used in
the TS application in [21].

At a given iteration ¢ of the search, the neighborhood set N(X) is partitioned into the
set of prohibited neighbors and the set allowed neighbors. The same terms prohibited and
allowed are used for the corresponding add-drop moves. The prohibition rule is as follows:
as soon as a vertex is added (dropped), it remains prohibited for the next 7" iterations. The
prohibition period T is related to the amount of diversification. Let us define as H(K, K')
the symmetric difference of sets K and K’. In other words, H(K, K’) is the Hamming
distance if the membership functions of the two sets are represented with binary strings
with a bit for each vertex. In an admissible search space consisting of all n-bit binary
strings, the requirement that 7" < (n — 2) is necessary and sufficient to assure that at least
two moves are allowed (so that the search is not stuck and the move choice is influenced by
the cost function value). In the MC case not every string corresponds to a clique and the
requirement is only necessary but not sufficient (prohibitions need to be relaxed if no move
is allowed, see Sec. 4.2). In the assumption that the above requirement is valid and that
only allowed moves are executed, the relationship between T and the diversification [7] is
as follows:

e The Hamming distance H between a starting point and successive point along the
trajectory is strictly increasing for 7"+ 1 steps.

HXHD) Xy =7 for 7<T+1

e The minimum repetition interval R along the trajectory is 2(7 + 1).

XWR) = x(® = R>2T+1)

The prohibition expires after a finite number of steps T because the prohibited moves
can be necessary to reach the optimum in a later phase. In RLS the prohibition period is
time-dependent, and therefore the notation 7 will be used to stress this dependency. For
a given T the prohibition of a move is realized as follows:

Definition 4.1 Let LASTMOVED[v] be the last iteration that vertex v € G has been moved,
i.e., added to or dropped from the current clique (LASTMOVED[v] = —o0, at the beginning
of the search).
Vertex v is prohibited at iteration t if and only if it satisfies:

LasTMovED[v] > (t — T(®)

REACTIVE-LOCAL-SEARCH
> Initialization.
t—0;T—1;tr —0;tr«<0;
X—0;L —0;ky—0;t, 0
repeat
[T« MeMORY-REACTION(X,T)
X < BEsST-NEIGHBOR (X))
t—(t+1)
if f(X)>k
then [, — X ky — |X]|;t, —1
if (¢t — max{ts,tr}) > A
then tp «— t; RESTART
until % is acceptable or mazimum no. of iterations reached

O 00 ~1 O O &~ W N~

—_
_ o

—
]

Figure 1: RLS Algorithm: Pseudo-Code Description.

4.1 RLS: top-level view

The top-level description of the RLS algorithm is shown in Fig. 1. The description uses a
pseudocode (lines beginning with “[>” are comments, “<” is the assignment, functions
return values to the calling routines, fields of a compound object are accessed using
object.field, etc.).

First the relevant variables are initialized: they are the iteration counter #, the prohi-
bition period T, the time t7 of the last change of T’, the last restart time ¢, the current
clique X, the largest clique I, found so far with its size kp, and the iteration ¢, at which it
is found. The initialization of additional data structures will be described as soon as they
are encountered. Then the loop (lines 5-11) continues to be executed until a satisfactory
solution is found or a limiting number of iterations is reached.

In the loop, MEMORY-REACTION searches for the current clique in memory, inserts it
into the hashing memory if it is a new one, and adjusts the prohibition 7" through feedback
from the previous history of the search.

Then the best neighbor is selected and the current clique updated (line 6). The iteration
counter is incremented. If a better solution is found, the new solution, its size and the time
of the last improvement are saved (lines 8-9). A restart is activated after a suitable number
A of iterations are executed from the last improvement and from the last restart (lines
10-11). In our tests A is set to 100 - ks, as explained in Sec 4.3.

The prohibition period T is equal to one at the beginning, because in this manner one
avoids coming back to the just abandoned clique. Nonetheless, let us note that RLS behaves
exactly as local search in the first phase, as long as only new vertices are added to the current
clique X (and therefore prohibitions do not have any effect). The difference starts when a
maximal clique with respect to set inclusion is reached and the first vertex is dropped.

The differences with respect to multiple runs of local search (choice of best neighbor,
restart when no improving move is available) are that the choice of the best neighbor takes
the prohibition rule of Def. 4.1 into account and that the restart is executed after a suitably
long search period and not after the first local optimum is encountered (Sec 4.3).

4.2 Choice of the best neighbor

BEST-NEIGHBOR (X))

1 >v is the moved vertex, type is ADDMOVE, DROPMOVE or NOTFOUND
2 type «— NOTFOUND

3 if |S] > 0 then

4 [>try to add an allowed vertez first

5 A1LLOoWEDFOUND « ({ allowed v € S} #)

6 if ALLoweEDFoUND then

7 type «— ADDMOVE

8 MAXDEGALLOWED « maXgliowed j€3 degg(s)(j

9 L v — random allowed w € S with degg(s)(w) = MAXDEGALLOWED
10 if type = NoTFoUND then

11 [>adding an allowed vertex was impossible: drop

12 type «— DROPMOVE

13 if ({ allowed v € X} # () then

14 MAXDELTAS «— maxXgiowed jex DELTAS[]]

15 v «— random allowed w € X with DELTAS[w] = MAXDELTAS
16 else

17 i v «— random w € X

18 INCREMENTAL-UPDATE(v, type)

19 if type = ADDMOVE then return X U{v}

20 else return X \ {v}

Figure 2: RLS Algorithm: the function BEST-NEIGHBOR .
Let us define the set 5 as follows:

Definition 4.2 Let X be the current clique at iteration t. S\ is the vertex set of possible
additions, i.e., the vertices that are connected to all X nodes:

SO ={v:ive(VNXW),(v,j)e E,Vje X0}

Fig. 2 shows the selection algorithm (let us note that the ¢ in iteration-dependent items
like 5 is dropped in the corresponding variable, like 5'). The choice of the best neighbor is
influenced by the prohibition rule of Def. 4.1. The selection is executed in stages with this
overall scheme: first an allowed vertex that can be added to the current clique is searched
for (lines 3-9).

If no allowed addition is found, an allowed vertex to drop is searched for (lines 13-15).
Finally, if no allowed moves are available, a random vertex in X () is dropped (line 17). Let
us note that X # 0 at line 17 (if X = 0, then S =V, |S| > 0 and at least an allowed vertex
is guaranteed at line 5 by the enforced bound 7' < (n — 2)).

Ties among allowed vertices that can be added are broken by preferring the ones with
the largest degree [15, 21] in the subgraph G(S®) induced by the set $®). A random
selection is executed among vertices with equal degree (lines 8-9).

Ties among allowed vertices that can be dropped are broken by preferring those causing
the largest increase (]SU+1| —[S®)]). A random selection is then executed if this criterion
selects more that one winner (lines 14-15).

The above dropping choice is realized by introducing the set SMINUS and the quantities
DErTaS[v].

Definition 4.3 Let X®) be the current clique at iteration t. SMiNus!) is the set of ordered
couples (v, x) such that vertex v has exactly one edge missing to the nodes of X the edge
(v,2):

sMinus) = {(v,2):veV,z e XU, (v,2) ¢ E,(v,2") € E Vo' € XD, 2/ # 2}

A wertex v is such that (v,z) is in SMINUS®) if and only if the number of edges in G(V)
incident to v and to X nodes is (| X| - 1).

Because the vertex z that is not connected to v € SMiNvus() is unique, SMiNUus® can be
projected to V (by considering the first element of the couple). The same term SMinus(®)
will be used for the projection (the meaning will be clear from the context).

Definition 4.4 If a vertez v € X is dropped in passing from X® to X(+1) g(t+1)
receives all nodes that were lacking the edge to v but had all other edges to member of X ().
For each v e X1 let us define:

DELTAS[v] = w:w e (V\ SO), (w,v) € E, (w,v") € EVYv' € X o £ v}

Clearly, if X1 = X"\ {»}, DELTAS[0] = |SEFD| — |S®)],

The prohibition status of a vertex is immediately determined if the function LASTMOVED[v]
is realized with an array. The data structures and operations concerning the just introduced
sets are discussed in Sec. 5.2 (routine INCREMENTAL-UPDATE).

The relationship between the above introduced subsets of V' is illustrated in Fig. 3 for
an example graph (only the relevant connections are shown). Note that all vertices of X are
present in SMINUS (or, better, in its projection), in fact each vertex z € X is not connected
to itself.

4.3 Reaction and periodic restart

The memory about the past history of the search is used in two ways in the RLS algorithm:
to adapt the prohibition parameter 7' (and therefore the amount of diversification) and to
influence the restarts.

The prohibition 7" is minimal at the beginning (7" = 1), and is then determined by
two competing requirements. T has to be sufficiently large to avoid short cycles and the
related waste of processing time during the search, it therefore increases when the same
clique is repeated after a short interval along the trajectory, a symptom that diversification
is required. On the other hand, large T" values reduce the search freedom (in particular
one has the requirement 7" < (n — 2), see [7]): therefore, T is reduced as soon as frequent
repetitions disappear.

The MEMORY-REACTION algorithm is illustrated in Fig. 4. The current clique X is
searched in memory. If X is found, a reference Z is returned to a data structure containing
the last visit time (line 2). If the repetition interval R is sufficiently short (only short cycles
can be avoided through the prohibition mechanism [7]), cycles are discouraged by increasing

T (lines 7-9).

SMinus

Figure 3: Subsets of V' corresponding to X® 50 and SMinvs®),

If X is not found, it is stored in memory with the time ¢ when it was encountered (line
12). If T' remained constant for a number of iterations greater than B, it is decreased (lines
14-15). It is appropriate that B scales with the maximum number of elements in a clique ky,
so that all clique members have many chances to be substituted as members of the current
clique before a possible reduction of T" is executed (the size of the current clique is close to
ky during the search). The value used in our tests is B = 10 - k;. Increases and decreases
(with a minimal change of one unit, plus upper and lower bounds) are realized by the two
following functions:

INCREASE(T) = min{max{7-1.1,7+ 1},n— 2}
DECREASE(T) = max{min{7-0.9,7 - 1},1}

Periodic restarts are needed to assure that the search is not confined in a limited portion
of the search space (e.g., this is the case if the graph is composed of more than one connected
component). Restarts are activated every A = 10 - B = 100 k; iterations, a period that
permits a non-trivial dynamics of 7" with more possible increases and decreases (i.e., many
B periods).

The routine RESTART is adapted from [21]. Firts the prohibition parameter T is reset
and the hashing memory structure is cleared (lines 1-2). If there are vertices that have
never been part of the current clique during the search (i.e., that have never been moved
since the beginning of the run), one of them with maximal degree in V' is randomly selected
(lines 4-7). If all vertices have already been members of X in the past, a random vertex
in V is selected (line 9). Data structures are updated to reflect the situation of X = §), see

MeMoRrY-REACTION (X, T)

1 >search for clique X in the memory, get a reference Z
2 7 «— HASH-SEARCH(X)

3 if Z # NuLL then

4 [b find the cycle length, update last visit time:
5 R —1— Z.LASTVISIT

6 Z.LASTVISIT « ¢

7 if R < 2(n—1) then

8 it — 1

9 return INCREASE(T)

10 elsge

11 >if the clique is not found, install it:

12 HasH-INSERT(X, 1)

13 if (t—1t7)> B then

14 [t — ¢

12 return DECREASE(T)

return T

Figure 4: RLS Algorithm: routine MEMORY-REACTION .

lines 10-14 (XMiss and XMissLisT are introduced in Sec. 5.2), then the selected vertex is
added and the incremental update applied (lines 15-16).

5 Data structures and complexity analysis

The computational complexity of each iteration of RLS is the sum of a term caused by the
usage and updating of reaction-related structures, and a term caused by the local search
part (evaluation of the neighborhood and generation of the next clique).

Let us first consider the reaction-related part. The overhead per iteration incurred to
determine the prohibitions is O(| N (X)|), that for updating the last usage time of the chosen
move is O(1), that to check for repetitions, and to update and store the new hashing value of
the current clique has an average complexity of O(1), if an incremental hashing calculation
is applied. If the entire clique is stored with the digital tree method [5] the worst case
complexity is of O(n).

In the maximum clique problem the complexity is dominated by the neighborhood eval-
uation. It is therefore crucial to consider incremental algorithms, in an effort to reduce the
complexity below that required by a naive calculation “from scratch” of |N(X)| different
function values. As an example, an incremental evaluation is used to update S during suc-
cessive add moves in [12], while S is recomputed from scratch after a drop move, with a
worst-case complexity of O(n?). Now, after a transient phase of successive add moves if X
is initially empty, add and drop moves are intermixed (long chains of add moves are rare)
with approximately the same frequency.

This paper extends the incremental evaluation so that it is applied both after adding and
after dropping a vertex. To this end, some auxiliary data structures are used. In particular,
both the current clique X, the set S and SMINUS are represented with an indicator set,

10

RESTART
1 T—1 ; tr—t

2 > Clear the hashing memory

3 > search for the “seed” vertex v

4 SOMEABSENT « true iff Jv € Vwith LAsTMOVED[v] = —c0
5 if SOMEABSENT then

6 L —{w eV :LastTMoVED[w] = —c0}

7 v « random vertex with mazimum deggvy(v) in L

8 else

9

v «— random vertex €V
10 S~V
11 SMINUS —
12 forall vV

13 XMissLisT[v] « @ ; XMiss[v] < 0
14 DErTaS[v] < 0
15 X < {0}

16 INCREMENTAL-UPDATE(v, ADDMOVE)

Figure 5: RLS Algorithm: routine RESTART .

see 5.1, DELTAS[v] with a n-dimensional array.

5.1 Indicator set

To realize some of the needed data structures with the lowest computational complexity,
let us introduce a set structure that contains integers from 1 to n (with no duplications),
and, in some cases, an additional positive integer for each contained element. The relevant
operations to be executed are:

e The insertion of element ¢ with related information info: INSERT(%,in fo).
If the information is not needed: INSERT(%).

e The removal of a single element 7: DEL(7), returning in fo.
e The check for the presence of the i-th element: TEST(¢), returning true or false.

e Action loops (with possible deletions) on all contained elements. The listing does not
have to be in order.

The indicator set data structure is illustrated in Fig. 6. The structure consists of an
n-dimensional array of records. The i-th record contains two indices (prev and next) used
to realize a double-linked list of the contained elements (with a NULL index to signal
the two ends of the list), and an additional variable (info) used as an indicator of the
presence/absence of the i-th item, and possibly to contain additional information. The
meaning is that info= -1 if and only if the item is not present, while all other values are
used to store information associated to contained items. An additional variable first contains
the index of the first item in the double-linked list (NULL if list is empty). Note that the

11

obtained linked list is not sorted. Clearly, pointers can be used instead of indices for prev
and next. In addition, the total number of contained elements is recorded in length.

|prev linfo |next |prev |info |next Jprev |info [next |prev [info |next |
2] [T-T7 hou] ITT7 47 [-I] [2] T Nocy

1 2W4

Figure 6: Indicator set structure (above) and example with n=4 and length=2 (below).

With the above data structure, INSERT , DEL, and TEST are O(1), listing all elements
requires O(length) time. In fact, insertion requires an update of the info variable, then the
item is inserted at the beginning of the double-linked list by modifying the appropriate prev,
next and first indices. Deletion has a similar realization, the previous and next element are
linked together, after setting info — —1. Finally, all elements are listed in O(length) time
by starting from the first index and following the next pointer. Special cases (first or last
element, empty list) are straightforward to take care of.

Indicator sets are used as a data structure for SMINUS (see Def. 4.3). The items to be
stored are ordered couples of integers from 1 to n (a couple is present at most once). Now,
for each v there is at most one z such that (v,2) € SMINUS, and therefore the associated
x can be stored in the above described info variable of the indicator set. Removal of vertex
v from SMINUS requires decrementing DELTAS[z]. After removing vertex v, the z value
returned by SMINUS.DEL(v) is used to know which DELTAS[2] is to be decremented.

/_\’next’ arrows
2] [TT27 howl 2] 47472 NotlfJ2 [2 (3]
1 N2 A

110
21 3 ‘prev’ arrows
310
41 0

DeltaS

Figure 7: Data structure for SMINUS, and array DELTAS, an example with n=4 and three
vertices (2,3,4) not connected to vertex 2 in X.

12

The data structures are illustrated in Fig. 7. The figure shows an example for SMINUS
containing the couples (2,2), (3,2), and (4,2).

5.2 The INCREMENTAL-UPDATE algorithm

The data structures described in Sec. 5 are adopted to realize the sets X, 5, and SMINUS.
An n-dimensional array XMiss is used to record the number of missing connection to set
X for each vertex,

XMiss[v) = [{i: 1€ X,(i,v) ¢ E}|

and an indicator set XMissLisT[v] for each vertex is used to contain the list of lacking edges
to members of X (“missing connections”). Let us note that XMiss[v] can be stored as the
length of the XMissLisT[v] indicator set, the notation has been chosen for clarity.

When an element is added to or dropped from X, the data structures 5, SMINUSs, XMIss
and XMissLisT are updated through the algorithm of Fig. 8.

INCREMENTAL-UPDATE (v, type)

1 >Comment: v is is the vertex acted upon by the last move

2 > type is a flag to differentiate between ADDMOVE and DROPMOVE
3 LAasTMOVED[v] «— t

4 if type=ADDMOVE then

5 [forall j € Ng(v)

6 XMissList[j].INsERT(v) ; XMiss[j] «— XMiss[j]+ 1

7 if XMiss[j] = 1 then

8 S.DEL(j)

9 SMINUS.INSERT(j,v) ; DELTAS[v] — DELTAS[v] + 1
10 else if XMiss[j] = 2 then

11 L z «— SMINUS.DEL(j) ; DELTAS[z] «— DELTAS[2] — 1
12 else

13 forall j € Ng(v)

14 [XMissList[j].DEL(v) ; XMiss[j] «— XMiss[j] — 1

15 if XMiss[j] = 0 then

16 [& — SMINUS.DEL(j) ; DErraS[z] «— DELTAS[2] — 1
17 S.INSERT(j)

18 else if XMiss[j] = 1 then

19 [@ — the only vertex contained in XMissLisT[;]

20 i SMINUS.INSERT(j,z) ; DELTAS[z] « DELTAS[2] + 1

Figure 8: INCREMENTAL-UPDATE routine.

Let us demonstrate the correctness of the algorithm. First, let us note that the vertices
connected to the just moved vertex v (defining Ng(v)) do not change their membership
status with respect to 5. Clearly, this property is not satisfied by v because (v,v) ¢ FE.

The membership of w € § does not change after add moves: if w was lacking at least
one edge, trivially w will continue to lack the same edge, vice versa, if w had all edges to
the old X, w will have all edges after the move. Similarly, S membership does not change
after drop moves: if w was in S it will remain there (trivial), if w was not in 5, then some

13

other edge beyond (w,v) must be missing to X members (in fact (w,v) € £ for the above
assumption that w is connected to v). At least the same edge must be missing after the
move.

An analogous argument can be repeated for SMINUS membership, while the fact that
XMissLisT[w] and XMiss[w] are not changed if (v, w) € F is clear.

Therefore, all membership changes can possibly occur only for vertices not connected
to the just moved one (i.e., for j € Nz(v), the neighboring vertices of v in the complement
graph).

Let us consider the case when vertex v is added to X (lines 4-11). For all non-connected
7, v is added to the list of missing connections and the number of missing connections to X
increases (line 6). If the number of missing connections from j to X is one, j was in S before
the addition and now enters SMinus (lines 8-9). It could be added to X if v is dropped,
therefore DELTAS[v] increases. If the number of missing connections from 7 to X is two,
J was in SMinus and has now to be deleted from it (lines 10-11), the value DELTAS[2] is
decreased for the single vertex x to which j was not connected.

The case when a vertex is dropped is easily demonstrated with analogous arguments. In
particular, if XMiss[j] is zero, j transfers from SMinus to S (lines 15-17), if XMiss[j] is one,
the vertex in X corresponding to the single missing edge is extracted from XMissLisT[j]
and j enters SMINUs (lines 19-20).

If the lists of missing connections for each vertex are not available in the structure
defining the task graph, they can be calculated in the preprocessing phase and stored for
future use, for example in an adjacency vectors representation of G. If this preprocessing is
executed the following theorem is derived:

Theorem 5.1 The incremental algorithm for updating X, S and SMINUS during each it-
eration of RLS has a worst case complexity of O(n). In particular, if vertex v is added to
or deleted from S, the required operations are O(degs(v)).

Let us note that the actual number of operations executed when vertex v is moved is
a small constant times degz(v) and therefore the algorithm tends to be faster when the
average degree in the complement graph ' becomes smaller (e.g., for dense graphs with
degs(v) << n).

5.3 Update of (G(S) degrees

The INCREMENTAL-UPDATE algorithm is used to assure that the sets S and SMINUS reflect
the current configuration along the search trajectory. In addition, the particular tie-breaking
rule adopted in BEST-NEIGHBOR is based on the degrees in the induced subgraph G(.5)
(see Fig. 2, lines 8-9). Their computation costs at most O(m), m being the number of
edges, by the following trivial algorithm. All the edges are inspected, if both end-points are
in §, the corresponding degrees are incremented by 1.

Putting together all the complexity considerations the following corollary is immediately
implied:

Corollary 5.1 The worst-case complezity of a single iteration is O(max{n,m}).

14

In practice the above worst-case computational complexity is pessimistic. The degree is
not computed from scratch but it is updated incrementally with a much lesser computational
effort: in fact the maximum number of nodes that enter or leave S®) at a given iteration
is at most degz(v), v being the just moved vertex. Therefore the number of operations
performed is at most O(degz(v) - |S®+Y]). In actual runs, because the search aims at
maximizing the clique X @ the set S tends to be very small (at some steps empty!) after
a first transient period, and the dominant factor in the number of performed operations is
the same O(degg(v)) factor that appears in the Theorem 5.1 (Sec. 5.2).

5.4 Memory usage

Memory is used by the RLS algorithm to store information about the visited configurations
(see the use of hashing in routine MEMORY-REACTION) and to realize the remaining data
structures. In the assumption that #,,,, iterations are executed, that O(%,,4,) hash-table
slots are available and that a fixed-size item for each new configuration is stored in a linked
list corresponding to a given slot (collisions are resolved by chaining), the following theorem
about the memory usage of the RLS algorithm holds:

Theorem 5.2 The memory required by the RLS algorithm is O(n? + tyaz)-

The demonstration is immediate after noting that each indicator set can be realized
with O(n) memory and that O(n) of them are needed to realize the XM1ssL1sT sets used in
the INCREMENTAL-UPDATE algorithm. All other data structures (apart from the hashing
memory) do not require more that O(n?) memory space.

Let us note that Q(n?) is a lower bound for the memory usage if the adjacency matrix
Ag = (@ij)nxn of G is stored (its definition is: a;; = 1 if (¢,7) € £ is an edge of G, and
a;; =0if (¢2,7) ¢).

15

6 Experimental results

The RLS algorithm has been implemented in an object-oriented high-level language (C++)
and tested on a series of benchmark tasks. In order to run the larger tasks on our machine
(graphs with up to 4 000 vertices and 5 506 380 edges) the use of XMissLisT is avoided
and line 19 in Fig. 8 is substituted with a loop over all X members, that is broken as
soon as the missing edge to j is found. If the RAM memory is sufficient, the version
in Fig. 8 should be preferred because of its better worst-case complexity (Theorem 5.1).
Clearly, the memory usage can decrease if the individual bits of integer variables are used
to store set-related information, while the computation speed can increase through the use
of low-level languages. We did not pursue these issues because the results obtained by the
object-oriented C++ version are fully satisfactory.

It is quite essential that heuristics are tested on problems arising in different areas and
that the obtained results are compared with those obtained by competitive schemes on the
same task suite. In particular, we present the results obtained on the benchmark defined
as part of the international challenge organized by DIMACS [17].

6.1 DIMACS challenge

An international Implementation Challenge organized by the Center for Discrete Mathe-
matics and Theoretical Computer Science (DIMACS) has taken place in 1993. The purpose
was to find effective optimization and approximation algorithms for Maximum Clique,
Graph Coloring, and Satisfiability. The results obtained by the participants have been
presented at a DIMACS workshop in Fall of 1993, with proceedings published by the AMS
[17].

A small number of instances have been selected to provide a “snapshot” of the algo-
rithm’s effectiveness. Some benchmark graphs stress — or test the limits of — the various
algorithms, and constitute an important base point to evaluate new heuristics in this area.
The selected max-clique instances are listed in Table 1. The 37 tasks contains the following
graphs (see [17] for additional details and references).

e Random Graphs. Cx.y and DSJCx.y, of size x and density 0.y.
e Steiner Triple Graphs. MANNx

e Brockington Graphs. brockx_2 and brockx 4 of size x.

e Sanchis graphs. genx p0.9_z and genx_p0.9_z. of size x.

e Hamming graphs. hamming8-4 and hamming10-4. with 256 and 1024 nodes, respec-
tively.

e Keller Graphs. keller4, keller5, keller6.

e P-hat Graphs. p_hatx-z, of size x.

16

Standard timing routines for MC have been provided [17], the user times in seconds
obtained by our workstation are listed in Table 2.

In order to assess the statistical variation, 10 runs have been performed for each task,
with different sequences of pseudo-random numbers (used to break ties and during restarts).
The maximum allotted time for each instance is the same that was used in [21], a competitive
application of TS to MC.

The computational results are shown in Table 3. The CPU times include those for initial-
izing the problems, while the number of iterations per second are calculated by subtracting
the initialization times. Let BR denote the best result obtained by all DIMACS workshop
participants. Most runs reach the “BR” value after a small fraction of the allotted time, in
addition, the variation in the clique size obtained is zero for most instances. It is of interest
to compare the performance of RLS with those obtained by the following fifteen heuris-
tic algorithms presented at the DIMACS workshop [17]: 1) AtA (Grossman), 2) SA plus
greedy (Homer and Peinado), 3) VHP (Gibbons, Pardalos, Hearn), 4) SM1 (Brockington
and Culberson), 5) CLIQUEMERGE (Balas and Niehaus), 6) ST (Soriano and Gendreau),
7) DT (Soriano and Gendreau), 8) PT (Soriano and Gendreau), 9) GSD(0) (Jagota, San-
chis, Ganesan), 10) SSD(0) (Jagota, Sanchis, Ganesan), 11) 5SS Dgz(0) (Jagota, Sanchis,
Ganesan), 12) RB-clique (Goldberg and Rivenburgh) 13) tabu search and genetic hybrids
(Fleurent and Ferland) 14) A (Bar-Yehuda, Dabholkar, Govindarajan, Sivakumar) 15) C
(Bar-Yehuda, Dabholkar, Govindarajan, Sivakumar).

Given the size and difficulty of some tasks, only 20 values in Table 2 correspond to
proved global optima (obtained with exact algorithms). The other values listed in the
“BR” column are the best results obtained by the above heuristics. RLS reaches the BR
value or a better one in 34 out of 37 cases. In two instances corresponding to large graphs
RLS finds new values (for C1000.9 better by one, for C2000.9 better by three vertices). In
the three cases where the current best value is not obtained, the difference is of one vertex
in two cases, of four vertices in one case (brock400.2, a graph designed to “camouflage”
the optimal solution).

As a comparison, the best four competitors (no. 2, 5, 12, 13 in the above list) obtained
the best value in 23 + 27 instances (21 + 25 after considering the two new values found
by RLS). After taking into account the different computer speed, the scaled CPU times
needed by three of them are larger than RLS times by at least a factor of ten. Algorithm
no. 2 is slightly faster but found only 24 best values (22 if the new values are considered),
by executing hundreds of runs for most tasks.

17

File Nodes Edges Density
C125.9 125 6963 0.898
C250.9 250 27984 0.899
C500.9 500 112332 0.900
C1000.9 1000 450079 0.901
C2000.9 2000 1799532 0.900
DSJC500.5 500 62624 0.501
DSJC1000.5 1000 249826 0.500
C2000.5 2000 999836 0.500
C4000.5 4000 4000268 0.500
MANN_a27 378 70551 0.990
MANN_ad45 1035 533115 0.996
MANN_a81 3321 5506380 0.998
brock200_2 200 9876 0.496
brock200_4 200 13089 0.657
brock400_2 400 59786 0.749
brock400_4 400 59765 0.748
brock800_2 800 208166 0.651
brock800_4 800 207643 0.649
gen200_p0.9_44 200 17910 0.900
gen200_p0.9.55 200 17910 0.900
gen400_p0.9.55 400 71820 0.900
gen400_p0.9.65 400 71820 0.900
gen400_p0.9_75 400 71820 0.900
hamming8-4 256 20864 0.639
hamming10-4 1024 434176 0.828
kellerd 171 9435 0.649
keller5 776 225990 0.751
keller6 3361 4619898 0.818
p-hat300-1 300 10933 0.243
p-hat300-2 300 21928 0.488
p-hat300-3 300 33390 0.744
p-hat700-1 700 60999 0.249
p-hat700-2 700 121728 0.497
p-hat700-3 700 183010 0.748
p-hat1500-1 1500 284923 0.253
p-hat1500-2 1500 568960 0.506
p-hat1500-3 1500 847244 0.753

Table 1: DIMACS “snapshot” benchmark files

r100.5 r200.5 1r300.5 r400.5 1r500.5
0.04 0.94 8.17 50.37 191.25

Table 2: User times for DIMACS machine benchmarks instances (HP 747i, 100 MHz clock,
32 Mb RAM, compiler: gcc -02)

18

Time to Best Clique Size

Name Avg (S.Dev.) | AvgIter. | Iter./Sec. | Min Avg(S.Dev.) Max | BR
C125.9 0.3 (0) 86.0 7700.0 34 (0) 31 *
€250.9 0.5 (0.1) 1484.6 | 14336.5 44 (0) 44 *
€500.9 20.4 (12.6) | 170046.2 | 8632.6 57 (0) 57
€1000.9 145.3 (78.2) | 998394.9 | 6930.3 68 (0) 67
€2000.9 332 2 (306.0) 1435686.8 4357.8 76 77.1 (0.6) 78 75
DSJC500.5 6 (0.5) 2205.1 3517.6 13 (0) 14 *
DSJC1000.5 22 2 (16.0) 53173.8 | 25483 15 (0) 15 *
€2000.5 26.0 (23.8) 29734.4 | 13409 16 (0) 16
€4000.5 69 5 (29.4) 29294.5 585.4 17 17.2(0.4) 18 | 18
MANN_a27 9 (6.2) 55247.2 9473.9 126 (0) 126 *
MANN_a45 178 1 (297.9) 1249278.1 6933.8 343 343.3 (0.5) 344 345 *
MANN_ a81 883.2 (1019.3) | 2591475.4 2942.7 1097 1097.6 (0.5) 1098 | 1098
brock200.2 5.6 (6.4) 22158.5 | 4082.4 12 (0) 12 *
brock200.4 6.8 (11.4) 36237.8 | 54095 | 16 16.3(0.5) 17 | 17*
brock400.2 1.1 (1.1) 7061.2 6258.9 25 (0) 29 *
brock400.4 2.4 (2.5) 14733.3 | 62350 | 25 26.6 (3.3) 33 | 33*
brock800.2 13.8 (12.0) 50225.6 | 3951.2 21 (0) 21
brock800.4 23.7 (28.3) 876254 | 3986.0 21 (0) 21
gen200.p0.9.44 0.4 (0.1) 1751.3 | 18264.8 44 (0) 44 *
gen200.p0. 955 0.4 (0) 543.0 12788.2 55 (0) 55 *
gend00.p0. 955 5.0 (4.3) 41643.8 | 10495.4 55 (0) 55
gend00.p0.9.65 0.6 (0.1) 2053.8 | 11011.6 65 (0) 65
gend00.p0.9.75 0.6 (0.1) 1835.4 | 11922.3 75 (0) 75
hamming8-4 0.4 (0) 16.0 1600.0 16 (0) 16 *
hamming10-4 1.6 (0.1) 944.8 3655.2 40 (0) 40
kellerd 0.3 (0) 99.6 5712.5 11 (0) 11 *
keller5 1.6 (0.8) 3185.0 4821.8 27 (0) 27
keller6 566.0 (298.2) 1061222.2 1928.3 59 (0) 59
p-hat300-1 0.4 (0) 154.0 5345.0 8 (0) 8 *
p-hat300-2 0.4 (0) 37.2 3127.8 25 (0) 25 *
p-hat300-3 5 (0.1) 951.4 9612.9 36 (0) 36 *
p-hat700-1 2 (0.5) 1021.1 2751.0 11 (0) 11 *
p-hat700-2 0.9 (0) 158.6 1983.5 44 (0) 44 *
p-hat700-3 0.9 (0) 346.2 2848.5 62 (0) 62
p-hat1500-1 39.5 (46.5) 61754.8 1613.3 11 11.6 (0.5) 12 12 *
p-hat1500-2 3.1 (0.1) 578.6 1349.3 65 (0) 65
p-hat1500-3 3.3 (0.2) 1696.8 2680.2 94 (0) 94

Table 3: Results on DIMACS Benchmark Instances, average time (with standard deviation)
and iterations to find the best solution, average number of iterations per second, obtained
clique size (with std. dev.). BR is the best result of all DIMACS workshop participants (*
if optimality is proved).

19

The results obtained on the DIMACS instances not included in the “snapshot” suite
are listed in Table 4. For these instances we have only the results obtained by Soriano
and Gendreau [21] by using three different versions of Tabu Search. The range of results
obtained by their algorithms is listed in the column labeled “SG.”

20

Time to Best Cique Size
Name Avg (S.Dev.) | Avg Iter. | Iter./Sec. | Min Avg(S.Dev.) Max | SG
c-£at200-1 0.3 (0) 12.0 1200.0 12 (0) 12 %
c-£at200-2 0.3 (0) 24.0 2400.0 24 (0) 24 *
c-£at200-5 0.4 (0) 58.0 4350.0 58 (0) 58 *
c-fat500-1 0.6 (0) 14.0 1400.0 14 (0) 14 *
c-£at500-2 0.6 (0) 26.0 2022.2 26 (0) 26 *
c-£at500-5 0.6 (0) 64.0 1973.3 64 (0) 64 *
c-£at500-10 0.6 (0) 126.0 1939.5 126 (0) 126 *
johnson8-2-4 0.3 (0) 4.0 400.0 4 (0) 4%
johnson8-4-4 0.3 (0) 14.0 1400.0 14 (0) 14 *
johnson16-2-4 0.3 (0) 8.0 800.0 8 (0) 8 *
johnson32-2-4 0 (0) 16.0 3078.6 16 (0) 16
hamming6-2 0.3 (0) 32.0 3200.0 32 (0) 32 *
hamming6-4 0.3 (0) 4.0 N/A 4 (0) 4 *
hamming8-2 0.4 (0) 128.0 3285.3 128 (0) 128 *
hamming10-2 2 (0) 512.0 1043.6 512 (0) 512 *
$an200.0.7_1 1.7(04) 74326 | 54312 30 (0) 16 = 30 *
£an200.0.7.2 35(29) | 163307 | 5194.6 18 (0) 15 = 18 *
£an200.0.9_1 1.9 (04) | 163609 | 10504.6 70 (0) 4T = 70 *
£an200.0.9.2 0.8 (0.4) 6490.3 | 13566.9 60 (0) 41 = 60 *
£an200.0.9.3 0.6 (0.3) 3563.0 | 15169.5 44 (0) 36 = 44 *
$an400.0.5_1 3.4 (22) 7728.9 | 2880.9 13 (0) § =13 *
$an400.0.7_1 25(08) | 104940 | 5168.8 40 (0) 21 = 40 *
$an400.0.7.2 5.6 (54) | 247961 | 4940.1 30 (0) 18 = 30 *
san4000.73 9.7 (6.3) 45183.1 4805.6 18 21.6 (1.3) 22 17 =22 %
£an400.0.9_1 0.5 (0) 104.2 2401.0 100 (0) 100 *
£anr200.0.7 0.4 (0) 366.0 10067.9 18 (0) 18 *
£anr200.0.9 0.6 (0.2) 3270.2 | 16752.8 42 (0) 41 =+ 42 *
sanr400.0.5 2.2 (14) 6605.0 | 3799.7 13 (0) 12+ 13 %
£anr400.0.7 0.4 (0.3) 2399.6 | 5469.8 21 (0) 20 = 21
san1000 87.7 (73.7) | 144690.0 | 1676.2 15 (0) 10
brock200_1 0.6 (0.3) 2446.8 12082.6 21 (0) 20 =21 %
brock200.3 3.1(8.9) 14652.6 4865.0 14 14.1 (0.3) 15 14
brock400_1 2.9 (3.1) | 180644 | 6199.7 25 (0) 24 = 25
brock400.3 10.5 (119.2) 65658.9 6285.5 25 26.2 (2.5) 31 24 = 25
brock800_1 9.2 (10.0) | 36099.1 | 3926.4 21 (0) 20 = 21
brock800_3 67.4 (60.8) | 267502.7 | 3986.4 22 (0) 20 = 21
p-hat500-1 0.6 (0) 100.8 2861.2 9 (0) g *
p-hat500-2 0.7 (0.2) 485.2 3066.1 36 (0) 36 *
p-hat500-3 0.5(04) 20474 | 6273.1 50 (0) 49 = 50
p-hat1000-1 0.1(0.1) 243.8 2027.1 10 (0) 10
p-hat1000-2 0 (0) 222.6 1688.6 46 (0) 46
p-hat1000-3 0.6 (0.3) 3287.4 | 5527.3 68 (0) 66

Table 4: Results on DIMACS Benchmark Instances, instances not considered in the “snap-
shot”. SG is the range of results obtained by the three algorithms of Soriano and Gendreau,
starred if the largest value is the global optimum. N/A (not available) means that the time
is too short to be measured with the timing routine.

21

7 Variants of RLS

Different algorithmic choices have been investigated while developing the above presented
RLS scheme. Both the computational complexity and the actual results obtained on the
DIMACS benchmark have been considered before defining the presented algorithm.

In particular, the algorithm obtained if the degrees in the original graph are used instead
of the G(5) degrees in the BEST-NEIGHBOR routine is discussed in Sec. 7.1. The relax-
ation of prohibitions for selected “promising” moves (aspriration criterion) is considered in
Sec. 7.2.

7.1 RLS without using G(S5) degrees

The values of the vertex degrees in the induced subgraph G/(5) are needed in the BEST-NEIGHBOR
routine to break ties when more allowed vertices can be added to the current clique (Fig. 2
lines 8-9). The question whether those degrees are really needed in the heuristic is worth
considering. In fact, a modified algorithm that does not make use of the updated degrees

in G(.5) would have a better worst-case complexity per iteration of O(n) because the O(m)
term caused by the updating illustrated in Sec. 5.3 would not be present.

To investigate the option, a variant has been considered in which the degrees in the
complete graph G = (V, F) are used instead of the degrees in the induces subgraph G/(9).
In detail, the term degg(s) in Fig. 2 (lines 8-9) has been substituted with degg(vy, whose
values are calculated in the initialization part of the RLS algorithm. The computational
results are listed in Table 5. As it was expected, the number of iterations per second always
increases with respect to those obtained in Table 3. For some problems the iterations are
up to two—three times faster. Unfortunately the best clique sizes obtained are in four cases
inferior (see the graphs MANN_a27, MANN_a45, MANN_a81, and keller6) and the average
time-to-best in the other cases (considering also the initialization phase) is not significantly
better, and therefore the option was rejected. Nonetheless, the fact that comparable results
were obtained in most tasks, implies that the use of G/(.9) degrees in the move choice is
crucial only for a limited subset of the considered benchmark tasks.

7.2 RLS with aspiration

An important element of traditional Tabu Search [10] is the incorporation of an aspiration
level criterion. Its role is “to provide added flexibility to choose good moves by allowing the
tabu status of a move to be overridden if the aspiration level is obtained.” In particular, a
simple aspiration criterion that is often used is that the prohibition of a move is relaxed if
the cost function value that can be obtained by applying it is better than the “best so far”
value.

A version of the BEST-NEIGHBOR function with an aspiration scheme has been tested.
The details are illustrated in Fig. 9. In this version, a prohibited vertex can be added if an
aspiration criterion is met (line 11) and if the degree of this vertex in G/(.9) is larger than
the maximum degree of allowed vertices. The aspiration criterion is that a clique larger
than the current best is obtainable or, better, not excluded a priori.

The computational results obtained are listed in Table 6. The increased algorithm
complexity is not justified by the obtained performance: the maximal clique sizes obtained

22

BEST-NEIGHBOR (X))

1 >v is the moved vertex ,type is ADDMOVE or DROPMOVE

2 if |S] > 0 then

3 [type «— ADDMOVE

4 MaAXDEG «— mazimum degree in G(9)

5 ALLOoWEDFOUND « ({ allowed v € S} #)

6 if ArLowebFounD = false then

7 MAXDEGALLOWED «— —1

8 else

9 MAXDEGALLOWED « maz. degree in G(S) for allowed vertices
10 PROHIBITEDNOTBETTER «— (MAXDEGALLOWED = MAXDEG)

11 ASPIRATION «— (| X |+ MaxDEG + 1 > k)

12 if ArLowEDIFOUND and (PROHIBITEDNOTBETTER or not ASPIRATION) then
13 v « random allowed v € S with degg(s)(v) = MAXDEGALLOWED
14 else

15 i v« random v € S with degg(s)(v) = MaxDEG

16 else

17 type «— DROPMOVE

18 if ({ allowed v € X} # 0) then

19 MAXDELTAS «— max; DELTAS(j]

20 v «— random allowed v € X with DELTAS[v] = MAXDELTAS
21 else

22 v «— random v € X

23 INC_REMENTAL—UPDATE('U,type)

24 if type = ADDMoOVE then return X U {v}

25 else return X \ {v}

Figure 9: RLS Algorithm: function BEST-NEIGHBOR with aspiration.

are not larger with respect to the version without the aspiration criterion and the CPU
times are statistically comparable.

23

Time to Best

Clique Size

Name Avg (S.Dev.) Avg Tter. | Tter./Sec. | Min Avg(S.Dev.) Max | BR
C125.9 0.3 (0) 91.6 10714.3 34 (0) 31
€250.9 0.4 (0) 740.6 15983.4 44 (0) 44 *
€500.9 15.2 (16.7) 134545.1 | 9667.6 57 (0) 57
€1000.9 100.7 (110.0) | 780989.5 | 8001.1 68 (0) 67
€2000.9 484 0 (502.7) | 2973148.2 | 6166.4 | 76 TT.1(0.7) 78 |75
DSIC500.5 4 (0.5) 1660.0 3730.8 13 (0) 14 *
DSIC1000.5 16.5 (8.6) 45130.0 | 2982.3 15 (0) 15 *
€2000.5 20.1 (14.2) 30229.6 | 2047.8 16 (0) 16
C4000.5 538.2 (644.2) 632615.4 1209.7 17 17.6 (0.5) 18 18
MANN_a27 48.2 (26.4) | 512507.5 | 10736.5 125 (0) 126 *
MANN_a45 288.6 (219.8) 2092805.7 7289.5 337 337.9 (0.6) 338 345 *
MANN_a81 544.1 (584.4) 1690646.1 3131.6 1082 1082.1 (0.3) 1083 | 1098
brock200.2 16.3 (11.5) 65376.1 4141.6 11 11.9 (0.3) 12 12 *
brock200.4 10.0 (8.9) 54146.0 | 55802 | 16 16.7(0.5) 17 | 17*
brock400.2 1.4 (1.4) 9127.3 6516.2 25 (0) 29 *
brock400.4 6.9 (16.5) 451577 | 6573.0 | 25 25.8(2.5) 33 |33*
brock800.2 10.3 (8.3) 411154 | 45257 21 (0) 21
brock800.4 11.7 (5.8) 470748 | 44142 21 (0) 21
gen200.p0.9.44 0.5 (0) 2596.8 | 18469.8 44 (0) 44 *
gen200_p0.9.55 4 (0) 936.8 16375.5 55 (0) 55 *
gend00.p0. 955 1 (6.0) 63678.2 | 10389.7 55 (0) 55
gend00.p0.9.65 6 (0.1) 1618.8 | 13748.8 65 (0) 65
gend00_p0.9.75 0.6 (0) 1402.6 | 13846.6 75 (0) 75
hamming8-4 0.4 (0) 25.2 2533.3 16 (0) 16 *
hamming10-4 1.6 (0.1) 869.8 6574.7 40 (0) 40
kellerd 0.3 (0) 85.4 10513.3 11 (0) 11*
keller5 6.4 (3.9) 29198.5 | 5764.4 27 (0) 27
keller6é 1545.8 (1014.3) | 4698501.9 3053.2 53 54.7 (1.1) 57 59
p-hat300-1 0.5 (0.2) 385.8 6270.7 8 (0) 8 *
p-hat300-2 0.4 (0) 29.0 2900.0 25 (0) 25 *
p-hat300-3 5 (0.1) 1175.0 | 14307.1 36 (0) 36 *
p-hat700-1 1.4 (0.4) 1619.1 3289.0 11 (0) 11 *
p-hat700-2 0.9 (0) 271.8 6183.7 44 (0) 44 *
p-hat700-3 0.9 (0.1) 414.4 7240.9 62 (0) 62
p-hat1500-1 35.0 (40.6) 61448.3 1888.7 11 11.7 (0.5) 12 12 *
p-hat1500-2 2.8 (0.1) 337.2 3440.9 65 (0) 65
p-hat1500-3 3.0 (0.2) 1262.8 5308.4 94 (0) 94

Table 5: Results on DIMACS “snapshot” instances, best move choice based on vertex degree
in original graph, not on degree in G(9).

24

Time to Best Clique Size

Name Avg (S.Dev.) | AvgIter. | Iter./Sec. | Min Avg(S.Dev.) Max | BR
C125.9 0 3 (0) 120.8 8262.5 34 (0) 34 *
€250.9 5 (0.2) 1724.6 | 137527 44 (0) 44 *
€500.9 15 4(16.6) | 1263322 | 92629 57 (0) 57
€1000.9 142.1 (133.5) | 958708.0 | 6764.7 68 (0) 67
€2000.9 444 6 (362.2) 1901291.4 4289.9 77 77.2 (0.4) 78 75
DSJIC500.5 4 (0.4) 1419.6 3492.0 13 (0) 14 *
DSJC1000.5 20 6 (18.8) | 486441 | 2507.9 15 (0) 15 *
€2000.5 35.0 (20.5) | 42623.8 | 1417.2 16 (0) 16
€4000.5 59.2 (30.4) 22908.1 635.6 17 (0) 18
MANN_a27 10.5 (9.8) 104024.4 | 8589.2 126 (0) 126 *
MANN_a45 110.0 (95.4) 746743.0 6768.8 343 343.3 (0.5) 344 345 *
MANN_ a81 497.7 (417.0) 1407070.9 2852.1 1097 1097.5 (0.5) 1098 | 1098
brock200.2 10.0 (8.6) 387455 | 46734 | 11 11.9(0.3) 12 | 12*
brock200.4 8.4 (10.4) 43900.0 | 5513.2 | 16 16.6 (0.5) 17 | 17*
brock400.2 2.2 (1.5) 13263.1 | 6102.4 25 (0) 29 *
brock400. 4 25.6 (29.3) 153550.9 6121.6 25 29.8 (4.1) 33 33 *
brock800.2 14.4 (9.7) 51216.6 | 3892.1 21 (0) 21
brock800.4 16.3 (8.5) 57980.1 | 3843.7 21 (0) 21
gen200.p0.9.44 0.4 (0.1) 1459.6 | 16086.1 44 (0) 44 *
gen200.p0. 955 0.4 (0) 653.8 13913.5 55 (0) 55 *
gend00.p0.9.55 1(5.5) 51667.9 | 9440.1 55 (0) 55
gend00.p0.9.65 0.6 (0) 1133.6 | 10209.1 65 (0) 65
gend00.p0.9.75 6 (0.1) 1808.0 | 11088.2 75 (0) 75
hamming8-4 0.4 (0) 16.0 1600.0 16 (0) 16 *
hamming10-4 1.7 (0.2) 508.0 1928.2 40 (0) 40
kellerd 0.3 (0) 21.0 3100.0 11 (0) 11 *
keller5 2.1 (0.8) 5517.1 4418.1 27 (0) 27
kelleré 1258.9 (996.4) | 2318536.0 | 1875.7 59 (0) 59
p-hat300-1 0.4 (0.1) 188.2 5500.0 8 (0) 8 *
p-hat300-2 0.4 (0) 35.4 2720.0 25 (0) 25 *
p-hat300-3 5 (0.1) 1092.2 | 10437.1 36 (0) 36 *
p-hat700-1 1.3 (0.3) 1284.9 3240.5 11 (0) 11 *
p-hat700-2 0.9 (0) 114.0 1496.8 44 (0) 44 *
p-hat700-3 0.9 (0.1) 363.2 2723.3 62 (0) 62
p-hat1500-1 23.7 (26.9) 33662.6 | 15785 | 11 11.7(0.5) 12 | 12*
p-hat1500-2 3.2 (0.1) 712.2 1515.8 65 (0) 65
p-hat1500-3 3.4 (0.3) 1869.2 2810.7 94 (0) 94

Table 6: Results on DIMACS “snapshot” instances, with aspiration.

25

8 Summary and conclusions

A new heuristic algorithm based on local (neighborhood) search (RLS) has been proposed
for the solution of the Maximum-Clique problem. The RLS algorithm is characterized by
an internal feedback loop that determines the value of a prohibition parameter related to
the amount of diversification. Through this mechanism a degree of flexibility is present
that is appropriate for dealing with tasks with greatly different characteristics, but the user
intervention in the tuning of parameters is avoided. The computational complexity per
iteration of RLS has been analyzed in the worst case and extensive computational tests
have been executed. In particular, when the experimental results are compared with those
obtained by competing heuristics on the second DIMACS implementation challenge (at
least, those presented at the 1994 workshop [17]), RLS appears to provide a significantly
better performance, considering both the obtained clique sizes and the CPU times utilized.

Acknowledgments

We thank C. Mannino and A. Sassano for making available their C code for MC, P. Soriano
and M. Gendreau for sending their Pascal code implementing Tabu Search. In addition
we acknowledge useful discussions with them and with G. Di Caro. The present work
has been partially funded by Special Project “Algorithms and Software for Optimization,
and Models of Complex Systems” of the Univ. of Trento, MURST project “Efficienza di
algoritmi e progetto di strutture informative,” CNR grant “Strutture informative e teoria
degli algoritmi” and Esprit Basic Research Action n.1741 (ALCOM II).

References

[1] G. Ausiello, P. Crescenzi, and M. Protasi, Approximate Solution of NP Optimization
Problems, Theoretical Computer Science, to appear.

[2] T. Back and H. P. Schwefel, An Overview of Evolutionary Algorithms for Parameter
Optimization, Evolutionary Computation, 1(1) (1993), 1-23.

[3] E. Balas and C.S. Yu, Finding a Maximum Clique in an Arbitrary Graph, SIAM J.
Computing, 14(4) (1986), 1054-1068.

[4] R.S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. Stewart, Designing and
Reporting on Computational Experiments with Heuristic Methods, Technical Report,
CS&E Dept., Southern Methodist University, Dallas, TX, 1995.

[5] R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA Journal on Computing,
6(2) (1994), 126-140.

[6] R. Battiti and G. Tecchiolli, Simulated annealing and tabu search in the long run:
a comparison on QAP tasks, Computer and Mathematics with Applications, 28(6)
(1994), 1-8.

26

[7] R. Battiti and G. Tecchiolli, Local search with memory: Benchmarking RTS. Opera-
tions Research Spectrum, 1995, to appear.

[8] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and non-approximability.
Toward tight results, Proc. 36-th Ann. Symp. on Foundations of Computer Science,
1995, to appear.

[9] C. Friden, A. Hertz, and D. de Werra, STABULUS: A Technique for Finding Stable
Sets in Large Graphs with Tabu Search, Computing, 42 (1989), 35-4.

[10] F. Glover, Tabu search - part I, ORSA Journal on Computing, 1(3) (1989), 190-260.

[11] F. Glover, Tabu Search: Improved Solution Alternatives, in Mathematical Program-
ming, State of the Art 1994, (J. R. Birge and K. G. Murty, eds.), The Univ. of Michigan
Press, 1994, pp. 64-92.

[12] A. Gendreau, L. Salvail, and P. Soriano, Solving the Maximum Clique Problem Using
a Tabu Search Approach, Annals of Operations Research, 41 (1993), 385-403.

[13] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Com-
puting, 44 (1990), 279-303.

[14] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, 1975.

[15] D.S. Johnson, Approximation Algorithms for Combinatorial Problems, .J. Comput. and
System Sciences, 9 (1974), 256-278.

[16] D.S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, Optimization by Simu-
lated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number
Partitioning, Operations Research, 39 (1991), 378-406.

[17] D. Johnson and M. Trick (Eds.), Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, in press.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,
Science, 220 (1983), 671-680.

[19] P.M. Pardalos and J. Xue, The maximum clique problem, Journal of Global Optimiza-
tion, 4 (1994), 301-328.

[20] P. Soriano and M. Gendreau, Diversification Strategies in Tabu Search Algorithms
for the Maximum Clique Problem, Technical Report CRT-940, CRT - Université de
Montréal, Canada, 1993.

[21] P. Soriano and M. Gendreau, Tabu Search Algoritms for the Maximum Clique Problem,
Technical Report CRT-968, CRT - Université de Montréal, Canada, 1994.

27

