INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Imperative Concurrent
Object-Oriented Languages

Michael Philippsen*
phlipp @ icsi.berkeley.edu

TR-95-050

Part 1, Version 0, August 1995

Abstract
During the last decade object-oriented programming has grown from marginal influence into
widespread acceptance. During the same period of time, progress on the side of hardware and
networking has changed the computing environment from sequential to parallel. Multi-processor
workstations are state-of-the-art.

Unnumbered proposals have been made to combine both developments. Always the prime
objective was to provide the advantages of object-oriented software design at the increased power
of parallel machines.

However, combining both concepts has proven itself to be a notoriously difficult task. De-
pending on the approach, often key characteristics of either the object-oriented paradigm or key
performance factors of parallelism are sacrificed, often resulting in unsatisfactory languages.

This survey first recapitulates well-known characteristics of both the object-oriented paradigm
and parallel programming, before the design space of a combination is marked out by identifying
various interdependences of key concepts. The design space is then filled with data points: For
proposed languages we provide brief characteristics and feature tables. Both feature tables and
the comprehensive bibliography listing might help to identify open questions and to prevent
re-inventions.

For “Web-Surfers” we provide a wealth of interesting addresses.

Categories and Subject Descriptors:

General Terms: Languages, Object-Orientation, Parallelism, Concurrency

*On leave from Department of Computer Science, University of Karlsruhe, Germany

Contents

1 INTRODUCTION
1.1 Delimitation
1.2 Structure of the Text
1.3 Basics of Object-Orientation
1.4 Running Example

2 INITIATE CONCURRENCY
2.1 Automatic Parallelization
2.2 Fork, Join, and Equivalents
2.3 Cobegin
2.4 Forall, Aggregate, and Equivalents
2.5 Autonomous Code

3 COORDINATE CONCURRENCY
3.1 Goals of Integration
3.2 Categorieso
3.3 Activity Centered Coordination
3.4 Boundary Coordination
3.4.1 External Control
3.4.2 Handshake Control
3.4.3 Intermixed Handshake Control . . .
3.4.4 Isolated Handshake Control
3.4.5 Reflective Control

4 MAPPING AND LOCATION

5 LANGUAGE DISCUSSION
5.1 General Language Design Issues.
5.2 Language Survey

6 CONCLUSION

W LD =

17
17
20
21
27
27
32
33
37
43

44

44
44
45

50

i

1 INTRODUCTION

During the last decade object-oriented programming
has grown from marginal influence into widespread ac-
ceptance.

During the same period of time, progress on the
side of hardware and networking has changed the com-
puting environment from sequential to parallel. Cur-
rently, multi-processor workstations closely linked into
a local area network are a matter of fact. Similarly,
in high-performance computers the number of proces-
sors is increasing. This development can be expected
to continue in future, driven by growing markets for
standard processor and network technology resulting
in faster processors and stronger networks at lower
prices [14].

Unnumbered proposals have been made to combine
both developments. For this survey we have looked
at about hundred Concurrent Object-Oriented Lan-
guages (COOLs) and we are sure that there exist a lot
of COOL designs which we are not aware of. Always
the prime objective that resulted in the COOL de-
sign was to provide the advantages of object-oriented
software design at the increased power of parallel ma-
chines.

However, combining both concepts has proven it-
self to be a notoriously difficult task. Depending on
the approach, often key characteristics of either the
object-oriented paradigm or key performance factors
of parallelism are sacrificed, often resulting in unsat-
isfactory languages, as for example discussed in [240].

Unless the programming environment automati-
cally extracts parallelism from a sequential implemen-
tation, the key problems a programmer faces when
parallel programming are: to detect potential paral-
lelism in an application at hand, to start the paral-
lel activities, to coordinate their interplay, and — de-
pending on the programming language in use — to
achieve adequate performance on the available hard-
ware platform. The first problem is beyond the scope
of this survey; after a definition of the terminology
used throughout this survey, we will discuss the latter
three issues.

We will see for the fourth problem of mapping a
parallel solution onto the underlying computing hard-
ware there is a wide spectrum of possibilities to divide
the responsibility for this task between the program-
mer on one the hand side and compiler and run-time
system on the other hand side. The complexity often
increases for languages that specifically address dis-
tributed memory systems.

Both object-oriented programming and parallel
programming provide a wealth of terminology and ap-

proaches. One purpose of this survey is to define and
present the used terminology. Another purpose is to
help understand the dimensions that span the design
space of concurrent object-oriented programming lan-
guages. The individual understanding of these dimen-
sions will help to structure the discussion of design in-
terdependences that drive the development of COOLs.

1.1 Delimitation

In this survey we present and discuss imperative con-
current object-oriented languages. We do not consider
programming environments that are oriented towards
distributed programming. The distinguishing features
are interface definition languages (IDL). We skip sys-
tems if they offer such an IDL that allows different
programs to use objects from a common object base.
In such systems one or several programmers write pro-
grams that cooperate on shared objects. In contrast
to this approach, the languages discussed in this sur-
vey are targeted to write a single program that solves
a problem with explicit parallelism.

There are some survey articles on related topics.
Bal discusses five parallel programming languages in
[24]. Nuttal discusses systems that provide process
or object migration in [184]. Cheng’s contribution
[72] is a collection of parallel programming languages
and tools, some of which are object-oriented. Other
collections are due to Turcotte [229] and Philippsen
[193]. Gao and Kwong survey parallel and distributed
Smalltalks in [241]. Wyatt et al. study several object-
oriented languages and discuss whether the parallelism
is appropriately integrated into the languages [240].

The paper by Karaorman and Bruno [138] elabo-
rates on the design space of parallel object-oriented
programming. The thesis of Papathomas [189] and an
earlier paper [188] give a first classification of concur-
rent object-oriented languages. However, Papathomas
focussed mainly on the way of combining concurrency
with objects. He does not classify the broad number of
languages, we look at in this report. Neither does he
take more machine-oriented details into account, e.g.,
the way objects or processes are mapped to the under-
lying parallel hardware. Hence, he is not interested in
migration and scheduling. His survey is slightly biased
towards languages that couple concurrency to objects,
instead of having the concept of threads be orthogonal
to the notion of objects.

1.2 Structure of the Text

In section 2 we first discuss how concurrency com-
monly is initiated explicitly, before section 3 presents

means of coordination thereof. We restrict our consid-
erations to those concepts that are relevant for concur-
rent object-oriented programming languages. A more
detailed survey of concepts of concurrent program-
ming can be found in [18], programming languages
for distributed computing are discussed in [28].

Instead of adding citations wherever a COOL is
mentioned, we postpone all citations to a cross ref-
erence table at the end of the survey in section ?7.
This eases readability of the text and avoids unneces-
sary replications of citations, since most COOLs are
mentioned more than once.

Throughout the survey, we represent certain lan-
guage features with graphical symbols. These symbols
help to navigate through the text. Most importantly,
the graphical representation is used in the cross ref-
erence section. In that section, each language is la-
beled with a pictogram. The graphical elements of
the pictogram serve two purposes: they can help to
quickly find the corresponding explanatory text and
they can be used as a basis for comparison with other
languages.

1.3 Basics of Object-Orientation

Many different object-oriented languages are in use to-
day. In this section we briefly discuss the underlying
concepts. Our terminology is based on Wegner’s in-
fluential article [232] and other surveying papers and
text books [53, 143, 177, 200].

An object is the basic programmingentity. It takes
up a space in memory and thus has an associated ad-
dress. The object stores a “state” and offers a set of
routines or functions (also referred to as methods) to
define meaningful operations on that state.

A language that offers objects is said to provide
data abstraction if the state of an object can only
be accessed through these routines and functions and
not by directly accessing the instance variables that
are used by the object to store the state. Data ab-
straction is sometimes called data encapsulation,
which stresses the fact that the state of the object is
guarded against external influence; since the state can
only be changed by calling the offered routines; no
unanticipated changes can be made by callers.

A class is an implementation of a set of possible
objects. Objects of the same class share the same
implementation. A class determines a type, i.e., the
interface of routines and functions that are offered by
that implementation. All objects of a class have the
same interface, they offer the same set of routines and
functions, implement the same behavior, and therefore
belong to the same type. The difference between the

terms class and type will be discussed below in the
context of inheritance.

Languages that offer objects, but do not have the
notion of classes are called object-based languages.
Languages that offer both objects and classes are com-
monly referred to as class-based languages. Object-
based language that do not offer classes but offer
a mechanism to clone objects, i.e., to make several
objects that adhere to a common interface and im-
plementation are called prototype-based languages
(see for example [40]).

The difference between classes and Ada’s packages
[4] is that classes determine types of the language. Ob-
jects of a class instantiate this type. Packages cannot
be used to instantiate objects, but are only used to
encapsulate types.

Class-based programming languages enforce a pro-
gramming style which is desirable from the software
engineer’s point of view. Class implementations hide
information regarding their internal details behind a
well defined interface and hence support a modular
system design [191]. A given class should be easy to
replace by an alternative implementation that offers
the same interface of routines and functions.

A straightforward extension of the concept of
classes leads to classes that have a type argument.
These generic classes, container classes, or tem-
plates ease code reuse, since a useful abstract data
type needs to be implemented only once. By specify-
ing the type argument, the generic class turns into a
concrete class which can then be used to instantiate
objects.

Inheritance is the essential feature that turns
class-based languages into object-oriented lan-
guages. The general concept is reuse in a broad sense,
namely that a new or more specific implementation
can be made on top of existing or more general im-
plementations. There are several common uses for the
term inheritance as shown in the following diagram.

| || class | object |
implementation || implementation
inheritance delesation
interface interface &
hierarchy

The term inheritance usually is used with respect to
classes and implementation: The implementation of a
new (sub-) class is defined by extending the implemen-
tation of an existing class by just adding a new feature
or by redefining and specializing the implementation

of a given routine. We call this type of inheritance
implementation inheritance.

Two classes that do not share the same implemen-
tation and that are not derived by implementation in-
heritance from each other may be in an inheritance
relation when the types are considered. If only the
type, i.e., the interface determined by the offered rou-
tines are considered, two different classes are of the
same type if they offer routines with exactly the same
signatures. A class is below another class in the inter-
face hierarchy, if the class offers at least the same
routines. To be more exact: for all routine calls (for
all types of parameters and return values) that are
well defined for the upper type, the lower type pro-
vides some implementation. Depending on the partic-
ular language design, different sub-type relations are
required for parameters and arguments. The termi-
nology differentiates between co-variance and contra-
variance.

Object based inheritance is often called delegation
[214]; see the rightmost column of the above diagram.
When a routine of an object is invoked which is not
explicitly provided by that object’s implementation,
the object delegates the call to another object from
which it was derived. This ancestor then invokes the
corresponding routine unless the ancestor again needs
to delegate the call. Since no classes are involved,
delegation can also be meaningful for object-based and
prototype-based languages.

Depending on the used semantics of the term in-
heritance, an object-oriented language is said to offer
multiple inheritance either if a new class can inherit
from the implementations of more than one ancestor
or if the new class can be in the type hierarchy below
two different types, 1.e., the new class offers an inter-
face that is a combination of both interfaces of the
parent types. The semantics of the language has to
define how various sorts of conflicts are resolved. Al-
though it is unusual, it can be considered to match the
connotation of multiple inheritance if an object uses
several other objects to delegate routine calls.

In addition to the software quality features gained
by class-based languages (i.e. support for modular de-
sign and reuse of generic classes), the additional key
benefits of object-orientation for software engineering
are that given code can easily be extended and thus
reused. The obvious way is to create a subclass of an
existing class and add the specific new feature that
is needed. The implementation of the existing class
is (implementation) inherited without major code re-
working. This is especially suitable for rapid prototyp-
ing and for application of the spiral model of software

design.

The extensibility however, is only as easy as it ap-
pears on the first glance, if the following two additional
characteristics are offered by the language:

Polymorphism and dynamic binding are other
necessary characteristics of object-oriented languages.
A polymorphic reference can not only refer to objects
of a particular type but as well to objects of any sub-
type thereof. Only if polymorphism is offered can an
object of a newly defined subtype be used in old code
that already works for objects of the ancestor type.
Polymorphism and dynamic binding are two sides of
the same coin. While polymorphism allows a variable
to hold objects of a type or their subtypes, dynamic
binding allows that it is (conceptually) decided at run-
time which code is called to execute an operation on
that variable. Because it is unclear at the time the
code is written which kind of object (dynamic type)
will be used when an operation is called on a variable
that can refer to objects of a specific class (static
type) in general run-time decisions are necessary. Of
course, clever compilers might be able to prove that
only certain dynamic types may occur and therefore
speed up the otherwise costly indirection of code se-
lection.

Other authors, e.g. [177], claim that additional
properties, e.g. automatic memory management are
necessary for a language to become truly object-
oriented. However, we restrict our considerations to
the basic concepts mentioned above, because we think
that these are sufficient to reach the quality attributes
modularity, information hiding, extensibility, and sup-
port for reuse, which made object-oriented program-
ming so popular.

1.4 Running Example

To illustrate the concepts that are presented in this
survey, we will use the following example.

Consider a print server object that can be used by
several clients and uses one of all available printers
to print. To simplify the problem, we assume that
users do not have preferred printers. The print server
determines which printer to use.

The print server can be disabled. Jobs that arrive
after the disabling are queued, jobs that are processed
will be finished. Similarly, the print server can be

enabled.

class PRINT_SERVER is

public interface:
print_text(t:STRING):INT;
disable;

enable;
end PRINT_SERVER;

2 INITIATE CONCURRENCY

The 1nitial question of parallel programming is how to
initiate parallel execution. In this section we present
various proposed approaches to make parallel execu-
tion expressible in object-oriented programming lan-
guages and discuss whether these mechanisms are ap-
propriate in the context of object-oriented program-

ming.

The mechanisms are categorized into five groups each
of which is discussed in a subsection below. Individual
subsections are labeled with a star-shaped pictogram.'
By shading individual arms of the star we assign a
special meaning to each arm.

We structure the discussion of ways to initiate par-
allelism along two axes. One axis deals with the num-
ber of parallel activities that can be spawned with a
single language construct.

1
At least one of the lower two arms of the star is shaded
if a language offers constructs to spawn a single new
activity at a time. If one of the upper two arms is
shaded then there are constructs that spawn more
than one parallel activity at a time. For the discus-
sion it is irrelevant whether the fan-out is determined

at compile-time or at run-time although this of course
may have performance implications.

thread- object-
centered centered

The left two arms and the right two arms reflect dif-
ferent understandings of parallelism. The left hand
side represents a thread-centered understanding: A
new activity is created and this activity has no corre-
lation to any of the data structures in the program.

1The symbol was chosen because of its historic background.
From the beginning of parallel programming language design
the star has repeatedly been used to indicate the fact that a
language is capable of expressing parallelism; for example the
(non object-oriented) languages *Lisp [220], C* [221], Modula-
2* [195], and the COOL C** follow this convention.

On the right hand side the parallelism is inclined to a
more object-centered understanding: Either the par-
allel activity is bound to operate on a particular data
structure or it is syntactically bound to a special class

or object.

None of the mechanisms discussed in the categories
below is clearly superior. All of them cause some prob-
lems. Since the intended granularity of parallelism and
the addressed parallel programming model cause dif-
ferent evaluation criteria to be applied when reasoning
about these problems, existing COOLs cover all cate-
gories; most COOLs even offer mechanisms from sev-
eral categories. In the remainder of this section we will
present the mechanisms and discuss known drawbacks
and problems that are particularly visible in context
of object-oriented languages. However, we will refrain
from offering a weighting and leave it to the reader to
find his/her own evaluation criteria for the problems.

2.1 Awutomatic Parallelization

¢

One extreme approach to parallelism is characterized
by not having the programmer involved. The idea is
to take a program in its sequential representation as
provided by the programmer and automatically con-
vert this program into a parallel representation which
is then fed to the hardware.

We represent automatic parallelization by a star
with unshaded arms to express the fact that although
there 1s parallelism involved it is unspecified how the
parallelism is initiated.

Conceptually automatic parallelization fits per-
fectly to object-oriented programming languages since
it does not wvisibly interfere with existing lan-
guage characteristics. However, especially in object-
oriented languages automatic parallelization cannot
be achieved with a sufficient degree of performance,
because of the typically high number of run-time de-
pendent object references.

Automatic parallelization can be observed in sev-
eral forms which we will briefly discuss below.

Data Dependence

The key idea of an automatic transformation from a
sequential to a parallel program are data dependences.

The transforming tool analyzes the given program and
strives to detect sequences of operations which have no
interdependences, i.e., for which it does not matter in
what temporal order with respect to each other these
operations are performed. If the tool can prove to it-
self that there are no data dependences (and of course
no control dependences) then the operations can be
executed in parallel.

Significant progress has been made on well defined
sub-problems: Array based data dependence analy-
sis [29, 239] and pointer or alias analysis techniques
[30, 76, 142, 149] are used in various phases of com-
piler optimizations and to parallelize sequential code:
target architectures are parallel machines, vector com-
puters, and processors with instruction level paral-
lelism. A good survey of the relevant techniques can
be found in [23]. Everybody can convince himself of
the power of these techniques by switching on the op-
timizing option of his favorite compiler.

For general problems however, automatic paral-
lelization seems to be impossible, since in any given
sequential program too many dependences have been
introduced during the process of writing the sequen-
tial program than can be removed by any imaginary
analysis tool that does not start at the problem spec-
ification itself. The limits of automatic parallelization
based on dependence analysis can be shown by two
examples:

e A perfect example for this are sequential imple-
mentations of sorting algorithms. No tool (ex-
cept when it is based on pattern matching and
hence when it is knowledgeable about a collec-
tion of problem specifications) will convert the
sequential implementation in any of the most ef-
ficient parallel sorting algorithms, since except for
the common problem specification sequential and
parallel sorting algorithms are inherently different
and often specifically tuned towards a particular
architecture, see for example [35].

e Another well-known example is the performance
of vectorizing compilers. If those are used on pro-
grams which have been written in the pre-vector
era, the results are often poor. On more recent
codes, the vectorizers do quite a good job but this
is mainly due to the fact that programmers have
been trained to write their programs in a vector-
izable way by avoiding unnecessary dependences.

Dependence analysis has several severe limitations,
especially for object-oriented programming languages
because of the typically high number of run-time de-

pendent object references. Sufficiently good auto-
matic parallelization for general problems can only be
achieved if the (imaginary) tool could perform algo-
rithm design, i.e. if the tool could work from then
problem specification and somehow derive the imple-
mentation. Since such tools are not in sight, instead of
relying on automatic parallelization, parallelism is of-
ten expressed explicitly to achieve better performance.
Sections 2.2 to 2.5 present categories of corresponding
language constructs.

Data Flow

Data dependences are the underlying idea of program-
ming languages based on dataflow: possibly concur-
rent computations are started when specific data ele-
ments are needed.

Applicative or pure functional programming lan-
guages have the key feature that their functions are
free of state and do not cause any side effects. The
result of a function only depends on the input argu-
ments. In particular, there are no global variables and
no pointers. If functions are free of side effects the
evaluation order of their arguments is arbitrary, i.e.,
the order does not affect the result. For example in
the expression

f(g(1),8(2))

the compiler can execute both invocations of g concur-
rently. Several dataflow languages are based on this

principle, e.g., VAL [3] and 1d90 [80].

And/Or-Parallelism

Logic programs consist of sequences of clauses as
shown in the following example:

A:-B,C
A-D E

Each of the clauses has a declarative meaning which
results from the underlying Horn logic. In the ex-
ample, the declarative meaning of the first clause is
“if B and C are true then A is true”. Because Horn
clauses have only one literal on the left hand side, an
additional constructive and goal oriented procedural
meaning can be defined. The procedural meaning of
the first clause is “to prove that A is true, prove both
subgoals B and C”. At this point And-parallelism can
be applied: the pure logic of Horn clauses does not pre-
scribe any order for the proof of the subgoals B and
C, hence the subgoals can be evaluated in parallel and
their result must be combined by an “and”-operation.
Or-parallelism can be used between clauses. In the

above example there are two different ways to prove
that A is true, each of the two clauses describes one
way. Hence in pure Horn logic both proofs can be
tried in parallel, if either proof can be completed the
goal is achieved.

Proposed logic-based object-oriented languages
vary in the way in which object-oriented concepts are
introduced. The most usual way is to define classes as
collection of clauses which take on the role of methods.
Independent of the choice, the parallelism always can
be reduced to And/Or-parallelism.

COOLs in this Category

Although conceptually paralleliza-
tion merges fine with object-oriented languages, due
to the principal restrictions of data dependence anal-
ysis the desired degree of parallelism, i.e., the desired
performance cannot be achieved.

Therefore, there is no object-oriented language that
solely relies on automatic parallelization. However,
some COQOLs use data dependence analysis to coordi-
nate access to return values of procedures. This ap-
proach, called wait by necessity, is further discussed
in section 2.2. Only Mentat and Oz use data depen-
dence analysis to determine whether a method call
can be executed concurrently. Mentat is discussed in
more detail in section 7..... Above that, Mentat uses
DataFlow concepts. Regular Mentat classes must be
free of state, i.e., the methods of these classes are pure
functions. The Mentat compiler exploits this fact to
initiate parallelism automatically.

We will not discuss logic-based object-oriented lan-
guages in this survey for two reasons. First, the reader
can find an excellent survey of these languages in [82].
Second, Wegner has reasoned in [233] that object-
oriented and logic-programming paradigms are incom-
patible. We only mention Fleng++ because of its
mechanism for coordination of concurrency.

automatic

2.2 Fork, Join, and Equivalents

X

In this section we present language constructs that
start exactly one new concurrent activity at a time.
This activity is not bound to objects or specific data
structures of the language but can operate on the data
structures in the same way as the activity which exe-
cuted the construct. In the “star-notation” we shade
the lower left arm of the star for languages that have
such constructs.

Basic Fork and Join

The fork statement is the earliest proposed construct
to initiate parallelism at the language level [77, 86].
Similar to a routine call, a designated routine is
started with the fork statement. However, the in-
voking routine and the invoked routine proceed con-
currently.

Today the fork statement is still very popular in
thread packages (e.g. [?, 145]), where threads can be
created on the fly that run in the address space of the
caller. Similarly, on a more machine oriented level,
operating system level processes can be forked dynam-
ically.

Together with the fork statement often a join
statement is introduced for synchronization. The pro-
cess that executes the join statement is blocked un-
less/until the forked routine has terminated.

In several COQLs that are library based extensions
of existing object-oriented languages, new activities
are introduced in form of thread objects. When
these objects are created, the programmer provides
the name of a function and some arguments. This
function is then executed concurrently. This i1s similar
to the fork statement; the difference is that the fork
statement is integrated into the language, whereas the
thread object 1s not. The effect however, is the same,
since for both constructs it is unclear at almost any
point of a given code which code could be executed
concurrently.

Example. In the following code, we assume that the
print server ps has some devices attached, is enabled,
and can handle calls of print_text.

err : INT;

fork(1) erri :=
fork(2) err2 :
do_some_work;
join(1);

if errl == 0 then edit(textl) else ... end;

ps.print_text(textl) end;
ps.print_text(text2) end;

Each of the two fork statements spawns an additional
activity that prints a text. The fork statement has
an additional identifier that can be used in the join
statement. While the two texts are printed, some ad-
ditional work is done in do_some_work. Afterwards the
join(1) command waits for the first print job to be
completed before the text can be edited.

Discussion. By careful analysis of the above code
fragment from a software engineer’s point of view, the

following problem can be noticed that can even be
faced in non-object-oriented languages:

e Since fork-join and thread objects did not
participate in the development most program-
ming language constructs underwent, they do not
obey the single-entry-single-exit paradigm that
resulted in a widespread turning away from the
goto statement. For example, there can be sev-
eral textual join statements that refer to a sin-
gle fork. The programmer must make sure not
to join dynamically more than once for a single
fork. If two activities need synchronization, the
programmer must consider all potential control
flow paths to make sure to have a join statement
in every path. Unless used with discipline the
program is speckled with fork and join state-
ments. Thus it is in general impossible to under-
stand what routines could concurrently be exe-
cuted at any point of a given program, i.e., which
side effects might bother.

To make it more obvious: when new functionality
must be added to an existing fork-join-program
the programmer must use utmost care to under-
stand what activities might be running concur-
rently, and what side effects these activities could
have. Since no assumptions can be made about
the relative execution speeds of different activities
race-conditions are frequent.

When fork-join and thread objects are offered in
COOLs a key software quality characteristic that has
been gained by the object-oriented paradigm is often
sacrificed:

e These mechanisms may break modularity for two
reasons:

First, the caller of a method must know whether
the method can be executed concurrently without
any harmful interference. If this is not guaranteed
by the concurrency coordination mechanism used
in the COOL — and we will see in the next sec-
tion that most concurrency coordination mecha-
nisms do not offer such guarantees — the caller
must study the implementation of the method to
be convinced of its harmlessness. For most con-
currency coordination mechanisms this necessity
greatly reduces the usefulness of class libraries.

In the example, the programmer must know that
concurrent invocations of print_text do not inter-
fere with each other. Similarly, 1t must be known
that print_text and do_some_work do not interfere

with each other. For example, the programmer
must know whether the text is copied or a refer-
ence 1s used to access the text. In the first case
the text can be changed whereas in the second
case a modification of text in do_some_work could
interfere with print_text. Hence, the programmer
must know and understand the implementation

of the PRINT_SERVER class.

Second, it is in general impossible to change the
implementation of a method without carefully an-
alyzing all code positions that call this method.
The rewritten implementation might have in-
troduced additional coordination constraints the
caller must be aware of.

If the implementation of print_text is changed in
our example, new dependences might be intro-
duced. For instance, it might no longer be safe to
invoke print_text concurrently with several texts
or print_text and do_some_work might interfere.
These new dependences require that the code of
the caller must be checked and possibly adapted.

The following two paragraphs will discuss variations
of fork and join which are most often used in COOLs
to initiate concurrency. These variations essentially
inherit both the advantages and disadvantages of the
basic form although some advantages are gained by
reducing the expressive power of the basic form.

Asynchronous Call/Message and Future

Several languages provide an asynchronous method
call. This call is similar to an ordinary method call.
The difference is that the called method is processed
concurrently. As long as there are no return param-
eters, the asynchronous method call is equivalent to
the fork statement. Note that in this case there is
no join. The programmer cannot determine when the
asynchronously called method will terminate its exe-
cution.

If however, the called method has a return parame-
ter, the caller depends on the availability of the return
value. One option for dealing with this dependence is
an automatic approach: the compiler analyzes a given
program and figures out when the return value re-
ally is needed. By automatic insertion of a join-like
construct the compiler makes sure that the caller only
proceeds when the result is available. This approach is
implemented for example in the COOL Eiffel//. The
authors coin the term wait by necessity. Because
of the general limits of data dependence analysis, es-
pecially for object-oriented programs, this approach

is restricted to very obvious cases. In complex situa-
tions the compiler will tend to turn the asynchronous
call into a synchronous one to be defensive and to en-
sure the intended semantics. Hence the combination of
asynchronous calls and wait-by-necessity has a weaker
expressive power than general fork-join.

Many COOLs make this dependence explicit: They
introduce so-called futures which are equivalent to
join-commands. A future is a special type of variable
that has the following characteristic: After a value has
been written to the future, the future behaves like an
ordinary variable. The behavior is different if the fu-
ture is not yet initialized. If an activity tries to read
from an uninitialized future the activity is blocked un-
til a different activity writes a value to the future.
Asynchronous calls combined with futures have the
same expressive power as the general fork-join.

There are several instantiations of futures. The
basic futures can only hold a single value. Some
COOLs extend the basic capability by defining futures
as general communication buffers which implement for
instance a theoretically unbound queue of result val-
ues. An extension in another direction is first-classing
of futures. Basic futures are evaluated at the point of
a read access. If futures are first class objects of the
languages, futures themselves can be passed as param-
eters without forcing their evaluation. This is useful
to implement delegation inheritance: If a particular
method cannot provide the return value which it is
supposed to write into a future, this method could pass
on the future to another method which then returns a
result to the original caller. Delegation inheritance is
hard to implement without first class futures.

Example. In the following code fragment we use
the UNIX-like &-notation to indicate an asynchronous
message call:

errl, err2 : FUTURE INT;

errl := ps.print_text(textl) &;

err2 := ps.print_text(text2) &;
do_some_work;

if errl == 0 then edit(textl) else ... end;

The two futures errl and err2 are used to implement
join functionality with the two print jobs. While the
two texts are printed, some additional work is done in
do_some_work. When errl is read in the if statement,
the activity blocks until the return value of the first
print job is available.

Discussion. Asynchronous method calls/messages

and futures are equivalent to fork and join. The addi-
tional concept of wait-by-necessity reduces the expres-
sive power in comparison to the basic constructs since
it restricts the parallelism to those cases that can be
handled by data dependence analysis. Therefore, from
the point of view of the imperative or object-oriented
software engineer similar problems occur:

e Since calls and futures do not obey the single-
entry-single-exit paradigm, calls and futures tend
to be scattered throughout the program. Thus it
is hard to understand the set of potentially con-
currently executing activities for each point of the
source code. It is even harder to anticipate po-
tential harmful interferences. Unless the mecha-
nisms are used with great care and with careful
documentation they are difficult to maintain.

e Asynchronous method calls/messages and futures
may break modularity since (1) the program-
mer must know the implementation details of the
called method and (2) the implementation can in
general not be changed without an analysis and
potentially a modification of the code of the caller.

Post-Processing (Early Return)

A dual approach to asynchronous method calls is post-
processing. Some authors call this approach “early
return”. Whereas in the case of the asynchronous
method call parallelism is introduced at the point of
the method call, post-processing results in initiation
of parallelism at the point of return.

The called routine can return a result and con-
tinue to work. The two effects of a classic return
statement, namely to return a result and to return
to the context stack of the caller, are separated. In
COOLs with post-processing the programmer can re-
turn a result without terminating the method process-
ing. Note, that the two effects are not orthogonal,
since the programmer cannot terminate the method
without returning a result prior to termination, if the
caller expects a result.

Post-processing seems to be strange at first glance,
because one usually expects a method to do some use-
ful work that results in a return value. However, if the
intention of the method is not only to produce a return
value, but the focal contribution are the side effects or
the changes of internal state, then post-processing is
equivalent to asynchronous method calls.

Post-processing is the natural way of organizing the
interplay between activities, when methods are in-
voked by asynchronous message passing (in contrast

to procedure calls). If one activity sends an explicit
message to an object to invoke one of its methods, the
only way to return a result is by sending an additional
message back to the first object. In this case, there is
no reason why the second object should reply with the
last statement of the method: an earlier reply message
results in post-processing.

In comparison with general fork-join the expres-
sive power is restricted. If one would use fork-join to
implement post-processing behavior, fork statements
would only be allowed at the early return commands.
Join commands would be unnecessary.

Example. Post-processing can be used in the im-
plementation of the PRINT_SERVER. The call of
print_text returns immediately after the text is printed.
However, the routine print_text continues to work and
updates the accounting tables.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;
enable;
disable;
implementation:
error_code : INT;
print_text(t:STRING):INT is
-- do the printing on some printer
return_and_continue error_code;
-- do the accounting
end;

end PRINT_SERVER;

The following code fragment shows the code of
the caller who uses the post-processing version of
print_text. This code is more elegant than the versions
shown before, because no future must be declared, it
is irrelevant for the caller whether a method should be
called synchronously or asynchronously, and there is
no need for additional join-commands.

errl := ps.print_text(textl);

err2 := ps.print_text(text2);

do_some_work;

if errl == 0 then edit(textl) else ... end;

The concurrency is no longer visible in the caller. Al-
though the accounting for both print jobs might be
executed concurrently to do_some_work, the program-
mer can rely on the fact the the implementation of the
post-processing part will take care of potential inter-
ferences. However, the expressive power is restricted:

the second print job can only be started after the first
one has (early) returned.

Discussion. The software engineer faces the follow-
ing advantages and disadvantages:

e If only post-processing is used the parallelism is
tied to class methods. Since the parallelism is re-
stricted to the code lines after the early return, it
is easier to derive from a program text which code
could potentially be executed in parallel. This re-
striction eases debugging.

e Ifthe post-processing part of a method only works
on private state variables of an object or if the
post-processing code makes sure that it does not
interfere with any concurrently executing activ-
ity, the method can be used without a detailed
understanding of implementation details. More-
over, if the implementation of such a method is
changed, the caller is not affected. Hence, under
the given assumptions, post-processing does not
break modularity.

Thus, in contrast to fork and asynchronous
method calls where modularity is likely to be
broken, for post-processing there exists a pro-
gramming style that can avoid this adversary ef-
fect. This style could even be enforced by a
language definition. The reason for this differ-
ence 1s that the programmer who implements
the method already knows that the code lines in
the post-processing part will be executed concur-
rently, which is not always the case for the other
mechanisms.

e Existing (sequential) libraries can be used eas-
ily because these do not use the post-processing
part. These libraries could gradually be reworked
towards a parallel implementation. Such an ap-
proach is impossible for the other two mechanisms
where existing sequential libraries are in general
hard to use in parallel contexts.

e However, as we mentioned in the discussion of the
example code, post-processing limits the expres-
sive power. It is impossible to express the same
parallelism with post-processing as with the other
mechanisms.

COOLs in this Category

e Basic Fork and Join:

Language Comments
Amber thread object
Comp. C++ spawn command
COOL (Chorus) fork

Demeter thread object
Distr. C++ thread object
Distr. Smalltalk - | fork

Object

Distr. Smalltalk - | fork

Process
DOWL
Harmony
HoME
Mediators

Multiprocessor-
Smalltalk
Obliq

Orca

Presto
PVM++

Scoop
Smalltalk
Trellis/Owl

thread object

thread object

fork

Life routine can spawn
method execution. See
section 2.5 for a discus-
sion of life routines.

fork

fork, join + return value
fork

thread object

thread object

thread object

fork

thread object

e Asynchronous Call/Method, Future, and

Post-Processing:

Language Comments

ABCL/x AS/WoW, 1st class fu-
ture, caller, post

Acore A/Wo, S/W, post

ACTH++ A/WoW, 1st class future
(first, last, queue), post

Actl A/WoW, 1st class future
(once, queue), post

Actalk A /Wo, post

ActorSpace A/Wo, post

Actra S/WoW, post

A-NETL AS/WoW, future, caller,
post

ASK A/Wo, S/W, post

A'UM A/Wo

Cantor A/Wo, post

CEiffel AS/WoW, wait by neces-
sity, method

CHARM++ A/Wo

CLIX A/Wo, S/W, post

Conc. Aggregates

Conc.Smalltalk

A/Wo, S/WoW, caller,
post
AS/WoW, 1st class fu-

ture, caller, post

10

Language Comments

cooC A/WoW, wait by
necessity

Cool (NTT) A/Wo, S/WoW, class

Cool (Stanford)

Coral
CST
Distr. Eiffel

DROL
Ellie

ES-Kit
ESP

Fragmented Ob-
jects, FOG/C++
HAL

Heraklit

Hybrid

Karos

L.O

MeldC

Mentat

Meyer’s Proposal
MPC++

Parallel Comput-
ing Action

Parallel Object-
Oriented Fortran

PO

POOL
Procol
pSather

QPC++

Rosette
SAM
SR

Tool
Ubik
UC++

AS/WoW, no async. re-
turn except “event”,
method

A/Wo

AS/WoW, future, caller
AS/WoW, 1st class fu-
ture, caller

A/Wo, S/W, post
AS/WoW, lst class fu-
ture, caller

A/Wo, S/W, potential
for manual futures
A/WoW, S/W, 1st class
futures, caller

A/Wo, S/W, potential
for manual futures
A/Wo, S/W, post
A/Wo, S/WoW, caller
A/Wo, S/WoW, method
A/Wo

A/Wo

A/Wo, S/WoW, caller
AS/WoW, class, post
A/Wo, S/W

A/Wo, AS/W, 1Ist class
future, caller

AS/WoW, 1st class fu-
ture, caller

A/Wo

A/WoW, S/W, future,
caller

post

A/Wo

AS/WoW, lst class fu-
ture (queue), caller
AS/WoW, wait by neces-
sity, caller, post

A/Wo, S/W, post

A /Wo, post

A/Wo, S/WoW, -caller
and method, post
S/WoW, A/Wo, class
A/Wo, post

A/Wo, S/WoW, -caller

and method/class

In the above language feature table the second
column provides some additional information on

how concurrency is introduced. The following
paragraphs explain the used abbreviations.

Method Invocation. First, we describe the
calling mode, i.e., the way methods can be in-

voked.

Wo w
without | with
result result

A/Wo | A/W

A asynchronous call
or send message
synchronous call
or call and wait

S/Wo | S/W

The upper row (A) shows the abbreviations
for languages that provide asynchronous method
calls or asynchronously sent messages. The bot-
tom row (S) refers to synchronous calls, where
the caller waits until the called method is exe-
cuted to completion. The columns differentiate
between methods without (Wo) or with (W) re-
turn value. Sequential imperative programming
languages would be classified S/WoW to indicate
the fact, that functions are called synchronously
and that both functions without and with return
value are possible.

The class A/Wo refers to languages that are based
on pure message passing, 1.e., a message is sent to
start a method, return values are not possible. If
in such a languages a return value is needed the
value must be sent back by an individual explicit
message.

Blocking Return Values. A/W languages
need some mechanisms to indicate that the caller
eventually blocks and waits for the return value,
unless the called method is already finished. For
the languages in this category the above language
feature table gives more details on this mecha-
nisms (“future” or “wait by necessity”): If futures
are first class objects of the language, there is an
entry “lst-class”. An entry “queue” expresses the
fact that the future can queue multiple values, a
read access to the queue blocks until at least one
data element is enqueued. The two entries “first”
and “last” are used for futures that can be writ-
ten more than once, however, only a single value
is stored. In case of “first” only the value that
is written first will survive; in case of “last” the
last value that has been written before the read
access 1s visible.

Choice between A and S. Some languages offer

AS/W, AS/Wo, or AS/WoW | i.e., a method can

11

be called either asynchronously or synchronously.
In these languages there must be a way to express
which calling mode is meant.

“Caller” refers to situations where the program-
mer has different forms of method calls for the
synchronous and asynchronous calling mode. The
entry “method” describes the dual situation in
which the declaration of a method varies for
methods that can be called asynchronously. The
key word “class” indicates that a whole class can
be specified to be used in asynchronous calls, i.e.,
whenever a method of an object of such a class is
invoked, the call is asynchronous.

The combination of AS/W and “method” re-
quires wait-by-necessity. Because the return value
must otherwise be handled differently for syn-
chronous and asynchronous calling modes, it is
necessary to change the code of the caller if the
calling mode of a method is toggled. For the same
reason the combination of AS/W and “class” re-
quires wait-by-necessity as well. COOLs that do
not adhere to this requirement often disallow an
alteration of the calling mode along the lines of
the inheritance hierarchy. But this does not alle-
viate the problem when the implementation of a
class i1s changed. Therefore, if the requirement is
not met, modularity of the class implementation
might be affected.

Post-processing. Finally, “post” indicates that
a language offers post-processing as a means to
introduce parallelism.

Note, that there are COOLs that have futures but are
not mentioned in the above language table. These
languages offer futures as a means of synchronization
which has nothing to do with the initiation of paral-
lelism. Activities can use these futures to achieve an
ordering. The following table names these languages
to avoid confusion.

Language Comments

Conc.Class Eiffel coordination future
Comp. C++ coordination future
Distr. C++ coordination future
Presto coordination future

2.3 Cobegin

A

In this section we present a language construct that
may start many concurrent activities at a time. These
activities are not bound to objects or specific data
structures of the language but can operate on the data
structures in the same way as the activity which exe-
cuted the construct. In the “star-notation” we shade
the upper left arm of the star for languages that pro-
vide this construct.

Cobegin

The cobegin statement, which can be tracked back
to Dijkstra [87] is a more structured form of initiating
parallelism in a language. In contrast to fork-join
and their equivalents this control structure obeys the
single-entry-single-exit paradigm. The execution of

cobegin StmtList; | StmtLists | ... Stmtlist,, end

creates n concurrently executing threads of control,
each of which executes the corresponding list of state-
ments. The essential difference to fork-join is the fact
that the execution of the cobegin terminates, i.e., the
original thread continues, after all n threads them-
selves have terminated. Whereas the join statement
was optional and several join statements could refer
to a single fork, the cobegin statement syntactically
enforces a synchronization of the created processes.

Example. The following code fragment shows the
running example in a COOL that offers a cobegin
statement.

cobegin
errl := ps.print_text(textl)
ps.print_text(text2)
| do_some_work
end;

if erri

| err2 :=

0 then edit(textl) else ... end;

As usual, the two print jobs are started concurrently,
while some additional work is done in do_some_work.

Discussion. Similar to post-processing, the cobegin
statement has advantages and disadvantages in com-
parison with fork-join and equivalent mechanisms.

e The cobegin statement and the fork statement

have in common that a spawned activity has no
Any method can be
started concurrently in the body of a cobegin
statement. But whereas the scope of a paral-
lel execution was not easy to determine for all

connection to any object.

fork-join mechanisms, the cobegin statement

12

restricts the scope of parallel activity to a textual
portion of the program code. This eases debug-

ging.

e COOLs with cobegin may break modularity be-
cause of the same reasons that have been dis-
cussed for fork-join, i.e., the programmer must
have a detailed understanding of the code he calls
and might be affected by changes in that code.?

COOLs in this Category

Language Comments

ABCL/x

Comp. C++
Conc. Aggregates
Guide

Proof

Rosette
Scheduling
Predicates

SOS

SR

co-statement

Par and Equivalents

The par statement is similar to the cobegin state-
ment in its characteristic that the initiating activity is
blocked until all activities that are spawned inside the
par statement are terminated.

par StmtlList end

The difference is that StmtList is conceptually exe-
cuted sequentially. The par statement itself does not
introduce any parallelism but is used to coordinate
concurrency. Languages that only offer a par state-
ment, but do not have a form of the cobegin state-
ment are not considered in this category of initiation
of concurrency.

Only if statements are used in StmtList that initi-
ate concurrency, the above mentioned synchronization
takes place.

The cobegin example given above can be equiv-
alently expressed by means of the par statement as
shown below:

2Again, certain mechanisms for concurrency coordination
might alleviate this problem by restricting the potential for
harmful interference.

par
fork (StmtList);
fork (StmtListy);

fork (StmtList,);
end

The following language feature table lists languages
that have a par statement or an equivalent construct.

Language Comments

COOL (Stanford) | waitfor statement

DOWL Activity Set

LO combination join

Micro C++ Block = thread boundary
pSather par statement, Activity Set
Trellis/Owl Activity Set

The programmer can explicitly add activities to an
Activity Set and then wait for the completion of all
those activities. Although this is similar to the par
statement in effect it does no longer provide the ease
of understanding of potential concurrency. Whereas
the par statements narrows the concurrent activities
to a couple of program lines, the activity set can be
modified anywhere in 1ts scope.

2.4 Forall, Aggregate, and Equivalents

A

In this section we present language constructs that
start possibly many concurrent activities at a time.
These activities are bound to objects or specific data
structures of the language, 1.e., each new activity is
supposed to work on a particular data element of a
given data structure. In the “star-notation” we shade
the upper right arm of the star for languages that pro-
vide such constructs.

Forall

Various forms of the cobegin statement have been in-
troduced and found their way into parallel program-
ming languages. Most notably, the forall, doall, and
doacross forms:

forall i:[range] do StmtlList(i) end

Here several instances of the statement list are exe-
cuted concurrently, one for each element in the range.

Example. When a forall statement is provided, the
running example might look like the code shown be-

13

low. Here the print server is called for each element of
an array of strings in parallel.

ta := ARRAY [1..n] OF STRING;

forall i:[1..n] do
ps.print_text(talil)

end;

do_some_work;

The forall statement is intended for a finer granu-
larity and is made for a higher degree of parallelism.
Whereas the previously discussed mechanisms could
easily express two print jobs that print from individ-
ual text variables, the forall version needs an array of
texts (ta) to print from. Since the forall allows only
a single statement sequence in its body, do_some_work
cannot be started concurrently.?

Discussion. The following advantages and disadvan-
tages can be noticed:

e Whereas cobegin helps the programmer in deter-
mining which processes could be executing con-
currently, the various forms of forall statements
further reduce complexity by easing the under-
standing of what these activities might be doing.
Instead of requiring that the programmer deeply
understands the behavior of n different lists of
statements, the understanding of one single list is
sufficient.

e The above advantage is bought by a limited ex-
pressibility. Arbitrary concurrency can either
no longer be expressed or requires complicated
and thus error-prone programming around the in-
tended semantics of the language feature.

e Modularity may still be broken. Unless the
language offers appropriate means for concur-
rency coordination, both nested forall statements
and branching statements in the bodies make it
hard to avoid race-conditions, to predict side ef-
fects, and thus to extend the functionality of a
given program. The programmer still needs to
completely understand the implementation of a
method that is called from within a body of a
forall. A change in this method’s implementa-
tion might require that the calling code is rewrit-
ten as well.
restricted.

Hence, the usability of libraries 1s

30f course there are ways around this restriction: Instead
of starting n threads one could start n + 1 and have an if-
statement in the body of the forall. This if statement could
start do_some_work for i=0 and print_text for 7 > 0. We did
not show this solution because most existing implementations
of forall statements do not allow if statements in their bodies.

Although the forall statement and its siblings can be
understood as being derived from the cobegin state-
ment, the new statements bridge the thread-centered
understanding of parallelism with the notion of data-
parallel programming which is a special form of
object-based programming. Whereas in the thread-
centered approach, the programmer focuses on threads
and on the statements executed by them, the data-
parallel programmer thinks in terms of data elements
to which operations are applied in parallel. This dif-
ferent model of understanding alone, however, does
not alleviate the coordination problem.

Aggregate

In object-oriented terminology, this type of initiation
of parallelism is sometimes called aggregate paral-
lelism. Languages offer a mechanism to group to-
gether several objects and then call a particular mem-
ber function for all objects (sometimes for one object)
of this aggregate. Similar to the forall where a data
structuring concept of the language, i.e. the array, is
used to express that an operation must be performed
on all elements, here the data structuring concept of
the aggregate is used to apply an operation.

The following code example shows the similarity to
a forall.

a = new_agg Element(5);
a.method

In the first line, a new aggregate a is created and five
objects of class Element are combined in that aggre-
gate. In the second line all objects of the aggregate
call their member function method. Similar to the
forall the programmer must be sure that concurrent
executions of the member function on different objects
of class Element can be executed in parallel without
race-conditions.

If we assume now that a is an array with five ele-
ments, then the equivalent forall code looks like this:

forall i:[0..4] do a[i].method end

However, in comparison to the forall statement, ag-
gregates offer a slightly restricted expressive power as
the running example will show:

Example. When the language offers aggregates, the
running example looks like this:
ta := AGGREGATE OF STRING;

ps.print_text(ta);
do_some_work;

14

As usual, print_text is invoked concurrently for all
texts. Whereas for the forall statement a way could
be found to concurrently invoke do_some_work this is
no longer possible for aggregates. Thus, the additional
work can only be done after the print jobs have been
completed.

Discussion. As this code can be transformed into an
equivalent forall implementation, the same disadvan-
tages and advantages can be noticed. Moreover, ag-
gregates have an expressive power that is even more
restricted than that offered by the forall statement.

Variants of Aggregates

Aggregates can be defined as a high level concept of
the language as shown above. Languages that are
based on explicit message passing sometimes define
aggregates implicitly by defining list of recipients or
by linking several recipients to a single communica-
tion channel. To indicate the difference to forall and
aggregate constructs we say that such languages offer
a multicast message passing mechanism.

Another form of aggregates frequently is chosen by
COOLs that are oriented towards an implementation
on distributed hardware, for example a network of
workstations. The special aggregate creates a single
object of a given class on each node of the parallel ma-
chine. Although the similarity to replication is strik-
ing at first glance, the objects are individual and can
reflect different states. Similar to the aggregates men-
tioned before, when a member function of this aggre-
gate is called, this member function is invoked on all
objects. Therefore, one instance of the member func-
tion executes on each node of the parallel machine.
We call this type of aggregates cluster aggregates.

COOLs in this Category

Language Comments
ActorSpace aggregate
A-NETL multicast

Arche aggregate
Blaze-2 forall

Braid data-parallel
C** data-parallel
CHARM++ cluster aggregate
Comp. C++ forall

Conc. Aggregates | aggregate
dpSather data-parallel
EPEE cluster aggregate
Fragmented Ob- | multicast

jects, FOG/C++

Language Comments

Modula-3* forall

NAM data-parallel

parallel C++ data-parallel

Procol multicast (type)

QPC++ aggregate (processor set)

SR array of process (strip), co-
stmt (quantifier)

2.5 Autonomous Code

R

In this section we present language constructs that
normally start one new concurrent activity at a time.
This activity 1s bound to an object, a specific data
structure of the language, or to a code sequence. In
the “star-notation” we shade the lower right arm of
the star for languages that provide such constructs.

Process

Whereas variants of fork-join, cobegin, forall, and
aggregates are control structures that initiate par-
allelism in the middle of an otherwise sequential pro-
gram, explicit process declarations have been proposed
to make parallelism more explicit. Such a process dec-
laration resembles an ordinary variable or procedure
declaration.

process P is
Procedure-Body
end

Depending on the language that offers the process dec-
laration, processes can be created statically or dynam-
ically. Although a noteworthy difference to previously
discussed mechanisms is that processes get names it is
still undecided whether this is an advantage or not.

Whereas the previous mechanisms for initiating
concurrency have the potential to express very fine
grain parallelism, since they can express that even a
single statement or method should be executed con-
currently, processes are targeted towards coarse grain
parallelism where a few clearly identifiable tasks must
be executed together.

For the running example three processes would be
needed, one for each of the concurrently executing
jobs. This leads to rather awkward and complicated
programs.

Although processes seem to be difficult to use in
an elegant way for the running example, it should be

15

noted that processes are quite useful for implemen-
tation of applications that show a certain communi-
cation pattern, for example applications that can be
organized in client-server fashion. However, we think
that a restriction to certain structures is a severe lim-
itation of the expressive power.

The difference to the methods discussed earlier is
that the parallelism is not created during the execu-
tion of an object-oriented program, i.e., the parallelism
is not expressed within the object-oriented program.
Instead the parallel process is a language concept that
exists on top of an otherwise object-oriented language.

As well in this category are languages that allow
the programmer to start separate jobs that use ob-
jects from a shared object space. We combine these
languages into this category because there is exactly
one activity bound to the code of the job.

Autonomous Routine

A straightforward extension of process declarations for
object-oriented programming is to combine object and
process declarations. When an object is created, one
or several additional activities are spawned that exe-
cute specific member functions.

This approach is often taken by COOLs that are li-
brary based add-ons to object-oriented languages. Of-
ten a special class is provided in the library that has
the added activity. We call the specific member func-
tion that is executed after the creation of the object
an autonomous routine. Other COOLs allow the
programmer to explicitly label one or several methods
of the class implementation to be autonomous.

Whereas in some languages autonomous routines
are started automatically upon object creation, other
languages require an explicit call of that method.*

Similar to the difficulties encountered with pro-
cesses, there is no elegant way to implement a concur-
rent execution of methods on demand without creat-
ing an additional object for each method that should
be executed in parallel. Although autonomous rou-
tines are much tighter integrated into the paradigms
of object-orientation than processes are, the running
example still would require the creation of three addi-

4One could argue that the latter group of languages should
be considered to provide asynchronous method calls with the
calling mode declared at the method (A/Wo, method). How-
ever, the description of the COOLs in this group (Beta and
Java) suggest that the autonomousroutines are to be called (im-
mediately) after object creation. Moreover, in both languages,
these routines seem to be called only once during the life time of
the object. Thus we decided to consider the group of languages
here.

tional objects. Again, we consider this form of initi-
ating concurrency to be of limited expressive power.

Life Routine

A special form of an autonomous routine is a life rou-
tine. An autonomous routine that is started automat-
ically upon object creation is called life routine, if this
routine is required for other methods to be executable.
The life routine handles incoming method calls or mes-
sages that are sent to the object. If the life routine
would terminate, the object could no longer be used.
Life routines therefore have explicit receive statements
or are called with an interrupt mechanism.

Some authors prefer to use “active” instead of
“life”. We do not take on this phrasing because the
term “active objects” is heavily overloaded in the liter-
ature: several authors call objects without life routines
“active” if they can become “active” by executing a
method call concurrently. In this usage, the state of
the object alters between “dormant” and “active”.

Example. If the language offers a life routine, the
running example looks like this:

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;

enable;
disable;
implementation:
life body is
loop —— forever
select
[-> receive "print_text(t)";
return my_print_text(t);
[1 -> receive "enable";
my_enable;
[1 —> receive 'disable";
my_disable
else
-- do the printing
-- do the accounting
end;
end;
end;

-- these routines cannot be called directly

my_print_text(t:STRING):INT is ... end;
my_enable is ... end;
my_disable is ... end;

end PRINT_SERVER;

The select statement 1s discussed in more detail in
section 3.4.4. For now, it is sufficient to know that the

16

life routine waits until one of its branches is triggered.
This happens when a method is called that is specified
with the receive command at the beginning of each
of the branches.

In the above code, the life routine is a loop that
waits for the arrival of a print_text, an enable, or a dis-
able message or method call. Upon this event, the life
routine then calls the corresponding private method
that implements the intended functionality.

Discussion. Let us again take on the role of the crit-
ical software engineer. The following problems should
be noticed:

e One object with a life body that waits for incom-
ing messages and then processes them in turn,
does not increase the parallelism. Parallelism can
be increased in several ways:

First, the callers call asynchronously which re-
sults in the problems discussed in section 2.2.

Second, the life routine uses one of the mecha-
nisms described earlier in the section on initiation
of parallelism. For example the statement
return print_text(t)

could be extended by a leading fork. As long
as the new activities restrict their effect to local
state, the same advantages can be noticed that
have been stated for post-processing. However,

relying on programming style does not guarantee
the advantages.

Finally, the life routine could create new objects
with life routines of their own that then do the
work. This seems to be advantageous because
the new parallelism is encapsulated in the new ob-
jects. However, this approach contradicts object-
oriented design principles, because the problem is
no longer structured by objects that may find a
representative in the “real world” but the design
is structured procedurally, since an object is cre-
ated for procedures to be called. It still remains
to be seen whether this idea proves to be success-

ful.

e It is necessary that the programmer clearly sep-
arates code that handles the interface behavior
from code that implements the intended function-
ality. In the above example, the functionality is
implemented in the last three routines, whereas
the life body simply calls those. If subclasses are
derived and methods are changed or added, nor-
mally the life body must be rewritten completely.
If the functionality 1s clearly separated from the

life body, this task becomes easier. We will con-
tinue this discussion in the context of concurrency
coordination below.

COOLs in this Category

Language Comments

Arche life routine, automatic start

Beta autonomous routine, separate
start

CEiffel several autonomous routines,
automatic start

COB life routine, automatic start

Conc.Class Eiffel life routine, separate start

Distr. Eiffel process, dynamic

DoPVM process, static

Dragoon autonomous routine, auto-
matic start

Eiffel// life routine, automatic start

Emerald autonomous routine, auto-
matic start

Guide process, static

Java autonomous routine, separate
start

Mediators life routine, automatic start

Mentat life routine, automatic start

Micro C++ autonomous and life routine,
automatic start

Panda autonomous routine, auto-
matic start

POOL life routine, automatic start

Proof autonomous routine, auto-
matic start

QPC++ life routine, automatic start

SR autonomous and life routine,
automatic start

3 COORDINATE CONCURRENCY

Language constructs that allow the coordination of
concurrent activities must achieve several goals in the
context of object-oriented languages. Most crucially,
those constructs must offer ways to write correct pro-
grams, i.e., to orchestrate the parallelism so that dif-
ferent activities do not interfere with each other in
unanticipated ways. Another goal is that the coordi-
nation mechanisms nicely merge with object-oriented
paradigms, especially with inheritance. Finally, the
mechanisms should be flexible enough to express all
different forms of constraints that a parallel program-
mer might need.

17

This section is organized as follows. At first, dif-
ferent goals will be derived that are desirable for con-
currency coordination mechanisms in object-oriented
languages. Each of these goals is discussed and ex-
plained thoroughly.

Secondly, a classification scheme is presented which
is based on these goals. The classification scheme is
then used to organize the presentation of concurrency
coordination constructs that have been proposed in
existing COOLs. Each of the constructs is presented
and discussed with respect to the goals and the degree
to which the goals are met.

Unfortunately, to our knowledge no COOL has
been proposed so far that completely fulfills all goals.
Most COOL designers did not assign highest priority
to a perfect integration of concurrency coordination
with object-oriented paradigms. Often other design
decisions seem to have been more important. The in-
tention of this survey is not to blame existing COOLs
for dirty integration of concurrency coordination with
object-oriented paradigms. Instead the survey should
help to identify advantages and weaknesses of existing
concepts to increase the understanding of all the inter-
dependences that are involved when this integration is
done.

3.1 Goals of Integration

Goal of Callee-Oriented Coordination

It is crucial for the correctness of parallel programs,
that the concurrent activities do not interfere in ways
that result in erroneous program behavior.

One of the simplest race-conditions that might oc-
cur in case of lacking coordination is caused by the
concurrent execution of the following statement:

a:=a+1

Assume that m activities execute the statement con-
currently. The execution of the statement requires
three elementary steps: to read the value of variable
a, to increase the value by one, and to write the new
value into the memory cell associated with a. De-
pending on the temporal interleaving, the value of the
variable a can increase by any of the values in [1..m].
Since in general this result is not intended, and hence
incorrect, better coordination of the concurrent activ-
ities is needed.

Usually these errors are hard to detect because
race-conditions can cause non-deterministic erratic be-
havior. This non-determinism makes debugging diffi-
cult, because the presense of a debugger or an enabled
trace file output can easily change the behavior of the

temporal interleaving and thus hide the error. The
workshop [190] gives an overview on current research
on debugging of parallel programs.

To reason about the correctness of sequential
object-oriented programs usually Meyer’s principle of
“design by contract” [177, 178] is applied. A class C
is called locally correct

e if after instantiation of a new object of class C,
the class invariant Invc holds and

e if after execution of a method m of class C both
the class invariant Invc and the post-condition
Postmy(: of that method hold, provided that both
the invariant and the pre-condition Premy(: were
fulfilled at the point of the invocation. This is
expressed with the following implication:

Inve A Preg, ¢ -m, Invc A Post (1)
Although this definition is easy to apply to sequen-
tial object-oriented programming, it does not extend
to concurrent programming. To see this, assume that
implication (1) holds for all methods of a class C. Since
the implication does not say anything about whether
the invariant holds during the execution of a method it
cannot be concluded that the class invariant holds at
all times. There might be interleavings of method in-
vocations that result in a broken invariant. Therefore,
even if the class implementation is locally correct in
terms of the sequential definition, the implementation
might result in incorrect code when used concurrently.

Based on this observation, the following conclusions
can be derived:

If a COOL requires that the caller of a method
makes sure that the called methods work correctly in
a parallel application, it is impossible to reason about
the correctness of the implementation based on a local
analysis of the implementation of individual classes.
Hence, the caller must have knowledge about the im-
plementation details of the classes that are used. This
prevents modular system design which requires that
implementation details of modules are hidden behind
a well-defined interface, e.g., the class interface. Li-
braries cannot be used with the same generality one
is used to from sequential programming because their
correctness is hard to guarantee if the caller is required
to coordinate concurrent accesses.

This leads to the first goal for a good integration of
concurrency coordination and object-orientation:

Goal of Callee-Oriented Coordination: To allow
for correct concurrent object-oriented program-
ming, the concurrency coordination must be im-

18

plemented at the side of the callee, i.e., in the
class that is concurrently accessed.

Goal of Coordination Expressibility

If the first goal is met, it is still unclear how the def-
inition of local correctness could be applied. Since in
general it is too complex to analyze all potential in-
terleavings of all methods of a class, the concurrency
coordination constructs must allow to specify exactly
those subsets of methods that fulfill implication (1)
for all possible interleavings of the methods that are
in such a subset.

A straightforward way to specify this is to simply
disallow that several methods of a class can be exe-
cuted concurrently. If only one method can be exe-
cuted at a time, there are no run-time interleavings of
the methods of a class. Therefore, the program text
of each individual method can be analyzed locally to
check whether implication (1) holds. The condition for
local correctness which is used for sequential object-
oriented programming can be used without any alter-
ations.

Although this brute force approach eases correct-
ness considerations significantly, it severely limits po-
tential concurrency. For example, the well-known
reader-writer situation cannot be expressed. For a
class that offers methods that do not change the inter-
nal state of their objects, there is not only no reason
for prohibiting their concurrent execution but instead,
such a prohibition restricts potential parallelism and
thus performance. Especially, since it is quite easy to
show that for all potential interleavings of side-effect
free methods, the class invariant cannot be affected
and hence, implication (1) still holds.

We therefore conclude:

Goal of Coordination Expressibility: A concur-
rency coordination construct must allow several
types of conditions to be expressible:

a) Intra-Object Concurrency. It must be pos-
sible to invoke one or several methods of an ob-
ject concurrently. The concurrency coordination
construct must provide means to express whether
and which methods can be executed concurrently.

Now consider a situation where a method is being exe-
cuted on an object. During that time, another method
of that object 1s called which is not in the subset of
methods that can be executed concurrently with the
call being served. In this case, the newly arrived call is
delayed until the first method call is completed. Sim-
ilar delay situation can even occur if no method is be-
ing served at all. In the running example it might be

desirable that incoming print_text calls are queued if
the print server is temporarily disabled or if too many
print jobs are in line than can be handled.

Such conditions cannot easily be expressed with
pre-conditions since a failure to fulfill a pre-condition
is considered to be a fatal error. Moreover, there is
no need to express such conditions in form of boolean
guards attached to methods as it is standard practice
for pre- and post-conditions. We call the new con-
ditions proceed-criteria to stress the differences. A
call of a method can only proceed if the corresponding
proceed-criteria are evaluated to true. Otherwise the
call is delayed until the proceed-criteria become true.

Concurrency coordination constructs should offer
means to express the following additional types of
proceed-criteria:

b) State Proceed-Criteria. The concurrency
coordination construct must provide means to ex-
press whether a method call can proceed or must
be delayed because of a certain condition of the
internal state of the object.

c¢) History Proceed-Criteria. In addition
there must be a way to express that a method
call can proceed or must be delayed because of
the history of earlier method calls processed by
the object.

The above expressibility requirement (c) is subsumed
by (b) because it is always possible to add object
attributes and to keep track of the calling history
in these attributes. However, since such conditions
are needed quite frequently in existing concurrent
object-oriented code and since the additional object
attributes often both obscure the method code and
make inheritance more difficult as we will see below,
we decided to make history proceed-criteria a separate
subgoal .’

Although we mentioned the three types of condi-
tions individually, we will address then as proceed-
criteria for the remainder of this discussion.

The main difference between pre-conditions and
proceed-criteria is that the former are not meant to
be actually evaluated during program execution. Pre-
conditions might be helpful during the implementation
phase but they are no longer necessary in correctly
designed (and debugged) code. In contrast, proceed-
criteria must conceptually be checked at each method

5The same thought can be used to justify that subgoal (a)
is mentioned individually although conditions of type (a) could
as well be expressed with state proceed-criteria.

19

invocation.®

This observation requires that conclusive defini-
tion of concurrency coordination mechanisms must ad-
dress the problem that concurrently executed methods
could affect the result of the evaluation of proceed-
criteria. Unfortunately, many proposed mechanisms
do not exactly specify how this problem is solved.

In addition, pre-conditions and proceed-criteria are
different with respect to inheritance. If subclasses are
derived the invariants of class and subclass must be
more general or more specific depending on the un-
derstanding of subtyping and polymorphism used in
a given language. Similarly pre- and post-conditions
of class and subclass must imply their counterparts
along or against the lines of the inheritance hierarchy,
depending on whether the subclass conforms to or spe-
cializes the original class or whether the classes are in
a co-variance or contra-variance relation [92]. Pre- and
post-conditions are determined by the algorithms and
the abstract data type offered by the class or subclass.
Different implementations of the same class in general
have the same invariants, pre- and post-conditions.

In contrast, proceed-criteria represent coordination
constraints that are caused by the chosen implementa-
tion. They are often independent of the functionality
of a class. These criteria might change, if a differ-
ent implementation can be found that implements the
same methods with tighter or loosened concurrency
constraints. For example, it does not affect the local
correctness of the print server implementation if calls
of print_text are queued at a disabled printer.

Because of these differences between proceed-
criteria and pre- and post-conditions inheritance of
proceed-criteria is an issue in COOLs. The next two
goals which are only relevant if a coordination con-
struct fulfills the goal of callee-oriented coordination,
address the problem of inheritance of proceed-criteria.

Goal of Isolated Coordination Code

Several mechanisms have been proposed to express
proceed-criteria. These mechanisms are different with
respect to where the concurrency coordination code
is implemented in the class. Except for those mecha-
nisms that do not have any explicit coordination code
and for those mechanisms that factor coordination
code out into meta-class implementations, the remain-

8Clever compilers and programmers may be able to assert
that proceed-criteria are always fulfilled for a given program.
But since we are interested in the general characteristics of
concurrency coordination mechanisms, we ignore potential op-
timizations here although they might be crucial for achieving
adequate performance.

ing mechanisms either mix coordination code into the
method code, i.e., into the code that actually imple-
ments the functionality, or the coordination code is
part of the class interface, i.e., it is specified separately
from the methods that implement functionality.

Goal of Isolated Coordination Code: A concur-
rency coordination mechanisms must clearly sep-
arate code that implements method functionality
from code that expresses concurrency coordina-
tion constraints.

If this goal is not fulfilled, the concurrency coordina-
tion mechanisms sacrifices inheritance. If subclasses
are derived, it might be necessary to re-program
methods with basically unchanged functionality only
because the code that affects the proceed-criteria
must be changed. Such changes might snowball up
and down the inheritance hierarchy and require code
changes in other classes as well. However, if methods
that implement class functionality are separated from
coordination code, the necessary changes can often be
limited. This effect has been detected by several re-
searchers, e.g. [8, 43, 133, 188, 225]. To our knowl-
edge the most detailed analysis of the problem is due
to Matsuoka and Yonezawa [170] who initially coined
the term inheritance anomaly.

Along the lines of the discussion of the mechanisms
presented below, we will provide examples that will
stress the fact that inheritance anomaly is a serious
problem for the integration of concurrency coordina-
tion mechanisms and object-oriented languages.

Goal of Separable Coordination Code

If the coordination code is isolated, 1.e., if it 1s an
isolated part of the class definition instead of being
an integral part of methods that implement the func-
tionality of the class, it is much easier to inherit from
such a class. However, a significant problem is not jet
addressed. There are concurrency coordination mech-
anisms that specify the coordination constraints for
the whole class in a centralized way instead of a de-
centralized specification at the method level. This is
a disadvantage. If a subclass has different coordina-
tion constraints it is often necessary to re-program the
complete coordination code. Since often only slight
changes in the coordination code are required 1t is
better if only the affected portions of the coordination
code must be changed while the remaining coordina-
tion code can be inherited.

Goal of Separable Coordination Code: A
currency coordination mechanisms must allow to

con-

20

inherit portions of the coordination code sepa-
rately.
3.2 Categories
There is a wide spectrum of possibilities to achieve co-
ordination of concurrent activities. We call one end of
the spectrum activity centered coordination. At
this end the activities make sure that access to shared
data is properly coordinated to avoid race-conditions.
In general such mechanisms do not fulfill the goal of
callee-oriented coordination. The available public in-
terface of a class remains unchanged and is accessible
for the whole life-time of an object.

We call the other end of the spectrum of possibil-
ities boundary coordination. Those mechanisms
fulfill the goal of callee-oriented coordination, i.e., the
class implementation makes sure that methods can
only be executed concurrently if their interleaving does
not affect the correctness. Boundary coordination
mechanisms vary greatly with respect to their express-
ibility. The central idea of these mechanisms is that
the accessible public interface of an object is no longer
considered to be static. Instead, the mechanisms allow
to express that method calls must be delayed under
certain conditions, which can be understood as tem-
porarily removing a method from the public object

interface.

To graphically represent the spectrum we chose a slide-
bar. If the star that represents the COOL is on the
left hand side of this bar, then the COOL provides
constructs for activity centered coordination. On the
right hand side of the bar, boundary coordination is
used to ensure the intended behavior of concurrent
activities.

oo
“HpABROT

In the remainder of this section we will first dis-
cuss mechanisms for activity centered coordination in
section 3.3: We will present the coordination mecha-
nisms and discuss why it is problematic not to fulfill
the goal of callee-oriented coordination. Moreover, it
will be shown that activity centered coordination does
not fulfill the other goals either.

Since there are very different proposals for bound-
ary coordination that are particularly relevant for
object-oriented programming, we further refine the
star-shaped pictogram.

activity centered EX

The simple circled star is used for activity centered
forms of coordination. The circle is modified for dif-
ferent approaches of boundary coordination.

boundary

coordination
external handshake reflective
control control control

o

All forms of boundary coordination achieve coordina-
tion of concurrent activities at the boundary of an
object. Different approaches result from a different
division of responsibility between the run-time system
and the object. The basic question is, where the co-
ordination code is placed.

o4

If there is no explicit coordination code but the lan-
guage defines for all classes whether and which of
concurrent method invocations will be executed, the
boundary coordination mechanism is called external
control. Section 3.4.1 discusses several approaches to
external control. Although mechanisms in this group
are of limited expressibility, they perfectly fulfill both
goals of isolated and separable coordination code.

Similarly, in reflective control mechanisms the im-
plementation of a class is again free of any coordi-
nation code. In contrast to external control there is
coordination code, namely in meta-classes and hence
outside of the class that is concurrently accessed. The
programmer can provide coordination code in a meta-
class that is used whenever coordination is required.
The characteristics of languages in this category are
discussed in section 3.4.5. Mechanisms in this group
offer isolated coordination code; they are different
with respect to expressibility and separability.

L3

Boundary coordination mechanisms based on hand-
shake control (see section 3.4.2), have explicit coor-
dination code in the class implementation. None of

21

the proposed mechanisms we are aware of offers iso-
lated and separable coordination code with complete
expressibility, i.e., always at least one of the goals is
at least partially ignored.

3.3 Activity Centered Coordination

ﬁEXﬁ

In this section we present and discuss several mecha-
nisms for activity centered coordination of concurrent
activities. In the graphical notation, languages that
offer these mechanisms are represented by a circled
star on the left hand side of the coordination slide-

asmmeop

«HpaERoT

bar. The arms of the star are shown unshaded here
since the form of concurrency initiation is irrelevant
for the discussion of coordination.

A general rule is that languages which have data
structures that are shared and can be concurrently
accessed by several activities provide mechanisms for
activity centered coordination.

Mechanisms in this group in general do not fulfill

the goal of callee-oriented coordination.

Synchronization by Termination

Most of the mechanisms to initiate parallelism that we
have presented in section 2 provide an additional and
very simple way of synchronization. Except for au-
tonomous code (see section 2.5) the other constructs
(fork-join, cobegin, forall and aggregate) provide
a mechanism by which one activity can be blocked un-
til the other (or others) have terminated. If the under-
lying implementation of the run-time system can effi-
ciently handle the termination and initiation of activ-
ities, this synchronization by termination can be used
by the programmer to deal with arbitrary data depen-
dences. However, in practice fork-join and cobegin
programs rely on other additional means of coopera-
tion which are discussed below.

The data-parallel and aggregate programming
approach not only provide such a mechanism but are
based on this form of synchronization. Consider for
example the following simple example:

forall i:[range] do
ali] :=i;

end;

forall i:[range] do
b[i] := a[i-1];

end

At first all concurrent activities initialize “their” el-
ement of an array a. Afterwards the activities set
“their” element of an array b to the value stored in
the array element of the array a of the “neighboring”
activity.

The concurrency is coordinated by termination:
After each assignment the concurrent activities
terminate.” Therefore, activities from the second
forall cannot interfere with activities from the first

forall.

Example. The running example with synchroniza-
tion by termination can be found in section 2.2 (fork-
Join and asynchronous call) and in section 2.3 (cobe-

gin).

Discussion.

Goal ratings

callee-oriented | no

expressive intra-object concurrency, state
proceed-criteria

isolated n/a

separable n/a

In combination with object-oriented languages syn-
chronization by termination has some drawbacks. The
main problems are caused by not fulfilling the goal of
callee-oriented coordination.

To show this, we reconsider the aggregate example
from section 2.4.

a = new_agg Element(5);
a.method

The above code works fine, as long as concurrent in-
vocations of method on each of the members of the ag-
gregate do not interfere with each other. The object-
oriented paradigm requires that it should be easy to
replace the implementation of a given class as long as
the interface is not changed. If however, the imple-
mentation of method in class Element is changed, the
programmer must make sure that concurrent invoca-
tions of the new implementation do not interfere with
each other. There would have been no need to do this
if method was not called from an aggregate. Thus,
the way a method is used influences what is consid-
ered to be a correct implementation. This breaks the
principle of modular design.

"Due to the nature of this example, the compiler can opti-
mize this code: the access to afi-1] in the second forall can be
replaced by i-1. This allows the combination of both assign-
ments in a single forall which avoids a costly synchronization
barrier [194, 228]. But for sake of simplicity, let us assume that
the compiler does access ali-1] here.

22

A similar effect can be noticed if class Element is
used to construct a derived class by implementation
inheritance. If the programmer adds a new member
function it is his/her task to make sure that this new
function either 1s not called concurrently to method
or does not interfere. Again usage patterns impose
constraints on the class implementation.

Hence, although synchronization by termination is
quite easy to understand it does not perfectly blend
with concepts of object-orientation. Synchronization
by termination makes it difficult to reason about the
correctness of class implementations. The notion of lo-
cal correctness cannot be used. Since the concurrency
coordination code is not placed inside of a concur-
rently used class, the goals of isolated and separable
coordination code cannot be fulfilled.

Since the caller can implement arbitrarily complex
conditions around the forall statements, this concur-
rency coordination mechanisms offers good express-
ibility: It allows for intra-object parallelism since sev-
eral methods of an object can be executed at the same
time. Moreover, the mechanism allows the expression
of state proceed-criteria. However, there is no special
support for history proceed-criteria. If such criteria
are needed they must manually be encoded into at-
tributes.

Semaphore, Mutex, Lock

The second basic concept of organizing concurrent ac-
cess to shared data is the semaphore, which again can
be tracked back to Dijkstra [87, 88]. A semaphore is
a non-negative integer variable with two atomic oper-
ations. One operation, commonly called P or wait ,
blocks until the variable is greater than zero in which
case the variable is decreased atomically. The other
operation, usually called V or signal, increases the vari-
able atomically. When the value of the semaphore
variable is greater than 1, more than one activity can
pass.

The programmer must surround a critical section
of the code, i.e., a section of the code that operates on
shared data, by a pair of these operations.

Discussion.

Goal ratings

callee-oriented | no, but could be yes
expressive intra-object parallelism
isolated no

separable no

As we have discussed before, the goal of callee-oriented
coordination is not fulfilled if the caller of methods is

responsible for the implementation of acceptable in-
terleavings. In this case, the same problems that we
have discussed for synchronization by termination are
caused by semaphore, mutex, and lock. Therefore
in general modularity is broken and it is difficult to
reason about the correctness of class implementations
and libraries.

Conceptually however, there is a way around this
problem. If the COOL design makes sure that the con-
structs can only be used with private class attributes,
then the coordination code must be implemented in a
callee-oriented way. Unfortunately, to our knowledge
all COOLs that offer semaphores, mutex, or locks do
not make this restriction and hence do not fulfill the
goal of callee-oriented coordination.

Semaphores offer restricted expressibility. Since
the initialization of the semaphore variable can allow
several concurrent threads inside of the critical sec-
tion, it is straightforward how to express intra-object
parallelism. Semaphores do not offer any support
for history proceed-conditions. Moreover, it is diffi-
cult to implement conditional coordination because
the condition and its evaluation must explicitly be
mapped to semaphore operations. Hence, we judge
that semaphores do not offer real support for state
proceed-criteria.

Semaphores do not fulfill the goal of isolated coor-
dination code. Instead, they can be used to construct
the following example that motivates the importance
of this goal in object-oriented contexts.

Example. The following implementation of the print
server uses semaphores only in a callee-oriented way,
i.e., all semaphores are attributes of the object to
which concurrent access must be coordinated. The
semaphores make sure that several print_text methods
can be called concurrently, but only if the print_server
is enabled. Above that, the semaphores ensure that
at the same time, only either enable and disable can
be executed.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;
enable;
disable;
implementation:
error_code : INT;
is_enabled : SEMAPHORE := O0;
en_dis : SEMAPHORE := 1;
print_text(t:STRING):INT is
is_enabled.P; is_enabled.V;
-- do the printing

-- do the accounting
return error_code;

end;
enable:PID is
en_dis.P;
is_enabled.V;
en_dis.V;
end;
disable is
en_dis.P;
is_enabled.P;
en_dis.V;

end;
end PRINT_SERVER;

The example uses two semaphores. The semaphore
en_dis which is initialized to 1 makes sure that ei-
ther enable or disable can be executed at a time.
The other semaphore reflects the pre-condition that
the print server must be enabled before use. These
semaphores implement proceed-criteria because all
method calls are started but may be blocked/delayed
at the semaphore operation immediately after their
start.

Since the semaphore operations are part of the
method bodies, the coordination code is not clearly
isolated. The resulting difficulties with inheritance be-
come obvious when a subclass 1s derived that defines
the following two new methods:

disable_printer(printer:PID)
enable_printer(printer:PID)

These routines can be used similar to the general dis-
able/enable but affect only a single printer that is used
by the print server. When defining the subclass, the
implementations for print_text and disable can not be
inherited, although the functionality of these methods
is not changed. Although only the coordination con-
straints are changed, the code must be duplicated, and
the new constraints must be added.

class PRINT_SERVER_SUB is

inherit:
PRINT_SERVER;

public interface:
disable_printer(printer:PID);
enable_printer(printer:PID);

implementation:
en_dis_printer : SEMAPHORE := 1;
disable_printer(printer:PID) is

is_enabled.P; en_dis_printer.P;

en_dis_printer.V; is_enabled.V;

23

end;
enable_printer(printer:PID) is
is_enabled.P; en_dis_printer.P;

en_dis_printer.V; is_enabled.V;
end;
print_text(t:STRING):INT is
is_enabled.P; is_enabled.V;
en_dis_printer.P;
-- select printer
en_dis_printer.V;
-- do the printing
-- do the accounting
return error_code;
end;
disable is
en_dis_printer.P;
en_dis.P;
is_enabled.P;
en_dis.V;
en_dis_printer.V;
end;
end PRINT_SERVER_SUB;

The new routines can only be executed when the print
server has been enabled. This is ensured by enclosing
the bodies of both routines in semaphore operations
on is_enabled. While one of the two routines is execut-
ing, the other cannot be executed. For this purpose
the new semaphore en_dis_printer is used. The addi-
tional coordination constraint is that print_text cannot
select a printer when printers are being enabled or dis-
abled. To implement this the code of print_text must
be changed. Similarly, it does not make much sense to
allow the general disable to be called while the state of
individual printers is modified. Hence, the implemen-
tation of method disable must also be changed.

A second problem is a result of the first one. For
instance, let us later on decide to change the imple-
mentation of PRINT_SERVER to allow only a certain
number of concurrent print jobs. For this purpose we
have to change the implementation of print_text in the
original class. This requires an analogous change in
the implementation of print_text in the derived class
PRINT_SERVER_SUB.

The fundamental reason for these problems is that
code that has the sole purpose of concurrency coordi-
nation is mixed with code that implements function-
ality. (See a similar discussion for life routines in sec-
tion 2.5, where we stressed the fact that the program-
mer should clearly separate both issues.)

Discussion. Semaphores are a very general mech-

24

anism. Similar to the wide applicability of fork-
join, higher-level concepts can be implemented based
on them. Semaphores certainly have their place in
high-performance system level implementation, how-
ever they cannot be smoothly integrated into object-
oriented languages since too many goals of a good in-
tegration are not fulfilled.

Moreover, semaphores often cause the following ad-
ditional software engineering problems, most of which
result from the fact that semaphore operations do not
obey the single-entry-single-exit paradigm.

e Access to shared data and hence surrounding
semaphore operations are in general scattered
throughout the code. Unless specifically docu-
mented and carefully used, it is hard to conceive
the correspondence between semaphores and data
elements to be shielded. Because of its flexibility
a semaphore might be used several times and for
various purposes in a program, rendering the pro-
gram hard to maintain.

e The programmer can easily forget to close the
critical section by calling the appropriate oper-
ation of the semaphore. Typical errors often in-
volve return, break, and goto statements. Ex-
ceptions are particularly hard to get right in com-
bination with semaphores.

e Semaphores are well suited for mutual exclu-
sion. For more general conditional synchroniza-
tion, semaphores require that the programmer
maps the condition to semaphore, i.e., whenever
a condition changes, the programmer must mod-
ify the corresponding semaphore. This can easily
be overseen and results in bugs that are hard to

find.

e Using several semaphores may easily lead to dead-
lock situations unless the programmer has a total
order of the semaphores in mind and uses this or-
der for both nested entries into and nested exits
from critical sections.

In the above code the order of the semaphore
operations for example in the new routine en-
able_printer is crucial. If two P-operations are
exchanged, a deadlock can occur if print_text or
disable are called concurrently.

Higher-level constructs to coordinate concurrent ac-
tivities have been invented to ease the above prob-
lems. Some of these are presented below. Although
all of them can be reduced to semaphore implementa-
tions the increased level of abstraction enhances par-
allel programmability.

Mutex and Lock are special types of semaphores
that allow exactly one activity to enter a critical sec-
tion. Both mutex and locks can easily be implemented
with semaphore operations.

Conditional Critical Region

The basic idea of conditional critical regions is to pro-
vide some syntactic support for conditional coordina-
tion of parallelism [107, 108, 115]. Whereas in the crit-
ical region defined by semaphores arbitrary code could
be executed, and hence accesses to arbitrary sets of
data elements could be coordinated, conditional crit-
ical regions make the purpose of coordinating of ac-
cesses more transparent.

The idea is to collect variables in so-called re-
sources. Every variable v; can belong to at most one
resource.

resource r is vi, Va, ..., Vp;

The critical region is then made explicitly visible in
the code by

region r when Condition then StmtList end

StmtList is executed by an activity when the Condition
holds. Otherwise or if this or another region of the
resource r is concurrently being worked on by another
activity, the activity blocks until the condition holds
and the resource is free. Only accesses to variables in
resource r are coordinated.

Example. The running example using conditional re-
gions is shown below. The implementation defines two
resources, namely enable and set_enable. The latter is
used to coordinate accesses to the boolean variable
is_enabled.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;
enable;
disable;
resources:
resource enabled is;
resource set_enabled is is_enabled;
implementation:
is_enabled : BOOL;
print_text(t:STRING):INT is
region enabled
when is_enabled then end;
-- do the printing
-- do the accounting

25

end;
enable is
region set_enabled
when not is_enabled then
. is_enabled := true;
end;
end;
disable is
region set_enabled
when is_enabled then
is_enabled := false;

end;
end;
end PRINT_SERVER;

In the above code a peculiar version of a critical re-
gion is used in the first line of the implementation of
method print_text. The resource is empty, but the con-
dition is_enabled makes sure that an activity can only
proceed if the print server is in state “enabled”. Oth-
erwise the activity will block in front of the (empty)
region. The code of print_text cannot be put into the
body of the critical region since then only one activity
could execute the code at a time.

If a subclass PRINT_SERVER_SUB is defined and
the same two routines disable_printer and enable_printer
are added as before, again the implementation of
print_text and disable cannot be inherited but must be
adapted to the new coordination constraints. Again,
a change to the base implementation (e.g., allowing
only a certain number of concurrent print jobs) must
be re-programmed identically in the subclasses.

Discussion.

Goal ratings

callee-oriented | no, but could easily be yes
expressive state proceed-criteria
isolated no

separable no

Conditional critical regions in general do not fulfill the
goal of callee-oriented coordination. However, if the
COOL design restricts the scope of a resource to the
class definition and allows only class attributes to be
part of the resource, conditional critical regions can
easily be made a mechanism for callee-oriented coor-
dination. Unfortunately, we know of no COOL that
offers conditional critical regions with this restriction.

Because of the close relationship to semaphores the
expressibility is not changed significantly. The when
clause of the region statement makes the implemen-
tation of state proceed-criteria much easier than it has
been the case for semaphores. A disadvantage is that

only one activity can enter a region at a time. In
contrast, semaphores can be used to allow several ac-
tivities to pass into a portion of the code. Therefore,
conditional critical regions can no longer express intra-
object parallelism.

As has been discussed with the above example, the
goal of isolated coordination code is not met. Conse-
quentially, the goal of separable coordination code is
not met either.

In comparison with semaphores, conditional criti-
cal regions solve a few of the commonly faced software
engineering problems introduced by the generality of
semaphores: Is is impossible to forget to close a crit-
ical region and it 1s much easier to implement higher
level concepts of coordination since the conditions are
explicit instead of being coded into semaphore opera-
tions.

However, more hard problems remain. It is still
easy to run into deadlocks, the code that works on
variables from a particular resource 1s still spread over
the whole code, and the hard questions of what and
when to encapsulate in a region must still be solved
solely by the programmer.

Piggy-Backed Synchronization

In pure message passing languages, concurrently exe-
cuting activities are often synchronized by blocking
communication commands. Consider the following
statement, where an activity waits until a message m
arrives. Even a specific sender s might be specified.

receive m [from s|

A similar situation can be noticed, if a call back ap-
proach is used. Instead of an explicit receive state-
ment to accept an incoming message, the recipient
provides a method that is called by s. In both cases the
response of the receiving activity is coordinated with
respect to the sending activity. The synchronization
is piggy-backed on top of the communication.

Discussion.

Goal ratings

callee-oriented | no

expressive state proceed-criteria
isolated n/a

separable n/a

Most COOLs with asynchronous method calls, mes-
sages, and futures that are discussed in section 2.2
offer some form of piggy-backed synchronization. In-
stead of repeating those languages in the following

26

language feature table, we would like to identify two
groups of languages that offer this type of coordina-
tion:

e languages that have (at least) calling mode A/W
and futures and

e languages that have calling mode A/Wo only.

Piggy-backed synchronization always requires that the
callers know the exact calling protocol. The caller
must know which message a recipient might be waiting
for. Since this information is not visible at the inter-
face of the called object, the caller must know some
implementation details of the called object. Hence,
piggy-backed synchronization does not fulfill the goal
of callee-oriented coordination. Therefore the goals
of isolated and separable coordination code cannot be
fulfilled either.

Moreover, piggy-backed synchronization mecha-
nisms can only accept a single message at a time.
Therefore, these constructs cannot be used to express
intra-object parallelism. Only state proceed-criteria
can be implemented. For this purpose the whole
expressive power of the base language can be used.
Since piggy-backed synchronization can be modeled
by means of semaphores similar problems as the ones
discussed above frequently occur in parallel programs
that are based on this form of concurrency coordina-
tion.

COOLs in this Category

The following language feature table lists languages
that are based on activity centered coordination, ex-
cept for languages with piggy-backed synchronization,
which can be found in the feature table of section 2.2.

Language Comments

Amber lock, barrier

Beta semaphore

Blaze-2 termination (forall), lock
Braid termination (forall)

C** termination (forall)
Comp. C++ coordination future

Conc. Aggregate reader/writer-lock

Conc. Smalltalk semaphore
cooC semaphore
COOL (Chorus) semaphore
CST semaphore
Distr. C++ coordination future

Distr. Eiffel
Distr. Smalltalks

semaphore, lock
semaphore

Language Comments

DoPVM lock

DOWL lock

dpSather termination (forall)

EPEE termination (forall)

ES-Kit lock

Harmony semaphore

HoME semaphore

Java mutex

Karos termination

LO termination

MeldC mutex, semaphore

Modula-3* termination (forall)

MPC++ mutex

Multiprocessor- semaphore

Smalltalk

NAM termination (forall)

Obliq mutex, lock

Panda semaphore

parallel C++ termination (forall)

PO semaphore

Presto lock, mutex, coordination
future

Proof lock

pSather lock

PVM++ lock, semaphore

QPC++ semaphore

Scoop piggy backed sync.

Smalltalk semaphore

SR semaphore

Trellis/Owl lock

Note, that several COOLs in this category, for exam-
ple pSather, intentionally accept the problems of ac-
tivity centered coordination in favor of different lan-
guage design goals, e.g., to allow for utmost perfor-
mance.

3.4 Boundary Coordination

ﬁEKa

In this section we present and discuss several mecha-

oo
«@HpASEOT

nisms for boundary coordination of concurrent activ-
ities. In the graphical notation, languages that offer
these mechanisms are represented by a circled star on
the right hand side of the coordination slide-bar. De-
pending on the type of coordination, the circle is re-
fined. The arms of the star are unshaded here since
the form of concurrency initiation is irrelevant for the
discussion of coordination.

27

A general rule is that languages that are based on
the data encapsulation paradigm can offer mechanisms
for boundary coordination. If no such mechanisms are
provided, forms of activity centered coordination are
required instead.

Mechanisms in this group in general fulfill the goal
of callee-oriented coordination.

All forms of boundary coordination achieve coor-
dination of concurrent activities at the boundary of
an object. Different approaches result from a different
division of responsibility between the run-time system
and the object. The basic question is, where the co-
ordination code is placed.

We group mechanisms for boundary coordination
into the following three categories each of which is
studied below.

boundary

coordination
external handshake reflective
control control control

o .

There are some COOLs that offer both activity cen-
tered coordination and boundary coordination. In
these cases the graphical representation depicts one of
the refined circled stars on the “activity side” of the
slide-bar. If a COOL offers only boundary coordina-
tion mechanisms the refined star is on the “boundary
side”.

3.4.1 External Control

@etmRenp
“HpApROT

COOLs based on boundary coordination with exter-
nal control define for all classes whether and which
of concurrent method invocations will be executed.
Such COOLs make the run-time system responsible
for proper coordination. There is no explicit con-
currency coordination code that a programmer could
write. An object can neither influence which of the
method calls that concurrently arrive are executed nor
in what order. The control is thus external, i.e., not
inside of the object.

In the graphical representation the circled star has
a fat rim to symbolize that control is external.

Discussion. Mechanisms in this group fulfill the goal
of callee-oriented coordination. Since there is no ex-
plicit coordination code, the goals of isolated and sepa-
rable coordination code are trivially met. Only the ex-
pressibility goal is not completely fulfilled. Although
all constructs in this group are different with respect
to their expressive power, they have the following re-
striction in common: All external control mechanisms
allow only one method to be executed on an object at
any time.

The key advantage of this restriction is that the
definition of local correctness can be used without al-
terations. It is thus in general not more difficult to im-
plement correct classes than it is in sequential object-
oriented languages.

However, this advantage does not come for free. We
have seen in the discussion of automatic paralleliza-
tion in section 2.1 that the key restrictions of paral-
lel processing result from data dependences. External
concurrency control however assumes the ubiquitous
existence of dependences and hence allows only one
activity to execute at a time, which is in general more
restrictive than appropriate for achieving parallel per-
formance. For example, consider the classical reader-
writer synchronization. Of course the desire must be
to allow concurrent readers. With boundary coordina-
tion constructs based on external control this cannot
be implemented.

Monitor

Although external control is frequently wused in
COOLs, the constellation has not been invented es-
pecially for COOLs. In fact, external control can be
identified as an application of the classic monitor.
From the point of view of a parallel programmer
monitors [87, 109, 116] are a syntactic combination
of resource definition and the operations that can be
applied to the variables in the resource. Only one op-
eration can be executed at a time. In object-oriented
terminology, a monitor resembles an object that pro-
vides data abstraction, i.e., it has internal variables to
implement its state and offers procedures to the out-
side to perform operations on that state. The methods
access the state under a mutual exclusion regime.

Discussion.

Goal ratings

callee-oriented | yes
expressive no
isolated yes
separable yes

28

Although monitors fulfill most of the goals of a smooth
integration of concurrency control into object-oriented
languages, monitors lack expressive power. It is a cen-
tral part of the definition of the monitor that only one
method can be active at a time. The resulting advan-
tages and disadvantages have been addressed above.

In addition, monitors cannot be used to express
conditional coordination, i.e., there 1s no way to ex-
press state (and hence history) proceed-criteria within
the concept.

The following variant of the running example shows
the consequences that will occur when conditional co-
ordination is needed.

Example. Monitors do not offer any support for con-
ditional coordination, 1.e., it cannot be expressed that
a certain method must temporarily be delayed until a
certain condition holds.

One way to program around this restriction is to
make the condition accessible from the outside. To
achieve this in the running example, PRINT_SERVER

must have an additional method

is_enabled:BOOL

in its interface that the caller can use to check whether
a call can be made. In addition to that, the meth-
ods enable and disable are extended to have a return
value. This return value tells the caller whether the
method call was legal with respect to the coordination
semantics. Similarly, the return value of print_text is
extended to cover the case of an illegal call.

class PRINT_SERVER is
public interface:
print_text(t:STRING): INT;
enable:INT;
disable:INT;
is_enabled:B0OOL;
implementation:
enabled : BOOL := false;
is_enabled:BOOL is
return enabled;
end;
print_text(t:STRING):INT is
if not enabled then return ERR
else
. print and account ...
end;
end;
enable:INT is
if enabled then return ERR
else

enabled := true;
end;
end;
disable:INT is
if not enabled then return ERR
else
enabled := false;
end;
end;

end PRINT_SERVER;

Based on these new return values and the state-inquiry
method the caller is in charge of implementing an ap-
propriate behavior, i.e., to make sure that the right
methods are called at the right time. This attempt to
add state proceed-criteria to the monitor concept re-
sults in an unanticipated sacrifice of the goal of callee-
oriented coordination.

Of course, by using two layers of monitors the prob-
lem can be solved: the outer layer offers one monitor
for each condition. If the condition holds, this monitor
calls the operation of the inside monitor, otherwise the
outer monitor keeps re-checking the condition. This
solution is not acceptable either because it leads to
awkward programs that weaken the modularity of the
original design.

Another disadvantage that monitors inherit from
the underlying semaphore concept is that careless us-
age can still result in deadlocks. The problem is of-
ten referred to as the nested monitor call problem
[104, 158, 237], although — not only in our opinion
[192] — it does not really deserve a new name.

Since the lack of expressive power of the monitor
construct seems hard to overcome without a change
of concept, several alternative concurrency coordina-
tion mechanisms have been proposed that are based
on the monitor concept. Some of them are relevant
for this survey since they have been re-introduced into

COOQLs.

Condition Variables

Condition variables have been proposed by Hoare
[116]. The idea of this extension of the monitor con-
cept is that an activity that has entered a monitor can
block inside of the monitor at the condition variable.
While 1t is blocked, another method call can proceed.

An activity can block by calling cond_var.wait
where cond_var is the condition variable. The
activity then blocks until another activity calls
cond_var.signal.

Since the monitor’s one-activity-at-a-time principle
is still obeyed 1t must be specified what exactly will

29

happen after a signal call, since conceptually at least
two activities are ready to proceed. Is the activity
that called cond_var.signal supposed to return from
the monitor call? Will it be suspended until the sig-
naled activity itself has terminated? Will the resum-
ing activity wait until the signaling one terminates or
blocks? An additional scheduling question is which of
several activities that are blocked at the same condi-
tion variable is supposed to continue upon a signal?

Example. For the monitor we have shown that it
leads to undesirable effects if proceed-criteria have to
be implemented. One of the improvements of con-
dition variables is that they support state proceed-
criteria. This is shown in the following variant of the

running example.

The following code fragment strongly relies on
the monitor’s one-activity-at-a-time principle because
otherwise both the tests of a condition and the sig-
nalings would need an additional mutual exclusion.
Concurrent execution could be allowed if all if state-
ments, the two statements that change the value of
is_enabled, and the signal commands would all be en-
closed in critical sections.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;
enable;
disable;
implementation:
enabled, disabled :
is_enabled : BOOL;
print_text(t:STRING):INT is
if not is_enabled
then enable.wait end;
-- do the printing
-- do the accounting

CONDITION;

end;
enable is
if is_enabled
then disabled.wait end;
is_enabled := true;
enabled.signal;
end;

disable is
if not is_enabled
then enabled.wait end;
is_enabled := false;
disabled.signal;
end;
end PRINT_SERVER;

Let us discuss the method enable in some more detail.
The first if statement checks whether the print server
is already enabled. In this case the current call of
enable must be an additional one. Therefore, it is de-
layed: it waits at the condition variable disabled until
the method disable is called which signals a continua-
tion. Similarly the enabled signal activates potentially
pending invocations of disable.

Discussion.

Goal ratings

callee-oriented | yes
expressive state proceed-criteria
isolated no
separable no

In comparison with the monitor concept, the express-
ibility of state proceed-criteria has been gained. On
the other hand, the goals of isolated and separable co-
ordination code no longer hold. This is for the same
reason that has been encountered before: concurrency
coordination code is mixed into the methods that im-
plement the functionality of the class. If we would
derive a subclass PRINT_SERVER_SUB with the ad-
ditional methods disable_printer and enable_printer we
would observe the same problems that we have dis-
cussed before for semaphores.

Moreover, it is significantly more difficult to reason
about the correctness of the class implementation. In
the case of the monitor, the definition of local cor-
rectness could be applied, and each method could be
analized 1n isolation. For condition variables, sets of
methods must be studied at once: the effects of all po-
tential interleavings that might occur due to a delay of
a method at a condition variable and the continuation
of other methods must be taken into account. This is
difficult because the conditional statements that are
used to block activities and to signal their continua-
tion are spread over the class implementation. Similar
to the problem that accesses to shared data and crit-
ical code sections were spread across the whole code
when programming with semaphores or when using
conditional critical regions, condition variables have
the same effect: If the class implementation is ex-
tended or methods must be changed, then the pro-
grammer must understand the complete coding of the
class at all source code positions where the condition
variable is used. Sloppy use of condition variables can
easily lead to activities that are never continued, 1.e.
that block or deadlock for ever.

To apply the definition of local correctness for con-
dition variables, the programmer must make sure that

30

the class invariant holds whenever a method waits at
a condition variable, because another method is con-
tinued at that time. In addition, the run-time sys-
tem implementation must make sure that a signaled
method only continues when the class invariant holds.
With this provision, the programmer can conceptu-
ally break his methods into a set of segments, each of
which can be analyzed with respect to the implication
used in the definition of local correctness.

Finally, let us remark that the COOL design must
make sure that condition variables are private at-
tributes of the class. Otherwise, i.e., if condition vari-
ables can be accessed from outside the class, an activ-
ity can get control over the coordination constraints.
This would contradict the goal of callee-oriented coor-
dination.

Conditional Wait

This variant of condition variables has been intro-
duced by Kessels [140] to improve the conditional
synchronization in monitors. In contrast to condi-
tion variables which spread the code that affects them
across the monitor implementation, Kessels proposed
to separate the relevant conditions syntactically in the

monitor.
condition identifier is expression;

With this declaration of the relevant condition at the
beginning of the monitor implementation, later on an
activity can wait simply by calling wait(identifier) and
relying on the run-time system to signal the continu-
ation. However, although some of the problems are
solved, it is unclear and cannot be specified which of a
collection of blocking activities is continued when the
condition holds. Although it is much easier to identify
the relevant conditions in the code, the programmer
still can fail to achieve that the conditions eventually
hold, i.e., activities can block or deadlock for ever.

Example. The running example using conditional
wait could look like the following code fragment.
Note, that this code is based on the monitor’s one-
activity-at-a-time principle. This cannot easily be
changed, because the evaluation of the conditions and
the wait statements must otherwise be enclosed in
critical sections if concurrent execution would be al-
lowed. If concurrent execution is allowed and the nec-
essary critical sections are implemented then however,
the same anomalies result that we have discussed for
semaphores and condition variables.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;
enable;
disable;
implementation:
is_enabled : BOOL;
condition enabled is is_enabled;
condition disabled is not is_enabled;
print_text(t:STRING):INT is
if not is_enabled
then wait(enabled) end;
-- do the printing
-- do the accounting
return error_code;
end;
enable is
if is_enabled
then wait(disabled) end;
is_enabled := true;
end;
disable is
if not is_enabled
then wait(enabled) end;
is_enabled := false;
end;
end PRINT_SERVER;

Discussion.

Goal ratings

callee-oriented | yes
expressive state proceed-criteria
isolated no
separable no

Conditional Wait fulfills the goal of callee-oriented co-
ordination code, if the condition i1s a private part of
the class definition, i.e., if the implementation can
only use conditions that are declared inside of the
class. Moreover, the condition itself must be com-
puted solely based on the internal state of the object
since otherwise a calling activity could influence the
coordination and the coordination would no longer be
callee-oriented.

There is no special support for expressing his-
tory proceed-criteria. Moreover, the conditional wait
mechanism requires the one-activity-at-a time princi-
ple since otherwise it would be unspecified how harm-
ful interaction of condition evaluation and method ex-
ecution could be avoided.

The intermixed coordination code causes the same
inheritance problems that we have discussed for
semaphores: When a subclass is derived by inheri-

31

tance, it 1s often necessary to almost duplicate exist-
ing methods, only because some of the coordination
code lines must be changed. Later changes in the im-
plementation result in duplicated code maintenance
efforts along the lines of the inheritance hierarchy.

Moreover, since wait commands can occur at sev-
eral places in the code, it is more difficult to reason
about the correctness of the code. Similar to condi-
tional waits, the definition of local correctness can be
used as long as the run-time system continues methods
only when the class invariant holds.

COOLs in this Category

Language Comments
Amber Monitor
A-NETL Monitor
A’'UM Monitor
CHARM++ Monitor
Conc.Smalltalk Monitor
COOL (NTT) Monitor
COOL (Stanford) | Condition Variable
CST-MIT Monitor
Emerald Monitor
ESP Monitor
Fleng++ Monitor
Fragmented Ob- | Monitor

jects, FOG/C++

Heraklit Defer, Conditional Wait

Mentat Monitor (sequential and per-
sistent objects)

Micro C++ Monitor

Obliq Condition Variable

Orca Monitor

Oz, Perdio Monitor

Panda Monitor

Presto Condition Variable

SAM Monitor

Tool Monitor

UC++ Monitor

A special form of condition variable is offered by a
COOL if a method can defer its own execution. In
terms of condition variables, deferring is equivalent to
waiting at a condition variable with a guaranteed and
immediate signaling. The execution of the method is
interrupted and returned to the run-time system for
later re-scheduling. Whereas for condition variables
an explicit signal must have been received by the run-
time system indicating that the method can be con-
tinued, such a signal is not necessary if the method
defers.

3.4.2 Handshake Control
COOLs based on boundary coordination with hand-
shake control divide the responsibility for proper co-
ordination between the object’s implementation and
the run-time system. In general there i1s code in the
class implementation that has the sole purpose of spec-
ifying the concurrency coordination, i.e, the dynamic
interface of the object. The run-time system reacts
according to this specification.

To reflect the fact that the class implementation
influences the boundary coordination, the star has a
dark circle.

In general, handshake control mechanisms fulfill the
goal of callee-oriented coordination. The mechanisms
are different with respect to the other goals.

Since several very different approaches to hand-
shake control have been presented, we further refine
the group of concurrency coordination mechanisms

based on handshake control to structure the presen-
tation of the mechanisms.

oo
«@HEAREOT

isola-

ted

coord.

code \ /
intra-pbject
parallglism

inter-

mixed

coord.

code

per method entire interface

The above diagram has the following axes:

e Isolated Coordination Code. The upper and
lower half of the diagram reflect the position of co-
ordination code in the class implementation. The
upper half is reserved for COQOLs if their coordi-
nation mechanisms are implemented as individ-
ual parts of the class definition. The coordina-
tion code is isolated from code that implements
the functionality. Mechanisms in this part of the
diagram fulfill the goal of isolated coordination
code.

32

In the pictograms handshake control with inter-
mixed coordination code will result in the star
shifted to the right:

oo
CCERCEE

or, if the COOL offers additional activity centered
coordination mechanisms:

L3

Intermixed Coordination Code.

oo
«@HEAREOT

COOLs
where the coordination mechanisms are imple-
mented in the body of the methods that are in
the public interface of the class, i.e., that imple-
ment the intended functionality fall into the lower
half of the diagram. Since the coordination code
is not isolated, mechanisms in this group do not
fulfill the goal of isolated coordination code.

In the pictograms handshake control with inter-
mixed coordination code will result in the star

shifted to the left:

or, if the COOL offers additional activity centered
coordination mechanisms:

(PR

“HpapHoT

e
«HPApEOD

Intra-Object-Parallelism. A second binary di-
mension distinguishes COOLs that are based on
the one-activity-at-a-time principle from COOLs
that allow concurrent activities to execute meth-
ods at the same time. Languages and their coor-
dination mechanisms that allow only one activity
at a time are depicted in the outer part of the di-
agram. The COOLs with intra-object parallelism
and with coordination mechanisms that allow to
specify this are shown inside of the oval.

Per Method. On the left hand side of the above
diagram we discuss COOLs and their coordina-
tion mechanisms that affect the object’s dynamic
interface with respect to a single method. For ex-
ample, consider a situation where a method call
comes in. But before the method is executed,
proceed-criteria are checked that are connected
solely to this method.

e Entire Object. On the right hand side of the di-
agram are COOLs and their coordination mecha-
nisms that affect the object’s dynamic interface.
For example, a method can be disabled. The code
that achieves this disabling is in no direct and
close relation to the affected method.

The subsequent discussion of handshake control mech-
anisms follows the Isolated /Intermixed dimension be-
cause this dimension has a strong impact on the inter-
action of concurrency and inheritance.

3.4.3 Intermixed Handshake Control

The following diagram names the mechanisms that
are discussed in this section. These mechanisms ful-
fill the goal of callee-oriented coordination, but fall
short to fulfill the goal of isolated coordination code.
This causes the inheritance anomaly. Most of these
mechanisms are based on the one-activity-at-a-time
principle; some allow or can be extended to allow post-
processing. Since the coordination code is not isolated,
the goal of separable coordination code cannot be met.

‘ intra-pbject ‘

parallelism Acdor Model

/

inter-
mixed
coord.
code

Include/Exclude
Delay Queue

per method entire interface

All mechanisms in this group affect the dynamic inter-
face of an object. The proceed-criteria of a method are
not tightly connected to that method. Instead in gen-
eral, the proceed-criteria of a method are computed in
other methods.

Delay Queue

COOLs that offer delay queues conceptually allow the
programmer to declare special objects of a delay queue
class. This class has two methods in its public inter-
face, namely open and close. The programmer can link
delay queue objects to methods that are to be hidden
from the public interface of a class. The delay queue
then works as proceed-criterion. If the delay queue is
open, a call of the method can proceed, otherwise it
is delayed.

The programmer can implement arbitrary proceed-
criteria by conditionally opening and closing the delay
queues.

33

dq : DELAYQUEUE;
print_text(t:STRING):INT link dq is ...
end;

In the above example method print_text is linked to the
delay queue dq. If dq is closed calls of print_text are
delayed until the delay queues is opened by a different
activity that executes a PRINT_SERVER method.?

Note, that the programmer can not only declare ar-
bitrary many delay queues but that he can link several
methods to the same delay queue.

Example. Below we show the running example using
delay queues. To implement the intended protocol of
the print server we need two delay queues (is_enabled
and is_disabled). The methods print_text and disable
are linked to the first delay queue. These routines can
only be called after this delay queue is opened in the
method enable.

class PRINT_SERVER is
public interface:
print_text(t:STRING): INT;

enable;
disable;
implementation:
is_enabled : DELAYQUEUE;
is_disabled : DELAYQUEUE;

print_text(t:STRING) :INT
link is_enabled is
. print and account ...
end;
enable link is_disabled is
. is_enabled.open;
is_disabled.close...
end;
disable link is_enabled is
. is_disabled.open;
is_enabled.close ...
end;
end PRINT_SERVER;

Discussion.

Delay conditions fulfill the goal of callee-oriented co-
ordination, provided that delay queues are private at-
tributes of the class that is accessed concurrently.

8 Although the link syntax is not used in any of the COOLs
that offer delay queues, we think that this form is as adequate
for a discussion of the underlying concept.

Goal ratings

callee-oriented | yes
expressive state proceed-criteria
isolated no
separable no

Since the whole expressive power of the COOL can
be used to formulate conditions that result in open-
ing or closing of delay queues, this mechanism cer-
tainly offers state proceed-criteria. There 1s, however,
no support for history-proceed criteria. Moreover, the
mechanism is based on the one-activity-at-a-time prin-
ciple, which eases correctness considerations but limits
parallel performance. It is not desirable to waive this
restriction.

To see this, consider the reader-writer example. In
an hypothetical implementation based on delay queues
with intra-object parallelism, the conditions that al-
low readers or writers must be encoded explicitly, for
example with counters. However, these counters must
be changed inside of critical sections to make sure that
they correctly reflect the current situation of executing
methods. Therefore, delay queues with intra-object
parallelism require an additional concurrency coordi-
nation mechanism. This has two disadvantages. First,
the language gets more complicated since two different
concurrency coordination mechanisms are provided,
and second, the additional mechanisms will most likely
be activity centered, and hence introduce the disad-
vantages we have discussed in section 3.3.

Again the difficulty with inheritance is caused by
mixing coordination code with code that implements
the intended functionality of the object. The coor-
dination code is not isolated. Coordination code is
not separable because a particular delay queue of a
method can be changed in all other method bodies.

If for the running example the derived subclass
is implemented which offers the new routines en-
able_printer and disable_printer, at least one new delay
queue is required. The additional concurrency coordi-
nation constraints require that this delay queue must
be opened and closed in existing methods. Therefore,
the subclass implementation must almost duplicate
existing methods with the only change that the new
delay queue operations are added. This code duplica-
tion sacrifices the advantages of inheritance.

Include/Exclude

COOLs that offer Include/Exclude conceptually allow

the programmer to include and exclude methods to

and from the dynamic interface of an object.
Include/Exclude implement proceed-criteria: when

34

a method is called that is currently excluded from the
dynamic interface, the call blocks, until the method is
included into the interface again.

In contrast to explicit delay queues, this mecha-
nisms assumes the existence of a single queue of incom-
ing calls that 1s “filtered” before being used to invoke
methods. The include/exclude mechanisms tends to
be slightly more verbose than the delay queue mecha-
nisms since there is no way to combine several methods
with similar coordination constraints into one delay
queue. Instead all these methods must be included
and excluded individually.

Example. The following code fragment shows the
running example based on include/exclude.

Initially, only enable can be called. In the public
interface section of the code this is indicated by the
additional key word initial. After the print server has
been enabled, both disable and print_text can be called
whereas enable can no longer be used. Similarly, a call
of disable changes the dynamic interface of the object.
The dynamic interface is left unchanged by print_text.

class PRINT_SERVER is
public interface:
print_text(t:STRING) :INT;
initial enable;
disable;
implementation:
print_text(t:STRING):INT is
-- do the printing
-- do the accounting

end;

enable is
include {print_text, disable};
exclude {enablel};

end;

disable is

exclude {print_text, disable};
include {enablel};
end;

end PRINT_SERVER;

Although coordination code is somewhat separated
from the functionality code there is still coordination
code mixed into the functionality code, namely the
include and exclude statements.

Discussion.

Goal ratings

callee-oriented | yes
expressive state proceed-criteria
isolated no
separable no

It is obvious that the include/exclude mechanism ful-
fills the goal of callee-oriented coordination. Since the
whole expressive power of the COOL can be used to
formulate conditions that lead to include or exclude
operations, state proceed-criteria are fully supported.
On the other hand, there is no support for history
proceed-criteria.

The include/exclude mechanism is based on the
one-activity-at-a-time principle which eases correct-
ness considerations. The same arguments that have
been used to explain the necessity of the one-activity-
at-a-time principle of delay queues can be applied to
the include/exclude mechanisms as well.

When a new subclass is derived well known inher-
itance problems appear because of the failure to ful-
fill the goal of isolated coordination code: Old meth-
ods that include/exclude certain methods into/from
the dynamically available interface might want to in-
clude/exclude new routines as well. Therefore, the
subclass must have almost duplications of the same
methods with the sole difference that additional meth-
ods are included/excluded from the dynamic interface.

Behavior Abstractions

COOLs that offer behavior abstractions conceptually
allow the programmer to dynamically change the in-
terface of an object. Whereas delay queues and in-
clude/exclude change the object interface directly, be-
havior abstractions introduce the additional concept
of “state”.

The programmer is required to conceive the object
behavior in form of an automaton. There are several
states; 1n each of these states several methods can be
called. After a method is called, the object switches
to another state. These states can be used to express
history proceed-criteria.

In the print server example, two states disabled
and enabled can be identified. In the diagram below
the states are represented by circles. The arrows mark
acceptable methods. Whereas invocations of enable
and disable toggle between the two states, print_text
does not change the state. Moreover, it can be seen
that print_text can only be invoked, if the print server
is in state enabled.

35

enable

dis- en-— print_
abled abled text

disable

Example. The following code fragment shows the
running example based on behavior abstractions.

The print server object can have two states, namely
enabled and disabled. The behavior section of the
class implementation specifies which methods are al-
lowed to be called in each of these states.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;
enable;
disable;
behavior:
enabled = {print_text, disablel};
disabled = {enablel};
initially disabled;
implementation:
print_text(t:STRING):INT is
-- do the printing
-- do the accounting
become enabled;
end;
enable is
. become enabled;
end;
disable is
. become disabled;
end;
end PRINT_SERVER;

Coordination code is somewhat more isolated from the
functionality code, however, there is still coordination
code mixed into the functionality code, namely the
become statements that set the next state in each of
the three methods.

Discussion.
Goal ratings
callee-oriented | yes
expressive state proceed-criteria, history
proceed-criteria
isolated no
separable no

Concurrency coordination mechanisms based on be-
havior abstractions fulfill the goal of callee-oriented co-

ordination. Moreover, as has been discussed above, in
addition to state proceed-criteria the notion of states
eases the expressibility of history proceed-conditions.

Whereas delay queue operations
clude/exclude operations are spread across the class
implementation and make it difficult to reason about
which methods are hidden at any given time, behav-
ior abstractions have the advantage of making the set
of available methods visible after a method has been

and In-

executed.

Behavior abstractions are based on the one-
activity-at-a-time principle for the same reasons
that have been discussed for delay queues and in-
clude/exclude. In contrast to those mechanisms how-
ever, it 1s easier to weaken the restriction here. Since
there is a single point (or code-segment) in the im-
plementation of a method that determines the new
state, one can imagine that a concurrent method can
be started immediately afterwards, even if the first
method has not terminated yet. This 1s an appli-
cation of post-processing. The increased parallelism
sacrifices the goal of callee-oriented coordination un-
less the post-processing part guarantees that the class
invariant 1s fulfilled at any time during its execution.
If however, the class invariant is guaranteed to hold in
the post-processing part, then the definition of local
correctness and implication (1) can be applied without
alterations.

A typical method of a class implementation based
on behavior abstractions implements the functional-
ity first. Then there is a analysis phase in which the
internal state of the object is studied. Based in this
analysis, the new state is determined. This leads to
inheritance anomaly problems when a new subclass
is derived: In the worst case new routines must add
a complete case analysis to switch to the appropri-
ate successor state. Analogously, if the set of possible
states is changed there are otherwise unaffected meth-
ods that must reflect this change in their case cascade.
Again, unaffected code is duplicated only because the
coordination code in this method must be changed
slightly.

Actor Model

The pure Actor model [6] combines the concept of ob-
jects with the concept of dynamic interfaces: If the
programmer wants to change the dynamic interface
of an object (called actor), this actor becomes a new
actor with a different behavior. In object-oriented
terminology, the new actor can even be implemented
by a different class. Instead of dynamically changing
whether a method can be called or not, in the Actor

36

model the code that implements the actor behavior
can be switched dynamically.

Example. We have seen in the implementation of
the running example based on behavior abstractions,
that there are two different behaviors (states) for the
print server. In languages based on the Actor model,
each of these behaviors is implemented separately. At
execution time, the actor is either implemented by the
code for DISABLED_PRINT_SERVER or by the code for
ENABLED_PRINT_SERVER.

Actor DISABLED_PRINT_SERVER is
public interface:
enable;
implementation:
enable
become ENABLED_PRINT_SERVER;
end;
end DISABLED_PRINT_SERVER;

Actor ENABLED_PRINT_SERVER is

public interface:
print_text(t:STRING): INT;
disable;

implementation:
print_text(t:STRING):INT

. print and account ...
become ENABLED_PRINT_SERVER;

end;
disable:INT

become DISABLED_PRINT_SERVER;
end;
end ENABLED_PRINT_SERVER;

From the object-oriented point of view, pure Actor
mechanisms have some drawbacks:

e First of all, it is in general difficult to use imple-
mentation inheritance in pure Actor languages.
The reason for this is twofold: One problem is
that the behavior of the actors is spread across
several code segments. To derive a subclass, i.e.,
an actor with a specialized behavior, subclasses
for each individual behavior must be defined. The
other problem is that an actor can become a new
actor with a totally different behavior. Because
of these reasons, many Actor languages do not of-
fer implementation inheritance at all but rely on
delegation instead.

e In the above example, it is not at all obwvi-
ous what is going to happen if the method

print_text is called, when the actor is in state DIS-
ABLED_PRINT_SERVER. Since the implementa-
tion neither provides a method with this name
nor offers any indication that such a method will
become available in a future state of the actor,
many pure Actor languages do not delay the call.

Discussion.

Goal ratings

callee-oriented | yes

expressive state proceed-criteria,
history proceed-criteria, restricted
intra-object parallelism

isolated no

separable no

The Actor model fulfills the goal of callee-oriented co-
ordination.

Several proposals have been made to neatly inte-
grate the Actor model into object-oriented languages.
If the code that implements different behaviors of an
actor 1s kept together in a single class implementation,
the current behavior must be expressed differently.
Two general solutions can be identified. One solu-
tion is similar to behavior abstractions: the class im-
plementation is enhanced with the notion of “state”;
instead of dynamically changing the code that imple-
ments the actor behavior, actor objects change their
state. The other general solution is to generate a sepa-
rate object that handles the behavior issues. Depend-
ing on a current behavior, methods of the actor object
are called or the calls are delayed. We consider COOLs
that are based on the latter approach to be based on
reflective control. They are discussed in section 3.4.5.

The pure Actor model is based on the one-activity-
at-a-time principle. Whereas behavior abstractions
did allow post-processing as an extension under cer-
tain conditions, the Actor model is even defined with
post-processing: immediately after a become state-
ment, a new method can be started while the first
method can continue. To apply the definition of local
correctness the post-processing part must guarantee
to fulfill the class invariant at all times.

Even with post-processing the intra-object paral-
lelism is still restricted. Another extension are un-
serialized methods. An actor has an unserialized
method if that the method will not change the behav-
ior of the actor, i.e., the become statement will set
the current state again. In the example, the method
print_text could be an unserialized method. Unserial-
ized methods can be executed by several callers con-
currently. Since the mode of a method is declared

37

1solated from the method code, we discuss the issue of
serialized /unserialized methods in more detail in sec-
tion 3.4.4.

Since the coordination code is mixed into the meth-
ods that implement the intended functionality, i.e.,
since the goal of isolated coordination code is not met,
the inheritance anomaly can be noticed. The effects
are the same as for delay queues, include/exclude, and
behavior abstractions.

COOLs in this Category

Language Comments

ABCL/1 Actor

ABCL/f Actor

Acore Actor

ACT++ behavior abstraction
ACT1 Actor

Actalk Actor

ActorSpace Actor

Actra Actor

ASK Actor

Cantor Actor

Distr. C++ delay queue

Ellie include/exclude
Hybrid delay queue

Parallel Object- | include/exclude (allow)
Oriented Fortran

Ubik Actor

3.4.4 Isolated Handshake Control

The following diagram names the mechanisms that
are discussed in this section. The mechanisms fulfill
the goal of callee-oriented coordination code and are
much closer in fulfilling the goal of isolated coordina-
tion code than the mechanisms in the previous section.
Some mechanisms meet the goal of separable coordi-
nation code; some allow intra-object parallelism. Un-
fortunately, none of these mechanisms is perfect, each
one still has some restrictions.

Enable Set
Method Ghard LifesRoutine
isola- Path|Fzpr
ted (Un-) S¢rialize
coord.
code Reader/
Writer

N

per method entire interface

Note, that three mechanisms are located both inside
and outside of the oval since these mechanisms — al-
though originally designed for the one-activity-at-a-
time principle — have straightforward extensions to
handle intra-object parallelism.

Method Guard

Method guards are a way to express proceed-criteria
that is similar to pre-conditions. Before a method
that i1s guarded by a method guard is executed, the
attached condition is evaluated. If the condition is
evaluated to true, the method is invoked, otherwise
the call is delayed.

Example. Method guards are used in the follow-
ing implementation of the running example. There
is a special guard section in the class implementa-
tion, which specifies a proceed-criterion for all meth-
ods. The methods print_text and disable can only be
executed when the print server is enabled, i.e, when
the private attribute state is equal to “enabled”. Oth-
erwise, only the method enable can be executed.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;

enable;

disable;
guards:

print_text: state == "enabled";

enable : state == '"disabled";

disable : state == "enabled";
implementation:

state : "enabled", "disabled'"; -- enum

print_text(t:STRING):INT is
-- do the printing
-- do the accounting

end;
enable is
. state := "enabled";
end;
disable is
. state := "disabled";

end;
end PRINT_SERVER;

The above implementation has two characteristics
that should be noted. First, it relies on the one-
activity-at-a-time principle. Second, the private at-
tribute state that is used in the method guards, is
modified in the routines enable and disable.

38

Discussion.

Goal ratings

callee-oriented | yes

expressive state proceed-criteria, sometimes
intra-object parallelism

isolated almost yes

separable yes

Method guards fulfill the goal of callee-oriented coor-
dination. Since all language features can be used to
express the guarding conditions, state proceed-criteria
are offered. The conditions can be arbitrary boolean
expressions that use instance variables of the object.
There is however no support for history proceed-
conditions.

The method guards that are offered in COOLs dif-
fer with respect to the offered expressibility of intra-
object parallelism. Some COQOLs are based on the
one-activity-at-a-time principle. Others allow to ex-
press whether a method can be executed with respect
to concurrently executing (other) methods. To express
these concurrency conditions, two different types of
proposals have been made:

Counters. Counters are predefined functions that
can be used in the guarding conditions. For ex-
ample, there might be a counter for the number
of currently active method executions (in total
or for a specific method). Other counters re-
turn the number of pending invocations, the num-
ber of completed method executions, and so on.
Based on these counters the programmer can eas-
ily check in the guard expression whether concur-
rency conditions hold. Different counters are of-
fered by different COOLs. The implementation
makes sure that the counters are modified auto-
matically.

Compatibilities. The COOL CEiffel allows to ex-
press method compatibilities, i.e., the program-
mer can specify the names of methods in a
method guard, which are allowed to execute con-
currently. When a method is called, the run-time
system checks whether a method is executed that
is not in the list of concurrently executable meth-
ods. If so, the new call is delayed. Otherwise the
new call can proceed, provided that an additional
proceed-criterion is as well evaluated to true.

Although at first glance the coordination code is iso-
lated from the code that implements functionality,
there are still interdependences. Since the guards
use instance variables to check the availability of a
method, the coordination code i1s connected to the

functionality code if that uses the same instance vari-
ables. If the instance variables are changed, the out-
come of the conditions might change as well. Isolation
of coordination code is much better than in the mecha-
nisms discussed in the previous sections since methods
and guards can be inherited separately.

If there are interdependences between guards and
instance variables then a mild form of inheritance
anomaly still occurs: When a subclass is derived that
adds new routines and instance variables, it is quite
likely that the guards of existing methods must be
adapted. For example, the new routines enable_printer
and disable_printer will result in changing guards for
the disable routine. In contrast to earlier approaches,
the methods often remain unaffected and are not du-
plicated.

If intra-object parallelism is allowed, the language
must define how concurrent method execution and the
evaluation of proceed-criteria interact without race-
conditions. Most COOLs we have looked at do not
deal with this problem. Two reasons can be envi-
sioned: either there is a hole in the language designs or
the authors omitted the discussion of that problem in
their presentations. The COOL SOS is an exception:
in SOS there are two types of instance variables, only
one type can be used in guard expressions. Therefore,
in SOS coordination code is truly isolated.

Enable Set

One of the remaining problems with behavior abstrac-
tions was that each method had to perform a possibly
complex analysis to determine the new behavior of the
object. When the sets of possible states change in sub-
classes, this analysis must be re-worked in otherwise
unaffected methods.

Enable sets ease this problem: instead of a become
statement that requires the name of a state, Enable
Sets are first class citizens of the language. Hence,
the programmer can call a method in the become
statements that returns the name of the new state.
The complex analysis is hidden in this method. When
the sets of potential states change, hopefully only this
method is affected.

Example. The following representation of the run-
ning example with Enable Sets is similar in spirit to
the one that was based on behavior abstractions.

In the code the private methods enabled and dis-
abled return Enable Sets. We call these methods state
determining methods. The case analysis that deter-
mines the successor state therefore is moved into spe-
cial methods and is clearly isolated from the other

39

code.

class PRINT_SERVER is
public interface:
print_text(t:STRING):INT;
enable;
disable;
implementation:
private enabled:EnableSet is

return new EnableSet(print_text,disable);

end;

private disabled:EnableSet is
return new EnableSet(enable);

end;

print_text(t:STRING):INT is
-- do the printing
-- do the accounting
become enabled;
end;
enable is
. become enabled;
end;
disable is
. become disabled;
end;
end PRINT_SERVER;

The become statements in the methods print_text, en-
able, and disable call the private methods to determine
the successor state.

Discussion.
Goal ratings
callee-oriented | yes
expressive state proceed-criteria, history
proceed-criteria
isolated almost yes
separable yes

Enable Sets fulfill the goal of callee-oriented coordi-
nation. They support both state proceed-criteria and
history proceed-criteria, in the same way as behavior
abstractions do.

Enable Sets are not made for intra-object par-
allelism, and this restriction cannot be dropped.
The reason is the same as for delay queues, in-
clude/exclude, and behavior abstractions: if intra-
object parallelism would be available, this would
require an additional (activity based) coordination
mechanisms to guard concurrent access to instance
variables that are needed to encode compatibility
rules.

Compared with behavior abstractions the Enable
Set mechanisms almost fulfills the goal of isolated co-
ordination code. The reason is that code checking
the internal state to determine the successor state is
moved from the methods that implement class func-
tionality to separate methods. At this new position,
the coordination code can be inherited and modified
separately, most often without affecting the methods
that implement class functionality. Some problems
remain if the state determining method uses class at-
tributes that are used by the other methods as well. In
this case the same mild forms of inheritance anomaly
can be noticed that have been discussed for method
guards.

Since it is in general possible to achieve a one-to-
one-mapping between (regular) methods and private
state determining methods, the coordination code is
separable. In most cases it is possible to change only
very few of the state determining methods when the
coordination constraints must be altered.

Extension. An extension of Enable Sets has been
proposed that further reduces the amount of chang-
ing code. Since at the end of each method the new
state must be determined, one could envision a default
method that automatically is called for this purpose.
This extension removes the become statement from
the language. If the programmer decides that a partic-
ular method needs a different algorithm to determine
the successor behavior, there are syntactic means to
link the additional transition routine to the method
that implements the functionality.

With respect to inheritance, this extension seems
to perform better than classic Enable Sets.

Path Expression

Facing the problem that growing monitor implemen-
tations lead both to sequential bottlenecks and to
code for conditional synchronization that is scattered
throughout the class, path expressions have been in-
vented [50]. The idea of path expressions is to express
all dependences between potentially concurrent oper-
ations at one place in each class. With a construct

like
path path_list end

the programmer can specify, which monitor operations
can be called in which order, and which operations can
be executed concurrently. The path list is essentially
a list of method names, enhanced in a regular expres-
sion style, i.e., choice (]), repetition ({}), concurrency

40

(; and *) etc. can be expressed. No additional syn-
chronization code is needed inside of the class imple-
mentation.

Example. In the following representation of the run-
ning example with path expressions several activities
are allowed to invoke print_text at a time.

class PRINT_SERVER is
public interface:
print_text(t:STRING) :INT;
enable;
disable;
path:
{enable, (print_text* | disable)};
implementation:
print_text(t:STRING):INT is
-- do the printing
-- do the accounting

end;
enable is . end;
disable is . end;

end PRINT_SERVER;

The path section of the class definition specifies in
which order methods can be called. Moreover, the
path expression defines, that several invocations of
print_text can be executed concurrently.

Discussion.

Goal ratings

callee-oriented | yes

expressive history proceed-criteria, intra-
object parallelism

isolated yes

separable no

Path expressions fulfill the goal of callee-oriented syn-
chronization. The coordination code is isolated and
can be inherited separately.

Although path expressions are elegant for express-
ing concurrency constraints inside of the class, they in-
herit the monitor’s deficiency to properly express con-
ditional synchronization [36]: it cannot be expressed,
if an method can only be executed if the object’s state
fulfills certain conditions. Similarly, it is unclear which
of several invocations of a particular method will be
activated when the path expression allows one of them
to proceed.

Consider for example a derived subclass that allows
only a certain number of concurrently executing jobs.
Since this new condition cannot be expressed with
path expressions an implementation must make state

checking methods available to the outside and must
augment the print_text method with an additional er-
ror code to indicate an illegal call. Therefore, con-
ditional behavior is implemented by the caller, which
breaks modularity.

Some COOLs offer concurrency operators (; and
*) and hence intra-object parallelism. The concur-
rency coordination mechanismes is perfectly capable of
expressing this. However, there are still some other
COOLs that are based on the one-activity-at-a-time
principle.

The main inheritance problem of path expressions
is their lacking separability. A subclass can either
inherit the whole path expression of its ancestor, or
completely redefine it. There is no way to just alter a
part of a path expression. The redefinition of complex
path expressions requires an in-depth understanding
of all potential concurrent constellations, and is thus
not easy. We consider this lack to induce a mild form
of inheritance anomaly.

Life Routine

Let us now discuss several proposed language con-
structs that can be used in life routines. All these
constructs use the “message” terminology instead of
understanding the message as a method call.

In general, life routines process one incoming call at
a time. This strictly serializes the object’s behavior.
One way towards intra-object parallelism is to offer
an additional construct to initiate concurrency. For
example, if the COOL offers a fork command, the life
routine can use this command to execute the requested
method concurrently. Above that, the life routine can
do the book-keeping to check whether an incompatible
method is currently processed.

Receive Statement. The receive statement can be
used to explicitly wait for the arrival of a method.
In several languages, this statement is enhanced
with a condition that must hold when a message
is extracted (receive ... when). A special form
of this condition is to wait for a message from a
particular sender (receive ... from).

Guarded Commands. Another well known pro-
posal for coordination in life routines, called
guarded commands, was introduced by Dijk-

stra [89]:

41

if G1 — Stthist1
[| G2 — StmtlList,
[] G, — StmtlList,
end

If in the above if statement one of the boolean
conditions (guards) G;-G,, holds, the correspond-
ing list of statements is executed, for example a
particular message can be received. If several
guards hold, then one of them is selected ran-
domly. Because of their popularity, we stress the
fact the guarded commands are often provided in
the syntactic form of select statements.

Example. We use the implementation of the print
server as shown in section 2.5 and refine 1t here. Inside
the select statement there are two guards that check
the same condition, namely is_enabled. If is_enabled is
true, the life routine accepts incoming calls of either
print_text or disable.

class PRINT_SERVER is
public interface:
print_text(t:STRING) :INT;
enable;
disable;
implementation:
is_enabled:B0OOL;
life body is
loop —— forever
select
[1 is_enabled
-> receive "print_text(t)";
fork my_print_text(t);
[J not is_enabled
-> receive '"enable';
my_enable;
[1 is_enabled
-> receive "disable";
my_disable;
end;
end;
end;

-- these routines cannot be called directly

my_print_text (t:STRING):INT is
my_enable is end;
my_disable is end;

end PRINT_SERVER;

end;

The above code allows for intra-object parallelism: if
the printer is enabled and if print_text is called, the
select statement enters its first branch. Inside this

branch the method my_print_text is started with a fork
statement. Therefore, the life routine is immediately
able to accept the next incoming method. Calls of en-
able and disable are not spawned for concurrent execu-
tion; while my_enable and my_disable are processed,
further method calls will be delayed.

Discussion.

Goal ratings

callee-oriented | yes

expressive state proceed-criteria, intra-object
parallelism possible

isolated yes

separable no

Life routines fulfill the goal of callee-oriented coordi-
nation code.

Coordination code is isolated in the life routine,
provided that the programmer manages to put only
coordination code into the life routine and is not
tempted to code class functionality in the life routine.
With life routines it depends on the programmingstyle
that no algorithmic details (i.e. parts of the function-
ality of the object) are implemented in the life routine.
Indicators for an unwanted mix of functionality code
and coordination code in classes with life routines are
receive statements that are spread across the whole
class code or if the StmtLists of guarded commands
contain significantly more code than an invocation of
a private method that implements intended object be-
havior.

Similar to path expressions, the life routine can only
be inherited as a whole, 1.e., the coordination code is
not separable. In most cases the programmer will need
to reprogram the complete life routine in subclasses.
Below we discuss an extension of life routines that
addresses the inheritance problem, i.e., that allows to
re-use standardized life routines.

Inside of life routines, all language features can be
used to encode state proceed-criteria. However, there
is no special support for history proceed-criteria. Al-
though life routines alone do not offer intra-object par-
allelism this can easily be added, e.g., with a fork
statement. The language designer then again faces
the trade-off between easy correctness considerations
and increased performance.

Generalized Life Routine. In the COOL Eiffel//
standard life routines can be inherited from a library
of generalized life routines. The programmer provides
both the methods that should be executed and im-
plements boolean guard functions. To use the inher-

42

ited life routine, the programmer must initialize a ta-
ble that stores information about the combination of
guard function and method.

The pre-requisite of inherited life routines is that
methods are first class citizens of the language. With-
out this property, there is no way in which the pro-
grammer could talk about guard functions and meth-
ods and use them as entries in the table that is handled
by the life routine.

If such generalized life routines are used, inheri-
tance works fine. In fact, since there is no longer
explicit coordination code, subclasses inherit the in-
tended life behavior implicitly. Often only very few
table entries must be modified in the subclass. This is
very similar to boundary coordination with external
control, where the coordination constraints are exter-
nal and thus do not interfere with inheritance.

Another advantage of generalized life routines is
that the potential for an undesirable mix of coordi-
nation and functionality code can be restricted, i.e.,
the goal of isolated coordination code is met directly
and without the need to rely on a particular program-
ming style.

(Un-)Serialized Method and Object

Several COOLs which otherwise rely on the one-
activity-at-a-time principle allow to label methods or
even objects as “unserialized”. Unserialized objects
are guaranteed not to store any internal state. All
unserialized methods are purely functional and free of
side-effects. Similarly, unserialized methods, can be
executed by several concurrent activities.

Although this labeling technique is a step towards
the expressibility of intra-object parallelism, there is
no way to express for example the mutual incompati-
bility of two methods, each of which can be executed
concurrently in absence of an execution of the other
method.

COOL designers that offer (un-)serialized methods
or objects often feel a need for an additional activity
centered coordination mechanism to coordinate con-
currently executing methods which are “almost” pure
functional. The language feature table below gives
more details by naming the additional coordination
mechanism where appropriate. If no additional coor-
dination mechanism is provided, the COOL relies on
the fact that the programmer uses unserialized meth-
ods only when they are indeed pure functional.

Discussion.

Goal ratings

callee-oriented | yes
expressive restricted intra-object parallelism
isolated yes
separable yes

(Un-)serialized methods fulfill most goals, except that
they offer very limited expressive power. Because of
this restriction this construct is often combined with
other mechanism to gain the desired expressive power.
In such combinations, the other mechanism deter-
mines whether and which goals are met.

Reader/Writer-Protocol

Another approach to enhance the expressibility of con-
currency conditions is offered by COOLs that allow
to label methods to be readers (sometimes called ob-
servers) and writers (sometimes modifiers). If the
methods of a class are labeled accordingly, the run-
time system can ensure that modifying methods have
exclusive access to the object whereas several observ-
ing methods can be executed concurrently.

Discussion.

Goal ratings

callee-oriented | yes
expressive restricted intra-object parallelism
isolated yes
separable yes

See the discussion for (un-)serialized methods.

COOLs in this Category

Language Comments

Acore unserialized method

ASK serialized

Arche enable set, reader/writer

Blaze-2 serialized method (additional:
lock)

CEiffel method compatibility, method
guard; clear separation be-
tween the two types of guards

CLIX method guard

COB life routine

Comp. C++ serialized (additional: coordi-
nation future)

Conc. Aggregate unserialized (additional:
reader /writer lock)

Conc.Class FEiffel life routine

43

Language Comments
cooC serialized (additional:
semaphore)

COOL (Stanford)

Demeter

Distr. Eiffel

Distr. Smalltalk —
Process

Dragoon

Eiffel//

Guide

HAL

Java

Mediators

Mentat

Meyer’s Proposal
Micro C++
Obliq

Orca

Parallel Comput-
ing Action

PO

POOL

Procol

Proof
QPC++
Rosette
Scheduling

Predicates

SOS

serialized (additional: condi-
tion variable)

serialized, method guard
method guard, reader/writer
method guard, serialized (ad-
ditional: semaphore)

method guard (counter)

life routine, 1st class methods
method guard (counter)
method guard (negative)
serialized (additional: mutex)
life routine (receive), method
guard (counter)

life routine (receive)

method guard

life routine, (receive)
serialized (additional: mutex,
lock)

method guard

method guard (negative)

method guard

life routine (receive)
path expression,
guard

method guard

life routine (receive)
serialized, enable set
method guard (counter)

method

method guard (counter)

Some COQOLs offer two coordination mechanisms. For
example, Procol offers both path expressions and
method guards. Especially the serialized methods and
the reader/writer-protocol can easily be used in com-
bination with some other mechanisms.

3.4.5 Reflective Control

oD

ﬁa

“@HpAgEoT

COOLs based on boundary coordination with reflec-
tive control keep class implementations free of coor-
dination code. In contrast to external control, where
there is no explicit coordination code at all, mech-
anisms based on reflective control enable the pro-
grammer to explicitly formulate the coordination con-
straints. This can be done in meta-classes.

Example. The following code is the well known
implementation of the PRINT_SERVER. In addition,
there is a class PRINT_ SHADOW that has two meth-

ods in its public interface, namely entry and exit.

class PRINT_SERVER is

public interfacee:
print_text(t:STRING):INT;
enable;
disable;

implementation:
print_text(t:STRING):INT is ...
enable is ... end;

. end;

end

disable is
end PRINT_SERVER;

class PRINT_SHADOW is

public interface:
entry is ...
exit is ...

end PRINT_SHADOW;

end;
end;

PRINT_SERVER: :attach(ps,pshadow,entry,exit);

The last code line dynamically links the shadow object
pshadow to the print server object ps. After this dy-
namic link an incoming method call for ps will first
start the method entry of the shadow object, then
invoke the called method of ps, and finally call the
method exit of the shadow object. Therefore, the
shadow object can implement any form of delay.

Discussion.
Goal ratings
callee-oriented | yes
expressive state proceed-criteria, intra-object
parallelism
isolated yes
separable no, possibly yes.

Reflective control mechanisms fulfill the goals of callee-
oriented and isolated coordination code. The express-
ibility is limited, since there is no support for history
proceed-criteria.

Whether the goal of separable coordination code
is fulfilled depends on the language mechanisms. If
the shadow object can be used like a generalized life
routine and the programmer refrains from implement-
ing functionality in the shadowing class that belongs
into the shadowed class, the coordination code can be
separable. Otherwise it 1s clearly not: to change the
coordination constraints the shadowing class must be
completely re-programmed.

44

COOLs in this Category

Language Comments

ABCL/R2

ABCL/R3

DROL protocol object, one-activity-
at-a-time

MeldC shadow object, concurrent ac-
cess possible

4 MAPPING AND LOCATION
...will be added in a later version of the survey.

5 LANGUAGE DISCUSSION

5.1 General Language Design Issues
Language versus Library. Some COOLs extend
existing object-oriented languages by adding concur-
rency in a library. Special classes are offered, that can
be mixed-in to add for example semaphore operations.
Buhr points out in [45] that there are reasons why such
library extensions can in general not be implemented
correctly. The basic idea of Buhr’s argumentation is as
follows. Since the compiler does not know about the
special concurrent semantics of the the added libraries
it cannot be guaranteed that compiler optimizations
do not interfere with these semantics. Let a be an ob-
ject that inherits both a lock and an unlock method
from a mixed-in library class.

a.lock;
a.method;
a.unlock

Inside of the cirtical section between the call of lock
and the call of unlock the above code executes a
method which presumably causes some race-conditions
if not executed in isolation. However, a standard com-
piler that does not know about the special concurrent
semantics of lock and unlock might change the evalu-
ation order if it can prove the absence of dependences.
The compiler will not change the relative order of lock
and unlock but might move the call of method out of
the critical section, because in general there are no de-
pendences between the instance variables used to im-
plement the lock and the ones used in method. This
“optimization” destroys the correctness of the code
and make erratic behavior almost impossible to de-
bug. Buhr points out several related problems all of
which can be explained by the inawareness of a stan-
dard compiler of the additional concurrent semantics.

5.2 Language Survey

ABCL/]_ a b http://web.ylis.s.u-tokyo.ac.jp
[244] § i ftp://camille.is.s.u-tokyo.ac.jp
i a2 group address —— abcl@is.s.u-tokyo.ac.jp
¥ ¥ Akinori Yonezawa —— yonezawa@is.s.u-tokyo.ac.jp
ABCL/f a b http://web.ylis.s.u-tokyo.ac.jp
[219] H § group address —— abcl@is.s.u-tokyo.ac.jp
i a Akinori Yonezawa —— yonezawa@is.s.u-tokyo.ac jp
¥y ¥
ABCL/R2 : b http://web.ylis.s.u-tokyo.ac.jp
¢ i % ftp://camille.is.s.u-tokyo.ac.jp
[168’ 244] i O g group address —— abcl@is.s.u-tokyo.ac.jp
¥ ¥ Akinori Yonezawa —— yonezawa@is.s.u-tokyo.ac.jp
ABCL/R3 a b http://web.ylis.s.u-tokyo.ac.jp
[169] ,% O § group address —— abcl@is.s.u-tokyo.ac.jp
i 2 Akinori Yonezawa —— yonezawa@is.s.u-tokyo.ac.jp
y y
Acore 2 b
[166] L i
% #
y y
ACTH++ a b ftp://actor.cs.vt.edu/pub
[1'297 1307 1317 i’ 3 Dennis Kafura —— kafura@cs.vt.edu
133] §
Actl ? b
v]
3 ¢
y y
Actalk a b http://web.ylis.s.u-tokyo.ac.jp/members/briot/actalk/actalk.html
[44] f § ftp://camille.is.s.u-tokyo.ac.jp/pub/members/briot/actalk
i 2 ftp://ftp.ibp.fr/ibp/softs/litp /actalk
v ¥ Jean-Pierre Briot —— briot@is.s.u-tokyo.ac.jp
ActorSpace a b ftp://biobio.cs.uiuc.edu/pub/papers
[5’ 49] § § ftp://biobio.cs.uiuc.edu/pub/theses
i a2 Christian J. Callseen —— chris@iesd.auc.dk
y y ul Agha —— agha@cs.uiuc.edu
Actra 2 b
(171, 222] 1 ;
% H
¥ ¥
Amber 2 b
[70] ! i
% H
y y
A-NETL : ;
190, 246] | i
% H
y y
rcne a b arc Benveniste —— mbenveni@irisa.fr
Arch Marc Benveni __mbenveni@irisa.f
[32] i % Valérie Issarny —— issarny@irisa.fr
§ b
a b uilia Iannello —— iannello@udsab.dia.unisa.it
ASK Guilia Iannell iannello@udsab.dia.unisa.i
[205] { ;
¥ a
% H
y y
A'U . .
[245] L i
% £
¥y ¥
BETA a p http://www.daimi.aaudk/ beta
[427 164’ 163] § g news:comp.lang.beta
Y 2 http://www.mjolner.dk
¥ ¥ information —— info@mjolner.dk
Blaze 2 a b Piyush Mehrotra —— pm@icase.edu
[175, 176] f i
i &
¥ ¥
Braid, Data- : b Andrew S. Grimshaw —— grimshaw@virginia.edu
I.’ara!lel Mentat i § group —— mentat@virginia.edu
[234, 235] i ;
C** a b James R. Larus —— larus@cs.wisc.edu
[150, 151, 152] f i
i y
y y

45

Cantor

}

1
CEiffel a
[159, 160] f

1
CFM a
[230] f

%
CHARM++ a
[136] L

%
CLIX a
[120] f

%
COB a
[118] f

%
Compositional a
C++, CC++ :
[54, 67, 68, 91] §
Concurrency Class .
for Eiffel f
[138, 139] 3

Concurrent Aggre- .
gates, CA {
[74] - [75], [137, 196] %
Co:}rjcurrentSmalltalkg

[24

et

L =10 (I).

cooC a
[557) :

|
COOL (Chorus) a
[7, 153, 154] g
COOL (NTT), .
ACOOL f
[167] 4
COOL (Stanford) .
(64, 65, 66] g
Coral a
(69] !

Y
CST, Concurrent .
Smalltalk (MIT)
[81, 117] }
Demeter ?

{
Distributed C++, .
DC++ f
[61, 62] Y
Distributed Eiffel a
(103] !

i

Distributed . a
Smalltalk — Object |
[31, 84, 172, 181, 208] 1

WHPABEOT WHPANEOT WHPASEOT' WHRABEOD WMRASEOD WHRASEOT WHRANEOT WHPANEOT WHPANEOD WHPABEOD WHRASEOT WHRANEOT WHRPANEOD WHPANEOD WHRABEOD WHPANECD WHRABEOD WHRASEOT W4MRABRODY

“HpaEEoT

Klaus-Peter Lohr —— lohr@inf.fu-berlin.de

http://charm.cs.uiuc.edu
ftp://a.cs.uiuc.edu/pub/CK

Laxmikant V. Kale —— kale@cs.uiuc.edu
Sanjeev Krishnan —— sanjeev@cs.uiuc.edu

ftp://csvax.cs.caltech.edu/comp/CC++
K. Mani Chandy —— mani@uvlsi.caltech.edu
Carl Kesselman —— carl@vlsi.caltech.edu

Murat Karaorman —— murat@cs.ucsb.edu
John Bruno —— bruno@cs.ucsb.edu

http://www-csag.cs.uiuc.edu
ftp://cs.uiuc.edu/pub/csag

group —— concert@red-herring@cs.uiuc.edu
Andrew A. Chien —— achien@cs.uiuc.edu

ftp://isl.rdc.toshiba.co.jp/pub/toshiba
group —— cooc@isl.rdc.toshiba.co.jp

ftp://ftp.chorus.fr/pub
news:comp.os.chorus
group —— info@chorus.com

ftp://ftp.ntt.jp/pub/lang
Katsumi Maruyama —— maruyama@nttmfs.ntt.jp

ftp://cool.stanford.edu
Rohit Chandra —— rohit@cool.stanford.edu

William Dally —— dally@ai.mit.edu
Andrew Chien —— achien@cs.uiuc.edu

http://www.ccs.neu.edu/home/lieber/demeter.html
Karl Lieberherr —— lieber@ccs.neu.edu
Cristina Lopes —— lopes@parc.xerox.com

ftp://cs.utah.edu/pub/dc++
Harold Carr — carr@cs.utah.edu

46

Distributed
Smalltalk — Process

[157]

DoPVM
[110]

e
«@HpaEoT

ftp://mathcs.emory.edu/pub/vss
Contact V. S. Sunderam —— vss@mathcs.emory.edu
Charles Hartley —— skip@mathcs.emory.edu

G
«HpASEoT

DOWL, distributed .
Trellis/Owl
(L, 2]
dpSather
[209]

Bruno Achauer —— bruno@tk.telematik.informatik.uni-karlsruhe.de

oo
“HpagEoT

Heinz Schmidt —— Heinz.Schmidt@fcit.monash.edu.au

G
«“HPAEOD

Dragoon

[21, 22]

Colin Atkinson —— atkinson@cl.uh.edu
Marco De Michele —— demichel@txt.it

oD
“HpAgEoT

DROL
[216]

e
«HPAEEOT

Eiffel//
[55, 56, 57, 58, 59, 60]

Denis Caromel —— caromel@mimosa.unice.fr

G
«HPAgEOD

Ellie

ftp://ftp.diku.dk /diku/dists/ellie/papers
(12293 p://ftp pap

Birger Andersen —— andersen@informatik.uni-kl.de

G
«HPAREoD

Emerald

ftp://ftp.diku.dk /pub/diku/dists/emerald
[121, 127, 128] rie Tul e

Eric Jul —— eric@diku.dk

oo
«“HpAgEoT

EPEE, Eiffel Paral-
lel Execution Env.

[106, 124, 125, 126]

ES-Kit Software
[210, 223]

Jean-Marc Jézéquel —— jezequel@irisa.fr

e
wHPApEOT

http://www.mcc.com

G
«HPAEEOD

ESP - Extensible
[Sﬁftware Platform

David Croley —— croley@mcc.com
Arun Chatterjee —— arun@mcc.com

e
«“HPAREoD

Fleng++
[217]

oo
“HpagEoT

Yvon Gourhand —— gourhant@corto.inria.fr

Fragmented Ob-
Jects, FOG/C++
[94, 165]

Guide

[73, 85, 105, 144, 146,
202)

e
«HpApEOD

http://www.imag.fr
ftp://ftp.imag.fr/pub/GUIDE

G
«HPAgEOD

ftp://biobio.cs.uiuc.edu/pub/Hal

Chris Houck . —+ chouck@ncsa.uiuc.edu
Wooyoung Kim —— wooyoung@cs.uiuc.edu

Gul Agha —— agha@cs.uiuc.edu

HAL
[119, 141]

G
«“HpAEOD

Harmony

[162]

G
«HPAEEOD

Heraklit

[] http://www2.informatik.uni-erlangen.de/IMMD-
114

11/Research/Projects/HERAKLIT
Peter Arius —— arius@informatik.uni-erlangen.de
Wolfgang Betz —— betz@informatik.uni-erlangen.de

GeimEn
«“HPpARRoD

HoME
[185]

ey
«@HPApEOD

Hybrid
[182, 183, 189]

Oscar Nierstrasz — oscar@iam.unibe.ch

G
«HPagEOD

47

Java

Karos

[102]

LO
[15]

Maude

Mediators
[95]

MeldC
[134, 135, 197]

Mentat
[96, 97, 98, 99, 100,
101]

Meyer’s Proposal
[179]

Micro C++, uC++
[47, 46, 48]

Modula-3*
[111]

MPC++
[122, 123]

Multiprocessor
Smalltalk
[187]

NAM
[155]

Obliq
[51, 52]

Orca

[24, 25, 27, 26, 112
218]

Oz, Perdio

[113, 211, 212, 213]

Panda
[19]

Parallel C++,
pC++

[37, 38, 156]

Parallel Computing
Action

[203, 204]

Parallel Object-
Oriented Fortran

[201]

B T e e

G

GAEEOD eREND eRHRED WeRRREaD WeRRRED GeREREOD oD eeaeaD WdeREEenD WeRERenD WeeEeenp e eSO oo Wemaeen

™)

-~

“HPADNEODT “@HPADEOT

“HpAgsoT

WHPABEOT WHPABEOT WMRANEOT WHPABEOD WHRANEOD’ WHRANEOD' WHPANEOT WHPANEOD WHRASEOD WHRASEOD WHRANEOD WHPANEOT' WHRABEOD WHREER0T W“HRABEOT

“HpaEEoT

http://java.sun.com
group —— java@java.sun.com

group —— MeldC@cs.columbia.edu
Gail E. Kaiser —— kaiser@cs.columbia.edu

http://www.cs.virginia.edu/ mentat
ftp://uvacs.cs.virginia.edu

group —— mentat@virginia.edu

Andrew S. Grimshaw —— grimshaw@virginia.edu

Betrand Meyer —— bertrand@eiffel.com

ftp://plg.uwaterloo.ca/pub/uSystem
group —— usystem@maytag.uwaterloo.ca
Peter A. Buhr ——

Ernst A. Heinz —— heinze@ira.uka.de

http://www.rwcp.or.jp
Yutaka Ishikawa —— ishikawa@rwcp.or.jp

http://www.research.digital.com/SRC/home.html
Luca Cardelli —— luca@src.dec.com

ftp://ftp.cs.vu.nl/pub/amoeba/orca_papers
ftp://ftp.cs.vu.nl/pub/papers/orca
Henri E. Bal —— bal@cs.vu.nl

ftp://ps-ftp.dfki.uni-sb.de

http://ps-www.dfki.uni-sb.de/oz

group —— oz@dfki.uni-sb.de

Gerd Smolka — smolka@dfki.uni-sb.de
ftp://ftp.uni-kl.de/reports_uni-kl/computer_science/system_software
http://www.uni-kl.de/AG-Nehmer/panda/panda.html

Holger Assenmacher —— assen@informatik.uni-kl.de

Reinhard Schwarz —— schwarz@informatik.uni-kl.de
http://www.extreme.indiana.edu/sage

Dennis Gannon —— gannon@cs.indiana.edu

Hayssam Saleh —— saleh@litp.ibp.fr
Philippe Gautron —— gautron@litp.ibp.fr

ftp://ftp.erc.msstate.edu
Donna Reese —— dreese@erc.msstate.edu

48

PO
78, 79]

POOL, POOL-T,

POOL-I

8,9, 10, 11, 215, 236]

Presto

33, 34]

Procol

[41, 147, 148]

Proof
[242]

pSather

PVM++
[198]

QPC++
[39]

Rosette
[224, 225, 226]

SAM
[199]

Scheduling
Predicates

[173, 174]
Scoop
[231]

Smalltalk-80
[93]

Sos

[173]

Synchronizing
sources, SR
[17, 16, 186]

Tool
(63]

Trellis/Owl
[180, 206, 207]

Ubik
[83]

UC++
[238]

Re-

[P R Lt] AR WeREREND eREREaD WGeRHEEND oD eREOD eRRenD oD GeRrRenp WeRRenD WeRRRenD e GeR g eeenD Wdee et

e

WHRPABEOT WHRANEOD WHRPABEOT WHPANEOD WHRANEODT WHRPASEOT WHPASEOT WHRASEOD WHRANEOT WMPABEOD WHPANEOT WHRPANROD WHRASEOT WHRANEOD WHPANEOD WHRANEODT W“HRANEOT <HRABEOD

“HpaEHoT

ftp://ftp.cs.washington.edu/pub

http://www.leidenuniv.nl

http://www.icsi.berkeley.edu
news:comp.lang.sather
David Stoutamire —— davids@icsi.berkeley.edu

Roland Pozo —— pozo@cs.utk.edu

Dietrich Boles —— boles@informatik.uni-oldenburg.de

ftp://biobio.cs.uiuc.edu

http://www.dsg.cs.tcd.ie/research/sos.html
Alexis Donnelly —— donnelly@cs.tcd.ie
Sean Baker —— baker@cs.tcd.ie

http://www.dsg.cs.tcd.ie/research/sos.html
Alexis Donnelly —— donnelly@cs.tcd.ie
Sean Baker —— baker@cs.tcd.ie

ftp://ftp.cs.arizona.edu//sr
http://www.cs.arizona.edu/sr/www

group —— sr-project@cs.arizona.edu

Gregory R. Andrews —— greg@cs.arizona.edu
http://www.inf.puc-rio.br/~sergio/tool

Sergio E. R. de Carvalho —— sergio@inf.puc-rio.br

Peter De Jong —— pdjong@vnet.ibm.com

http://www.cs.ucl.ac.uk/coside/ucpp
Russel Winder —— R.Winder@cs.ucl.ac.uk

49

6 CONCLUSION

Parallel programming is difficult, at least with the pro-
gramming languages that are available today. The
combination of parallel and object-oriented paradigms
in the design of COOLs raises various difficulties, since
both paradigms have some contradictory issues.

An understanding of the tension between both con-
cepts and the corresponding language design space is
crucial for the discussion and the design of COOLs. By
condensing the wide spread information about COOLs
in a single survey, we hope to provide a useful map to
the topology of the land of COOLs which might help
to prevent further re-inventions and might guide fu-
ture COOL endeavors.

Acknowledgements

Most of the research that resulted in this survey has
been done during my year long stay at ICSI. Thanks to
Jerome Feldman for the support and the discussions
during that year. Thanks to Seth C. Goldstein for
helping to find and structure the material presented in
this survey. Thanks to Wolf Zimmermann and Clau-
dio Fleiner for commenting on earlier drafts.

References

[1] Bruno Achauer. The DOWL distributed object-
oriented language. Communications of the

ACM, 36(9):48-55, September 1993.
[2]

Bruno Achauer. Implementation of distributed
Trellis. In Proc. of ECOOP’93 — 7th European
Conf. on Object-Oriented Programming, number
707 in Lecture Notes in Computer Science, pages
103-117, Kaiserslautern, Germany, July 26-30,
1993. Springer-Verlag Berlin, Heidelberg, New

York.

W. B. Ackerman. Data flow languages. Com-
puter, 15(2):15-25, February 1982.

Ada

The Programming Language

Manual, 1983.

Reference

Gul Agha and Christian J. Callsen. Ac-
torSpaces: An open distributed programming
paradigm. In Proc. of the jth ACM Symp. on
Principles & Practice of Parallel Programming,
pages 23-32, May 1993. Appears also as ACM
SIGPLAN Notices 28(7), July 1993.

50

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Gul A. Agha. ACTORS: A Model of Concur-
rent Computation in Distributed Systems. Series
in Artificial Intelligence. MIT Press Cambridge,
Massachusetts, London, England, 1986.

Paulo Amaral, Christian Jacquemot, Peter
Jensen, Rodger Lea, and Adam Mirowski.
Transparent object migration in COOL2. In
Proc. of the Workshop on Dynamic Object
Placement and Load Balancing in Parallel and
Distributed Systems, ECOOP’92, Utrecht, The
Netherlands, June 29, 1992.

P. America. Inheritance and subtyping in
a parallel object-oriented language. In Proc.
of FCOOP’87 - Furopean Conf. on Object-
Oriented Programming, number 276 in Lec-
ture Notes in Computer Science, pages 234-242,
Paris, France, June 15-17, 1987. Springer-Verlag

Berlin, Heidelberg, New York.

Pierre America. POOL-T: A parallel object-
oriented language. In A. Yonezawa and
M. Tokoro, editors, Object-Oriented Concurrent
Programmang, pages 199-220. MIT Press Cam-
bridge, Massachusetts, London, England, 1987.

Pierre America. A parallel object-oriented lan-
guag with inheritance and subtyping. In Proc. of
ECOOP OOPSLA’90, Conf. on Object-Oriented
Programmang Systems, Languages, and Applica-
tions, pages 161-168, Ottawa, Canada, October
21-25, 1990.

Pierre America. POOL: Design and experience.
In Proc. of the ECOOP OOPSLA Workshop on
Object-Based Concurrent Programming, pages
16-20, Ottawa, Canada, October 21-22, 1990.
OOPS Messenger 2(2) April 1991.

Birger Andersen. Ellie - a general, fine-grained,
first class object based language. Journal of
Object-Oriented Programming, 5(2):35-42, May
1992.

Birger Andersen. Efficiency by type-guided com-
pilation. In Proc. of the Workshop on Efficient
Implementation of Concurrent Object-Oriented
Languages, pages el—eb, OOPSLA’93, Washing-
ton D.C., September 27, 1993.

Thomas E. Anderson, David E. Culler, David A.
Patterson, and the NOW team. A case for
NOW (networks of workstations). IEEE Micro,
15(1):54-64, February 1995.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Jean-Marc Andreoli, Remo Pareschi, and Marc
Bourgois. Dynamic programming as multiagent
programming. In M. Tokoro, O. Nierstrasz,
and P. Wegner, editors, Proc. of the ECOOP’91
Workshop on Object-Based Concurrent Comput-
wng, pages 163-176, Geneva, Switzerland, July
15-16, 1991. Springer-Verlag Berlin, Heidelberg,
New York.

Gregory R. Andrews. Synchronizing resources.
ACM Transactions on Programming Languages

and Systems, 3(4):405-430, October 1981.

Gregory R. Andrews and Ronald A. Olsson.
The SR Programming Language: Concurrency
in Practice. Benjamin/Cummings Publishing
Company, 1993.

Gregory R. Andrews and Fred B. Schneider.
Concepts and notations for concurrent program-
ming. ACM Computing Surveys, 15(1):3-43,
March 1983.

H. Assenmacher, T. Breitbach, P. Buhler,
V. Hubsch, and R. Schwarz. PANDA - sup-
porting distributed programming in C4+4. In
Proc. of ECOOP’93 — Tth Furopean Conf. on
Object-Oriented Programmaing, number 707 in
Lecture Notes in Computer Science, pages 361—
383, Kaiserslautern, Germany, July 26-30, 1993.
Springer-Verlag Berlin, Heidelberg, New York.

W. C. Athas and N. J. Boden. Cantor: An Ac-
tor programming system for scientific comput-
ing. In ACM SIGPLAN Workshop on Object-
Based Concurrent Programming, pages 66-68,
San Diego, CA, September 26-27, 1988. ACM
SIGPLAN Notices 24(4).

Colin Atkinson, Stephen Goldsack, Andrea Di
Maio, and Rami Bayan. Object-oriented con-
currency and distribution in DRAGOON. Jour-
nal of Object Oriented Programming, 4(1):11-
20, March/April 1991.

Colin Atkinson, Andrea Di Maio, and Rami
Bayan. Dragoon: an object-oriented notation
supporting the reuse and distribution of ada
software. In Ada Letters, pages 50-59, Fall 1990.

David F. Bacon, Susan L. Graham, and Oliver J.
Sharp. Compiler transformations for high-
performance computing. ACM Computing Sur-
veys, 26(4):345-420, December 1994.

51

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

[33]

Henri E. Bal. A comparative study of five par-
allel programming languages. In proc. of Spring
91 Conf. on Open Distributed Systems, Fu-
rOpen, pages 209-228, Tromso, Norway, May
20-24 1991.

Henri E. Bal. Comparing data synchroniza-
tion in Ada9X and Orca. Technical Report IR~
345, Vrije Universiteit, Amsterdam, The Nether-
lands, December 1993.

Henri E. Bal and M. Frans Kaashoek. Object
distribution in Orca using compile-time and run-
time techniques. In Proc. of OOPSLA’93, 8th
Annual Conf. on Object-Oriented Programming
Systems, Languages, and Applications, pages
162-177, Washington D.C., 26 September — 1
October, 1993. ACM SIGPLAN Notices 28(10).

Henri E. Bal, M. Frans Kaashoek, and An-
drew S. Tanenbaum. Orca: A language for
parallel programming of distributed systems.

IFFE Transactions on Software FEngineering,
18(3):190-205, March 1992.

Henry E. Bal, Jennifer S. Steiner, and Andrew S.
Tanenbaum. Programming languages for dis-
tributed computing systems. ACM Computing
Surveys, 21(3):261-322, September 1989.

Utpal Banerjee. Dependence Analysis for Su-
percomputing. Kluwer Academic Publishers,
Boston, Dordrecht, London, 1988.

J. P. Banning. An efficient way to find the side-
effects of procedure calls and the aliases of vari-
ables. In Proc. of the 6th ACM Symp. on Prin-
ciples of Programming Languages, pages 29-41,
San Antonio, TX, January 1979.

John K. Bennet. The design and implementa-
tion of distributed Smalltalk. In Proc. of OOP-
SLA’87, Conf. on Object-Oriented Programmaing
Systems, Languages, and Applications, pages
318-330, Orlando, Florida, October 4-8, 1987.
ACM SIGPLAN Notices 22(12).

Marc Benveniste and Valérie Issarny. Con-
current programming notations in the object-
oriented language Arche. Technical Report 690,
IRISA, Institut de Recherche en Informatique et
Systems Aleatoires, December 1992.

B. N. Bershad, E. D. Lazowska, and H. M. Levy.
Presto: A system for object-oriented parallel
programming. Software — Practice and Fzxpe-
rience, 1998.

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

Brian. N. Bershad. The PRESTO user’s manual.
Technical Report 88-01-04, Department of Com-
puter Science, University of Washington, Seat-
tle, January 1988.

Guy E. Blelloch, Charles E. Leiserson, Bruce M.
Maggs, C. Gregory Plaxton, Stephen J. Smith,
and Marco Zagha. A comparison of sorting al-
gorithms for the connection machine CM-2. In
3rd Annual ACM Symp. on Parallel Algorithms
and Architectures, Hilton Head, South Carolina,
July 21-24, 1991.

T. Bloom. Evaluating synchronization macha-
nisms. In Proc. of the Tth Symp. on Operating
Systems Principles, pages 24-32, Pacific Grove,
CA, December 1979.

Franc¢ois Bodin, Peter Beckman, Dennis Gan-
non, Srinivas Narayana, and Shelby X. Yang.
Distributed pC++: Basic ideas for an object
parallel language. Scientific Programming, 2(3),
1993.

Francois Bodin, Peter Beckman, Dennis Gan-
non, Shelby X. Yang, S. Kesavan, A. Malony,
and B. Mohr. Implementing a parallel C++
runtime system for scalable parallel systems.
In Proc. of Supercomputing’93, pages 588-597,
Portland, Oregon, November 15-19, 1993.

Dietrich Boles. Parallel object-oriented pro-
gramming with QPC++. Structured Program-
ming, 14:158-172, 1993.

A. H. Borning. Classes versus prototypes in
object-oriented languages. In Proc. of the

ACM/IEEFE Fall Joint Computer Conf., 1986.

Jan van den Bos and Chris Laffra. PROCOL:
A parallel object language with protocols. In
Proc. of OOPSLA’89, Conf. on Object-Oriented
Programmang Systems, Languages, and Applica-
tions, pages 95-102, New Orleans, Louisiana,
October 1-6, 1989. ACM SIGPLAN Notices
24(10).

Soren Brandt and Ole
Object-oriented distributed programming in
BETA. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors, Proc. of the ECOOPO’93
Workshop on Object-Based Distributed Pro-
grammang, number 791 in Lecture Notes in Com-
puter Science, pages 185-212, Kaiserslautern,
Germany, July 26-27, 1993. Springer-Verlag
Berlin, Heidelberg, New York.

Lehrmann Madsen.

52

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Jean-Piere Briot and Akinori Yonezawa. Inher-
itance and synchronization in concurrent oop.
In Proc. of ECOOP’87 — European Conf. on
Object-Oriented Programming, number 276 in
Lecture Notes in Computer Science, pages 33—
40, Paris, France, June 15-17, 1987. Springer-
Verlag Berlin, Heidelberg, New York.

Jean-Pierre Briot. From objects to Actors:
Study of a limited symbiosis in Smalltalk-80.
Technical Report 88-58, Laboratoire Informa-
tique Théorique et Programmation, LITP, Paris,
France, September 1988.

Peter A. Buhr. Are safe concurrency libraries
possible? Communications of the ACM,
38(2):117-120, February 1995.

Peter A. Buhr and Glen Ditchfield. Adding con-
currency to a programming language. In Proc.
of USENIX C++ Technical Conference, pages
207-223, Portland, OR, August 10-13, 1992.

Peter A. Buhr, Glen Ditchfield, Richard A.
Stroobosscher, B. M. Younger, and C. R.
Zarnke. pC++4: concurrency in the object-
oriented language C++. Software — Practice and
FEzperience, 22(2):137-172, February 1992.

Peter A. Buhr and Richard A. Stroobosscher.
pC++ Annotated Reference Manual, Version
3.7. University of Waterloo, June 1993.

Christian J. Callsen and Gul Agha. Open het-
erogeneous computing in ActorSpace. Journal of
Parallel and Distributed Computing, 21(3):289-
300, June 1994.

R. H. Campbell and A. N. Habermann. The
specification of synchronization by path expres-
sions. Lecture Notes of Computer Science,

16:89-102, 1974.

Luca Cardelli. Obliq: A language with dis-
tributed scope. Technical Report 122, Digital
Equipment Corporation, Systems Research Cen-

ter, 1994.

Luca Cardelli. A language with distributed
scope. Computing System, 8(1):27-59, January
1995.

Luca Cardelli and Peter Wegner. On under-
standing types, data abstractions, and polymor-
phism. ACM Computing Surveys, 17(4):471-
522, December 1985.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Peter Carlin, Mani Chandy, and Carl Kessel-
man. The Compositional C++ Language Defini-
tion, Revision 0.9. California Institute of Tech-
nology, Pasadena, March 1, 1993.

Denis Caromel. A general model for concur-
rent and distributed object-oriented program-
ming. In ACM SIGPLAN Workshop on Object-
Based Concurrent Programming, pages 102-104,
San Diego, CA, September 26-27, 1988. ACM
SIGPLAN Notices 24(4).

Denis Caromel. Service, asynchrony and wait-
by-necessity. Journal of Object-Oriented Pro-
gramming, 2(4):12-22, November 1989.

Denis Caromel. Programming abstractions for
concurrent programming. In Proc. of Conf. on
Technology of Object-Oriented Languages and
Systems, TOOLS Pacific’90, pages 245-253,
Sydney, Australia, November 1990.

Caromel. A solution to the ex-
plicit/implicit control dilemma. In Proc. of
ECOOP OOPSLA’90, Conf. on Object-Oriented
Programmang Systems, Languages, and Applica-
tions, pages 21-25, Ottawa, Canada, October
21-25, 1990.

Denis

Denis Caromel. Toward a method of object-
oriented concurrent programming. Communi-
cations of the ACM, 36(9):90-102, September
1993.

Denis Caromel and Manuel Rebuffel. Object-
based concurrency: Ten language features to
achieve reuse. In Proc. of Conf. on Technol-
ogy of Object-Oriented Languages and Systems,
TOOLS USA’93, pages 205-214, Santa Barbara,
CA, August 1993.

H. Carr, R. R. Kessler, and M. Swanson.
Distributed C++. ACM SIGPLAN Notices,
28(1):81, January 1993.

Harold Carr, Robert R. Kessler, and Mark
Swanson. Compiling distributed C++4. In Proc.
5th Symp. on Parallel and Distributed Process-
g, pages 496-503. IEEE Computer Society,
December 1993.

Sergio E. R. de Carvalho. The object and
event oriented language TOOL. Technical Re-
port MCCO06-93, Pontificia University, Rio de
Janeiro, Brazil, 1993.

53

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Rohit Chandra, Anoop Gupta, and John L. Hen-
nessy. COOL: A language for parallel program-
ming. In David Gelernter, Alexandru Nicolau,
and David Padua, editors, Languages and Com-
pilers for Parallel Computing, pages 126-148.
MIT Press Cambridge, Massachusetts, London,
England, 1990.

Rohit Chandra, Anoop Gupta, and John L.
Hennessy. Data locality and load balancing in
COOL. In ACM Sigplan Symp. on Principles
and Practice of Parallel Programmaing, pages
249-259. ACM Press, New York, September 7—
8, 1993.

Rohit Chandra, Anoop Gupta, and John L. Hen-
nessy. COOL: An object-based language for par-
allel programming. IEEE Computer, 27(8):13—
26, August 1994.

K. Mani Chandy and C. Kesselman. Compo-
sitional C++: Compositional parallel program-
ming. In Proc. of the 5th Int. Workshop on Lan-
guages and Compilers for Parallel Computing,
number 757 in Lecture Notes in Computer Sci-
ence, pages 124-144, New Haven, Connecticut,
August 3-5, 1992. Springer-Verlag Berlin, Hei-
delberg, New York.

K. Mani Chandy and Carl Kesselman. CC++:
A declarative concurrent object-oriented pro-
gramming notation. In Gul Agha, Peter Wegner,
and Akinori Yonezawa, editors, Research Direc-
tions in Concurrent Object-Oriented Program-
ming, pages 281-313. MIT Press Cambridge,
Massachusetts, London, England, 1993.

Daniel T. Chang. CORAL: A concurrent object-
oriented system for constructing and execut-
ing sequential, parallel and distributed applica-
tions. In Proc. of ECOOP OOPSLA’90 Work-
shop on object-based concurrent programming,
pages 26-30, Ottawa, Canada, October 21-22,
1990. OOPS Messenger 2(2) April 1991.

Jeffrey S. Chase, Franz G. Amador, Edward D.
Lazowska, Henry M. Levy, and Richard J. Lit-
tlefield. The Amber system: Parallel program-
ming on a network of multiprocessors. Techni-
cal Report 89-04-01, Department of Computer
Science, University of Washington, Seattle, Sep-
tember 1989.

Arun Chatterjee. Distributed execution of C++
programs. In Proc. of the Workshop on Efficient

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Implementation of Concurrent Object-Oriented
Languages, pages b1-b6, OOPSLA’93, Washing-
ton D.C., September 27, 1993.

Doreen Y. Cheng. A survey of parallel pro-
gramming languages and tools. Technical Re-
port RND-93-005, NASA, Ames Research Cen-
ter, Moffett Field, CA, March 1993.

P. Y. Chevalier, A. Freyssinet, D. Hagimont,
S. Krakowiak, S. Lacourte, and X. Rousset
de Pina. Experience with shared object support
in the Guide system. Symp. on Ezperiences on
Distributed Systems and Multiprocessors, 93.

Andrew A. Chien. Concurrent Aggregates: Us-
ing multiple-access data abstractions to manage
complexity in concurrent programs. In Proc. of
ECOOP OOPSLA’90 Workshop on object-based
concurrent programming, pages 31-36, Ottawa,
Canada, October 21-22, 1990. OOPS Messenger
2(2) April 1991.

Andrew A. Chien, Vijay Karamcheti, John
Plevyak, and Xingbim Zhang. Concurrent
Aggregates (CA) Language Report. Concur-
rent Systems Architecture Group, Department
of Computer Science, University of Illinois at
Urbana-Champaign, February 1994.

J.-D. Choi, M. Burke, and P. Carini. Ef-
ficient flow-sensitive interprocedural computa-
tion of pointer-induced aliases and side effects.
In Proc. of the 20th ACM Symp. on Princi-
ples of Programming Languages, pages 232-245,
Charleston, SC, January 1993.

M. E. Conway. A multiprocessor system de-
sign. In Proc. of the AFIPS Fall Joint Com-
puter Conf., pages 139-146, Las Vegas, Novem-
ber 1963.

Antonio Corradi and Letizia Leonardi. PO an
object model to express parallelism. In ACM
SIGPLAN Workshop on Object-Based Concur-
rent Programmaing, pages 152-155, San Diego,
CA, September 26-27, 1988. ACM SIGPLAN
Notices 24(4).

Antonio Corradi, Letizia Leonardi, and Daniele
Vigo. Massively parallel programming environ-
ments: How to map parallel objects on trans-
puters. In M. Becker, L. Litzler, and M. Trehel,

54

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

editors, Proc. of Transputers ‘92, Advanced Re-
search and Industrial Applications, pages 125—
141, Arc et Senans, France, May 20-22, 1992.
IOS Press, Amsterdam, Netherlands.

David E. Culler, Seth C. Goldstein, Klaus E.
Schauser, and Thorsten von Eicken. TMA — a
compiler controlled threaded abstract machine.

Journal of Parallel and Distributed Computing,
18(3):347-370, July 1993.

William J. Dally and Andrew A. Chien. Object-
oriented concurrent programming in CST. In
ACM SIGPLAN Workshop on Object-Based
Concurrent Programming, pages 28-31, San
Diego, CA, September 26-27, 1988. ACM SIG-
PLAN Notices 24(4).

Andrew

Davison. A survey of logic programming-based
object-oriented languages. In Gul Agha, Pe-
ter Wegner, and Akinori Yonezawa, editors, Re-

search Directions in Concurrent Object-Oriented
Programming, pages 42-106. MIT Press, 1993.

Peter de Jong. Concurrent organizational ob-
jects. In Proc. of ECOOP OOPSLA’90 Work-
shop on object-based concurrent programming,
pages 40-44, Ottawa, Canada, October 21-22,
1990. OOPS Messenger 2(2) April 1991.

D. Decouchant. Design of a distributed ob-
ject manager for the Smalltalk-80 system. In
Proc. of OOPSLA’86, Conf. on Object-Oriented
Programming Systems, Languages, and Ap-
plications, pages 444-452, Portland, Oregon,
September 29 — October 2 1986. ACM SIG-
PLAN Notices 21(11).

D. Decouchant, S. Krakowiak, M. Meysem-
bourg, M. Riveill, and X. Rousset de Pina. A
synchronization mechanism for typed objects in
a distributed system. ACM SIGPLAN Work-
shop on Concurrent Object-Based Language De-
sign, in ACM SIGPLAN Notices, 24(4):105-
107, April 1989.

J. B. Dennis and E. C. Van Horn. Program-
ming semantics for multiprogrammed computa-
tions. Communications of the ACM, 9(3):143-
155, March 1966.

E. W. Dijkstra. Cooperating sequential pro-
cesses. In F. Genuys, editor, Programming Lan-
guages. Academic Press, New York, 1968.

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

E. W. Dijkstra. The structure of the “THE’ mul-
tiprogramming system. Communications of the

ACM, 11(5):341-346, May 1968.

E. W. Dijkstra. Guarded commands, nonde-
terminacy, and formal derivation of programs.
Commaunications of the ACM, 18(8):453-457,
August 1975.

Takanobu Baba et al. A network-topology in-
dependent task allocation strategy for parallel
computers. In Proc. Supercomputing 90, pages

878-887, 1990.

Tan Foster. Designing and Building Parallel Pro-
grams, pages 167-205. Addison-Wesley, Read-
ing, Mass., 1994.

Arne Frick, W. Zimmer, and Wolf Zimmermann.
On the design of reliable libraries. In TOOLS 17
— Technology of Object-Oriented Programming,
pages 13-23, Santa Barbara, CA, August 24,
1995. Prentice Hall, Englewood Cliffs, New Jer-
sey.

A. Goldberg and D. Robson. Smalltalk-80: The
Language and Implementation. Addison-Wesley,
Reading, Mass., 1983.

Yvon Gourhant and Marc Shapiro. FOG/C++:
a fragmented-object generator. In C++ Conf.,
pages 63-74, San Francisco, CA, April 1990.

J. E. Grass and R. H. Campbell. Mediators:
a synchronization mechanism. In Proc. of the
6th Int. Conf. on Distributed Computing Sys-
tems, pages 468-477, Cambridge, MA, May 19—
23, 1986. IEEE Comput. Soc. Press.

Andrew S. Grimshaw. FEasy to use object-
oriented parallel programming. [IFEFE Com-
puter, 26(5):39-51, May 1993. Also University of
Virginia, Charlottesville, VA, Technical Report
(CS-92-32.

Andrew S. Grimshaw. The Mentat computation
model — data-driven support for object-oriented
parallel processing. Technical Report CS-93-30,
University of Virginia, Charlottesville, VA, May
1993.

Andrew S. Grimshaw and V. E. Vivas. FAL-
CON: A distributed scheduler for MIMD ar-
chitectures. In Proc. of the Symp. on Ezperi-
ences with Distributed and Multiprocessor Sys-

tems, pages 149-163, Atlanta, GA, March 1991.

95

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Andrew S. Grimshaw, Jon B. Weissan, and
W. Timothy Strayer. Portable run-time support
for dynamic object-oriented parallel processing.
Technical Report CS-93-40, University of Vir-
ginia, Charlottesville, VA, July 1993.

Andrew S. Grimshaw, Jon B. Weissman,
Emily A. West, and Ed C. Loyot, Jr. Meta-
systems: An approach combining parallel pro-
cessing and heterogeneous distributed comput-
ing systems. Journal of Parallel and Distributed
Computing, 21(3):257-270, June 1994. Also Uni-
versity of Virginia, Charlottesville, VA, Techni-
cal Report CS-92-43.

Mentat Research Group. Mentat 2.5 program-
ming language reference manual. Technical re-
port, University of Virginia, Charlottesville, VA,
1995.

R. Guerraoui. Dealing with atomicity in object-
based distributed systems. OOPS Messenger,
3(3):10-13, July 1992.

L. Gunaseelan and R. J. LeBland. Distributed
Eiffel: A language for programming multi-
granular distributed objects. In Proc. of the jth
Int. Conf. on Computer Languages (IEEFE), San
Francisco, CA, April 1992.

B. K. Haddon. Nested monitor calls. Operating
Systems Review, 11(4):18-23, October 1977.

Daniel Hagimont, P-Y. Cheva-
lier, A. Freyssinet, S. Krakowiak, S. Lacourte,
J. Mossiere, and X. Rousset de Pina. Persis-
tent shared object support in the Guide system:
Evaluation & related work. In Proc. of OOP-
SLA’94, Conf. on Object-Oriented Programmaing
Systems, Languages, and Applications, pages
129-144, Portland, OR, October 23-27, 1994.

F. Hamelin, J.-M. Jézéquel, and T. Priol. A
multi-paradigm object oriented parallel environ-
ment. In H. J. Siegel, editor, Proc. of the 8th Int.
Parallel Processing Symp. IPPS’9), Cancun,
Mexico, April 1994. IEEE Computer Society
Press.

P. Brinch Hansen. Structured multiprogram-
ming. Communications of the ACM, 15(7):574—
578, July 1972.

P. Brinch Hansen. Concurrent programming
concepts. ACM Computing Surveys, 5(4):223—
245, December 1973.

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

P. Brinch Hansen. Operating System Princi-
ples. Prentice Hall, Englewood Cliffs, New Jer-
sey, 1973.

C. L. Hartley and V. S. Sunderam. Concurrent
programming with shared objects in networked
environments. In Proc. of the 7th Int. Parallel
Processing Symp., pages 471-478, Los Angeles,
April 1993.

Ernst A. Heinz. Modula-3*: An efficiently com-
pilable extension of Modula-3 for explicitly par-
allel problem-oriented programming. In Joint
Symp. on Parallel Processing, pages 269-276,
Waseda University, Tokyo, May 17-19, 1993.

Heinz-Peter Heinzle, Henri E. Bal, and Koen
Langendoen. Implementing object-based dis-
tributed shared memory on Transputers. In
A. De Gloria, M. R. Jand, and D. Marini, edi-
tors, Transputer Applications and Systems 9.
TIOS Press, 1994.

Martin Henz. The Oz notation. Technical re-
port, DFKI, German Research Center for Arti-
ficial Intelligence, Saarbrucken, Germany, 1994.

B. Hindel. An object-oriented programming
language for distributed systems: HERAKLIT.
In ACM SIGPLAN Workshop on Object-Based
Concurrent Programming, pages 114-116, San
Diego, CA, September 26-27, 1988. ACM SIG-
PLAN Notices 24(4).

C. A. R. Hoare. Towards a theory of parallel
programming. In C. A. R. Hoare and R. H.

Perrott, editors, Operating Systems Techniques,
pages 61-71. Academic Press, New York, 1972.

C. A. R. Hoare. Monitors: An operating sys-
tem structuring concepts. Communications of

the ACM, 17(10):549-557, October 1974.
W. Horwat, A. A. Chien, and W. J. Dally. Ex-

perience with CST: programming and imple-
mentation. In Proc. of the ACM SIGPLAN
‘89 Conf. on Programmaing Language Design and
Implementation PLDI, pages 101-109, Portland,
OR, June 21-23, 1989. ACM SIGPLAN Notices
24(7).

Kaoru Hosokawa and Hiroaki Nakamura. Con-
current programming in COB. In A. Yonezawa
and T. Tto, editors, Proc. of the Japan/UK
Workshop on Concurrency: Theory, Language
and Architecture, pages 142-156, Oxford, UK,

56

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

September 25-27. 1989. Springer-Verlag Berlin,
Heidelberg, New York.

Chris Houck and Gul Agha. HAL: A high-level
Actor language and its distributed implementa-
tion. In 21st Int. Conf. on Parallel Processing,
ICPP 92, volumeIl, pages 158-165, St. Charles,
IL, August 1992.

Jin H. Hur and Kilnam Chon. Overview of a par-
allel object-oriented language CLIX. In Proc.
of FCOOP’87 - Furopean Conf. on Object-
Oriented Programming, number 276 in Lec-
ture Notes in Computer Science, pages 265273,
Paris, France, June 15-17, 1987. Springer-Verlag
Berlin, Heidelberg, New York.

Norman C. Hutchinson, Rajeandra K. Raj, An-
drew P. Black, Henry M. Levy, and Eric Jul.
The Emerald programing lanuage report. Tech-
nical Report 87-10-07, Department of Computer
Science, University of Washington, Seattle, Oc-
tober 1987.

Yutaka Ishikawa. The MPC++ programming
language v1.0 specification with commentary.
Technical Report TR-94014, Tsukuba Research
Center, Real World Computing Partnership,
Japan, June 1994.

Yutaka Ishikawa, Atsushi Hori, Hiroki Kon-
aka, Munenori Maeda, and Takashi Tomokiyo.
MPC++: A parallel programming language and
its parallel objects support. In Proc. of the
Workshop on Efficient Implementation of Con-
current Object-Oriented Languages, pages j1-]5,
OOPSLA’93, Washington D.C., September 27,
1993.

J.-M. Jézéquel. EPEE: an Eiffel environment to
program distributed memory parallel comput-
ers. In Proc. of FCOOP’92 - Furopean Conf.
on Object-Oriented Programming, number 615
in Lecture Notes in Computer Science, pages
197-212, Utrecht, The Netherlands, June 29 —
July 3, 1992. Springer-Verlag Berlin, Heidelberg,
New York.

J.-M. Jézéquel. EPEE: an Eiffel environment to
program distributed memory parallel comput-
ers. Journal of Object Oriented Programming,

6(2):48-54, May 1993.

J-M. Jézéquel. Transparent parallelisation
through reuse: between a compiler and a library

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

approach. In Proc. of EFCOOP’93 - 7th Fu-
ropean Conf. on Object-Oriented Programming,
number 707 in Lecture Notes in Computer Sci-
ence, pages 384-405, Kaiserslautern, Germany,
July 26-30, 1993. Springer-Verlag Berlin, Hei-
delberg, New York.

Eric Jul. Migration of light-weight processes in
Emerald. IFEE Operating Sys. Technical Com-
mittee Newsletter, Special Issue on Process Mi-

gration, 3(1):25-30, 1989.

Eric Jul, Henry Levy, Norman Hutchinson, and
Andrew Black. Fine-grained mobility in the
Emerald system. ACM Transactions on Com-
puter Systems, 6(1):109-133, February 1988.

Dennis Kafura. Concurrent object-oriented
real-time systems research. In ACM SIG-
PLAN Workshop on Object-Based Concurrent
Programmang, pages 203-205, San Diego, CA,
September 26-27, 1988. ACM SIGPLAN No-

tices 24(4).

Dennis Kafura and Greg Lavender. Recent
progress in combining Actor based concurrency
with object-oriented programming. In Proc. of
ECOOP OOPSLA’90, Conf. on Object-Oriented
Programmang Systems, Languages, and Applica-
tions, pages 55-58, Ottawa, Canada, October
21-25, 1990.

Dennis Kafura and K. H. Lee. ACT++: Build-
ing a concurrent C++ with Actors. Journal of
Object Oriented Programming, 3(1):25-37, May
1990.

Dennis Kafura, Manibrata Mukherji, and Greg
Lavender. ACT++ 2.0: A class library for
concurrent programming in C+4++ using Ac-
tors. Journal of Object Oriented Programming,

6(6):47-55, October 1993.

Dennis G. Kafura and Keung Hae Lee. Inheri-
tance in Actor based concurrent object-oriented
languages. In ECOOP’89 — European Conf. on
Object-Oriented Programming, pages 131-145.
Cambridge University Press, 1989.

Gail E. Kaiser, Wenwey Hseush, James C. Lee,
Shyhtsun F. Wu, Esther Woo, Eric Hilsdale, and
Scott Meyer. MeldC: A reflective object-oriented
coordination language. Technical Report CUCS-
001-93, Dept. of Computer Science, Columbia
University, New York, January 1993.

57

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Gail E. Kaiser, Wenwey Hseush, Steven S.
Popovich, and Shyhtsun F. Wu. Multiple con-
currency control policies in an object-oriented
programming system. In Gul Agha, Peter Weg-
ner, and Akinori Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Pro-
gramming, pages 195-210. MIT Press Cam-
bridge, Massachusetts, London, England, 1993.

Laxmikant V. Kale and Sanjeev Krishnan.
Charm++: A portable concurrent object ori-
ented system based on C++. In Proc. of OOP-
SLA’93, 8th Annual Conf. on Object-Oriented
Programming Systems, Languages, and Appli-
cations, pages 91-109, Washington D.C.; 26
September — 1 October, 1993. ACM SIGPLAN
Notices 28(10).

Vijay Karamcheti and Andrew Chien. Concert —
efficient runtime support for concurrent object-
oriented programming languages on stock hard-
ware. In Proc. of ACM Supercomputing’93,
pages b98-607, Portland, Oregon, November 15—
19, 1993.

Murat Karaorman and John Bruno. Design and
implementation issues for object-oriented con-
currency. In Proc. of the Workshop on Efficient
Implementation of Concurrent Object-Oriented
Languages, pages m1-m9, OOPSLA’93, Wash-
ington D.C., September 27, 1993.

Murat Karaorman and John Bruno. Introduc-
tion of concurrency to a sequential language.
Communications of the ACM, 37(9):103-116,
September 1993.

J. L. W. Kessels. An alternative to event queues
for synchronization in monitors. Communica-

tions of the ACM, 20(7):500-503, July 1977.

WooYoung Kim and Gul Agha. Compilation of a
highly parallel Actor-based language. In Proc. of
the 5th Int. Workshop on Languages and Com-
pilers for Parallel Computing, number 757 in
Lecture Notes in Computer Science, pages 1-
12, New Haven, Connecticut, August 3-5, 1992.
Springer-Verlag Berlin, Heidelberg, New York.

K. D. Kooper and K. Kennedy. Fast interproce-
dural alias analysis. In Proc. of the 16th ACM
Symp. on Principles of Programming Languages,
pages 49-59, Austin, TX, January 1989.

Tim Korson and John D. McGregor. Under-
standing object-oriented: A unifying paradigm.

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Communications of the ACM, 33(9):40-60, Sep-
tember 1990.

S. Krakowiak, M. Meysembourg, H. Nguyen
Van, M. Riveill, C. Roisin, and X. Rous-
set de Pina. Design and implementation of
an object-oriented, strongly typed language
for distributed applications. Journal of Ob-
ject Oriented Programming, 3(3):11-22, Septem-
ber/October 1990.

J. Kramer, J. Magee, M. Sloman, N. Dulay,
S. Cheung, S. Crane, and K. Twidle. An in-
troduction to distributed programming in Rex.
In Procedings of the 1991 Esprit Conf., pages
207-222, Brussels, Belgium, November 1991.

Serge Lacourte. Exceptions in Guide, an object-
oriented language for distributed applications.
In Proc. of ECOOP’91 - Furopean Conf. on
Object-Oriented Programming, number 512 in
Lecture Notes in Computer Science, pages 268—
287, Geneva, Switzerland, July 15-19, 1991.
Springer-Verlag Berlin, Heidelberg, New York.

Chris Laffra and Jan van den Bos. Con-
straints in concurrent object-oriented environ-
ments. In Proc. of ECOOP OOPSLA’90 Work-
shop on object-based concurrent programming,
pages 64-67, Ottawa, Canada, October 21-22,
1990. OOPS Messenger 2(2) April 1991.

Chris Laffra and Jan van den Bos. Propaga-
tors and concurrent constraints. In Proc. of
ECOOP OOPSLA’90 Workshop on object-based
concurrent programming, pages 68-72, Ottawa,
Canada, October 21-22, 1990. OOPS Messenger
2(2) April 1991.

W. Landi, B. G. Ryder, and S. Zhang.
terprocedural modification side effect analysis
with pointer aliasing. In Proc. of the SIG-
PLAN Conf. on Programming Language Design
and Implementation, pages 56-67, Albuquerque,
New Mexico, June 1993. ACM SIGPLAN No-
tices 28(6).

In-

J. Larus. C**: A large-grain object-oriented,
data-parallel programming language. In Proc.
of the 5th Int. Workshop on Languages and
Compilers for Parallel Computing, number 757
in Lecture Notes in Computer Science, pages
326-341, New Haven, Connecticut, August 3-5,
1992. Springer-Verlag Berlin, Heidelberg, New
York.

58

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

James R. Larus, Brad Richards, and Guhan
Viswanathan. C**: A large-grain object-
oriented, data-parallel programming language.
Technical Report UWTR-1126, Computer Sci-
ence Department, University of Wisconsin,
Madison, November 1992.

James R. Larus, Brad Richards, and Guhan
Viswanathan. LCM: Memory system support
for parallel language implementation. In Proc.
of the 6th Int. Conf. on Architectural Support
for Programming Languages and Operating Sys-
tems, ASPLOS’9}, pages 208-218, October 4-
7, 1994. Also available as Computer Science
Department, University of Wisconsin, Madison,

Technical Report TR1237.

Rodger Lea, Christian Jacquemot, and Eric
Pillevesse. COOL: System support for dis-
tributed programming. Communications of the

ACM, 36(9):37-46, September 1993.

Rodger Lea and James Weightman. Support-
ing object oriented languages in an distributed
environment: The COOL approach. In Proc.
of Conf. on Technology of Object-Oriented Lan-
guages and Systems, TOOLS USA’91, Santa
Barbara, August 3-6, 1991. Prentice Hall, En-
glewood Cliffs; New Jersey.

Jeng Kuen Lee and Yunn-Yen Chen. Compiler
and library support for aggregate object commu-
nications on distributed memory machines. In
Proc. of the Workshop on Efficient Implementa-
tion of Concurrent Object-Oriented Languages,
pages d1-d10, OOPSLA’93, Washington D.C.,
September 27, 1993.

Jenq Kuen Lee and Dennis Gannon. Object ori-
ented parallel programming — experiments and
results. In Proc. of Supercomputing’91, pages
273-282, Albuquerque, NM, November 18-22,
1991.

Y. S. Lee, J. H. Huang, and F. J. Wang. A
distributed Smalltalk based on process-object
model. In G. J. Knafl, editor, Proc. of the
15th Annual Int. Computer Software and Ap-
plications Conf., pages 465-471, Tokyo, Japan,
September 11-13, 1991. TEEE Comput. Soc.
Press.

A. Lister. The problem of nested monitor calls.
Operating Systems Review, 11(3):5-7, July 1977.

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Klaus-Peter Lohr. Concurrency annotations.
ACM SIGPLAN Notices, 27(10):327-340, Octo-
ber 1992.

Klaus-Peter Lohr. Concurrency annotations for
reusable software. Communications of the ACM,

36(9):81-89, September 1993.

Cristina Videira Lopes and Karl J. Lieberherr.
Abstracting process-to-function relations in con-
current object-oriented applications. In Mario
Tokoro and Remo Pareschi, editors, Proc. of
the 8th European Conf. on Object-Oriented Pro-
gramming, ECOOP’94, number 821 in Lec-
ture Notes in Computer Science, pages 81-99,
Bologne, Ttaly, July 4-8, 1994. Springer-Verlag
Berlin, Heidelberg, New York.

S.A. MacKay, W.M. Gentleman, D.A. Stewart,
and M. Wein. Harmony as an object-oriented
operating system. In ACM SIGPLAN Work-
shop on Object-Based Concurrent Programming,
pages 209-211, San Diego, CA, September 26—
27, 1988. ACM SIGPLAN Notices 24(4).

Ole Lehrmann Madsen. Building abstrac-
tions for concurrent object-oriented program-
ming. Technical report, Computer Science De-
partment, Aarhus University, Denmark, Febru-

ary 1993.

Ole Lehrmann Madsen, Birger Moller-Pedersen,
and Kristen Mygaard. Object-Oriented Pro-
gramming in the BETA Programming Language.
Addison-Wesley, Reading, Mass., 1993.

Mesaac Makpangou, Yvon Gourhant, Jean-
Pierre Le Narzul, and Marc Shapiro. Frag-
mented objects for distributed abstractions. In
T. L. Casavant and M. Singhal, editors, Read-
wngs in Distributed Computing Systems. IEEE
Computer Society Press, July 1993.

Carl Manning. A peek at Acore, an Actor core
language. In ACM SIGPLAN Workshop on
Object-Based Concurrent Programming, pages
84-86, San Diego, CA, September 26-27, 1988.
ACM SIGPLAN Notices 24(4).

Katsumi Maruyama and Nicolas Raguideau.
Concurrent object-oriented language COOL.
ACM SIGPLAN Notices, 29(9):105-114, Sep-
tember 1994.

59

[168]

[169]

[170]

[171]

[172]

[173]

[174]

Hidehiko Masuhara, Satoshi Matsuoka, Takuo
Watanabe, and Akinori Yonezawa. Object-
oriented concurrent reflective languages can be
implemented efficiently. In Proc. of OOP-
SLA’92, Conf. on Object-Oriented Programmaing
Systems, Languages, and Applications, Vacnou-
ver, Canada, October 18-22, 1992. ACM SIG-
PLAN Notices 27(10).

Hidehiko Masuhara, Satoshi Matsuoka, and Aki-
nori Yonezawa. An object-oriented concurrent
reflective language for dynamic resource man-
agement in highly parallel computing. In IPSJ
SIG Notes, volume 94-PRG-18, pages 57-64,
1994.

Satoshi Matsuoka and Akinori Yonezawa. Anal-
ysis of inheritance anomaly in object-oriented
concurrent programming languages. In Gul
Agha, Peter Wegner, and Akinori Yonezawa, ed-
itors, Research Directions in Concurrent Object-
Oriented Programming, pages 107-150. MIT
Press Cambridge, Massachusetts, London, Eng-
land, 1993.

Jeff McAffer and John Duimovich. Actra — an in-
dustrial strength concurrent object oriented pro-
gramming system. In Proc. of ECOOP OOP-
SLA’90 Workshop on object-based concurrent
programmang, pages 82-84, Ottawa, Canada,
October 21-22, 1990. OOPS Messenger 2(2)
April 1991.

Paul L. McCullough. Transparent forwarding:
First steps. In Proc. of OOPSLA’87, Conf.
on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 331-341, Or-
lando, Florida, October 4-8, 1987. ACM SIG-
PLAN Notices 22(12).

Ciaran McHale. Synchronisation in Concurrent,
Object-oriented Languages: FEzpressive Power,
Genericity and Inheritance. PhD thesis; De-
partment of Computer Science, Trinity College,

Dublin 2, Ireland, October 1994.

Ciaran McHale, Bridget Walsh, Sean Baker,
and Alexis Donnelly. Scheduling predicates.
In M. Tokoro, O. Nierstrasz, and P. Weg-
ner, editors, Proc of the ECOOP’91 Workshop
on Object-Based Concurrent Computing, pages
177-193, Geneva, Switzerland, July 15-16, 1991.
Springer-Verlag Berlin, Heidelberg, New York.

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Piyush Mehrotra and John Van Rosendale. The
BLAZE language: A parallel language for scien-
tific programming. Parallel Computing, 5:339—
361, November 1987.

Piyush Mehrotra and John Van Rosendale. Con-
current object access in BLAZE 2. In ACM
SIGPLAN Workshop on Object-Based Concur-
rent Programming, pages 40-42, San Diego, CA,
September 26-27, 1988. ACM SIGPLAN No-
tices 24(4).

Bertrand Meyer. Object-Oriented Software Con-
struction. Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

Bertrand Meyer. Applying design by contract.
IEEE Computer, 25(10):40-51, October 1992.

Bertrand Meyer. Systematic concurrent object-
oriented programming. Communications of the

ACM, 36(9):56-80, September 1993.

J. Elliot B. Moss and Walter H. Kohler. Con-
currency features for the Trellis/Owl language.
In Proc. of ECOOP’87 — Furopean Conf. on
Object-Oriented Programming, number 276 in
Lecture Notes in Computer Science, pages 171—
180, Paris, France, June 15-17, 1987. Springer-
Verlag Berlin, Heidelberg, New York.

Claudio Nascimento and Jean Dollimore. Be-
havior maintenance of migrating objects in a
distributed object-oriented environment. [EFEFE
Computer, 25(9), September 1992.

Oscar Nierstrasz. Active objects in Hybrid. In
Proc. of OOPSLA’87, Conf. on Object-Oriented
Programmang Systems, Languages, and Applica-
tions, pages 243-253, Orlando, Florida, October
4-8, 1987. ACM SIGPLAN Notices 22(12).

Oscar Nierstrasz. A tour of Hybrid: A lan-
guage for programming with active objects. In
D. Mandrioli and B. Meyer, editors, Advances
. Object-Oriented Software Engineering, pages
167-182. Prentice Hall, Englewood Cliffs, New
Jersey, 1992.

Mark Nuttal. A brief survey of systems provid-
ing process or object migration facilities. Operat-

ing Systems Review, 28(4):64-80, October 1994.

Kazuhiro Ogata, Satoshi Kurihara, Mikio Inari,
and Norihisa Doi. The design and implemen-

tation of HoME. In Proc. of the ACM SIG-

60

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

PLAN Conf. on Programming Languages, De-
sign and Implementation, PLDI’92, pages 44—
54, San Francisco, CA, June 17-19 1992.

Ronald A. Olsson, Gregory R. Andrews,
Michael H. Coffin, and Gregg M. Townsend. SR
— a language for parallel and distributed pro-
gramming. Technical Report TR 92-09, Dept. of
Computer Science, University of Arizona, Tuc-
son, March 1992.

Joseph Pallas and David Ungar. Multiproces-
sor Smalltalk a case study of a multiprocessor-
based programming environment. In Proc. of

SIGPLAN Conf., pages 268-277, 1988.

M. Papathomas. Concurrency issues 1n
object-oriented programming languages. In
D. Tsichritzis, editor, Object Oriented Devel-
opment, pages 207-245. University of Geneva,
Switzerland, 1989.

Michael Papathomas. Language Design Ratio-
nale and Semantic Framework for Concurrent
Object-Oriented Programming. PhD thesis, Uni-
versité de Genéve, Départment d’Informatique,
January 1992.

Proc. of the 3rd ACM/ONR Workshop on Par-
allel and Distributed Debugging. ACM SIG-
PLAN Notices 28(12), San Diego, CA, May 17-
18, 1993.

D. L. Parnas. On the criteria to be used in de-
composing systems into modules. Communica-
tions of the ACM, 15(12):1053-1058, December
1972.

D. L. Parnas. The non-problem of nested mon-
itor calls. Operating Systems Review, 12(1):12-
14, January 1978.

Michael Philippsen. Imperative concurrent
object-oriented languages: An annotated bib-
liography. Technical Report TR-95-049, Inter-
national Computer Science Institute, Berkeley,

August 1995.

Michael Philippsen and Ernst A. Heinz. Au-
tomatic synchronization elimination in syn-
chronous foralls. In Frontiers ’95:The 5th Symp.
on the Frontiers of Massively Parallel Compu-
tation, pages 350-357, Mc Lean, VA, February
6-9, 1995.

[195]

[196]

[197

—

[198]

[199]

[200]

[201]

[202]

[203]

Michael Philippsen and Walter F. Tichy.
Modula-2* and its compilation. In Ist Int. Conf.
of the Austrian Center for Parallel Computa-
tion, Salzburg, Austria, 1991, pages 169-183.
Springer Verlag, Lecture Notes in Computer Sci-
ence 591, 1992.

John Plevyak, Xingbin Zhang, and Andrew A.
Chien. Obtaining sequential efficiency for con-
current object-oriented languages. In Proc.
of the 22nd Annual ACM SIGACT-SIGPLAN
Symp. on Principles of Programming Languages
POPL’95, pages 311-321, San Francisco, CA,
January 22-25, 1995.

Steven S. Popovic, Gail E. Kaiser, and Shyht-
sum F. Wu. MELDing transactions and ob-
jects. In Proc. of ECOOP OOPSLA’90 Work-
shop on object-based concurrent programming,
pages 94-98, Ottawa, Canada, October 21-22,
1990. OOPS Messenger 2(2) April 1991.

Roland Pozo. A stream-based interface in C++
for programming heterogeneous systems. In
Proc. of the CRNS-NSF Workshop on Envi-
ronment and Tools for Parallel Scientific Com-
puting, pages 162-177, Saint Hilaire du Tou-
vet, France, September 7-8, 1992. Elsevier, Ad-
vances in Parallel Computing, Vol. 6, 1993.

Myra Jean Prelle, Ann M. Wollrath, Thomas J.
Brando, and Edward H. Bensley. The im-
pact of selected concurrent language constructs
on the SAM run-time system. In Proc. of
ECOOP OOPSLA’90 Workshop on object-based
concurrent programming, pages 99-103, Ottawa,
Canada, October 21-22, 1990. OOPS Messenger
2(2) April 1991.

R. S. Pressmann. Software Engineering.
McGraw-Hill Book Company, New York, 1987.

Donna S. Reese and Ed Luke. Object oriented
Fortran for development of portable parallel pro-
grams. In Proc. of the 3rd IEEE Symp. on Par-
allel and Distributed Processing, pages 608-615,
Dallas, Texas, December 2-5, 1991.

M. Riveill. Guide lan-
guage. In 2nd Workshop on Objects in Large
Distributed Applications, Vancouver (Canada),
18 October 1992.

An overview of the

Hayssam Saleh and Philippe Gautron. A con-
currency control mechanism for C4++ objects.

61

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

In M. Tokoro, O. Nierstrasz, and P. Wegner,
editors, Proc. of the EFCOOP’91 Workshop on
object-based concurrent computing, pages 195-
210, Geneva, Switzerland, July 15-16, 1991.
Springer-Verlag Berlin, Heidelberg, New York.

Hayssam Saleh and Philippe Gautron. A sys-
tem library for C++ distributed applications on
Transputer. In Proc. of the 3rd Int. Conf. on
Applications of Transputers, pages 638-643. 10S
Press, Amsterdam, Netherlands, August 28-30,
1991.

Michele Di Santo and Giulio Tannello. Imple-
menting actor-based primitives on distributed-
memory architectures. In Proc. of FCOOP
OOPSLA’90 Workshop on object-based con-
current programming, pages 45-49, Ottawa,
Canada, October 21-22, 1990. OOPS Messen-
ger 2(2) April 1991.

C. Schaffert, T. Cooper, B. Bullis, M. Kil-
ian, and C. Wilpolt. An introduction to
Trellis/Owl. In Proc. of OOPSLA’86, Conf.
on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 9-16, Portland,
Oregon, September 29 — October 2, 1986. ACM
SIGPLAN Notices 21(11).

Craig Schaffert, Topher Cooper, and Carrie
Wilpolt. Trellis — object-based environment:
Language reference manual. Technical Re-
port DEC-TR-372, Eastern Research Lab, DEC,
Hudson, Massachusetts, November 1985.

Marcel Schelvis and Eddy Bledoeg. The im-
plementation of a Distributed Smalltalk. In
Proc. of the Furopean Conf. on Object-Oriented
Programming, ECOOP’88, number 322 in Lec-
ture Notes in Computer Science, pages 212-232,
Oslo, Norway, August 15-17, 1988. Springer-
Verlag Berlin, Heidelberg, New York.

Heinz W. Schmidt. Data parallel object-oriented
programming. In Proc. of the 5th Australian Su-
percomputer Conf., pages 263-272, Melbourne,
December 1992.

Robert J. Smith. Experimental systems kit — fi-
nal project report. Technical report, Microelec-
tronics and Computer Technology Corporation,

MCC, Austin, Texas, March 1991.

Gert Smolka. The definition of kernal Oz. Tech-
nical report, DFKI, German Research Center for

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

Artificial Intelligence, Saarbriicken, Germany,

1994.

Gert Smolka. An Oz primer. Technical report,
DFKI, German Research Center for Artificial In-
telligence, Saarbricken, Germany, April 1995.

Gert Smolka, Martin Henz, and Jorg Wirtz.
Object-oriented concurrent constraint program-
ming in Oz. In P. van Hentenryck and
V. Saraswat, editors, Principles and Practice of
Constraint Programming, pages 27-48. The MIT
Press, 1995.

A. Snyder. Encapsulation and inheritance. In
Proc. of OOPSLA’86, Conf. on Object-Oriented
Programmang Systems, Languages, and Applica-
tions, pages 38-45b, Portland, Oregon, Septem-
ber 29 — October 2 1986. ACM SIGPLAN No-
tices 21(11).

Jan van der Spek. POOL-X and its imple-
mentation. In Pierre America, editor, Parallel
Database Systems. PRISMA Workshop, pages
309-344, Noordwijk, The Netherlands, Septem-
ber 24-26, 1990. Springer-Verlag Berlin, Heidel-
berg, New York.

Kazunori Takashio and Mario Tokoro. DROL:
An object-oriented programming language for
distributed real-time systems. In Proc. of OOP-
SLA’92, Conf. on Object-Oriented Programmaing
Systems, Languages, and Applications, pages
276-294, Vacnouver, Canada, October 18-22,
1992. ACM SIGPLAN Notices 27(10).

Hidehiko Tanaka. A parallel object oriented lan-
guage FLENG++ and its control system on the
parallel machine PIE64. In A. Yonezawa and
T. Tto, editors, Concurrency: Theory, Language
and Architecture. Japan/UK Workshop Proc.,
pages 157-172. Springer-Verlag Berlin, Heidel-
berg, New York, 1991.

Andrew S. Tanenbaum, M. Frans Kaashoek,
and Henry E. Bal. Parallel programming using
shared objects and braodcasting. [EEE Com-
puter, 25(18):10-19, August 1992.

Kenjiro Taura, Satoshi Matsuoka, and Akinori
Yonezawa. ABCL/f: A future-based polymor-
phic typed concurrent object-oriented language
— its design and implementation. In G. Blel-
loch, M. Chandy, and S. Jagannathan, editors,
Proc. of the DIMACS workshop on Specification
of Parallel Algorithms, 1994.

62

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

Thinking Machines Corporation, Cambridge,
Massachusetts. *Lisp Reference Manual, Ver-

ston 5.0, 1988.

Thinking Machines Corporation, Cambridge,
Massachusetts. C* Language Reference Manual,

April 1991.

David A. Thomas, Wilf R. LalLonde, John
Duimovich, Michael Wilson, Jeff McAffer,
and Brian Barry. Actra - a multitask-
ing/multiprocessing Smalltalk. In ACM SIG-
PLAN Workshop on Object-Based Concurrent
Programming, pages 87-89, San Diego, CA,
September 26-27, 1988. ACM SIGPLAN No-
tices 24(4).

Michael D. Tiemann. Solving the RPC problem
in GNU C++. Technical Report ESKIT-285-
88, Microelectronics and Computer Technology
Corporation, MCC, Austin, Texas, 1988.

Chris Tomlinson, Won Kim, Marek Scheevel, Vi-
neet Singh, Becky Will, and Gul Agha. Rosette:
an object-oriented concurrent system architec-
ture. In ACM SIGPLAN Workshop on Object-
Based Concurrent Programming, pages 91-93,
San Diego, CA, September 26-27, 1988. ACM
SIGPLAN Notices 24(4).

Chris Tomlinson and Vineet Singh. Inheri-
tance and synchronization with Enabled-sets. In
Proc. of OOPSLA’89, Conf. on Object-Oriented
Programming Systems, Languages, and Applica-
tions, pages 103-112, New Orleans, Louisiana,

October 1-6, 1989. ACM SIGPLAN Notices
(24)10.

Christine Tomlinson, Mark Scheevel, and Vi-
neet Singh. Report on Rosette 1.1, August 1991.
Object-Oriented and Distributed Systems Labo-
ratory, Microelectronics and Computer Technol-

ogy Corp., MCC.

Rajiv Trehan, Nobuyuki Sawashima, Akira
Morishita, Ichiro Tomoda, Toru Imai, and Ken
ichi Maeda. Concurrent object oriented ‘C*
(cooC). ACM SIGPLAN Notices, 28(2):45-52,
February 1993.

Chau-Wen Tseng. Compiler optimizations for
eliminating barrier synchronization. In 5th ACM
SIGPLAN Symp. on Principles and Practice of
Parallel Programming, PPoPP, pages 144-155,
Santa Barbara, CA, July 19-21 1995.

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

Louis H. Turcotte. A survey of software envi-
ronments for exploiting network computing re-
sources. Technical report, Mississippi State Uni-
versity, June 11, 1993.

Minoru Uehara and Mario Tokoro. An adap-
tive load balancing method in the computational
field model. In Proc. of ECOOP OOPSLA’90
Workshop on object-based concurrent program-
ming, pages 109-113, Ottawa, Canada, October
21-22,1990. OOPS Messenger 2(2) April 1991.

Jean Vaucher, Guy Lapalme, and Jacques
Malenfant. SCOOP - structured concurrent
object-oriented prolog. In FCOOP’88 - Fu-
ropean Conf. on Object-Oriented Programming,
pages 191-210, Oslo, Norway, August 15-17,
1988. Springer-Verlag Berlin, Heidelberg, New
York.

Peter Wegner. Dimensions of object.based lan-
guage design. In Proc. of OOPSLA’87, Conf.
on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 168-182, Or-
lando, Florida, October 4-8, 1987. ACM SIG-
PLAN Notices 22(12).

Peter Wegner. Tradeoffs between reasoning
and modeling. In Gul Agha, Peter Wegner,
and Akinori Yonezawa, editors, Research Direc-
tions in Concurrent Object-Oriented Program-
ming, pages 23-40. MIT Press, 1993.

Emily A. West. Combining Control and Data
Parallelism: Data Parallel Ertensions to the
Mentat Programming Language. PhD thesis,
University of Virginia, Department of Computer
Science, May 1994. Available as technical report
(CS-94-16.

Emily A. West and Andrew S. Grimshaw. Braid:
Integrating task and data parallelism. In Fron-
tiers '95: The 5th Symp. on the Frontiers of
Massively Parallel Computation, pages 211-219,
McLean, VA, February 6-9, 1995.

R. H. H. Wester and B. J. A. Hulshof. The
POOMA operating system. In Pierre Amer-
ica, editor, Parallel Database Systems. PRISMA
Workshop, pages 396-323, Noordwijk, The
Netherlands, September 24-26, 1990. Springer-
Verlag Berlin, Heidelberg, New York.

H. Wettstein. The problem of nested moni-
tor calls revisited. Operating Systems Review,

12(1):19-23, January 1978.

63

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

R. Winder, G. Roberts, and M. Wei. Co-
SIDE and parallel object-oriented languages. In
Addendum to the Proc. of OOPSLA’92, Conf.
on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 211-213, Vac-
nouver, Canada, October 5-10, 1992.

Michael Wolfe. Optimizing Supercompilers for
Supercomputers. Research Monographs in Par-
allel and Distributed Computing. Pitman, Lon-
don, 1989.

Barbara Wyatt, Krishna Kavi, and Steve Huf-
nagel. Parallelism in object-oriented languages:
asurvey. IEEE Computer, 11(6):56-66, Novem-
ber 1992.

Gao Yaoqing and Yuen Chung Kwong. A survey
of implementations of concurrent, parallel and
distributed Smalltalk. ACM SIGPLAN Notices,
28(9):29-35, September 1993.

Stephen S. Yau, Xiaoping Jia, Doo-Hwan Bae,
Madhan Chidambaram, and Gilho Oh. An
object-oriented approach to software develop-
ment for parallel processing systems. In G. J.
Knafl, editor, Proc. of the 15th Annual Int.
Computer Software and Applications Conf.,
pages 453-5-8, Tokyo, Japan, September 11-13,
1991. IEEE Comput. Soc. Press.

Yasuhiko Yokote and Mario Tokoro. The design
and implementation of ConcurrentSmalltalk. In
Proc. of OOPSLA’86, Conf. on Object-Oriented
Programming Systems, Languages, and Ap-
plications, pages 331-340, Portland, Oregon,
September 29 — October 2 1986. ACM SIG-
PLAN Notices 21(11).

Akinori Yonezawa. ABCL: An Object-Oriented
Concurrent System — theory, language, program-
ming, tmplementation, and application. Com-
puter System Series. MIT Press Cambridge,
Massachusetts, London, England, 1990.

Kaoru Yoshida and Takashi Chikayama. A’UM
= stream+object+relation. In ACM SIG-
PLAN Workshop on QObject-Based Concurrent
Programming, pages 55-58, San Diego, CA,
September 26-27, 1988. ACM SIGPLAN No-
tices 24(4).

Tsutomu Yoshinaga and Takanobu Baba. A par-
allel object-oriented language A-NETL and its
programming environment. In G. J. Knafl, ed-
itor, Proc. of the 15th Annual Int. Computer

Software and Applications Conf., pages 459-464,
Tokyo, Japan, September 11-13, 1991. TEEE
Comput. Soc. Press.

64

