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1 General Comments

In this survey, we consider only languages for parallel
object-oriented programming. We do not take systems into
account that are focused on distributed computing. Three
criteria help to differentiate between the two approaches.
We consider systems to focus on distributed computing
instead of being a language

e if they provide solutions for problems that arise
when several programmers use the same objects (e.g.
printer monitors) in otherwise unrelated programs, or

e if the objects exist even when no program is running
that accesses them.

o if the system uses an IDL (interface definition lan-
guage), i.e., if it is more a two-language approach.

There are a lot of systems for distributed object-based
programming and a huge body of active research is directed
to problems from this context. A good survey is given in
[72]. But before proceeding, we would like to name and
shortly characterize some of the more influential systems
in that area, in particular those where there is not a static
relation between objects and processes that work on them.

Amadeus [] general distributed c++ implementation

Argus Arguments to remote calls must be passeed by
value, not by reference.

Arjuna The Arjuna approach [193] focuses on distributed
transaction support for objects. It provides persistent
objects, but does not offer migrating objects.

Avalon/C++ Although internally quite different, the
intention of the Avalon/C++ system [79]is quite sim-
ilar to that of Arjuna.

DCE++ [190] This is an extension of both the OSF Dis-
tributed Computing Environment and C++ that pro-
vides a uniform object model, location invariant in-
vocation, remote reference parameter passing and dy-
namic object migration.

Peace Could be relevant. This is an extension of C4++4.

COBRA [95] This is the result of the standardization ef-
fort of the Object Management Group (OMG). CO-
BRA, the Common Object Request Broker, aims at
providing a global distributed and persistent object
management framework. COBRA enables remote ob-
ject invocations and offers a C++ language binding.
There is no object migration in COBRA.

RDO/C++ [114,115] RDO/C++ provides the facilities
needed to implement remote server processes with
C++. The interface provided by the server is de-
scribed in a high-level “Interface Description Lan-
guage”. RDO/C++ is based on the standardization
effort of OMG.

Survey articles: [17] [22] [26] [212] [171] [63] [220] [221].
Notion of “actors” was described by Hewitt [104] and fur-
ther developed by Agha [4, 5]

The paper by Karaorman and Bruno [130] elaborates on
the design space of parallel object-oriented programming.
The thesis of Papathomas [176] and an earlier paper [175]
give an first classification of concurrent object-oriented lan-
guages. However, Papathomas focussed mainly on the way
of combining concurrency with objects. He does not clas-
sify the broad number of languages, we look at in this
report. Neither does he take more machine-oriented de-
tails into account, e.g., the way objects or processes are
mapped to the underlying parallel hardware. Hence, he
is not interested in migration and scheduling. His survey
is slightly biased towards languages that couple concur-
rency to objects, instead of having the concept of threads
be orthogonal to the notion of objects.

Encapsulation in sequential object-oriented program-
ming languages protects the internal state of objects from
arbitrary manipulation and ensures its consistency. If con-
current execution is introduced in a language indepen-
dently of objects it will compromise encapsulation, since
concurrent execution of the operations of objects may vi-
olate the consistency of their internal state.

Reusability

Due to Wegner [215] a language that provides objects
is called object-based. When classes are in the language in
addition to objects, such a language is called class-based.
Only if inheritance is expressible as well, the language is
called object-oriented.

2 Languages
2.1 ABCL/1

Developer: University of Tokyo, Japan

Description: Actor [4, 5] language.

00. Inheritance by delegation. Objects are active
when they process an incoming message. They
are waiting if they explicitly issue an receipt
statement and the message did not arrive. Ob-
jects are dormant otherwise.

memory model. Each object has its own local
memory that cannot be accessed from outside
(data abstraction). Objects can invoke mem-
ber functions of other objects if they know their
name. ABCL/1 implements a system wide uni-
form object space. There is no inheritance in
ABCL/1 but method calls can be delegated by

parameterizing the return address.

parallelism. By declaration of an object poten-
tial parallelism is provided. ABCL/1 has



three types of message invocation, namely, syn-
chronous, asynchronous and asynchronous with
futures. A thread blocks when it tries to access a
future value, that is not available. Furthermore,
ABCL/1 offers a parallel block that is similar to
cobegin in which several methods are invoked
concurrently. First class futures. The caller can
decide whether a method should be called asyn-
chronously or synchronously, independent of a
return value. There is no way in the language
to send messages to multiple receivers, i.e., par-
allel execution can only be started sequentially.

scheduling. Messages can have one of two priorities.
Express messages interrupt processing of ordi-
nary messages. [The programmer has a choice
whether execution of the interrupted method is
resumed or not. In contrast to the original Actor
model, objects can explicitly wait for the arrival
of certain messages.

mapping. The programmer cannot influence the
mapping of objects and threads to processor
nodes. Objects migrate transparently to the
node of the thread that executes a method.

synchronization. One message may be active on an
object at a time. (In ABCL/M there is the no-
tion of objects without state. These objects al-
low multiple threads to execute methods con-
currently.) Messages are accepted if they con-
firm to patterns given in the object specifica-
tion. If an incoming message does not fit to any
pattern that message is discarded. An atomic
section prevents a sequence of statements of be-
ing interrupted by an express message. After
a become has been executed, the Actor is no
longer allowed to change its state during the
post-processing phase.

fault tolerance. Exceptions: a complaint object
can be defined, i.e., the programmer can influ-
ence to where the exception must propagate.

Availability: The Yonezawa Lab WWW Server can be

reached and the ABCL/1 software can be retrieved
from:

http://web.yl.is.s.u-tokyo.ac.jp
ftp://camille.is.s.u-tokyo.ac.jp

Email addresses:

group address —— abcl@is.s.u-tokyo.ac.]jp

Akinori Yonezawa. —— yonezawa@is.s.u-tokyo.ac.j
y y Jp

References: [224]
2.2 ABCL/f

Developer: University of Tokyo, Japan

Description:

oo. ABCL/f is based on the Actor model [4, 5] and
is an extension of ABCL/1 (see section 2.1).
Unlike its predecessor, ABCL/f is typed and is
class-based, i.e., methods for classes can be de-
fined. ABCL/f does not provide inheritance but
inherits the delegation mechanism of ABCL/1.

memory model. In ABCL/f the programmer faces
a purely object-based approach. Objects can
transparently be addressed via their network-
wide identifiers.

parallelism. See ABCL/1 (section 2.1).

scheduling. The programmer cannot influence the
order in which messages are accepted by ob-
jects. The runtime and operating system sched-
ules threads that are ready to execute.

mapping. By default functions and procedures are
executed where the caller resides. Methods are
executed on the node where the receiver object
resides. The programmer can change this be-
havior by explicitly providing the node number
where the execution has to take place.
APCL/onAP1000: When objects are created
the programmer can choose between local and
remote creation.

synchronization. See ABCL/1 (section 2.1). Are
express msg and interrupt masks still available?

fault tolerance.

Availability: A prototype implementation of ABCL/f
on a distributed memory multicomputer AP1000 has
been nearly completed. The ABCL/{ software is not
yet available.

The Yonezawa Lab WWW Server can be reached at:
http://web.yl.is.s.u-tokyo.ac.jp

Email addresses:

group address —— abcl@is.s.u-tokyo.ac.jp
Akinori Yonezawa —— yonezawa@is.s.u-tokyo.ac.jp

References: [202]
2.3 ABCL/R2

Developer: University of Tokyo, Japan

Description: ABCL/R2 is a descendant of ABCL/R.
Whereas ABCL/R was implemented on top to
ABCL/1, ABCL/R2 is implemented directly in Com-

mon Lisp.

Actor [4, 5] language.

0o. As in ABCL/R, each object has its own meta-
object. In addition, each object always belongs
to some group. A group represents a shared re-
source. Since there is no explicit receipt state-
ment, objects are either active or dormant.



memory model. See ABCL/1 (section 2.1).
parallelism. See ABCL/1 (section 2.1).

scheduling. There is no explicit receipt of messages
and thus no waiting state of objects. Since the
meta-object explicitly implements the behavior
of the objects, the message queue is visible and
reaction can be programmed differently.

mapping. See ABCL/1.
synchronization.
fault tolerance. See ABCL/1.

Availability: The Yonezawa Lab WWW Server can be

reached under and the ABCL/R2 software can be re-
trieved from:

http://web.yl.is.s.u-tokyo.ac.jp
ftp://camille.is.s.u-tokyo.ac.jp

The predecessor ABCL/R is still available from ftp,
however, it is neither supported nor recommended to
use.

Email addresses:

group address —— abcl@is.s.u-tokyo.ac.]jp

Akinori Yonezawa —— yonezawa@is.s.u-tokyo.ac.j
y y Jjp

References: [156] [224]
2.4 ABCL/R3

Developer: University of Tokyo, Japan

Description:

oo. ABCL/R3 is an extension of ABCL/R2. The
main idea is to make per physical processor node
objects and scheduler objects visible as meta ob-
jects, which are accessible from each object that
resides on the same node.

memory model. Scheduler and node objects are
shared for those objects that reside on the same
node.

parallelism. See ABCL/1 (section 2.1).

scheduling. The default scheduler queues messages
that address objects of the same node and in-
vokes corresponding methods on a FIFO ba-
sis. The programmer can implement specific
schedulers that behave differently and thus the
user can influence the order of message accep-
tance. He might even implement conditional ac-
ceptance in the scheduler.

mapping. The node object is consulted when a new
object is to be created. The node object either
creates the new object locally or remotely de-
pending on the average load. The programmer
might implement different schemes.

synchronization.

Availability: A prototype implementation of ABCL/R3
is under construction and not yet available.

The Yonezawa Lab WWW Server can be reached at:
http://web.yl.is.s.u-tokyo.ac.jp

Email addresses:

group address —— abcl@is.s.u-tokyo.ac.]jp

Akinori Yonezawa. —— yonezawa@is.s.u-tokyo.ac.j
y y Jjp

References: [157]
2.5 Acore

Developer: MIT Al Lab.

Description:

0o0.
memory model.

parallelism. Actor language. Asynchronous call of
method without return value. Methods that
have a return value can only be called syn-
chronously.

scheduling.
mapping. Locality is not an issue.

synchronization. Default behavior is one-activity
at a time. The programmer can specify meth-
ods to be unserialized methods, similar to ASK
(see section 2.14).

fault tolerance.
Availability:

References: [154]

2.6 ACTH+

Developer: Virginia Tech

Description:

00. C++ library; based on the Actor model [4, 5].
Compared to the Actor model there are some
extensions. The main extensions are the fol-
lowing: Whereas the pure Actor model requires
that messages that arrive at an Actor are pro-
cessed in FIFO order, one can implement so-
called behavior sets in ACT4++. These allow
to accept specific messages from the queue and
postpone others until certain conditions hold.
The authors claim, that the notion of behav-
ior sets remove inheritance anomaly. A second
difference is the use of CBoxes for synchroniza-
tion of access to return values. The newly in-
troduced Actor classes are not meant to be in-
herited. C++ inheritance is useful for defining
behaviors.



memory model. ACT++ needs a shared memory
because of two reasons. One reason is that
Actors, message objects and behavior objects
need to be addressable. ACT-4+ uses the ab-
solute memory address for this purpose. Fur-
thermore, global variables can be passed by ref-
erence. However, reference parameters mean
pointers in ordinary C++, which require a sin-
gle shared memory.

parallelism. An Actor that processes an incoming
message can asynchronously send an arbitrary
number of messages, thus starting an arbitrary
number of threads. ACT++4 offers three types
of first class futures: the future is either a queue
or stores exactly one value, namely the one that
is written first or last. Methods of other Actors
cannot be called synchronously. Post-processing
can be used to introduce concurrency by provid-
ing the next behavior before the current method
is completed. Ordinary C++ objects are not
actors. Invocation of their member functions
is synchronous. The programmer has to care
about problems that might stem from concur-
rent access to non-Actor objects.

scheduling. Scheduling of threads to processors is
not visible in ACT+4. This is left to the un-
derlying PRESTO thread package and the op-
erating system. However, the programmer can
influence the way in which incoming messages
are processed: he can alter the default FIFO
behavior.

mapping. Mapping of Actors and threads to the un-
derlying machine is not an issue, since a shared
memory is required. Hence, migration is not
considered.

synchronization. Behavior abstractions. The pro-
grammer can specify how many threads are ac-
tive on an Actor object (in all its concurrently
existing behaviors) at a time. If synchronization
is necessary only one thread is allowed, hence
there is no post-processing in this case. If post-
processing is used, the Actor may not change its
state after the become statement.

fault tolerance. None.

Availability: ACT++ version 3.0 has been implemented

on a Sequent Symmetry multiprocessor with shared
memory using the PRESTO thread package [29, 30],
see section 2.82. A port for single Sun3 and Dec5000
is planned.

Some papers and the software on ACT4++4 can be
accessed by anonymous ftp from
ftp://actor.cs.vt.edu/pub

Email address:
Dennis Kafura —— kafura@cs.vt.edu

References: [121] [122] [123] [124] [125]
2.7 Actl

Developer:
Description:

00.

memory model.

parallelism. Actor language. Post processing (early
become), delegation. Methods can only be
called asynchronously. First class futures are
used to handle return values.

scheduling.

mapping. Not an issue.

synchronization. One method at a time. After the
become statement has been issued, the Actor can
no longer change its state.

fault tolerance.
Availability:

References:
2.8 Actalk

Developer: University of Paris VI, France, and Rank Xe-
rox France.

Description:

00. Extension of Smalltalk-80 with Actors.
memory model.

parallelism. Asynchronous message passing for Ac-
tor objects only. If there is a return value to
be passed back to the caller, an additional ex-
plicit message must be used. Postprocessing is
possible by using an early become.

scheduling.

mapping.

synchronization. The Actalk kernel allows only one
message to be processed at a time (and for a
singe behavior). However, Actalk can be used
to experiment with various forms of synchro-
nization which are available as extensions of the
basic kernel in the distribution. After a become
the state can no longer be changed.

fault tolerance.

Availability: Version 3 of Acttalk is implemented in
Smalltalk-80 4.1 and is available from:
http://web.yl.is.s.u-tokyo.ac.jp/members/briot/actalk/actalk.html
ftp://camille.is.s.u-tokyo.ac.jp/pub/members/briot/actalk
ftp://ftp.ibp.fr/ibp/softs/litp/actalk
Email address:
Jean-Pierre Briot —— briot@is.s.u-tokyo.ac.jp



References: [37]
2.9 ActorSpace

Developer: University of Illinois, Urbana-Champaign
and Aalborg University, Denmark

Description:

00.

parallelism. ActorSpace is based on the Actor
model [4, 5] and extends this model by the
ability to address groups of actors at once.
In contrast to Concurrent Aggregates (see sec-
tion 2.28), groups of actors can be addressed by
using pattern instead of explicit actor mail ad-
dresses. When sending a message to a group
depending on the call either an arbitrary mem-
ber or all members of that group respond.

mapping. In the prototype, there is no notion of lo-
cation or nodes. The runtime system distributes
the newly created actors evenly (in a cyclic man-
ner) on all participating nodes. Migration is not
supported, but the authors claim that since the
actors are interpreted, adding migration should
not be that hard. The only practical problem is
that of what to do with messages for the actor
that arrives while it is in the middle of moving
to another node.

synchronization.

Availability: Papers on ActorSpace are available via
anonymous ftp from:
ftp://biobio.cs.uiuc.edu/pub/papers
ftp://biobio.cs.uiuc.edu/pub/theses Cur-
rently a prototype is operational, but it is not yet
freely available, since the main focus is to prove the
concept, not an efficient implementation.

Email addresses:
Christian J. Callseen —— chris@iesd.auc.dk
Gul Agha —— agha@cs.uiuc.edu

References: [3] [41]
2.10 Actra

Developer: Defense Research Establishment and Car-
leton University, Ottawa, Canada.

Description:

00. Extension of Smalltalk based on Actors.

memory model. Based on shared memory ma-
chine.

parallelism. Post-processing. Synchronous message
passing only. In contrast to the Actor model,
there is no asynchronous message passing.

scheduling.
mapping. Not an issue.

synchronization. After a become the state of an
Actor can no longer be changed. Synchroniza-
tion by synchronous communication. Only one
method can be active at a time.

fault tolerance.
Availability:

References: [158] [205]
2.11 Amber

Developer: University of Washington, Seattle
Description:

00. Subset of C4++ with primitives to manage con-
currency and distribution. In Amber there is a
collection of mobile objects distributed among
nodes in a homogeneous network. These ob-
jects interact through location independent in-
vocation. Amber is derived from Emerald (see
page 21).

memory model. The language provides a network
wide shared virtual memory. References to ob-
jects can be passed as parameters and remain
valid on remote nodes.

parallelism. Amber offers thread objects that oper-
ate on passive objects. Threads are first class
objects that can be created dynamically. When
“start” is called on a thread object a specified
operation on an object is called.

mapping. Object placement is under the control of
the programmer. Threads move to objects they
are working on. Amber provides constructs for
explicit migration and attachment of objects.

scheduling. There is a predefined scheduling policy
for method invocations. The programmer can
replace this by programming his favorite strat-
egy.

synchronization. Methods are
invoked synchronously. Amber offers locks, bar-
riers, monitor objects and condition variables
for synchronization. Depending on the class an
object is derived from, there may be one or more
threads active on an object. Synchronization of
object access is thus left to the programmer. For
synchronization of concurrent threads there is a
join construct.

fault tolerance.

Availability: Amber is implemented on the Topaz oper-
ating system for the DEC FireFly [203], a multipro-
cessor workstation based on VAX microprocessors.

References: [61]



2.12 A-NETL

synchronization. Arche distinguishes between ob-
server routines and modifier routines. The pro-
grammer is in charge of correctly labeling the
routines. The default are modifier routines.

Developer: Utsunomiya University, Japan.
Description: Based on this classification, objects implement
a reader-writer consistency protocol: there may

00. The language differentiates between dynamic ob- be several concurrent invocations of observer

jects and indexed objects, where multiple in-
stances are created at once. No inheritance.

routines, but only one invocation of a modifier
routines is possible at a time.

Above that, Arche offers enabled sets. The pro-
grammer can declare states of objects, i.e., sets
of available methods. In addition with sets,

memory model.

parallelism. Asynchronous method call, futures,
post-processing. Synchronous method call. The
caller decides about the mode to be used for the
call. Tt is possible to kill objects (and assigned
threads (e.g. post-processing)). A-NETL offers
a multicast to reach several objects at once.

there is a way to specify the potential effect of
transitions. Based on this effect, the compiler
can make sure, that the implementation of the
methods correctly sets the new synchronization

state with the become statement.

scheduling. fault tolerance.

mapping. The programmer can express the relation-
ship between objects and can express the weight
of communication between objects. Moreover,
he can collect objects that should reside in one
node for purposes of locality. There is an alloca-
tor tool which helps in mapping to the machine.

Availability: A compiler for the Arche language has
been implemented in the framework of the IN-
RIA/Bull project Gothic at the research institute
IRISA (Rennes, France). The compiler generates C
code.

synchronization. Email addresses:

Marc Benveniste —— mbenveni@irisa.fr

fault tolerance. Valérie Issarny —— issarny@irisa.fr

Availability: References: [28]

References: [81] [226] 2.14 ASK

2.13 Arche

Developer: University of Salerno, Italy.
. Description:
Developer: IRISA, Institut de Recherche en Informa-

tique et Systems Aleatoires, Rennes, France 00. Based on Actor model.

Description: memory model. Distributed memory machine

00. Single inheritance.
memory model.

parallelism. Methods are called synchronously, i.e.,
the caller is blocked until the called method is
completed. To initiate concurrency, each object
has a life routine, that handles incoming calls.

Arche offers a way to specify aggregate opera-
tions. Objects can be dynamically grouped into
sets. The sets then can offer the methods of in-
dividual objects in their interface. By invoking
such a method of the set, the method is called
for all member objects of the set. In the method
code, the key words we and this can be used to
distinguish between the set and the object re-
spectively.

scheduling.
mapping. Nothing published.

(Transputers).

parallelism. Based on Actor model. At the point
of the method declaration, the programmer can
distinguish between serialized and unserialized
methods. Only methods without return value
can be called asynchronously, therefore there is
no need for futures. Post-processing is available
by early become. Afterwards the state can no
longer be changed.

scheduling.

mapping. Nothing is said about placement, locality,
alignment, etc.

synchronization. Serialized methods allow only
one method invocation to be active at a time,
until an explicit become statement has set the
new state of the actor. (Un-)serialized methods
silently assume that the following state of the
actor is the same as the current state, therefore,
concurrent method invocations are allowed.



fault tolerance.

Availability: ASK is running on a single Transputer, it
is unclear whether the implementation of a 16 Trans-
puter version has been completed.

Email address:

Guilia Iannello —— iannello@udsab.dia.unisa.it

References: [186]
2.15 A’UM

Developer: Institute for New Generation Computer
Technology, Tokyo, Japan

Description:

00. Object with stream of incoming messages. Mul-
tiple inheritance.

memory model.

parallelism. Asynchronous message passing only. If
results have to be passed back to the caller of
a method, then an additional message must be
sent explicitly.

scheduling. Order of messages in streams is visible
part of the language (in contrast to pure Actor
languages).

mapping. No details on placement, alignment, etc.
synchronization. One at at time.

fault tolerance.
Availability:

References: [225]

2.16 BETA

Developer: Aarhus University and Mjglner Informatics,
Aarhus, Denmark.

Description:

Only the Mjglner BETA system currently deals with
concurrency.

00. single inheritance.
memory model.

parallelism. An object can either be used in corou-
tine mode by using a “resume” statement. By
declaring a autonomous routine, an active ob-
ject executes its own actions which are defined in
an associated action part. However, the life rou-
tine is not automatically started immediately af-
ter the instantiation of the object, but can be
started explicitly by use of a “fork” commands.

scheduling.

mapping. Mjglner BETA can be used in a hetero-
geneous environment. There exists the abstrac-
tion of a nameserver for transparent access to re-
mote objects via automatically generated prox-
ies. Arguments and return values are transpar-
ently marshaled and unmarshaled. Moreover,
the concept of a shell, i.e. a bunch of objects
that are located in one address space can be
used transparently. Objects can be moved be-
tween shells, shells can be moved between phys-
ical nodes.

synchronization. The basic synchronization mech-
anisms are semaphores. It is possible to de-
clare abstract high-level concurrency abstrac-
tions, which can later on be used as mixins to
apply these concepts to classes.

fault tolerance. Exceptions.

Availability: The beta home page can be found on
http://www.daimi.aaudk/ beta A wealth of informa-
tion can be found in the newsgroup:
news:comp.lang.beta A commercially available BETA
system can be found under
http://www.mjolner.dk

Email address:
information —— info@mjolner.dk

References: [36] [151] [150]

2.17 Blaze 2

Developer: Purdue University, West Lafayette and
ICASE, NASA Langeley Research Center.

Description:

00. This is an object oriented extension of BLAZE,
a parallel language for scientific programming.

memory model.

parallelism. The base language BLAZE contains ar-
ray arithmetic, forall loops, and APL-style ac-
cumulation operators, which allow natural ex-
pression of fine grained parallelism.
Multiple concurrent threads within an object.
The default behavior is that methods are serial,
which results in an exclusive access to the ob-
ject. They can however be declared to be par-

allel.
scheduling.
mapping. Nothing.

synchronization. In addition to serial methods,
Variables and objects can be locked/unlocked
explicitly.

fault tolerance.



Availability: The project has not really been completed.

Email address:
Piyush Mehrotra —— pm@icase.edu

References: [162] [163]
2.18 Braid, Data-Parallel Mentat

Developer: University of Virginia

Description:

Although this language first appears under the name
DataParallel Mentat, that authors decided to change
the name to Braid.

00. Based on Mentat, see section 2.66. The ba-
sic extension is a new keyword for creating
a data-parallel class. The class description
specifies the elements of the data-parallel type
and the functions that work on individual el-
ements. The data-parallel objects are one- or
two-dimensional grids. Member functions are
categorized by keywords depending on their pur-
pose. There are basic element functions, reduc-
tions and overlay functions. The latter are used
to spread a one- or two-dimensional ordinary ar-
ray across the data-parallel grid. Member func-
tion can be invoked on all elements, on a row,
or on a column.

memory model.

parallelism. Automatic virtualization of element
member functions.

mapping. When creating data-parallel objects the
programmer has to decide how many processors
to use. He has to define the dimensions and
their size. Moreover, the programmer has to
provide the dominant communication patterns,
i.e., what kind of neighboring elements are ac-
cessed and what is their maximal distance, and

2.19 C**

Developer: University of Wisconsin, Madison

Description:

00. C** is a data-parallel language.

memory model. The memory model of C++ is
transparently extended for C**. An interest-

ing aspect of data-parallel data structures is,
that they can be used as ordinary array. Ac-
cess to elements are equivalent to array accesses.
A change of the declaration (replacing an array
with a data-parallel type or vice versa) does not
result in major code rewriting.

parallelism. Member functions of data-parallel

types are invoked on all elements of that type
at once.

scheduling.

mapping. The language does not provide any sup-

port for mapping the array shaped data struc-
tures onto the parallel machine. Data locality
is not an issue in C**. There is no way to ex-
press alignment between different arrays, or el-
ements thereof. The compiler is in charge to
invoke functions where the corresponding ele-
ments reside.

synchronization. The functions that work on all

elements of a data-parallel data set in parallel
have an implicit synchronization barrier at their
end. All instances are executed asynchronously
with respect to each other. To ensure a deter-
ministic behavior, each instance works atomi-
cally without affecting other instances. Fach
instance of the parallel function works on a lo-
cal copy of all visible variables. Conceptually,
after termination of all instances these variables
are copied back. Hence, effects produced by an
instance of the function are not visible to other
instances.

what other objects is most often used together.
Depending on the pattern used to create a data-
parallel type, so-called border-functions give ac-
cess to neighboring elements.

fault tolerance. None.

Availability: The current compiler produces code for a
sequential DEC workstation and for a Sequent Sym-
metry shared memory computer. C** is not yet avail-

synchronization. Before virtualization, element
functions create local copies of the values. When
finalizing the element function, local values are
stored.

Availability: Email addresses:
Andrew S. Grimshaw —— grimshaw@virginia.edu

group —— mentat@virginia.edu

References: [216] [217]. For more references see descrip-
tion of Mentat in section 2.66.

able, but a release is expected soon.

Email address:
James R. Larus —— 1larus@cs.wisc.edu

References: [137] [138] [139]
2.20 Cantor

Developer:

Description:



0o0.
memory model. single processor shared memory.

parallelism. Actor language. Asynchronous mes-
sage passing only. If a result has to be passed
back to the caller of a method, an explicit mes-
sage has to be sent. Post-processing (early be-
come).

scheduling.

mapping. Assignment of objects to nodes and the
routine of messages between nodes is jointly
handled by the compiler and runtime system.

synchronization. Actor language.

fault tolerance.

Availability: Implemented in the Reactive Kerner of the
Ametek 2010 series multicomputer.

References: [19]
2.21 CEiffel

Developer: Institut fiir Informatik, Freie Universitat
Berlin, Germany

Description:

synchronization. Synchronization issues are inte-

grated into program code. The default seman-
tics ensure that only one member function is
active on an object at a time. This hard syn-
chronization pattern can be loosened by the pro-
grammer. In form of annotation the program-
mer can provide compatibility information. Ei-
ther the object is concurrently accessible in gen-
eral, or certain member functions are with re-
spect to each other. Two member functions are
considered to be compatible if concurrent exe-
cution do not interfere. The author claims, that
since compatibility is a symmetric relation that
need not be transitive or reflexive, inheritance
anomaly often is reduced.

Furthermore, CEiffel provides mechanisms to
control concurrent execution of member func-
tions even finer. Guards and delays allow to
express that function invocation is only allowed
if certain conditions hold. If these do not hold,
the call can be delayed until the condition be-
comes true.

Delays even for post-conditions. Guard results
in exception, delay condition results in delay.
Compatibility conditions are specific to the im-
plementation. Delay conditions are part of the
specification and are independent of a particular
implementation.

00. Concurrency is expressed by means of annota-

tions. Programs have two different semantics: a
sequential one, if annotations are ignored, and
a concurrent one, if annotations are obeyed.
The author states that this annotation approach
will both enhance code reusability and ease the
problem of inheritance anomaly.

memory model. Shared address space. Distribu-

tion is not reflected in the language. There is
no notion of a process.

parallelism. The generation of concurrency is

bound to routines. There are two types of
routines for concurrency. One type is the au-
tonomous routine. When an object has been
created and initialized, all its autonomous rou-
tines are invoked implicitly, i.e., without explicit
invocation by some activity. Routines can be
labeled to be asynchronous. Asynchronous rou-
tines are executed concurrently to the caller.
Other routine calls are meant to be synchronous.
CEiffel uses wait by necessity to wait on out-
standing return values of asynchronous routines.

scheduling. None.

mapping. Since the distributed implementation is

just starting, no work has been done on this
problem.

fault tolerance. None.

Availability: Since CEiffel is compiled to Eiffel there is
some portability. On top of PVM, a distributed im-
plementation, targeting a network of Sun worksta-
tions, is under way.

Email address:

Klaus-Peter Lohr —— 1lohr@inf.fu-berlin.de

References: [146] [147]
2.22 CFM

Developer: Keio University, Yokohama, Japan.

Description:

00.
memory model.
parallelism.
scheduling.

mapping. Object allocation algorithm. Dynamic
object grouping. Adaptive load balancing. Dis-
tance cost model and mass cost. Migration of
objects. Message objects follow.
synchronization.

fault tolerance.



Availability: to that object will be processed. The program-
mer can select from a number of load balancing

References: [213] and memory mapping strategies. The strategies
decide on which processor new chares are cre-
2.23 CHARM-+}+ ated. There is no migration. There are function

calls for finding out the actual processor number

Developer: University of Illinois, Urbana-Champaign and the total number of available processors.

Neighboring branch offices can be addressed by

Description: indexing. The index us the number of the PE

node. Pointers are not meaningful across PE

00. Extension of C+4. Three types of objects: se- boundaries. The Charm--+-system offers rou-
quential, concurrent (so-called: chares), and tines to convert pointers for the transport.

replicated (one per processor). Inheritance is h izati Synchronization bet biect
only possible within one type of classes. The synchronization. Synchronization between objects

language offers the notion of modules. must be .implemented by means of expliciF mes-
sages. Since only one thread can be active on
memory model. The programmer can define mes- an object (monitor), access to the object’s data
sage types which are similar to C++ structs. In- is under mutual exclusion.
stead of functions, chares have entry points for
specific types of messages. Entry points define
code which is executed in response to message
arrival.

Shared data objects allow concurrent access to
global data, and implement concurrency control
mechanisms.

Since Charm++ disallows unrestricted global fault tolerance. None.

variables and static variables in classes, every
object has its own address space. Hierarchical
name space. However, shared data objects are
provided that implement various forms of access
regulations (reader-writer, etc.)

Availability: The runtime system (Charm) runs on In-
tel’s iPSC/860, iPSC/2, nCUBE, Encore Multimax,
Sequent Symmetry, Alliant FX/8, single-processor
UNIX machines, and networks of workstations. It is
being ported to the CM-5, Parsytec GCel and Alliant
FX/280 and T3D.

By using replicated objects, an object can access
the value stored at the same processor. Changes

to attributes of replicated objects at processor Information about Charm++ is available from:
have to be propagated to different processors http://charm.cs.uiuc.edu
manually. ftp://a.cs.uiuc.edu/pub/CK

parallelism. The execution model is message driven Email address:
only. There are no explicit send-receive pairs. Laxmikant V. Kale — kale@cs.uiuc.edu
After asynchronously sending a message to a Sanjeev Krishnan —— sanjeev@cs.uiuc.edu
chare, both the sender and the recipient work in
parallel. Return values, if any, have to be sent in References: [128]
separate messages. Results are in the standard
message queue of the client. Fach chare can 2.24 CLIX

only process one message at a time, i.e., there is
no parallelism inside of objects. One can send a

. ; Developer: Korea Advanced Institute of Science and
message to all instances of a branched objects,

Technolo
thus starting parallel activity. 8y
scheduling. Member functions are executed on that Description:
processors that stores the object they belong to.
Scheduling of all active functions on one proces- 00. inheritance by delegation

sor is beyond t}.le scope of the language and done memory model. system wide unique object-id

by the underlying system.

parallelism. Communicating process model. asyn-
chronous method call (default), specified at

callee (send command). synchronous call is

1st class messages. Priority Queue.

The default regime for processing incoming mes-
sages is FIFO. Other policies are predefined or

can be implemented by the programmer. available (ask command). explicit reply-to

statement. Post-processing is possible.
mapping. Objects and parallelism are considered
together. The mapping of a concurrent object
decides on which processor a message directed mapping. Nothing.

scheduling. Nothing.

10



synchronization. One activity at a time. Select
statement. condition attached to method decla-
ration, delay

fault tolerance.
Availability:

References: [110]

2.25 COB

Developer: IBM Research Tokyo.

Description:

00. C based. multiple inheritance. separation of in-
terface and implementation. process and class
are not compatible for inheritance.

synchronization. Differentiate between active and
passive processes. Active processes: communi-
cation with Ada-like rendezvous, select state-
ment.
Passive processes: like Monitor, one-thread-at-
a-time. Shared data must be implemented in a
passive process, to achieve serialization.

memory model. shared. hierarchical. processes

visible: communication between processes.
parallelism. objects encapsulated into processes.
Processes execute concurrently. When a pro-
cess object is created its init routine is executed
(life routine).
scheduling. Nothing is published about scheduling.

mapping. Nothing is published about object and
process placement, alignment, scheduling.

fault tolerance.

Availability: Concurrent COB has been implemented on
a PS/2 system and shared-memory multiprocessor
workstation called TOP-1, which has been developed
at the same laboratory.

References: [107]
2.26 Compositional C++4+, CC++

Developer: California Institute of Technology, Pasadena

Description:

00. Extension of C++. Six new keywords.

memory model. C++4 memory model for each pro-
cessor object (definition see below). Multiple
processor objects have a common name space of
ids of processor objects. Only those members
of processor objects that are explicitly declared
public can be accessed from other processor ob-
jects.

11

parallelism. The language offers multiple levels of
parallelism. First of all, there are processor ob-
jects. A processor object is a container for run-
ning threads. Omne of these processor objects
has a routine called main for which an initial
thread is started. Other processor objects be-
come active due to invocation of their member
functions. Inside of a processor object there are
three light types of parallelism: (1) several func-
tions can be called in parallel, similar to a clas-
sical cobegin-block as introduced by Dijkstra in
1986 [80]. (2) In a parfor a concurrent thread is
started for each iteration of the for-loop. These
threads synchronize at the end of the parfor.
Finally, (c) there is a way to spawn new threads,
which do not impose a parent-child relation. A
spawned thread cannot return a result.

scheduling. Done by thread package and operating
system.

mapping. Map thread to processor object and this
to processor. When creating a new logical
process object, the programmer can optionally
specify a placement argument. This directs the
low level mapping of logical resources (proces-
sor objects) to physical resources (processors).
Processor objects cannot migrate. However, one
can often achieve the effect of migration by over-
loading the -> operator and moving computa-
tion by creating new threads. (Note, processor
objects contain no computation, they are only
containers that can hold threads). Differenti-
ate between global and local pointer. A thread
runs in its processor object, RPC can be used
to invoke threads in other processor objects.

synchronization. For synchronization purposes the
following two mechanisms are provided. Func-
tions can be declared atomic to ensure, that
only one thread at a time executes them. For
synchronization of multiple threads there is a
special sync object. After declaration that ob-
ject is undefined. Read accesses to it will block
until exactly one write access to it has taken
place. The sync objects are similar to futures
available in other languages. It is typed and can
be used to transfer return value. However, sync
objects are no queues, i.e., only one single value
can be assigned.

fault tolerance. None.

Availability: Since CC++ programs are compiled to
C++ it runs on many machines. They use a self-made
thread package that is based on quick-threads from
the University of Washington. The authors claim that
this package can easily be ported to new machines.

Available from:
ftp://csvax.cs.caltech.edu/comp/CC++



Email addresses:
K. Mani Chandy —— mani@vlsi.caltech.edu
Carl Kesselman —— carl@vlsi.caltech.edu

References: [45] [58] [59] [82]
2.27 Concurrency Class for Eiffel

Developer: University of California, Santa Barbara

Description:

00. This is an Eiffel library. The base language is
not altered.

memory model. Each active object has its own ad-
dress space. Access to active objects is through
local proxies, that represent the remote object
in the address space of the creator. If different
active objects intend to invoke methods of such
an active object, they have to explicitly attach
to this object first. Attachment creates a local
proxy in the address space of the caller. Object
references cannot be passed as arguments.

parallelism. Active objects are defined by creat-
ing classes that inherit from a process class.
When creating objects of this class, they be-
come active, i.e., a process is created. A life
routine (which is called scheduling method) is
started separately. Remote methods are called
asynchronously. The corresponding messages
are accepted explicitly by the invoked object.
The object has a queue of incoming messages.
The scheduling method works on messaged in a
FIFO order by executing the methods that cor-
responds to them. Return values are enqueued
in a queue at the local proxy in the address space
of the calling thread.

scheduling. Active objects run the scheduling
method. The default scheduling method is
FIFO. This can be changed by the programmer
by redefining the scheduling method.

mapping. By default, mapping of objects to proces-
sors is done by the system. The predefined con-
currency class defines a split routine, that cre-
ates a remote object when a local proxy is cre-
ated. By redefining this method, the program-
mer can implement his own mapping regime.
Since processes are strongly connected to active
objects, mapping of objects implies the same
mapping of processes. Since access to remote
is via local proxies, object migration in general
is possible. However, there is no migration.

synchronization. Since there is one scheduling
method per active object, only one message can
be processed at a time.
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Synchronization is based on futures. A call to
a remote method is processed asynchronously.
A calling thread blocks when trying to use the
return value of a invoked remote routine that
has not yet terminated.

Since every ordinary FEiffel object is effectively
owned by a single active object, no synchroniza-
tion hazards are possible.

fault tolerance. None.

Availability: The library is implemented using version
2.3 Eiffel running on Sun’s Unix based Sun OS 3.0.
However, the software is not maintained anymore.

Email addresses:
Murat Karaorman —— murat@cs.ucsb.edu
John Bruno —— bruno@cs.ucsb.edu

References: [130] [131]
2.28 Concurrent Aggregates, CA

Developer: University of Illinois, Urbana-Champaign.
Concurrent Aggregates is part of the Concert project.

Description:

0o. Extension of the Actor model [4, 5] for massively
parallel programming. The main extension is
that actors can be grouped together to aggre-
gates, and can then be addressed with messages
at once. CA has single inheritance. Invocation
of member functions can be forwarded by del-
egation and continuations. There are different
interfaces for different types of propagation.

memory model. Shared name space. Each object
has a unique id and its own address space. The
state of an object can only be accessed via mes-
sage invocations on objects. Furthermore, there
are global variables, that can be used by all ob-
jects. Within aggregates, there is an additional
id for each object for easy addressing of “neigh-
boring” objects. The authors claim to have a
“full blown parallel garbage collection”.

parallelism. Forall in aggregate. 1st class messages.
In CA method invocation is asynchronously.
Therefore, thread creation is dynamic. Mem-
ber functions can be invoked on all actors that
belong to an aggregate at once. Methods can be
invoked synchronously as well. Only with syn-
chronous invocation, the programmer can en-
sure the correct synchronization before access-
ing returned values. Synchronous and asyn-
chronous calls can be passed on to other meth-
ods that eventually return values. The program-
mer can decide whether a sequence of state-
ments is executed sequentially, or whether they



are executed concurrently. The latter is similar
to the classical cobegin block as introduced by
Djikstra [80]. Post-processing is available.

scheduling. Scheduling is done by compiler and run-
time system. Messages that arrive at an actor
are processed in FIFO manner.

mapping. The mapping of objects to processors is
done by the compiler and runtime system. The
programmer can give hints concerning the rela-
tive locality of objects. The authors are adding
support for collection placement. Threads mi-
grate to the objects they are working on. Ob-
jects do not migrate.

synchronization. An object provides a set of ab-
stract operations (methods), of which only one
may be active at a time. The programmer can
state explicitly that more than one method can
be processed at a time (methods are declared to
be unserialized). When using this concurrency
inside of objects the programmer is in charge of
dealing with all arising synchronization issues.

Global variables can only be used under a block-

ing reader-writer-locking.

fault tolerance. None.

Availability: The Concert system has been operational
on both sequential Suns (simulated parallelism) and
a CM-5 since October 1992. The next target might
be the T3D.

Information, the language report, and the current re-
lease of the Concert software can be found at:
http://www-csag.cs.uiuc.edu

ftp://cs.uiuc.edu/pub/csag

Email addresses:
group —— concert@red-herring@cs.uiuc.edu
Andrew A. Chien —— achien@cs.uiuc.edu

References: [65] [66] [67] [68] [69] [70] [71] [129] [177]
2.29 ConcurrentSmalltalk

Developer:

Description:

00.
memory model.

parallelism. Asynchronous method call plus futures
(CBox). Post-processing.
sages are also available.
which mode to use.

Synchronous mes-

The caller decides

scheduling.
mapping.

synchronization. There are two types of objects in

ConcurrentSmalltalk: atomic and non-atomic
objects. Atomic objects allow only one of its
methods to be executed at a time. In addition,
Smalltalk’s semaphores can be used for activity

centered coordination.

The reason for the two types of objects is the
intended compatibility with Smalltalk-80 which
offers objects that behave like non-atomic ob-
jects.

fault tolerance.
Availability:

References: [223]

2.30 cooC

Developer: Toshiba Corporation, Kanagawa, Japan.

Description:

0o. Extension of C (or C++4).
memory model.

parallelism. Every method call is asynchronous and
uses an implicit wait by necessity when return
values are used. The size of the message queues
is a runtime system parameter. This parameter
decides how many method calls can be delayed
at an object. If this queue is full, additional
invocations are executed immediately. Hence, if
the size is set to zero, then all invocations are

concurrent.

scheduling. The programmer can influence the
scheduling policy by explicitly assigning prede-
fined policies to the run-time system handler of
an object or by even reprogramming such strate-
gies.

mapping.

synchronization. Exclusive methods. Wait by ne-
cessity. The language offers semaphores and a
rendezvous.

fault tolerance.

Availability: Is implemented on a network of Sparcs us-
ing the lwp thread packets and Unix sockets. A beta
version of the software is available from:
ftp://isl.rdc.toshiba.co.jp/pub/toshiba

Email address:
group —— cooc@isl.rdc.toshiba.co.jp

References: [211]
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2.31

COOL (Chorus)

Developer: Chorus Systems, France.

Description:

00. The main work went into the CHORUS object-

oriented layer. An object oriented language can
be mapped to this layer by trapping object cre-
ation. Objects may be declared active.

memory model. The system provides a shared ad-

dress space on parallel hardware with dis-
tributed memories. To achieve that, remote ob-
jects have proxies in each memory. When a
member function of such an object is called, the
proxy gets the call, send a message to the re-
motely stored object, waits for the result and
returns the values to the original caller.

Proxies are generated automatically, they do the
marshaling and unmarshaling of arguments and
return values.

parallelism. The system assigns a thread to ob-

jects that are declared active. Threads can be
started on several methods of an object at a
time, similar to classical thread packages. Such
a thread starts after object creation at defined
entry points.

scheduling. Done by the runtime system.

mapping. Mapping has no semantic relevance. Ob-

jects are handled by the COOL generic run time.
They are persistent and can migrate transpar-
ently,. When an active object migrates, the
thread assigned to this object is first stopped
and later continued in the new context at the
defined entry point. Multiple objects can be
grouped together. This indicates that they
should migrate together.

synchronization. There are two general types of

synchronization available. The first one is useful
for threads that run in the same physical address
space. Here standard synchronization mecha-
nisms, e.g. semaphores, mutual exclusion, and
reader-write locks are offered. For distributed
objects there is a token based synchronization
system.

fault tolerance. Persistent objects.

Availability: The only implementation reported so far
runs on Intel 80386 based machines runing a Chrous
UNIX clone.
ftp://ftp.chorus.fr/pub

Nnews:Comp.os. chorus

Email addresses:

group —— info@chorus.com

Rodger Lea —— rjlehplb.hpl.hp.com

14

Christian Jacquemot —— chris@chorus.fr
Eric Pillevesse —— pillevesse@sept.fr

References: [6] [140] [141]
2.32 COOL (NTT), ACOOL

Since the are some collisions in language name space, the
authors consider to rename their language to ACOOL.

Developer: NTT communication switching laboratories,
Japan

Description:

00. The language offers active and passive objects
which can be declared using single inheritance.
Active objects have a thread. When a function
is invoked by a message, that function can dele-
gate the task to another object’s member func-
tion. If necessary, the latter returns values di-
rectly to the original caller.

memory model. Address space per object. Func-
tion calls can only have value parameters.

parallelism. By creation of active objects. Active
objects have an i1d; knowledge of this id enables
network-transparent message passing. Member
functions of other active objects can be called
asynchronously, as long as no return values have
to be transmitted. Calls to member functions
that return a value block until that value is re-
ceived. Functions of passive objects are always
called synchronously. There is a special receive-
operation that dequeues messages.

scheduling. Active objects are implemented using
SUN-light-weight-processes.  There are some
built-in messages for thread scheduling, e.g.,
threads can suspend and resume.

mapping. In ACOOL, objects are created by
SETUP-statements. A SETUP-statement cre-
ates a new object only on the “same” ma-
chine. To create objects in a remote machine,
the remote machine must have a “manager”
object which, receiving object-create-request-
messages, creates a new object in that machine.
A name server is used to get the object-ID of
the “manager” object in remote hosts. Seman-
tic location transparency. However, there are no
reference parameters.

synchronization. Synchronization has to be imple-
mented by means of message passing. There is
no support in the language for synchronization
of multiple threads. Member functions that re-
turn values can only be called synchronously For
explicit synchronization, the programmer can
use suspend and resume messages. There may
be only one thread active on an object at a time.



fault tolerance. None.

Availability: This language has been developed by NTT
communication switching laboratories. It is running
on single SparcStations. The compiler is available via
anonymous ftp from
ftp://ftp.ntt. jp/pub/lang

Email address:
Katsumi Maruyama —— maruyama@nttmfs.ntt.jp

References: [155]
2.33 COOL (Stanford)

Developer: Stanford University

Description:

00. Extension of C++.

memory model. The language is implemented on
shared-memory machines. A common address
space is the conceptual basis.

parallelism. Functions can be declared to be par-
allel. After invocation, a parallel function is
executed by a newly created thread that runs
concurrently to the calling thread. (A serial in-
vocation of a function that is declared parallel
is possible. However, not vice versa.) Functions
return condition variables immediately, all other
return values have to be passed as reference pa-
rameter. The caller can choose to wait on the
condition variable until the function call is com-
pleted. Manual implementation of futures.

scheduling. The runtime system manages the cre-
ation of objects and scheduling of threads to
increase locality (based on the data reference
information) and balances the load.

mapping. The language provides features for two
layers of abstraction: parallel programming can
be expressed without taking the mapping of ob-
jects and threads into account. When a pro-
grammer uses this layer, the runtime system
does the mapping. On a more performance ori-
ented layer, the programmer can give hints to
the runtime system. These hints do not affect
the semantics of the original program. To im-
prove locality, the programmer can express dif-
ferent types of affinity: affinity of a thread rel-
ative to an object and relative to a processor,
affinity of an object relative to other objects.
Objects can migrate, threads can not.

synchronization. COOL provides features for dif-
ferent types of synchronization. (a) Synchro-
nization of attribute access. For this purpose,
functions can be declared mutex/non-mutex to
enforce a kind of reader-writer monitor like
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locking of the object the functions are called
upon. This mechanism works both for sequen-
tial and parallel functions. The second kind (b)
of synchronization is between threads. Threads
can block on condition variables. Furthermore,
there is (c) a barrier synchronization. This is
offered in a block like waitfor statement: the
thread that enters a waitfor waits at its end
until all threads that are created inside of the
block have terminated. The difference between
waitfor and the classical cobegin is, that the
statements in the waitfor block are processed
sequentially. Only threads that are created in
the block are affected, whereas in cobegin all
statements are considered to be executed con-

currently.

fault tolerance. None.

Availability: COOL is available for the following archi-
tectures: Stanford Dash, silicon Graphics 4D-380,
and Encore Multimax. Sources and Documentation

can be found on anonymous
ftp://cool.stanford.edu

Email address:

Rohit Chandra —— rohit@cool.stanford.edu

References: [55] [56] [57]

2.34 Coral

Developer: IBM Palo Alto Scientific Center

Description:

00. Multiple inheritance.

memory model.

parallelism. Asynchronous message passing.

scheduling.

mapping. Nothing is published about object/thread

placement, alignment etc.

synchronization. The author states the existence of
a synchronization mechanism, however does not
give any details, because a patent application is

pending.

fault tolerance.

Availability: A first experimental version seems to be

running on top of sequential AIX.

References: [60]



2.35 CST, Concurrent Smalltalk (MIT)

Developer: MIT

Description:

00. Based on Smalltalk-80. Multiple inheritance.

memory model. Global virtual address space ma-
chine.

parallelism. Asynchronous method calls, futures.
distinction between objects and distributed ob-
jects.

scheduling.

mapping. Nothing is published about distribution,
locality etc.

synchronization. Objects: one-activity-at-a-time.
Distributed objects: several replicates that can
be reached by a common name. This idea is
quite similar to Concurrent Aggregates (see sec-
tion 2.28). Message sent to a distributed ob-
ject are received by exactly one instance of the
group. The programmer must ensure the consis-
tency between the replicates by hand if needed.
There are special addressing mechanisms for
communication inside of a group.

fault tolerance.

Availability: A simple programming environment has
been implemented on a Symbolics 3600 system. A
back-end is MI'T’s J-machine, a message driven par-
allel architecture.

Email addresses:
William Dally —— dally@ai.mit.edu
Andrew Chien —— achien@cs.uiuc.edu

References: [75] [106]
2.36 Demeter

Developer:

Description:

0o0.
memory model.
parallelism. Thread library.

scheduling.

mapping.

synchronization. Synchronization patterns can be
specified separate from the any classes. Then
the class code is fitted in and the final code is
generated. In contrast to the technique used in
Dragoon (see section 2.44) the synchronization
code is not abstract, i.e., the programmer has
to fill in concrete function names.

fault tolerance.

Availability: Concurrency is not directly introduced into

the Demeter Tool/C++ which is distributed by
anonymous ftp. However the code might be avail-
able upon request.
http://www.ccs.neu.edu/home/lieber/demeter .html

Email addresses:
Karl Lieberherr —— 1ieber@ccs.neu.edu
Cristina Lopes —— 1lopes@parc.xerox.com

References: [148]

2.37 Distributed C++, DC++

Developer: University of Utah, Salt Lake City.

Description:

00. This is an extension of C4++4. In addition to or-
dinary C++ classes, there are value classes and
gateway classes. When passing value class ob-
jects as parameter, instead of the pointer the
value of that class is deeply copied and trans-
mitted. DC++ distributes objects over a dis-
tributed memory machine. To make them re-
motely accessible, objects of the gateway class
must be used. These proxies translate method
invocation either into RPCs or into local method
invocations, depending on whether the object is
remote or local. Pointer references to remotely
stored objects are prohibited.

memory model. The memory model of C++ is
extended to reflect the semantics of the new
classes: Inside of a so-called abstract processor
there is the classical C++ memory model with
the extension of gateway objects, which pro-
vide a global name-space for accessing remotely
stored objects (in different abstract processors.)

parallelism. Objects are passive, l.e., there is no
thread that is assigned to them. In contrast,
there is a special thread class, hence, threads
are first class objects. By addressing a gate-
way object a thread can invoke a member func-
tion (argument of thread creation) of an object,
which in turn could create additional thread ob-
jects. Once started, a thread may be chained or
passed through multiple domains.

A domain can have multiple objects and en-
forces the one thread per domain at a time prin-
ciple. This is even stronger than the one method
at a time which restricts the concurrency to in-
dividual objects.

mapping. Classes can be grouped to domains, or
so-called abstract processors. When creating a
domain, the programmer explicitly specifies the



number of the real processor which is to be used
to store that object. Since threads work on ob-
jects of abstract processors, the programmer in-
directly maps threads to processors as well.
There is no semantic location transparency. Af-
ter the creation of an object the system can react
differently depending on whether there exists a
“gateway” to this object or not (local object).

scheduling. Scheduling of threads that are located
on one processor is beyond the scope of the lan-
guage. Message invocation passes through gate-
way objects. The gateway object can delay invo-
cation requests and thus implement a different
scheduling.

synchronization. Since only one thread can be ac-
tive on an abstract processor domain at a time,
access to the state of objects in that domain is
synchronized. For synchronizing access to re-
sults of member functions, DC++ provides a
way to wait for the availability of the return
value or the termination of a thread.

1st class coordination futures. Delay Queues.

Passing value class objects as parameters may
result in anomalies, when concurrent updates
are made. The programmer is in charge of pre-
venting erratic behavior.

fault tolerance. None.

Availability: Distributed C++ is available by anony-

mous ftp from
ftp://cs.utah.edu/pub/dc++

The DC++ compiler is at the proof-of-concept stage
rather than being a real compiler at this time. The
runtime system is stable and usable on HP Series 9000
Model 3x0 or Model 7x0 running either BSD, HP-UX]
or OSF/1. The author claims that it could be ported
fairly easily to other UNIX machines.

Email address:
Harold Carr —— carr@cs.utah.edu

References: [52] [53]
2.38 Distributed Eiffel

Developer: College of Computing, Georgia Institute of

Technology

Description:

00. This is an extension of Eiffel.
memory model.

parallelism. The programmer can declare persistent
objects which are implemented on top of the
Clouds operating system. These large grain ob-
jects can comprise several Eiffel objects. Each
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large grain object has a separate memory, the
objects communicate by means of message pass-
ing. The programmer can start threads per
large grain objects.

Inside of these large grain objects the pro-
grammer can initiate additional parallelism by
asynchronous method calls. The caller decides
whether a method is to be called synchronously
or asynchronously. To use the asynchronous
call for methods with return parameters, Dis-
tributed Eiffel offers first class futures.

scheduling. Distributed implementation on top of
Clouds operating system.

mapping. The programmer can optionally specify
where an activity should be executed. For this
purpose, the programmer can use virtual pro-
cessor numbers that are automatically mapped
onto the underlying machine by the run-time
system.

synchronization. Distributed FEiffel is based on
handshake control: i.e. there is code in the class
implementation that coordinates concurrent ac-
cess to an object. Methods can be labeled to be
reader or writer routines. In addition, method
guards can be added to each method. A method
call is delayed, if the reader/writer protocol re-
quires this or if the guarding condition is evalu-
ated to false.

In addition, there are semaphores and locks to
allow for the implementation of very fine grain
concurrency control.

fault tolerance. Persistent objects.

Availability: Distributed FEiffel is translated to FEiffel
augmented with calls to the Clouds operating system.
It is unclear whether the system is still available.

References: [97]
2.39 Distributed Smalltalk — Object

Developer:

Description:

00. See Smalltalk-80 (section 2.92).

memory model.

parallelism. See Smalltalk-80 (section 2.92).
scheduling.

mapping. proxies are used to transparently access

objects that are stored on remote node.

At least five different Distributed Smalltalk ver-
sions have been developed that bear some sim-
ilarities when it comes to mapping/locality of
objects. They differ in the level at which the



proxies have been added to Smalltalk. Whereas
Decouchant and the system of Schelvis and Ble-
doeg (Océ Netherland) extended the Smalltalk
virtual machine, the other projects chose to add
proxy and message objects at the virtual image
level.

synchronization.

fault tolerance.
Availability:

References: [27] [77] [159] [168] [189]
2.40 Distributed Smalltalk — Process

Developer:

Description:

Extension of Goldberg and Robson’s Smalltalk (see
section 2.92).

00. See Smalltalk-80 (section 2.92).
memory model.

parallelism. See Smalltalk-80 (section 2.92). The
“fork” message can handle the node number.

scheduling.

mapping. When creating a process object, the pro-
grammer can specify the physical node to be
used. There is a distinction between shared
memory processes that run on the same node
and distributed memory processes that run on
different nodes. Process objects that run on the
same node can communicate with each other
through shared objects. Process objects that
run on different nodes must use call by value
message passing.

synchronization. Locks for shared
Method can be set “serialized” (dynamically).

Guards per method, but specified separately.

objects.

fault tolerance.

Availability: The implementation is based on the
Smalltalk/V 286 system and runs on a network of
IBM PC.

References: [144]

2.41 DoPVM

Developer: Emory University, Atlanta

Description:
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0o. Extension of C+4. The general idea is to have
a collection of otherwise independent C++ pro-
grams work on shared objects. The programmer
creates the parallelism by writing the appropri-
ate number of programs. FEach program binds
itself to the DoPVM system and can then access
shared data objects by knowing object ids.
Concurrent invocation of member functions of
shared data is not implemented.

memory model. Each program has its own address
space. The shared objects are identified and ad-
dressed by integers. If a program chooses to use
one of the shared objects he has to declare a
local variable and bind the shared object to it.
By using this local variable, the shared object is
accessed.

parallelism. By user (several individual programs).

scheduling. The user starts programs on the ma-
chines he is going to use. The operating system
schedules these programs on a per machine ba-
sis.

mapping. It is unspecified, where shared objects are
located. The programmer cannot influence it.

synchronization. Shared objects can be locked.
When a process tries to access a locked ob-
ject the process if blocked. Modification to un-
blocked shared objects is atomic. Some shared
objects can be aggregated together to be locked
at once. This helps to avoid deadlock.
Member functions can only be invoked on un-
locked shared data objects.

fault tolerance. None.

Availability: The system is in beta test. Some Docu-
mentation is available via anonymous ftp from

ftp://mathcs.emory.edu/pub/vss

Email addresses:
Contact V. S. Sunderam —— vss@mathcs.emory.edu
Charles Hartley —— skip@mathcs.emory.edu

References: [100]

2.42 DOWL, distributed Trellis/Owl

Developer: University of Karlsruhe, Germany

Description:

Extension of Trellis/Owl (see section 2.96).

0o. Extension of Trellis/Owl (see section 2.96) for
distribution. Transparent operation invocation
on remote objects.

memory model. Distributed address space. Auto-
matically generated local proxies represent ob-
jects. Calls to operations on an object transpar-
ently are redirected by the proxies.



parallelism. See Trellis/Owl (section 2.96).

mapping. The DOWL language provides constructs
to express location relationships between ob-
jects. The programmer can bind objects to spe-
Objects that are not bound to a
specific node can migrate transparently. The
programmer can explicitly set the target node
of an object that is to migrate.

cific nodes.

Objects can be attached to each other. Groups
of objects migrate together. It can be specified,
whether objects are attached to each other at all
times, whether objects should move together, or
whether objects should be moved together when
visited.

scheduling.
synchronization. See Trellis/Owl (section 2.96).

fault tolerance.

Availability: DOWL is running on VAXen and DEC-

statations under Ultrix.

Email address:
Bruno Achauer

—— bruno@tk.telematik.informatik.uni-karlsruhe.de

References: [1] [2]
2.43 dpSather

Developer: CSIRO, Australia + Monash University,
Australia

Description:

00. The language dpSather is an extension of Sather
0.5 [167, 145]. The language has a bulk data
type. When declaring objects of that type, a
given number of instance is created. Functions
can be declared to work on instances and can be

called to work on the whole bulk.
memory model. Same as Sather.

parallelism. By invoking functions on all instances

of a bulk in parallel.

scheduling. Scheduling is not an issue. Since bulk
data is mapped by the programmer and func-
tion invocation always affects all instances, the
execution model is simple: there is a loop per
processor that iterates over the instances stored
at that particular processor.

mapping. The programmer can specify how bulks
are mapped to the processors. For this purpose
virtual topologies can be used. It is possible
to declare addressing functions that give access
to neighboring instances when called from an in-
stance of the bulk. Above that, the programmer
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can specify how bulks are to be aligned with re-
spect to each other. The notation borrows heav-
ily from C* [204], Fortran D [83], HPF [109] and
thus inherits some of the weaknesses, c.f. [206].

synchronization. The functions that run on the in-
stances of a bulk in parallel are not synchro-
nized during execution. However, the parallel
activities exist only from the call of the parallel
function to its termination on all instances.

fault tolerance. None.

Availability: dpSather has been implemented on a Mas-
Par MP-1. An implementation on a Fujitsu Sparc
multiprocessor is under construction.

Email address:
Heinz Schmidt

—— Heinz.Schmidt@fcit .monash.edu.au

References: [191]
2.44 Dragoon

Developer: Imperial College, London, UK
Description:

00. Based on Ada.

memory model. Heterogeneous systems with dis-
tributed memory.

parallelism. Objects can have a thread that ex-
ecutes concurrently with method invocations.
Objects that have this thread are called active
objects; other object are referred to as passive
objects.

scheduling.

mapping. The programmer can map objects to
physical nodes. Heterogeneous systems are sup-
ported. There are differences when remote ob-
jects are accessed: only basic types of the lan-
guage are allowed to be used as arguments (to
avoid deep copying of larger structures).

synchronization. Dragoon allows a separate spec-
ification of behavior classes. The program-
mer can define an abstract synchronization pat-
ter, e.g. monitor, rendezvous, reader-writer etc.,
or can re-use predefined patterns. These syn-
chronization patterns are abstract because the
conditions are expressed by means of variables
The condi-
tions can make use of counters like active(x)
and requested(x).

which can reflect function names.

To apply such a behavior class for the synchro-
nization of concurrent accesses there is a “ruled
by” primitive. The programmer must then map
method names to the abstract variables used in
the behavior class.



fault tolerance.

Availability: The language was available from an indus-

trial partner (TXT, Milan, Italy). However, as it did
not prove a financial success, it has been dropped.
Due to Colin Atkinson TXT might be willing to do-
nate a copy to an academic institution. Contact

Marco De Michele.

Email addresses:
Colin Atkinson —— atkinson@cl.uh.edu
Marco De Michele —— demichel@txt.it

References: [20] [21]
2.45 DROL

Developer: Keio University, Japan.

Description:

00. Extension of C++.
memory model.

parallelism. Parallelism is introduced by asyn-
chronous message passing. There is a block-
ing receive which can be used to implement
rendezvous and synchronous message passing.
Since the language focuses on real-time aspects
the communication protocol can be specified, in-
cluding timeouts. Post-processing.

scheduling.

mapping.

synchronization. Single thread per object, i.e.
monitor. In addition to a base object the pro-
grammer can specify a meta object which han-
dles the incoming invocations and the protocol
machine. This meta object knows about “en-
abled sets” and can reject method invocations
to methods which are not currently available.

fault tolerance. Exception handling by use of time-
outs.

Availability: DROL is translated to C++ and thus runs

on single processor machines.

References: [199]
2.46 Eiffel//

Developer: University of Nice, Sophia Antipolis, France

Description:

0o0. Slight extension of Eiffel version 2. Concurrency
is introduced into the language by inheritance
from special concurrency classes: For this pur-
pose there are the classes PROCESS and RE-
QUEST.

memory model. Common address space. There
are no shared passive objects in Eiffel//. Instead
of passing references to objects as parameters,
Eiffel// (deep) copies the objects and passes
them as value parameters.

parallelism. A process is an instance of a class in-
heriting directly or indirectly from PROCESS.
After creation and initialization, such a process
object executes its Live routine. This routine
processes incoming requets by invoking the cor-
responding object feature. Although the trans-
fer of the request object between caller and
called object is a synchronous handshake, af-
ter that transfer caller and called object proceed
asynchronously.

scheduling. An incoming message, i.e., a RE-
QUEST object, is handled by an interrupt. The
recipient, who might be busy executing a mem-
ber function demanded by a previous request,
is interrupted to accepts the new request. The
process is in charge of deciding what to do with
the newly arrived request. The default policy
is to store this request in a list of pending re-
quest and resume the execution of the original
member function. After completely serving the
original request, the process proceeds to work
on the next request in FIFO order. Alternatives
(e.g. immediate response to arriving requests or
non-FIFO policies) can be implemented manu-
ally.

mapping. Nothing in the language. Process migra-
tion/locality property for the sake of optimiza-
tion and load balancing will be considered in
future.

synchronization. In Eiffel// there is at most one
active process per object. This holds both for
process objects that work on at most one request
at a time and for passive objects, that can be
accessed by at most one process object.

The synchronization princi-
ple is wail-by-necessity [47]. A process blocks
when it attempts to use the result of a feature
call that has not been returned yet. This mech-
anism is automatic and transparent, i.e., there
is no need to explicitly declared future data type
or CBoxes.

The principle of Eiffel// is to prohibit shared
passive objects. If one needs a shared variable,
one must make it a process.

In Eiffel// it is possible to inherit synchroniza-
tion abstractions. Hence, reimplementation of
live routines is not always necessary. However,
methods must be 1st class.

fault tolerance. None.



Availability: The Eiffel// language is still under devel-
opment. It runs on networks of Sun Sparc worksta-
tions. Fach language process is mapped to a Unix

process.

both network or cluster of workstations, and parallel

A forthcoming implementation will target

machines, with the language processes being imple-
mented with both operating system processes, and
light weight processes.

Email address:

Denis Caromel —— caromel@mimosa.unice.fr

References: [46] [47] [48] [49] [50] [51]
2.47 Ellie
Developer: University of Copenhagen, Denmark
Description:
00. In Ellie everything is an object, e.g., classes,

types, blocks, and methods.
tance.

Multiple inheri-

memory model. All objects communicate solely
through method invocation. There are no glob-
ally accessible shared variables.

parallelism. Method invocation is synchronous.
Methods calls either result in a return value or
in the return of a first class future value. In the
first case, no parallelism is induced, since the
caller waits for the return value. In the latter
case, the caller and the called method both con-
tinue asynchronously. The difference is specified

when the routine is called.

scheduling. Done by compiler and operating sys-
tem. When two objects invoke methods of the
same object, it is unspecified, which will be ac-
cepted. The object that issued the one that is
not accepted blocks. This policy cannot be al-
tered, except by prohibiting the invocation of
certain methods, see the description of synchro-
nization features.

mapping. There is no way for the programmer to
influence the mapping of objects, and hence pro-
cesses, to the underlying machine.

synchronization. Only one process can be active
on an object at a time. Since method invoca-
tion is synchronous and requires a handshake,
the called object must have completed the last
method invocation before the next one can be
accepted.

In Ellie a method can change the set of ac-
ceptable method invocations. Dynamic inter-
face. The interface is 1st class, Ellie offers ex-
plicit include/exclude operations to modify the

interface. Calls to excluded methods block until

these methods are included into the dynamic in-
terface again. This mechanisms has similar ex-
pressive power as path expressions introduced
by Campbell and Habermann in [42].

fault tolerance.

Availability: Ellie is not available outside the Dis-
tributed Systems research group in Copenhagen.
Platforms are MS-DOS and transputers (with IN-
MOS C toolkit).

Some papers and reports are available via anonymous
ftp from
ftp://ftp.diku.dk/diku/dists/ellie/papers

Email address:
Birger Andersen —— andersen@informatik.uni-k1.de

References: [11] [12]
2.48 Emerald

Developer: University of Washington, Seattle,
DIKU at University of Copenhagen, Denkmark.

=

Description:

00. Emerald is an object-based without classes and
inheritance.

memory model. The programmer has the impres-

sion of a shared address space. Local and re-
mote objects can be referenced via their unique
and network-wide identifiers. There is no differ-
ence except for performance. Addresses of ob-
jects are translated as soon as they cross node

boundaries.

parallelism. In Emerald there are active and pas-
sive objects. Passive objects provide member
functions that can be called by processes. Ac-
tive objects are similar to passive objects except
that they are created together with a process
which is started upon object creation. There is
no way to spawn parallelism except by creating
active objects. The processes are not bound to
the object they have been created with.

mapping. The language offers location-independent
invocation and object migration. Mobility can
be restricted by fixing objects to nodes. Object
can be attached to each other to achieve local-
ity. Although in general, parameter passing is
by reference, the programmer can give applica-
tion dependent hints to the system by specifying
by-move and by-visit. The first suggests to move
the referenced object to the thread. The latter
moved the thread to the object.

scheduling. Done by runtime and operating system.



synchronization. There is no way to synchronize
concurrently executing processes.  However,
Emerald offers a monitor construct that ensures
that only one process at a time can work on an
object. The programmer must detect places in
his code, where monitors are needed.

fault tolerance. Emerald has persistent objects
and a check-pointing system to deal with node
failures.

Availability: Implementations are reported for VAX, HP
9000/300, Sun3, and SunSparc machines, running on
top of UNIX 4.2 BSD and compatible versions.

Papers on Emerald and the software are available
from anonymous ftp from
ftp://ftp.diku.dk/pub/diku/dists/emerald Although
the main work on Emerald has been done in the mid
to later 80s at the University of Washington, Seattle,
it is still alive. Most of the recent work has been done
at DIKU at the University of Copenhagen, Denmark.
There (and in Cracow, Poland) Emerald is used in
teaching of 250 undergraduate students.

Email address:

Eric Jul

—— eric@diku.dk

References: [111] [119] [120]

2.49 EPEE, Eiffel Parallel Execution En-
vironment

Developer: TRISA, France

Description:

0o. EPEE is a extension of Eiffel for data-parallel
programming. The approach is based on the
idea of Concurrent Aggregates as described on
page 12. EPEE provides distributed classes, el-
ements of that class are spread across the ma-

The extension seems to work only for

matrix data types.

chines.

memory model. Elements of the aggregate can be
accessed both by their global index and their
local index.

parallelism. Rather than defining element func-
tions, the approach is library based, i.e., the
library programmer has to implement the algo-
rithm on a per processor basis. EPEE does not
provide automatic virtualization. By using the
higher level operations on the whole aggregate
that the library programmer offers at the class
interface, the operation can be invoked by an
application programmer.

scheduling. Done manually by the library program-
mer by explicitly programming the per proces-

sor code in SPMD fashion.

mapping. The programmer can influence the distri-
bution of data elements and the relative align-
ment of two aggregates by means of constructs
that have a similar expressive power than HPF
provides for the same purpose. In addition, the
programmer can add libraries to implement the
desired data distribution.

synchronization. Due to the SPMD approach all
threads synchronize after a parallel step is done.

fault tolerance. None.

Availability: An EPEE prototype is running on Intel
iPSC/2 and iPSC/860 and for a network of work-
stations above TCP/IP. However, the software is not
(vet) available.

Email address:
Jean-Marc Jézéquel —— jezequel@irisa.fr

References: [99] [116] [117] [118]
2.50 ES-Kit Software

Developer: Microelectronics and Computer Technology
Corporation (MCC)

Description:

00. Extension of C+4. New construct “wrapper”.
Inheritance, but not multiple inheritance.

memory model. The focus of ES-Kit is to make a
remote procedure call transparently available in
the context of C+4. In addition to a ordinary
invocation of a method, the “wrapper” is a sec-
ond way to call a member function. This second
way allows the programmer to catch the call and
implement additional functionality that might
be used for remote procedure calls. In particu-
lar, a new thread could be started, arguments
can be marshaled etc.

parallelism. Asynchronous method invocation, fu-
tures.

scheduling.
mapping. Nothing is said about location.

synchronization. Synchronization must be imple-
mented by hand, e.g., by locking.

fault tolerance.

Availability: The ES-Kit research project was driven by
the development of a parallel computer. It has been
completed in March 1991. The software is not avail-
able online.

http://wew.mcc.com

References: [194] [207]



ESP — Extensible Software Platform

Developer: Microelectronics and Computer Technology
Corp., MCC

Description:

00. Distributed C++ system. Object are considered

to be passive but reactive, they are waiting for
requests to execute routines.

memory model. ESP provides named objects with

private address space. Public variables can only
be accessed through member functions.

parallelism. Invocation of methods can be asyn-

chronously (only if there is no return value) or
synchronously (with/without return value) par-
allel. Method calls, that do not expect return
values never block. For asynchronous calls with
return values, special first class futures can be
used. There is no way to aggregate objects.
Methods cannot be started on multiple objects
at once.

scheduling. Processes are scheduled automatically

by compiler and runtime system. When more
than one process invoke methods of a single ob-
ject concurrently, it is unspecified, which one
will be processed first. The other request is
queued and processed in a FIFO order. The pro-
grammer cannot influence this scheduling pol-
icy, nor can he explicitly delay request because
of manually programmed conditions.

mapping. Automatic by compiler and runtime sys-

tem. However, the programmer can explicitly
specify that a new object should be created on a
remote processor. In the released version there
is no object migration. Support for heteroge-
neous systems.

synchronization. Only one method can be exe-

cuted at an object at a time. Futures can be

declared.

Message for all objects are queued by the sys-
tem. As the system detects that a message of an
object has finished execution, the next message
is dequeued and sent to the appropriate method.

fault tolerance.

Availability: ESP is available for a network of Sun
SPARC stations and for the Motorola Pleiades mul-
ticomputer.

Email addresses:
David Croley —— croley@mcc.com
Arun Chatterjee — arun@mcc.com

References: [62]

2.52 Fleng++

Developer: University of Tokyo, Japan

Description:

00. Multiple Inheritance. Based on logic. Classes
have methods which are used in an imperative
way.

memory model.

parallelism. And/Or-parallelism

scheduling.

mapping. The location of objects is visible (each PE

is visible).
synchronization. Only a single method can be pro-
cessed at an object at a time.

fault tolerance.

Availability: Fleng++ is implemented on a PIE64 par-
allel computer which is built at the same laboratory.

References: [200]
2.53 Fragmented Objects, FOG/C++

Developer: INRIA, Institut National de Recherche en In-
formatique et en Automatique, France

Description:

00. In addition to ordinary C++ objects, the au-
thors introduce fragmented objects. They call
them fragments, since on each node a fragment
of the object exists. Two different fragments
are most common: one fragment is called the
provider. This is essentially an active object,
that is waiting for messages requesting the ex-
ecution of member functions. The other frag-
ments are proxies in the local address space.
These proxies receive ordinary C++ method in-
vocations and convert them to message passing
to the provider fragment. In contrast to simi-
lar approaches, in FOG/C++ the programmer
can program both providers and local proxies
explicitly. He can determine the communica-
tion model to use between client and server (1-
to-1, 1-to-n), the type of message queuing, asyn-

chronous versus synchronous behavior etc.

memory model. FOG/C++ programs run in dis-

tributed address spaces, local proxies of frag-
mented objects make remote objects accessible.
C++ pointers cannot be passed because of the
distributed address spaces. Instead, the user
can implement packing and unpacking routines
for copying objects by value.



parallelism. Provider fragments process incoming
messages. If the programmer implements an im-
mediate return of a call directed to a local proxy,
caller and provider run concurrently. By using
1-to-n communication pattern, it is possible to
spawn more than one parallel activity at once.

mapping. Fragmented objects provide mechanisms
to create mew proxies, i.e., making the frag-
mented object accessible. The programmer can
implement mechanisms for replacing local prox-
ies with provider fragments and vice versa, i.e.
the programmer can migrate fragments.

scheduling. Done by the underlying SOS operating
system. Since the programmer explicitly imple-
ments the behavior of provider fragments, he
has the choice of implementing a strategy that
decides, which of set of pending invocation re-
quests to process next.

synchronization. A provider fragment can only
process one incoming message at a time. If the
caller of a remote method needs access to a re-
turn value, the call to the proxy blocks until the
result is available. Otherwise, the programmer
must implement a synchronization himself.
When synchronization of concurrently executing
threads is needed, the programmer must imple-
ment that requirement himself.

fault tolerance.

Availability: FOG/C++ has been implemented on top
of SOS, an object-oriented operating system [192].

Email address:
Yvon Gourhand —— gourhant@corto.inria.fr

References: [87] [152]
2.54 Guide

Developer: University of Grenoble and Bull Research
Center

Description:

00. Separation of interface and implementation. In-
heritance.

memory model. Objects are persistent and stored
on secondary memory. When used, these ob-
jects are bound into the address space of a job.
Concurrent jobs can bind the same object. Syn-
chronization of access to such shared objects is
similar to access of concurrent activities within
a single job.

parallelism. The programmer can start multiple
jobs which use the same objects. Concurrency
within a job is provided by cobegin blocks al-
lowing for the creation of concurrently executed
sub-activities. Objects are passive.

scheduling.

mapping. Transparent distribution of objects. How-
ever, the programmer can specify the storing
node when creating a new object. Similarly,
when an existing object is bound into the ad-
dress space of a job, the programmer can op-
tionally specify the node.

synchronization. Per default, methods of an object
can be called under a mutual exclusion scheme.
Above that, Guide provides boolean expres-
sions, so-called activation conditions, attached
to methods. A method may be executed when
its activation condition evaluates to true. The
activation conditions are specified in a special
section of the class code but have a one-to-one
relation to the methods. Guide provides spe-
cial counters (invoked, stared, completed, etc.)
Control can be inherited separately. The idea
of synchronization based on counters is due to
[183] and [85].
Whereas the first papers did not consider the
fact that guards accessing instance variable
might cause inconsistency, the paper [182] dis-
cusses this problem.

fault tolerance. Persistent objects. Exceptions.

Availability: Implemented for a network of 486 PCs on

Mach 3.0 micro kernel (Guide-2).

The French speaking reader might find more informa-
tion about IMAG on
http://www.imag.fr

Information about Guide can be retrieved via anony-
mous ftp from
ftp://ftp.imag.fr/pub/GUIDE

References: [64] [78] [98] [133] [134] [182]

2.55 HAL

Developer: University of Illinois at Urbana-Champaign

Description:

00. inheritance. Forwarding of messages.
memory model.

parallelism. Both synchronous and asynchronous
method calls. Asynchronous calls only when
there is no return value. Post-processing by
early become.

scheduling.

mapping. Target distributed memory machine.
Placement of objects automatic.



synchronization. Methods can be disabled upon a
condition, all-except disabled almost all meth-
ods if a given condition holds. Conditions can be
arbitrary boolean functions without side-effects.
The disabling conditions are part of the class
definition and can be redefined in subclasses.

fault tolerance.

Availability: HAL is based on CHARM which is im-
plemented both on shared and non-shared memory
machines, including Sequent Balance and Symmetry,
Encore Multimax, Aliant FX/8, Intel iPSC/2 and
iPSC/i860 and NCUBE/2. The software and some
documentation is available via anonymous ftp from
ftp://biobio.cs.uiuc.edu/pub/Hal

Email addresses:

Chris Houck —— chouck@ncsa.uiuc.edu
Wooyoung Kim —— wooyoung@cs.uiuc.edu
Gul Agha —— agha@cs.uiuc.edu

References: [108] [132]
2.56 Harmony

Developer: Laboratory for Intelligent Systems, Ottawa,
Canada/

Description:

00. Class based operating system (no inheritance).
Library/OS Kernel approach.

memory model. Shared.

parallelism. Active task object. The programmer
provides a function which is to be executed con-
currently as an argument when creating the task
object. Message passing.

scheduling.

mapping. Targeting shared memory machine, i.e.,
no distribution.

synchronization. Synchronization primitives, e.g.,
semaphores and blocking receive.

fault tolerance.
Availability:
References: [149]
2.57 Heraklit
Developer: University of Erlangen-Nirnberg, Germany.
Description:

00. Single inheritance. Method calls can be dele-
gated.

memory model.

parallelism. An object can have an algorithm whose
execution is called the object activity. This ac-
tivity is started by a synchronous or an asyn-
chronous call. The caller decides whether a call
is asynchronous or not by adding the key word
ACTIVATE to the call. Return values are not al-
lowed for asynchronous calls. An asynchronous
call returns a task object. This task object can
be used to identify and modify the task object.
For example, it is possible to terminate a task.

scheduling.

mapping. Global object space. The compiler or
an additional tool is in charge of transparently
mapping objects to the underlying distributed
machine.

synchronization. Heraklit handles objets in a mon-
itor like fashion, i.e., there is at most one activ-
ity working on an object. Heraklit offers spe-
cial consistency points, where activities that are
working on an object can delay their execution.
During the delay, other method calls can be ex-
ecuted. The programmer thus can suggest a de-
fer, i.e., he can inform the scheduler that a good
point is reached to preempt the running thread.

fault tolerance.

Availability: Heraklit is no longer under development.
Some documentation and a Sun Sparc (SunOS 4.1)
implementation can be found on

http://www2.informatik.uni-erlangen.de/IMMD-II/Research/Projects/!

Email address:
Peter Arilus —— arius@informatik.uni-erlangen.de

Wolfgang Betz — betz@informatik.uni-erlangen.de

References: [105]
2.58 HoME

Developer:

Description:

00. See Smalltalk-80 (section 2.92).

memory model.

parallelism. See Smalltalk-80 (section 2.92).
scheduling.

mapping.

synchronization. See Smalltalk-80 (section 2.92).

fault tolerance.

Availability: The multi-processor used is the shared-
memory multiprocessor OMRON LUNA 88K on

which the Mach operating system runs.

References: [172]



2.59 Hybrid

Developer: University of Geneva, Switzerland

Description:

00. Active objects communicate and synchronize by
message passing. The basic model of commu-
nication is that of remote procedure call. RPC
passes parameters by value.

memory model. Each object has its own address
space. Object attribute values can only be ac-
cessed through member functions.

parallelism. Objects are grouped to domains. Do-
mains are the unit of parallelism. There may be
at most on thread active on at most one object
of a domain. Other threads may be blocked or
idle. Objects are active while they are respond-
ing to a message. New activities are created by
invoking a special kind of operation, called a re-
flex. A reflex is a method which can be called
asynchronously. Other methods are called syn-
chronously. Hence, the calling mode is deter-
mined at the method declaration.

scheduling. If not specified otherwise, there is one
queue of incoming messages per object. When a
message 1s processed the corresponding member
function is invoked. If two messages arrive at the
queue the programmer cannot influence which of
the messages is processed first.

Scheduling of threads on the real processor is
done by the runtime and the operating system.

mapping. Not an issue, since implemented on a sin-
gle processor machine.

synchronization. Sending an RPC message is syn-
chronous, i.e., the sending thread blocks. Mul-
tiple thread can work on a domain in a quasi-
concurrent fashion (one at a time)

However, the programmer can declare multiple
(delay) queues and attach these to member func-
tions. By explicitly opening and closing these
delay queues, the programmer can implement
a dynamically changing behavior of an object.
But even with multiple queues it remains be-
yvond the programmers control which of the mes-
sages from open queues is to be processed first.
There is no predefined construct in the lan-

guage that allows to synchronize multiple active
threads.

fault tolerance. None.

Availability: A prototype implementation of Hybrid
runs on a single UNIX machine with shared-memory
with pseudo concurrent processes. Concurrency is
supported by a custom made package for lightweight
processes.

Email address:
Oscar Nierstrasz —— oscar@iam.unibe.ch

References: [169] [170] [176]
2.60 Java

Developer: Sun Microsystems Computer Corporation.

Description:

00. Very similar to C+4. Only single inheritance.
Interface and class definition may be separated.

memory model. shared, flat.

parallelism. Special thread class. When an object
of a class is created that is under this thread
class, then a special function can be invoked
separately, i.e., Java offers objects with an au-
tonomous routine.

scheduling.

mapping. not an issue, since shared memory ma-
chine is targeted.

synchronization. Per default, all methods of a class
can be executed concurrently. However, indi-
vidual methods and code blocks can be marked
”synchronized”. In this case, a lock that is asso-
ciated with every object is used to ensure that
only one of the methods is executed at a time.

fault tolerance. exceptions.

Availability: The alpha version has been released (Re-
lease 1.0 Alpha 3) on May 11, 95. The current version
and the documentation can be accessed from
http://java.sun.com

Email address:

group —— java@java.sun.com

References: The documentation is available from the

Web-page.

2.61 Karos

Developer: CE Saclay DEIN/SIR, France

Description:

00. C++ library extension.

memory model. flat shared uni-processor.
parallelism. Asynchronous messages only.
scheduling.

mapping. Since only a single PE is targeted, no
thoughts on mapping, placement, etc. are pub-

lished.



synchronization. Synchronization is based on a 2
phase commit protocol on objects. The pro-
grammer can link subtasks together, if one of
them fails to succeed, all of them are canceled.
For this purpose the system keeps copies of ear-
lier object states.

The programmer can/must re-implement the
control method to decide whether an operation
of a subtask has succeeded /failed.

fault tolerance. Atomicity of transactions.

Availability: There exists an implementation on a single

PE.

References: [96]
2.62 LO

Developer: European Computer-Industry Research Cen-
ter, Munich, Germany.

Description:

00. Declarative state transitions.
memory model.

parallelism. The transition rules can split up into
several successors, which can then be processed
concurrently. A similar construct is available to
combine those successors again.

scheduling.
mapping.
synchronization.

fault tolerance.
Availability:

References: [13]
2.63 Maude

Developer:
Description:

0o0.
memory model.
parallelism.
scheduling.
mapping.
synchronization.
fault tolerance.

Availability: Email addresses:

—_—

References:

2.64 Mediators

Developer:

Description:

00.
memory model.

parallelism. A mediated object has its own thread
which is dedicated to executing its synchroniza-
tion code. This thread causes an invocation to
start executing via one of the statements “exec”
or “spawn”. When “exec” is used, the mediator
thread executes the method itself; “spawn” cre-
ates a new thread that asynchronously executes
the invoked method. A “release” statement re-
turns to the caller and removes the invocation
from the mediated object.

scheduling.

mapping.

synchronization. Separation of synchronization
code and instance variables used for synchro-
nization from method code and regular instance
variables. Mediators uses a “cycle” construct
which is in fact a combination of a loop with a
traditional select statement. Inside of this cycle
statement, guards are used to start activities.

The guarded commands can use conditions
which access instance variables of the calling
thread (which function is called, information
useful for scheduling purposes, instance vari-
ables etc.) Moreover, the conditions have access
to the queues of pending invocations. Basically
the same information used in Guides counters
(see section 2.54).

fault tolerance.
Availability:

References: [38]
2.65 MeldC

Developer: Columbia University, New York

Description:

00. This is an object-oriented language that under-
stands all concepts as objects of a meta-class. A
program is a collection of active objects which
send and receive messages to and from other (lo-
cal and remote) objects.

memory model. Each object has its own address
space. Communication is only via message pass-
ing, i.e., invocation of member functions.



parallelism. Member functions are called syn-
chronously or asynchronously. Only syn-
chronous calls can be used to return results.
The underlying thread concept works as follow:
A thread is converted into a message which is
sent to the addressed object. The callee accepts
the messages and converts it back into a thread
that then executes the called function. In a syn-
chronous call, the thread is transformed back
into a message that contains the return value
and sent back to the caller. After receiving the
message, return value and thread are extracted.

scheduling. When two messages arrive at an object
at the same time, it is unspecified, which is ex-
ecuted first. The programmer cannot influence
this directly. However, by implementing shadow
objects he can. Shadow objects work like prox-
ies. Calls that are directed to an object are
trapped by the shadow object and considered
there first.

mapping. Although there are no mechanisms in the
language for object mapping (and hence pro-
cess mapping), the programmer can implement
these features by using shadow objects and im-
plementing local proxies. This mechanisms eas-
ily extends to object migration, although mi-
gration is not available in the current version of

MeldC.

synchronization. The shadow object could use a
data structure to delay or re-arrange the request
to the object. Many threads can be active on
an object at one time. To implement synchro-
nization, the language provides an atomic block
that is guaranteed to be entered by only a sin-
gle thread at a time. Hence, the programmer
must ensure that the state of an object is only
changed consistently.

MeldC offers a semaphore object to synchronize
threads that concurrently work on different ob-
jects.

fault tolerance.

Availability: Currently the system is running on single

processor Sun4 and Dec workstations. Depending on
compiler flags, a MeldC program is compiled into a
set of Unix programs or into one Unis program that
uses a thread package to simulate concurrency.

Email addresses:
group —— MeldC@cs.columbia.edu
Gail E. Kaiser —— kaiser@cs.columbia.edu

References: [126] [127] [178]
2.66 Mentat

Developer: University of Virginia

Description:

o0o. Extension of C++. The keyword mentat in the
class definition specifies that objects of this class
are used in parallel.

memory model. Each mentat object possesses a
unique name, an address space, and a single
thread of control.
space disjoint.
member function invocation and value parame-
ters, i.e., data-driven. Vanilla C++ classes be-
long to the address space of a mentat object.

Mentat classes are address
Thus all communication is via

parallelism. The caller of a Mentat object member
function is unaware of whether the implemen-
tation of the member function is sequential or
parallel. The Mentat system analyzes the call
graph and independently decides which member
function calls can be executed concurrently.

scheduling. The Mentat programming language
comes together with the Mentat runtime sys-
tem. An object is represented as a process.
The paper [91] gives information about Mentat’s
scheduling algorithms.

mapping. Generally Mentat automatically sched-
ules objects for the application programmer.
Though it is possible for the application pro-
grammer to give location hints (optional param-
eter for object creation), this is generally not
done. There is no migration of objects.

synchronization. The programmer can label an ob-
ject to be a stateless (regular) mentat object.
For stateless objects, arbitrary many concurrent
threads can execute member functions.

For other objects only one member function of a
mentat object may execute at a time. This syn-
chronizes access to the object’s attributes. Since
all communication must go through the param-
eters of function invocation, the compiler can
analyze the call graph and detect data depen-
dencies. Therefore, the compiler decides where
and whether the caller needs to block. In case
of dependencies, synchronizing and communica-
tion code is issued.

Mentat provides guarded statement execution
similar to Ada’s select statement, which can be
used to implement high level synchronization
needs and life routines.

fault tolerance. None.

Availability: Mentat has been implemented on networks

of Sun3’s, Sun4’s, the IBM RS 6000, Silicon Graphics,
and Gamma’s. Mentat is available from
http://www.cs.virginia.edu/ mentat

ftp://uvacs.cs.virginia.edu



Email addresses:
group —— mentat@virginia.edu

Andrew S. Grimshaw —— grimshaw@virginia.edu

References: [89] [90] [91] [92] [93] [94]
2.67 Meyer’s Proposal

Developer: Proposal by Betrand Meyer

Description:

00. Extension of Eiffel. Meyer considers the Design
by Contract[164] as the basic principle of object-
oriented programming. He introduces the new
keyword separate into Eiffel. That keyword in-
dicates that an object is handled by a different
processor. Due to the parallelism introduced,
some semantic changes are necessary, to retain
the principle of design-by-contract.

memory model. Common address space. No other
changes to Eiffel.

parallelism. No notion of process and active ob-
ject. A separate object can be busy, idle, or
blocked. Calls to separate objects block, if the
precondition is not fulfilled. Called functions
are executed, while temporary disabling other
calls to that object. Member function calls are
synchronous if a return value is expected and
asynchronous otherwise.

mapping. When creating a separate object, a vir-
tual processor is assigned to this object. Meyer
does not give any hint, of how virtual proces-
sors may be mapped to physical ones. There is
no way to specify attachment of objects to each
other because of locality.

scheduling. None. Left to the implementations.

synchronization. A separate object can only pro-
cess one call of an operation at a time. Concur-
rent calls block. They block, too, if they cannot
fulfill the preconditions of a feature.

fault tolerance. None.

Availability: This is just a proposed language. The au-
thor tries to retain the object-oriented paradigm, by
minimally extending an existing language (Eiffel).

Email address:
Betrand Meyer —— bertrand@eiffel.com

References: [165]
2.68 Micro C++, uC++

Developer: University of Waterloo, Waterloo, Canada

Description:

00. pC++ is an extension of C++. In addition to
ordinary C++ objects, there are monitor ob-
jects, coroutine objects, coroutine-monitor ob-
jects, and tasks.

memory model. Since only shared memory ma-
chines are considered, the memory model is that

of standard C++.

parallelism. By declaring task objects the program-
mer creates new threads that proceed concur-
rently to the calling thread. There is a close con-
nection between block boundaries and thread
liveliness: A block is left only after all threads
that have been declared within the syntactic
boundaries of that block have ceased to exist.
A thread terminates either if it completes the
main routine of the task object or if the task ob-
ject is deleted explicitly. Multiple threads can
be declared — and started at once by declaring
an array of tasks.
In contrast to many other systems, invocation of
member function always is synchronous. How-
ever, by using synchronous routine calls and mu-
tex objects the programmer can easily program
asynchronous behavior or future objects if these
are needed. The life routine of a thread handles
the synchronization.

mapping. This is not an issue, since shared-memory
architectures are targeted.

scheduling. The compiler and runtime system
schedule thread execution. The programmer
can explicitly control which message to accept
next. For this purpose pC+4 provides both
guarding conditions and explicit accept state-
ments. Moreover, the there are statements to
delay a currently executed thread and resume
execution later on.

synchronization.

Monitor objects, monitor-coroutine objects and
tasks enforce an implicit mutual execution of the
threads that access their member functions. If
mutual exclusion is not needed, the programmer
can use classical C4++4 classes and coroutines.
To use the autonomous routine of a task in a
life form to govern synchronization, a guarded
accept is provided.

fault tolerance.

Availability: pC++ has been implemented on single pro-

cessor workstations and shared memory multiproces-
sors. Version 4.1 is available via anonymous ftp from
ftp://plg.uwaterloo.ca/pub/uSystem

Email addresses:

group —— usystem@maytag.uwaterloo.ca

Peter A. Buhr —

References: [39] [38] [40]



2.69 Modula-3*

Developer: University of Karlsruhe, Germany.

Description:

00. Extension of Modula-3.
memory model. Global address space.

parallelism. Modula-3* introduces a forall state-
ment to spawn new activities.

scheduling.

mapping. It is intended to automatically map ob-
jects and concurrent activities to the parallel
target machines.

synchronization. There are two versions of the
forall statement, namely a synchronous ver-
sion and an asynchronous version. In the syn-
chronous version, the concurrent activities ex-
ecute the statements in the body of the forall
statement in complete unison, i.e., in lock step
fashion. The synchronous execution is defined
with a multiple-SIMD concept for branching
statements. In contrast to this, the activities
are free to proceed in their own speed when the
asynchronous forall statement is used. Other
than that there are no synchronization mecha-
nisms.

fault tolerance.

Availability: The Modula-3* system is currently under
construction and not yet available.

Email address:
Ernst A. Heinz —— heinze@ira.uka.de

References: [101]
2.70 MPCH+

Developer: Tsukuba Research Center, Real World Com-
puting Partnership, Japan

Description:

00. Extension of C4++4. New is that functions can be
called asynchronously. Furthermore, there are
tokens and message entry points.

memory model. There is an address space per ob-
ject. For communication between objects, mes-
sages and entry points are provided. Threads
that access the same object may communicate
via attributes of that object. Assumed memory
model: processors with local memory, no clus-
ters.

30

parallelism. For each asynchronously called func-
tion a thread is created that runs concurrently
to the caller. If the method returns a result,
there is a choice between asynchronous and syn-
chronous call. In case of the asynchronous call,
MPC++ offers a future-like concept: the code
has entry-points, where a variable is either set
to the return value or the thread is waiting un-
til the value is available. Since there is no way
to create more than one thread at once, scala-
bility might be a problem for massively parallel
applications.

scheduling. Automatic by runtime system.

mapping. The programmer is responsible to provide
the processor number on which a thread has to
be executed. For this purpose, MPC++ uses
the @-notation. Since objects are created where
a thread that executes the create function runs,
the programmer can influence the mapping of
objects to processors. No migration.
Process layer, virtual process layer, HPF like
mapping. Explicit coding of mapping (block,
cyclic) data parallel functions. The programmer
knows about local variables per hardware PE
and codes mappers where necessary.

synchronization. If threads that access the same
object should communicate via attributes of
that object, the programmer has to make sure,
that access is synchronized properly. For this
purpose, the language provides an atomic re-
gion. Statements that are grouped together in
atomic regions are executed by a thread that
has entered the region atomically, i.e., without
another thread interfering.
The token mechanism for inter-object message
passing ensures, that at most one thread may
send a message to an entry point at a time. This
sets up pairs of send and receive operations that
lead to synchronization.

fault tolerance. None.

Availability: MPC++ is now running on top of the

RWC1 functional simulator. At this time, just con-
trol parallel features have been implemented but data
parallel features are still under construction. RWC1
is a message driven multi-threaded architecture. The
testbed machine will be operational next year. The
RWC1 machine consisting of 1,204 PE’s will be in-
stalled around 1996-1997. MPC++4 will be imple-
mented on a CM-5 and an Intel Paragon.

Further information can be found
http://www.rucp.or. jp

Email address:
Yutaka Ishikawa —— ishikawa@rwcp.or.jp

References: [112] [113]



2.71 Multiprocessor Smalltalk

Developer:

Description:
00. See Smalltalk-80 (section 2.92).
memory model.

parallelism. See Smalltalk-80 (section 2.92).
scheduling.

mapping.

synchronization. See Smalltalk-80 (section 2.92).

fault tolerance.

Availability: Multiprocessor Smalltalk is implemented
on the FireFly multiprocessor [203].

References: [174]
2.72 NAM

Developer: National Tsing-Hua University, Taiwan

Description: The proposed language is very similar to
pC++, which is described on page 33.

Availability: The language has been implemented on a
32 node nCUBE2.

References: [142]
2.73 Obliq

Developer: Digital Equipment Corporation, Palo Alto

Description:

related to Modula3.
Inheritance is imple-
mented by object cloning, i.e., Obliq is a
prototype-based language. (See [34] for the orig-
inal prototype based language proposal.)

00. Object based language,
There are no classes.

memory model.

parallelism. Additional activities are introduced by
fork and join commands. The join command can
wait upon the completion of names threads and
returns the return value of the forked procedure.

scheduling. A thread can decide to pause.

mapping.

synchronization. The programmer can declare ob-
jects to be serialized, to achieve a monitor like
behavior. In addition, there are condition vari-

ables (signal and watch). If a thread waits
at a condition variable, it releases the mutex

31

lock of a serialized object. A thread that ex-
ecutes a method of a serialized object can call
other methods of the same object without caus-
ing deadlock. Above condition variables, Obliq
offers mutexes and a corresponding lock state-
ment.

fault tolerance. exception handling.

Availability: A version of Obliq which is implemented
on top of Modula-3 Network Objects has been avail-
able since 1994 and has been used in several projects.
The implementation and documentation are available
from
http://www.research.digital.com/SRC/home .html

Email address:

Luca Cardelli

— luca@src.dec.com

References: [43] [44]
2.74 Orca

Developer: Vrije Universiteit, Amsterdam, The Nether-
lands

Description:

00. Orca is object-based. There are no inheritance
and no dynamic binding.

memory model. Distributed  Shared  Memory.
Communication is based on shared data-objects.
Other than shared data objects there no globally
shared objects. (Orca’s shared objects are simi-
lar to protected objects as introduced in Ada9x.
See [23] for a comparison.)

parallelism. Parallelism is introduced by forking
processes on a processor which can be speci-
fied optionally. Shared objects are parameters
to process invocation.

scheduling. Done by the run-time system.

mapping. The Orca compiler determines the access
patterns of processes to shared objects. A sum-
mary of this is passed to the runtime system,
which uses it to make good decisions about
which objects to replicate and where to store
nonreplicated objects. Objects can be migrated
and replicated without any intervention from
the user.

Whereas storage of shared objects is transpar-
ent, the programmer must explicitly specify
where a process is to be started. If the pro-
grammer does not provide the number of the
processor when forking a process the new pro-
cess runs on the same processor as the forking
process.



synchronization. Implicitly done by the compiler.
Since the compiler knows which shared data ob-
jects are accessed by a process, it issues syn-
chronization code to mutually exclude processes
from accessing the same object. Operations on
an shared object appear to be indivisible. Be-
side this implicit synchronization there is a way
to explicitly program guarding conditions. Op-
eration calls may block if guards are evaluated
to false.

fault tolerance.

Availability: Documentation can be found at
ftp://ftp.cs.vu.nl/pub/amoeba/orca papers
ftp://ftp.cs.vu.nl/pub/papers/orca

Email address:
Henri E. Bal — balecs.vu.nl

References: [22] [23] [25] [24] [102] [201]
2.75 Oz, Perdio

Developer: German Research Center for Artificial Intel-
ligence, DFKI, Saarbriicken.

Description:

Oz is an object-oriented concurrent constraint pro-
gramming language. Multiple inheritance. A project
Perdio is currently being discussed which uses Oz in
a distributed environment.

Oz determines automatically what to execute concur-
rently and applies a Wait by necessity mechanism to
coordinate. Oz’s logical variables are very similar to
first class futures. The batchis a way to send a col-
lection of method calls to an object which then are
executed without interruption from other callers. Ob-
ject can be closed, a closed object does not respond to
incoming messages; these are queued until the object
becomes open again.

Based on Monitor concept, i.e., one method at a time.

Perdio proposes transparent automatic distribution of
objects.

Availability: Oz is available for many platforms running
Unix-X, including Sparcs and 486 PCs. More infor-
mation can be retrieved from
ftp://ps—-ftp.dfki.uni-sb.de
http://ps-www.dfki.uni-sb.de/oz

Email addresses:
group —— o0z@dfki.uni-sb.de
Gerd Smolka —— smolka@dfki.uni-sb.de

References: [103] [195] [196] [197]

2.76 Panda

Developer: University of Kaiserslautern, Germany

Description:

0o. Panda is a run-time package based on a very
small operating system kernel which supports
distributed applications written in C++.

memory model. All nodes of a Panda system share
a single virtual address space, references trans-
mitted across node boundaries do not lose their
meaning. The programmer can declare objects
in the shared memory and locally, the latter pre-
vents access from remote nodes but increases the
efficiency of local access.

parallelism. Panda offers a class for user level
threads. FEach instantiation of this class gen-
erates a new activity. This class has a mem-
ber function called code that is executed by
the thread. By declaring an array of user level
threads, there is a way to create and start mul-
tiple parallel threads art once.

scheduling. The operating system is in charge of
scheduling user processes and user level threads.
(The programmer can redefine the scheduling
policy by explicitly providing his own implemen-
tation.)

mapping. A non-local object is moved to the thread
that invokes an operation on it. For thread mo-
bility the use level thread class offers a explicit
method for migration. There is no way to de-
termine, where threads and objects are located
at first.

synchronization. Shared objects are stored in
Distributed Shared Memory.  Currently an
exclusive-read exclusive-write protocol has been
implemented.

fault tolerance. Panda offers persistent objects.

Availability: Currently Sun Sparcs, Motorola 680xx and

Intel 1386/i486 are supported that communicate via
TCP/IP and raw Ethernet. Sources and some docu-
mentation are available via anonymous ftp from

ftp://ftp.uni-kl.de/reportsmuni-kl/computer science/system softwar

http://www.uni-k1.de/AG-Nehmer/panda/panda.html

Email addresses:

Holger Assenmacher
—— assen@informatik.uni-k1.de

Thomas Breitbach
—— breitbac@informatik.uni-k1.de

Peter Buhler —— buhler@informatik.uni-kl1.de
Volker Hiibsch —— huebsch@informatik.uni-kl.de
Holger Peine —— peine@informatik.uni-k1.de
Reinhard Schwarz

—— schwarz@informatik.uni-k1l.de



References: [18]
2.77 Parallel C++, pC++

Developer: University of Indiana

Description:

00. The language is an extension of C++ for data-
parallel programming. The language has a ag-
gregate data type. When declaring objects of
that type, a number of instance is created.
Functions can be declared to work on instances
and can be called to work on the whole aggre-
gate. Aggregates are arrays of arbitrary dimen-
sion.

memory model. Same as C++. Elements can ac-
cess other elements of the same aggregate, but
may see outdated data. The programmer has to
do necessary synchronization.

parallelism. By invoking functions on all instances
of an aggregate at once. Above that, pC++ of-
fers the triple notation of HPF [109] [start-index,
stop-indez, stride] to start member function on
a specific subset of the aggregate.

scheduling. Scheduling is not an issue. Since aggre-
gates are mapped by the programmer and func-
tion invocation always affects a regular subset of
these aggregates, the execution model is simple:
there is a loop per processor that iterates over
the instances stored at that particular proces-
sor. (This scheduling strategy obeys the Owner-
Computes-Rule [] used in the Fortran world.)

mapping. The programmer specifies a mapping of a
template to the available processors. Then he
can align his aggregates relative to this tem-
plate. Hence, the programmer must try to
achieve data locality of elements of collections
that are used together. The notation borrows
heavily from C* [204], Fortran D [83], HPF
[109] and thus inherits some of the weaknesses,
c£. [206].

synchronization. The functions that run on the in-
stances of a bulk in parallel are not synchronized
during execution. However, the parallel activi-
ties exist only from the call of the parallel func-
tion to its termination on all instances. Parallel
C++ provides two types of member functions
for collections: In one type there is an explicit
synchronization barrier at the end. In the other
type, the programmer must solve synchroniza-
tion needs himself. For that purpose, a barrier
operation is provided.

fault tolerance.

33

Availability: Currently (version 1.7), pC++ has run-

time systems for the following parallel machines:
Thinking Machines CM5, Silicon Graphics Challenge,
Kendall Square KSR1, Intel Paragon, Meiko CS2,
IBM SP1, BBN TC2000, Sequent Symmetry, and a
homogeneous networks of workstations (PVM). A lot
of papers, the program files, and additional informa-
tion are available from

http://www.extreme.indiana.edu/sage

Email address:
Dennis Gannon —— gannon@cs.indiana.edu

References: [31] [32] [143] [84] [153]
2.78 Parallel Computing Action

Developer: Rank Xerox France, University of Paris VI

Description:

00. Extension of C++. Library.

memory model. Hierarchical memory model. The
programmer understands the difference between
local objects and remote objects. This difference
is apparent when an object is created and when
a member function is invoked.

parallelism. Synchronous and asynchronous calls
and futures. Caller decides.

scheduling.

mapping. No migration. When it comes to object
creation there is a difference between local ob-
jects and remote objects. Local objects can only
be referenced locally. For remote objects there is
a special pointer class. Proxies are generated au-
tomatically. No semantic location transparency.

synchronization. Per default, objects behave like
monitors. However, the programmer can specify
delay conditions per method. These work like
negative guards.

An intersting synchronization concept is param-
eterized synchronization. The delay conditions
that can be attached to methods can use the
same parameters that are used in the procedure
signature.

fault tolerance.

Availability: Implemented on a Transputer platform.

Email addresses:
Hayssam Saleh —— saleh@litp.ibp.fr
Philippe Gautron —— gautron@litp.ibp.fr

References: [184] [185]



2.79 Parallel Object-Oriented Fortran

Developer: Mississippi State University
Description:

00. Extension of plain Fortran to be object-based.

There are no concepts of inheritance and strong
typing.

memory model. Thereis a global addressing space.

The address of an object is the concatenation of
the physical processor number and a local id of
an object. However, the attributes of objects
are private and can only be accessed by public
functions. Hence, each object has is private ad-
dressing space. The language does not offer the
notion of modules.

parallelism. Operators are called asynchronously

and are not allowed to have return parameters.
There is no pre-emptive scheduling. The execu-
tion model is message driven, i.e., there are no
explicit send-receive pairs.

mapping. The programmer is in charge of mapping

the objects to processors. No migration of ob-
jects. The programmer has to provide the ob-
ject id when calling a routine of this object. The
routine will execute at that object’s processor.
Hence, the programmer has to map parallel ac-
tivity to the objects. Manual data and process
alignment, manual load balancing.

scheduling. None. No pre-emptive scheduling.

When a function is executed, additional mes-
sages are queued. The processing of the function
is not interrupted.

synchronization. At each processor at most one op-

erator can be active, regardless of the total num-
ber of objects stored at that processor. Syn-
chronization between processors has to be pro-
grammed with message passing constructs ex-
plicitly. Allow statement to enable acceptable
methods. The reference does not talk about a

disallow, which is somewhat strange.

fault tolerance. None.

Availability: OOF is currently available on the Intel 1860
and Delta, SGI, IBM and Sun networks. A threaded
version for the multiprocessor SPARC’s is nearing
completion. It is available via anonymous ftp from
ftp://ftp.erc.msstate.edu

Email address:
Donna Reese —— dreese@erc.msstate.edu

References: [181]
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2.80 PO

Developer: University of Bologna, Italy.

Description:

0o0.
memory model.

parallelism. Asynchronous interaction of objects,
futures. In addition life objects. Synchronous
calls are also available.

scheduling.

mapping. The authors present an automatic place-
ment algorithm which is based on a static anal-
ysis of communication cost.

synchronization. PO offers two ways to coordinate
interobject parallelism. Omne way is called “a
posteriori” synchronization. In this case concur-
rent activities are allowed to execute methods of
an object. These activities have to synchronize
themselves by means of synchronization con-
structs like for example semaphores. The other
approach is called “a priori” synchronization.
Here the concurrent activities are not allowed to
unconditionally execute methods concurrently.
Instead the default behavior is monitor like, i.e.,
one activity is allowed to execute a method of
an object at a time. The programmer however
can supply constraints to the methods or even
explicit scheduling methods to alleviate the re-
strictions of the monitor behavior.

fault tolerance.

Availability: PO and the mapping algorithm is imple-
mented for a MEIKO Computing Surface Machine,
which is based on T8 Transputer technology.

References: [73] [74]
2.81 POOL, POOL-T, POOL-I

Developer: Philips Research Laboratories, FEindhoven,
The Netherlands.

Description:

00. The POOL family of languages has several mem-

bers. Whereas POOL-T does not have inheri-
tance, POOL-I is an extension thereof that has
multiple inheritance and subtyping. In POOL-
T every data item is considered to be an object.
Objects are active, they execute code from their
body part even when no message arrives. The
default body will accept any incoming message
and execute the corresponding method. By pro-
gramming a body method explicitly, the pro-
grammer can implement finer synchronization
patterns.



memory model.

parallelism. There are two ways to introduce par-

allelism. One is to create multiple objects with
non-default bodies. (Default bodies that only
sequentially respond to arriving messages and
the synchronous message passing effectively pre-
vents an increase of concurrency.) The other
way is to use post-processing. After a invoked
method has returned a result to the caller, it
can remain active and postprocess some state-
ments concurrently to the caller.

Since message passing is point-to-point, meth-
ods cannot be invoked on several objects at the
same time.

scheduling. If the default body is used, messages are

accepted in an arbitrary order. Explicit body
methods allow controlled acceptance. Mes-
sages are accepted by explicit answer statements
which are parametrized by a list of acceptable
messages. If more than one waiting message is
in the list of acceptable messages used in the
answer statement, an arbitrary one is accepted.
In addition, POOL provides a select construct
which can be used to implement conditional ac-
ceptance. Scheduling of concurrent threads on
the available hardware is done by the runtime
and operating system.

mapping.

synchronization. At most one thread can be active

in an object if the object has a default body or
has a life routine. All objects communicate via
synchronous message passing. Since every data
item is considered to be an object, synchroniza-
tion of concurrent access is achieved by the one-
thread-at-a-time concept. There is no mech-
anism in the language to synchronize threads
working on multiple objects.

fault tolerance. None.

Availability: Pierre America has left the field and is now
interested in Computers and Music.

References: [7] [8] [9] [10] [198] [218]
2.82 Presto

Developer: University of Washington, Seattle

Description:

00. Library extension of C++.

memory model. Presto is developed for shared

memory multiprocessors.
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parallelism. Presto offers a special thread class.
Objects of this thread class have a member func-
tion “start” which starts the new thread with a
function that is provided as an argument. In-
stantiation of thread objects and starts can be
combined in a fork command. A join is avail-
able. Threads are started asynchronously. The
join can be used like futures, i.e., when the func-
tion executed by the thread returns a value, then
the a join will return an untyped return object.

scheduling. The programmer can declare waiting
queues. Threads can decide to wait. Other
threads can wake up sleeping threads. Ob-
viously, the programmer can implement any
scheduling policy based on this basic mecha-
nism.

mapping.

synchronization. For synchronization Presto offers
a variety of primitives, e.g., spin-locks, locks,
mutex objects, and condition variables, and co-
ordination futures.

fault tolerance.

Availability: The source code (Presto 1.0) is available
via anonymous ftp from
ftp://ftp.cs.washington.edu/pub

References: [29] [30]
2.83 Procol

Developer: University of Leiden, The Netherlands

Description:

00. Procol is an object-based language without in-
heritance.

memory model.

parallelism. Message passing only. Return values, if
any, must be passed back by separate messages.
Rendezvous.

Procol offers a multicast: it is possible to send a
message to a type, i.e., to all objects of a certain

type.
scheduling.

mapping. Since Procol is translated for a single
workstation, mapping is not an issue.

synchronization. The synchronization mechanism
of Procol is based on path expressions as intro-
duced by Campbell and Habermann [42]. The
programmer uses regular expressions and guard-
ing conditions to express the acceptable order,
i.e. the protocol, of message arrival. Per object
one action can be performed at a time.



fault tolerance. None.

Availability: After completing the thesis work, Procol
The University of Leiden, The

Netherlands, can be reached under:

has ceased to exist.

http://www.leidenuniv.nl

References: [35] [135] [136]
2.84 Proof

Developer: University of Florida, Gainesville.

Description:

00. Inheritance and other oo features. Separation of
class interface and class implementation.

memory model.

parallelism. Autonomous routines. cobegin.
scheduling.

mapping. Automatic object clustering.

synchronization. Synchronization with guards per
method. To coordinate concurrent access to ob-
jects the user must create additional 1st class
lock objects and associate those with the rel-
evant passive objects. The programmer is re-
sponsible for correctly using the lock object
(read/write/modify-mode) before accessing the
object.

fault tolerance. Persistent objects.

Availability: Proof is compiled to OCCAM and runs on
a 16 node Transputer System.

References: [222]
2.85 pSather

Developer: International Computer Science Institute,

1CSI, Berkeley

Description:

0o0.
memory model.

parallelism. Asynchronous
and synchronous method calls. First class fu-
tures (queues). Caller chooses the calling mode.
par-construct.

scheduling.
mapping.
synchronization. Lock statements that can handle

multiple locks at once. This greatly reduces the
chance of unintended deadlocks.
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fault tolerance.

Availability: pSather is availblbe from
http://www.icsi.berkeley.edu/Sather

news:comp.lang.sather

Email addresses:
David Stoutamire —— davids@icsi.berkeley.edu

References:
2.86 PVM++

Developer: University of Tennessee

Description:

00. PVM++ extends the I/O-stream capabilities of
C++ to do message passing. The main purpose
is to shield the C4++ user from PVM’s machine

oriented details.
parallelism.

synchronization.

Availability: There is a prototype based on the old PVM
2.4 interface. Currently work is under way to update

PVM-4+ to the 3.3 interface.

Email address:
Roland Pozo —— pozo@cs.utk.edu

References: [179]
2.87 QPCH+

Developer: University of Oldenburg, Germany.
Description:

00. Extension of C4++4. Process class.
memory model.

parallelism. Special member function called “body”
that is executed automatically. The activity
is assoclated with the object. The life routine
can only be interrupted to execute other mem-
ber function calls at certain explicitly indicated
points, namely accept statements. In addition,
QPC++ offers a reply statement to implement
post processing. QPC++4 offers asynchronous
method calls as well. This is specified in the con-
text of the caller. If the asynchronously called
method returns a result, QPC++4 uses a wait-
by-necessity mechanism.
QPC++ offers the concept of a processor set.
Objects of a class can be (statically and dynam-
ically) added to processor sets. With respect to
addressing, a process set is treated just like a
normal process. If a member function of a pro-
cess set is called, this function is called for each
object of that set.



scheduling.

mapping.

synchronization. QPC++ offers semaphores to co-
ordinate concurrent access to shared variables.
The body code has explicit receipt statements
to accept method calls, method call and accept
are modeled as rendezvous. It can even be spec-
ified, from which object a call can be accepted.
In general, since a single processor machine is
targeted, only one activity can be executed at a
time; moreover it is impossible to execute more
than one member function concurrently on an
object. The accept statement can be used in a
select statement.

fault tolerance.

Availability: At the moment, the language is only im-
plemented on a uniprocessor.

Email address:
Dietrich

— boles@informatik.uni-oldenburg.de

Boles

References: [33]

2.88 Rosette

Developer: Microelectronics and Computer Technology
Corp., MCC

Description:

00. Rosette is based on the Actor model [104, 4, 5]. Tt
incorporates multiple inheritance and reflection.
Messages that cannot be processed by an actor
are passed on to its “father”.

memory model. Asintroduced in the Actor model.
In Rosette there is a distinction between prim-
itive actors that have an immutable state and
thus are passed by value and non-primitive ac-
tors which are passed by reference.

parallelism. An Actor that processes an incoming
message can asynchronously send an arbitrary
number of messages, thus starting an arbitrary
number of threads. However, message invoca-
tion is inherently sequential itself. Rosette offers
a concurrent block, which surrounds a set of ex-

pressions that can be evaluated concurrently.

Rosette offers a block construct. In this block
all expressions are evaluated concurrently. The
result value of the block is the result of that
expression that returns first. Other expressions
continue to execute, however, their return value
is discarded.

scheduling. Scheduling of threads to processors is
not visible in Rosette.
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mapping. Mapping of Actors and threads to the un-
derlying machine is done by the runtime and the
operating system. The programmer cannot in-
fluence it.

synchronization. Rosette offers three types of
methods. On is essentially a function that re-
turns a value. Since no side-effects are allowed,
multiple calls to this type of methods are al-
lowed at one time. The second type of method
changes a single internal value of the object; the
object is unlocked immediately. The standard
method, however, requires exclusive access to
the object.
Enabled-sets in Rosette have some similarities
to the mechanisms of behavior abstractions (see
ACT++4, section 2.6) but provide a higher flex-
ibility. The method name (and eventually some
of the actual parameter values) contained in a
queued message have to match an enabled-set.

fault tolerance.

Availability: Version 1.1 of Rosette is available via
anonymous ftp from
ftp://biobio.cs.uiuc.edu

References: [208] [209] [210]
2.89 SAM

Developer: The MITRE Corporation.

Description:

00.
memory model.
parallelism. Actor language.
scheduling.

mapping. Not an issue.

synchronization. Futures. Each object that re-
quires synchronization is associated with an
instance of a synchronization manager. One
method at a time.
Each method call is labeled with a global time
stamp. Before the method is executed, a copy of
the object’s state is saved. When later a method
call arrives at the object with an earlier time
stamp, then the system is rolled back to this
copy and the newly arrived call is executed first,
before the new calls are replayed.

fault tolerance.

Availability: Implemented on an Intel iPSC/2 multicom-
puter.

References: [180]



2.90 Scheduling Predicates

Developer: University of Dublin, Trinity College, Ire-
land.

Description:

0o0.
memory model.

parallelism. Scheduling Processes is mainly inter-
ested in concurrency coordination mechanisms.
The discussion of those is more or less indepen-
dent of the way parallelism is introduced into a
language. However, there is an implementation
of a language based on Scheduling Predicates.
This language uses a cobegin mechanism to ini-
tiate parallelism.

scheduling. To extend the synchronization coun-
ters, Scheduling Predicates offers there_are no,
there_exists and for_all to express boolean
conditions on other pending calls.

mapping.

synchronization. In Scheduling Predicates the fo-
cus is not only on the synchronization of con-
current accesses to an object. In addition, the
authors deal with the problem of which of a col-
lection of delayed calls is to be scheduled next.
Synchronization counters provide little help for
this problem.

fault tolerance.

Availability: This research was carried out as part of
Ciaran McHale’s PhD thesis. Now that the thesis has
been completed, research into this area has ceased.
Information can be found on
http://www.dsg.cs.tcd.ie/research/sos . html
Email addresses:

Alexis Donnelly —— donnelly@cs.tcd.ie
Sedn Baker —— baker@cs.tcd.ie

References: [160] [161]
2.91 Scoop

Developer: University of Montreal, Canada.

Description:

0o. This is a logic programming language.
memory model.

parallelism. When a Scoop program is started,
there is one active process. Scoop offers a state-
ment to create a new process. The new process
starts to execute the goals in the class which is
an argument of the process creation. (Sort of
thread object).
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scheduling. Processes can explicitly be removed

from and added to the ready queue.

mapping.

synchronization. Scoop does not provide any im-

plicit synchronization for concurrent access to
objects. To synchronize concurrent processes
Scoop provides explicit send and receive com-
mands. Whereas the send command is non-
blocking, the receive command will block until
a message has been received from the channel
specified as parameter.

fault tolerance.

Availability: Scoop has been implemented in Prolog on
a single processor machine.

References: [214]

2.92

Smalltalk-80

Developer:

Description:

00.

memory model.

parallelism. By sending a “fork” message to a block

of expressions a thread is started that executes
these expressions concurrently.

scheduling. Special “processor” object that imple-

ments a FIFO scheduling policy for threads.

mapping.

synchronization. Semaphore.

fault tolerance.

Availability:

References: [36]

2.93 Sos

Developer: University of Dublin, Trinity College, Ire-

land.

00.

Description:

memory model.

parallelism. SOS is mainly interested in concur-

rency coordination mechanisms. The discus-
sion of those is more or less independent of the
way parallelism is introduced into a language.
However, there is an implementation of SOS
which uses a cobegin mechanism to initiate par-
allelism.



scheduling.

mapping.

synchronization. Very similar to Mediators (see
section 2.64) and an extension of Scheduling
Predicates (see section 2.90). The general idea is
to have a special section in the class code where
guards, special instance variables, and special
methods can be implemented that are used only
for implementing the coordination of concurrent
access to objects.

fault tolerance.

Availability: This research was carried out as part of

Ciaran McHale’s PhD thesis. Now that the thesis has
been completed, research into this area has ceased.
Information can be found on
http://www.dsg.cs.tcd.ie/research/sos . html

Email addresses:
Alexis Donnelly —— donnelly@cs.tcd.ie
Sedn Baker —— baker@cs.tcd.ie

References: [160]
2.94 Synchronizing Resources, SR

Developer: University of Arizona, Tucson

Description:

00. Inheritance and separation of interface and im-
plementation. A resource is an object that can
contain code for processes and procs. Processes
are started when the resource is created, procs
are started on demand (either as a procedure or
as a separate thread). An object thus is either
passive if no processes are defined or can have
multiple concurrent threads attached to it. Pro-
cesses interact by invocation of operations which
is independent of the location of the resource.

memory model. The programmer can group re-
sources together to virtual machines which are
mapped onto the available processors. All re-
sources of one virtual processor use a shared
memory and hence can cooperate on shared
data.

parallelism. Operations can be called both syn-
chronously and asynchronously. The caller de-
cides. However, the method declaration can
restrict the possible calling mode. No asyn-
chronous calls of methods that return values.
Post-processing is available.

SR has a cobegin-like statement.

An array of activities can be created and started
at once (forall-like). Finally, SR offers au-
tonomous and life routines.

39

scheduling. All virtual processors that are mapped
onto a real processor are scheduled by the run-
time system and the underlying operating sys-
tem.
In life routines, the guarded receive statement
allows to specify the policy that is used to de-
cide which of several pending messages is to be
accepted next.

mapping. The programmer is in charge of organiz-
ing his application in form of virtual processors.
By distributing the data structures needed for
the application over virtual processors, he solves
the mapping problem manually. For this pur-
pose, the virtual machine can be specified at
resource creation time. When a virtual machine
is created, the programmer can specify the node
number of the underlying machine.
Location is transparent, except for the fact that
references cannot be passed between different
virtual machines.

synchronization. There are synchronous and asyn-
chronous operation invocations. The addressed
resource can either explicitly accept an incom-
ing message (rendezvous) or can start an corre-
sponding operation.
If concurrent processes access shared data, the
programmer must use basic synchronization
mechanisms, e.g. semaphores or blocking com-
munication, to synchronize access.

fault tolerance.

Availability: SR appeared first in 1981 [14] (SR version
0), changed in 1986 [16] (SR version 1) and is now
available in its version 2. Version 2.3 of SR works on
one or more networked machines of the same archi-
tecture. True multiprocessing is supported on Silicon
Graphics, Intel Paragon, and Sequent Symmetry sys-
tems, and on Sun systems running Solaris 2.3. Mul-
tiprocessing is simulated on other platforms, which
include SunOS 4.x, HP RISC, DEC Alpha and Ul-
trix, IBM AIX, and Linux. Documentation and more
is available from
ftp://ftp.cs.arizona.edu//sr

http://www.cs.arizona.edu/sr/wuw

Email addresses:

group —— sr-project@cs.arizona.edu
Ronald A. Olsson —— olsson@cs.ucdavis.edu
Gregory R. Andrews —— greg@cs.arizona.edu

References: [15] [14] [173]
2.95 Tool

Developer: Pontificia University, Rio de Janeiro, Brazil.

Description:



0o. This is an object-oriented language that is in-
tended to be used on top of Windows 3.1. to of-
fer a graphical user interface to object-oriented
programming. Single inheritance.

memory model.

parallelism. The programmer can declare so called

extended classes. If a method of an extended
this call is processed asyn-
chronously. Asynchronous calls are not allowed

class is called,

to have any return parameters. For objects from
other classes, all calls are synchronous.

scheduling.

mapping.

synchronization. The language design is based on a
one-processor architecture. Since there can only
be one processor active at a time, there are no
synchronization primitives in the language. In
fact, there is only one method actively working
at an object at any given time.

fault tolerance.

Availability: TOOL has been implemented on top of
Windows 3.1. Additional information can be found
on:
http://www.inf .puc-rio.br/~sergio/tool

Email addresses:
Sergio E. R. de Carvalho — sergio@inf.puc-rio.br

References: [54]
2.96 Trellis/Owl

Developer: Eastern Research Lab, Digital Equipment
Corporation.

Description:

00. Multiple inheritance.
memory model.

parallelism. There are 1st class thread objects (“ac-
tivities”) to be dynamically created by the pro-
grammer. In addition there is a join-like con-
struct (wait). The function to be executed by
the new thread is provided as an argument at
creation time.

Concurrent Trellis/Owl offers the concept of an
“Activity Set” to combine several thread objects
and wait on all of them to complete.

scheduling. The programmer can create explicit
wait queues. Threads can decide to enter the
wait queue, other threads must resume them.
If a thread is waiting in a wait queue, all the
locks that thread has acquired are temporar-
ily released and re-acquired when the thread re-
sumes execution.

40

mapping.

synchronization. Trellis/Owl is designed under the
assumption that most objects are not shared.
Hence, the programmer is in charge to coordi-
nate accesses to shared objects. For this purpose
concurrent Trellis offers 1st class lock objects.

fault tolerance.

Availability: The system is implemented on a VAX
11/785 and MicroVAX running VMS.

References: [166] [187] [188]
2.97 Ubik

Developer: IBM Cambridge Scientific Center.

Description:

Describes a generalization of the Actor model.

0o0.
memory model.

parallelism. Actor language. Asynchronous mes-

sage passing only. FEarly become for postpro-
cessing. Return values, if any, have to be passed
back by a separate message.

scheduling.
mapping.
synchronization. Typical Actor language.

fault tolerance.

Availability: Email address:
Peter De Jong —— pdjong@vnet.ibm.com

References: [76]
2.98 UCH+

Developer: University College London

Description:

00. Parallel version of C++.

memory model. Global shared space.
Pointers to local and remote objects are iden-
tical.

address

parallelism. When an object is created it can be
labeled “active”. Moreover, a class can be an
active class, allowing only active objects to be
created. Only member functions of active ob-
jects that do not return result values can be
called asynchronously. The caller can choose the
mode.

scheduling.



mapping. When creating an object, the program-
mer can optionally specify the physical node
number. The global address space is hierar-
chical, addresses are a concatenation of proces-
sor number and local address. An attempt to
address memory outside of the own processor
is considered an error. Pointer arithmetic only
works within the boundaries of a single proces-
Only method calls to remote objects are
handled transparently.

SOr.

synchronization. One method at a time.

fault tolerance.

Availability: The system is currently running on net-

works of Sun, DEC alpha and SGI. A publicly avail-
able PVM is announced for the near future. The cur-
rent language definition can be found at
http://www.cs.ucl.ac.uk/coside/ucpp

Email address:
Russel Winder —— R.Winder@cs.ucl.ac.uk

References: [219]
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