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Abstract

This thesis introduces a model of a random walk on a colored undirected graph. Such

a graph has a single vertex set and
�

distinct sets of edges, each of which has a color. A particle

begins at a designated starting vertex and an infinite color sequence � is specified. At time � the

particle traverses an edge chosen uniformly at random from those edges of color ��� incident to the

current vertex.

The first part of this thesis addresses the extent to which an adversary, by choosing the

color sequence, can affect the behavior of the random walk. In particular, we consider graphs that

are covered with probability one on all infinite sequences, and study their expected cover time in the

worst case over all color sequences and starting vertices. We prove tight doubly exponential upper

and lower bounds for graphs with three or more colors, and exponential bounds for the special case

of two-colored graphs. We obtain stronger bounds in several interesting special cases, including

random and repeated sequences. These examples have applications to understanding how the entries

of the stationary distributions of ergodic Markov chains scale under various elementary operations.
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The random walks we consider are closely related to space-bounded complexity classes

and a type of interactive proof system. The second part of the thesis investigates these relationships

and uses them to obtain complexity results for reachability problems in colored graphs. In particular,

we show that the problem of deciding whether a given colored graph is covered with probability

one on all infinite sequences is complete for natural space-bounded complexity classes.

We also use our techniques to obtain complexity results for problems from the theory

of nonhomogeneous Markov chains. We consider the problem of deciding, given a finite set����� � 1 �������	� ��

� of ����� stochastic matrices, whether every infinite sequence over
�

forms an

ergodic Markov chain, and prove that it is PSPACE-complete. We also show that to decide whether

a given finite-state channel is indecomposable is PSPACE-complete. This question is of interest in

information theory where indecomposability is a necessary and sufficient condition for Shannon’s

theorem.

This work was supported in part by a Lockheed graduate fellowship and NSF grant

CCR92-01092.
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Chapter 1

Introduction

A
�

-colored graph
�

is a
���

1-tuple ��� ��� 1 �������	���	��
 , where � is a finite set of vertices

and each �
��� � ��� is a set of edges. We will refer to the set �	� as the edges of color � . If, for all

� , whenever ��� ����
 is in ��� � � � � 
 is also in �
� , then
�

is a
�

-colored undirected graph. In this case

we will write
� � ��� � to represent the undirected edge that connects vertices � and � . Otherwise,

�
is a

�
-colored directed graph. Unless otherwise specified the graphs considered in this thesis will be

undirected. As we will see, undirected colored graphs are as general as their directed counterparts.

This thesis introduces a model of a random walk on a colored undirected graph. A random

walk on a colored graph proceeds as follows. A particle begins at a designated starting vertex and an

infinite color sequence � over the alphabet
�
1 �������	� � � is specified. At time � the particle traverses

an edge chosen uniformly at random from those edges of color ��� incident to the current vertex.

The case of
� �

1 corresponds to a simple random walk on an undirected graph.

This thesis investigates intrinsic properties of random walks on colored graphs, such as

expected cover time, as well as applications in computational complexity, where there are direct

applications to the theory of nonhomogeneous Markov chains and coding and information theory.

Many of the results have appeared in the papers [9] and [8].

We begin in Chapter 2 with an investigation of the expected cover time of random walks

on colored graphs. The cover time of the colored graph
�

is the number of steps until a random walk

visits all of the vertices of
�

, as a worst case over all starting vertices and infinite color sequences.

We consider only those graphs that are covered with probability one on all infinite sequences from

all start vertices, since without this property there is no bound on the cover time. We show that

the expected cover time of colored graphs with two colors is exponential in the number of vertices,

and that graphs with three or more colors have doubly exponential expected cover time. Since it



CHAPTER 1. INTRODUCTION 2

is well-known that connected undirected graphs (the case of one color) have polynomial expected

cover time, these results establish a three-level hierarchy of cover times in colored graphs.

In Chapter 3 we go on to prove tighter bounds on the expected cover time in a variety of

interesting special cases. These cases are of two types: we consider both special classes of colored

graphs and special types of color sequences. We show that if a colored graph is proportional then its

expected cover time is polynomial. The proportionality property simply says that a random walk on

each of the underlying graphs ��� ���	� 
 is an ergodic Markov chain, and that, in addition, the Markov

chains for random walks on all of the ��� ���	� 
 share the same stationary distribution.

We also consider the case where each underlying graph ��� ���	� 
 is connected and has a

self-loop at every vertex; that is, � � � � 
�� �	� for all
�

. In this case, a random walk on ��� ���	� 
 is again

an ergodic Markov chain; however, the stationary distributions of the Markov chains corresponding

to each of the ��� ���
� 
 may differ. In this case, we give tight exponential upper and lower bounds on

the expected cover time. Hence, when the stationary distributions of the underlying graphs coincide

the expected cover time is polynomial, but when the stationary distributions differ the expected

cover time is exponential.

Finally, we consider the behavior of random walks on colored graphs when the color

sequence is chosen at random and when the color sequence consists of a finite sequence � 1 ����� ���
repeated ad infinitum. In both of these cases the random walk corresponds to a homogeneous

Markov chain, and we can show that the expected cover time is at most exponential. In the case

that the corresponding homogeneous Markov chain is ergodic and all of the entries of its stationary

distribution are inversely polynomial, the expected cover time is polynomial. We give an example

of a colored graph for which the homogeneous Markov chains defined by random and repeated

sequences is ergodic, but the expected cover time is still exponential. Hence, we prove tight

exponential upper and lower bounds on random and repeated sequences. Moreover, the example

shows that it is possible for an ergodic Markov chain that is composed of an average or product of

random walks on connected undirected graphs to have exponentially small entries in its stationary

distribution, even though the entries of the stationary distributions for the original random walks are

only inversely polynomial.

Two-colored directed graphs were first studied by Condon and Lipton [10] in their inves-

tigation of one-way interactive proof systems with space-bounded verifiers. In an interactive proof

system a prover � wishes to convince a verifier � that a given shared input string � is a member

of some language � . The prover and the verifier share independent read-only access to the input

string � . The verifier � also has a private read-write worktape and the ability to toss coins during its
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computation. In our case, we are interested in verifiers � that are space-bounded; that is, verifiers

that write on at most � � � 
 tape squares on all inputs of length � . In particular, we will be interested

in systems where the verifier uses space
� � log � 
 on all inputs of length � .

In a general system, the computation proceeds in rounds. In each round, the verifier

tosses a coin and asks a question of the more powerful prover. Based on the answers of the prover,

the computation continues until eventually the verifier decides to accept or reject � and halts by

entering an accepting or rejecting state. The systems we consider are one-way in the sense that all

communication goes from the prover to the verifier. Since the system is one-way we can think of the

prover as being represented by a proof string and the verifier as having one-way read-only access to

the proof. We say that a language � has a one-way interactive proof system with a logspace verifier

if there exists a probabilistic Turing machine � that on all inputs � of length � uses space
� � log � 


and satisfies the following one-sided error conditions:

1. If � is in � , then there is some finite proof string that causes � to accept with probability 1.

2. If � is not in � , then on any finite or infinite proof � rejects with probability at least 2/3.

In Chapter 4 we further the study of one-way interactive proof systems with logspace ver-

ifiers by showing that every language in PSPACE, the class of languages recognized by polynomial

space-bounded Turing machines, has a one-way interactive proof system with a logspace verifier.

In [10] the authors show that the question of whether a logspace verifier � accepts or rejects its

input corresponds to a reachability question in an appropriately defined two-colored directed graph.

We use this correspondence in conjunction with the PSPACE result to prove PSPACE-completeness

results for connectivity problems for colored graphs. In particular, we show that the problem of

deciding, given a colored graph
�

with three or more colors, whether
�

is covered with probability

one on all infinite sequences is PSPACE-complete. We also show that the analogous problem for

two-colored graphs is complete for nondeterministic logspace.

As was noted earlier, the random walks of this thesis correspond to nonhomogeneous

Markov chains. In a nonhomogeneous Markov chain the probability transition matrix can change

in each time step. Natural complexity-theoretic questions arise when we think of the matrices that

define the Markov chain as being drawn from a finite set
� � � � 1 �������	� � 
 � of � � � stochastic

matrices. In Chapter 5 we use the machinery of colored graphs to prove PSPACE-completeness

of several problems from the study of nonhomogeneous Markov chains. Every infinite product��
���

1

� ��� over the set
�

defines a finite nonhomogeneous Markov chain. We show that the problem
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of deciding whether every infinite product over
�

defines an ergodic Markov chain is PSPACE-

complete. We also show that the related problem of deciding whether all finite words over
�

are

indecomposable is PSPACE-complete. This question has applications to coding and information of

finite-state channels. In particular, it is a necessary and sufficient condition for Shannon’s coding

theorem for finite-state channels. Hence, we show that to decide whether a given finite-state channel

has an optimal code is PSPACE-complete.

The application to Shannon’s theorem for finite-state channels lead to a series of papers

[25] [26] [21] investigating the complexity of deciding whether all words over a given set
�

are indecomposable. This work resulted in several finite decision procedures, all of which are

easily seen to be in PSPACE and EXPTIME (deterministic time 2
���

for some constant � ). Our

PSPACE-completeness result gives strong evidence that the currently known algorithms are the best

possible. They show that a subexponential time algorithm would imply a separation of PSPACE

from EXPTIME, which would be a major breakthrough in complexity theory.

The remainder of this chapter is a brief description of the notation and terminology that

will be used in this thesis, as well as a review of the necessary Markov chain background.

1.1 Notation and Terminology

Let
��� ��� ��� 1 �������	������
 be a

�
-colored undirected graph with � vertices. We will refer

to the undirected graph ��� ����� 
 as the underlying graph colored � . For each color � and vertex � , the

degree
� � � ��
 is � ��� :

� � � � � � �
� ��� . For each color � , we will use 	 � to denote the � � � adjacency

matrix for the edge set ��� . The � ��� stochastic matrix � � is the probability transition matrix for a

simple random walk on ��� ����� 
 , and is given by:

� � ��� ����
 �

�� �
 1� � ��� 
 � if ��� ����
 � �
� ;

0 � otherwise.

Let � � � 1 � 2 � 3 ����� be an infinite color sequence over the alphabet
�
1 ������� � � � and let

� � � be a vertex in
�

. A random walk starting from � on the color sequence � proceeds as

follows. The walk begins at time 0 at the vertex � . Suppose that at time ��� 0 the walk is at vertex

� . Then, for all vertices � , at time � � 1 the walk moves to vertex � with probability ����� ��� ����
 .
Let � 1 ����� � � be a finite color sequence. We use � � 1 ����� � � 
�� to denote the infinite

sequence obtained by repeating � 1 ����� ��� ad infinitum.
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1.2 Markov Chain Background

In this section we review the Markov chain terminology and background that will be used

in the chapters that follow.

1.2.1 Homogeneous Markov Chains

An � � � stochastic matrix
�

defines a homogeneous Markov chain � whose state space

is the set � ��� � � 1 �������	� � � , and for which the probability of going from state � to state
�

in one step

is given by
� ��� � � 
 .

The Markov chain � is said to be ergodic if the limit lim��� �
� �

exists and has all rows

equal. An equivalent condition for ergodicity is that the probability transition matrix
�

is both

indecomposable and aperiodic.

In order to define indecomposable and aperiodic, consider the directed graph
�

induced

by the nonzero entries of
�

. That is, consider the directed graph
� � ��� ��� ��� 
 with vertex set

� ��� � � 1 �������	� � � and edge set � � � ��� � � 
 :
� ��� � � 

	 0 � . Let

��� � ��� � ��� � 
 be the directed graph

whose vertices correspond to the strongly connected components of
�

. There is a directed edge

� � � � � 
 from component � to component � � if and only if there exists an � � � and a
�
� �

�
such

that ��� � � 
�� � . The graph
���

is called the component graph of
�

and is necessarily acyclic.

The matrix
�

is indecomposable if the component graph
�
�

contains exactly one vertex

that is a sink; that is, there is exactly one vertex with no non-loop edges leaving it. In the terminology

of nonnegative matrices, each vertex in the component graph corresponds to a communicating class

of indices of
�

. Sink vertices correspond to essential classes. Other vertices are inessential classes.

The stochastic matrix
�

is indecomposable if it contains exactly one essential class of indices. For

examples, see Figure 1.1 below. In the first example,
� � 1 ��� 3 � is an inessential class and

� � 2 � is an

essential class, so the chain is indecomposable. In the second example,
���

1 � is an inessential class

and
���

2 � , ��� 3 � are essential classes, so the chain is decomposable.

The greatest common divisor of the lengths of all cycles in
�

is called the period � of
�

.

The matrix
�

is aperiodic if � is equal to one.

Notice that ergodicity is completely determined by the positions of the non-zero entries in

the probability transition matrix
�

, and is independent of the actual values in those positions. We

will define the type of
�

to be the � � � matrix � ���
that has a 1 in position ��� � � 
 if

� ��� � � 

	 0,

and a 0 otherwise. Stochastic matrices
�

1 and
�

2 are said to be of the same type if � � 1
� � � � 2

�
;

that is, if they have positive elements and zero elements in the same positions.
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Indecomposable Decomposable

v

v

v

1

2

3

w

w

w

1

2

3

Figure 1.1: Example illustrating the definition of indecomposable

An ergodic Markov chain � has a unique limiting or stationary distribution which is the

� -dimensional row vector � corresponding to any row of the limit lim� � �
� �

. The vector � satisfies
� ��� 
 � 0 for all � , �

�
� ��� 
 � 1, and � � � � .

A stronger definition of ergodicity is that the limit lim��� �
� �

exists, is positive, and has all

rows equal. An equivalent set of conditions is that the matrix
�

is irreducible and aperiodic. The

matrix
�

is irreducible if the graph
�

induced by the nonzero entries of
�

is strongly connected.

That is, for every pair of vertices � and � , � is reachable from � and � is reachable from � . In this

case
�

contains one communicating class of indices. Following Seneta [22] we will call such an

ergodic Markov chain regular. In a regular Markov chain all entries in the stationary distribution

are strictly positive.

A random walk on a connected undirected nonbipartite graph
� � ��� ��� 
 forms a

regular Markov chain. It is easy to verify that its unique stationary distribution � is given by
� � � 
 � � � ��
�� 2 � � � , for all � � � .

1.2.2 Nonhomogeneous Markov Chains

A finite nonhomogeneous Markov chain � is defined by an infinite sequence

�
1 � � 2 � � 3 �������

of � � � stochastic matrices. Once again the state space of the Markov chain is � ��� but the transition

probabilities can be different at different time steps. The matrix
� � is the probability transition
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matrix for the � th time step. A homogeneous Markov chain with probability transition matrix
�

is

the special case
� � � � � ������� .

Let
� � ��� ����� denote the product

��� � ��

� � �
� � . The nonhomogeneous Markov chain � is said

to be ergodic if, for each � , as � �	��

:

� � � ��� ���
� ��� � � 
�� � � ��� ���
� ��� � � � 
 � � 0 � for all � � � � � � �
That is, � is ergodic if, for all � , as � � tends to infinity the rows of the matrix

� � ��� ���
� tend

to equality. If, in addition, for all � , �
� ��� ���
� tends to a limit as � � tends to infinity then the Markov

chain � is said to be strongly ergodic. Otherwise, � is said to be weakly ergodic.

The following example illustrates the difference between weak and strong ergodicity for

nonhomogeneous Markov chains. Consider the matrices 	 1 and 	 2 whose nonzero entries are

represented by the directed graphs shown in Figure 1.2. All infinite products over
� 	 1 � 	 2 � are

1 2 1 2

Figure 1.2: Example illustrating the difference between weak and strong ergodicity

weakly ergodic since in both of the graphs the next state is independent of the previous state.

However, the infinite product 	 1 	 2 	 1 	 2 	 1 ����� is not strongly ergodic.
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Chapter 2

Cover Time

2.1 Introduction

In this chapter we investigate the expected cover time of colored graphs. We say that a

colored graph
�

can be covered from � if, on every infinite sequence � of colors, a random walk

on � starting at � visits every vertex with probability one. The expected cover time of
�

is defined

to be the supremum, over all infinite sequences � and start vertices � , of the expected time to cover�
on � starting at � . Throughout this chapter we only consider those graphs

�
that can be covered

from all start vertices. This property is needed since without it there is no bound on the cover time.

The condition that
�

be covered from all its vertices makes it necessary for the underlying

graphs of each color to be connected. This is because
�

must be covered with probability one on

the sequence � � 
 � for all colors � . The condition that all of the underlying graphs are connected,

however, is not a sufficient condition. For instance, consider the graph of Figure 2.1, where the solid

lines are the edges colored
�

and the dotted lines are the edges colored � . Both of the underlying

s

Figure 2.1: Underlying graphs connected but not covered from all start vertices

graphs are connected; however, a random walk on the sequence � � � 
 � starting from � does not

cover the graph.

The property that
�

be covered from all of its vertices is a generalization of the connectivity
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property for undirected graphs. In this chapter we use the property as stated. In Chapter 4 we return

to give an exact combinatorial characterization and to investigate the computational complexity of

determining whether or not it is satisfied.

The expected cover time of a simple random walk on an undirected graph (the case of one

color) has been well-studied, and various polynomial bounds on the expected cover time have been

shown [1] [7]. In what follows we prove the following two main results on the expected cover time

of colored graphs with � vertices:

Theorems 2.1 and 2.5 The expected cover time of colored graphs is bounded above by

22
�������

, and there are graphs with three colors that achieve this bound.

Theorems 2.2 and 2.3 The expected cover time of two-colored graphs is bounded above

by 2 �	� ��

� � � , and there are graphs with two colors that achieve this bound. More precisely, we

prove an upper bound of 2
� � � 2 log � � and a lower bound of 2Ω

� � � .
These results combined with known results about the one color case establish a three-level hierarchy

of cover times in colored graphs.

2.2 Upper Bounds

Let
�

be a colored graph and let � and � be two vertices of
�

. We say that � is reachable

from � on the color sequence � � � 1 ����� ��� , if there is a sequence of vertices � � � 0 ��� 1 �������	��� � � �
such that

�
contains an edge of color � � between ����
 1 and ��� , for 1 � ����� . We call � 0 ��� 1 �������	��� �

a path from � to � on � .

For any pair of vertices � and � , we define the distance dist � � � � 
 to be the minimum � such

that � is reachable from � on a prefix of every sequence of length � . Notice that since we assume

that
�

is covered from all start vertices, dist � � � � 
 is necessarily finite. The key to proving the upper

bounds on the cover time is to obtain good bounds on the maximum distance between vertices in a

colored graph.

Lemma 2.1 Let
�

be a colored graph with � vertices, and let � and � be vertices in
�

. If
�

is

covered from all of its vertices, then dist � � � � 
 is at most 2
�
.

Proof. Let � � � 1 ����� ��� be any color sequence of length � � 2
�
. Assume that � is not reachable

from � on any prefix of � . Let � 0
� � � � and, for 1 � ����� , let � � be the set of vertices
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reachable from � on the color sequence � 1 ����� � � . By assumption, � is not in any of the sets

� � , but by the pigeonhole principle � � � � � for some
� �� �

. Hence, on the infinite sequence

� 1 ����� � � � � � � 1 ����� � � 
 � , � is never reached from � , which is a contradiction.

We are now prepared to prove the following theorem:

Theorem 2.1 Let
�

be a colored graph with � vertices that is covered from all vertices. The

expected cover time of
�

is at most 22
� ��� �

.

Proof. Let � � � 1 � 2 � 3 ����� be an infinite color sequence and let � be any vertex in
�

. Consider an

arbitrary ordering � � 1 �������	� � of the vertices of
�

. We will consider the random walk in intervals

of length � � 2
�
. Suppose that after the first � intervals vertices 1 �������	� � � 1 have been visited but �

has not been visited. Let � � be the current vertex after the first � intervals. Then, since
�

is covered

from all start vertices, by Lemma 2.1, dist � � � � � 
 is at most � . Hence, � is visited in interval � � 1

with probability at least 1 � � � . Thus, the expected number of intervals until all vertices are visited

is at most � � � 1 
 � � . Since each interval consists of � � 2
�

steps, the expected time to cover
�

is

at most � � � 1 
 2 � � 2
� �

22
� � ���

.

The result in Theorem 2.1 is independent of the number of colors in
�

. In the case

of graphs with two colors, however, the expected cover time is only singly exponential in � . In

what follows we will assume that the two colors are red and blue, and denote them by
�

and � ,

respectively. The approach is to strengthen Lemma 2.1 as follows.

Lemma 2.2 Let
�

be a two-colored graph with � vertices, and let � and � be vertices in
�

. If
�

is

covered from all of its vertices, then dist � � � � 
 is at most � 4 � � 3 
 � � � 1 
 .
Once Lemma 2.2 is in place, the proof follows the same general outline as the proof of

Theorem 2.1. However, in subsequent chapters we will need a slightly different statement from the

one given in Lemma 2.2. Instead we will prove the following equivalent lemma.

Lemma 2.3 Let
�

be a two-colored graph with � vertices, and let � and � be vertices in
�

. If � is

reachable from � on a prefix of each of � � 
 � , � � 
 � , � � � 
 � and � � � 
 � , then dist � � � � 
 is at most

� 4 � � 3 
 � � � 1 
 .
Notice that Lemma 2.2 follows easily from Lemma 2.3, since if a random walk from �

visits � with probability one on all infinite sequences then � must be reachable from � on a prefix of

each of � � 
 � , � � 
 � , � � � 
 � and � � � 
 � .
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To prove Lemma 2.3 we will relate arbitrary color sequences to prefixes of the four

sequences � � 
 � , � � 
 � , � �
� 
 � and � �

� 
 � using the infinite alternating path � shown in Figure

2.2. Alternate edges of this graph are colored
�

and � . Thus any sequence of colors defines a

unique path from any fixed starting point � on � . For clarity we will refer to the vertices of � as

points to distinguish them from the vertices of
�

.

� � � � � � �
R R R RB B B B

������ �����

Figure 2.2: Alternating path � with fixed starting point �

We say that two finite color sequences � and � � are similar if, starting from any point � ,

the unique point reached on the color sequence � is the same as the unique point reached on � � .
For instance, the sequences

� � � � � � and � � � � � � � �
are similar. The following lemma is

the key to proving Lemma 2.3.

Lemma 2.4 Suppose that � is similar to � � , where � � is a prefix of � � � 
 � (or � � � 
�� ), and let �
and � be vertices of

�
. If there is a path from � to � on � � , then there is a path from � to � on � .

Proof. Let � be the unique point on � that is reached from � on sequences � and � � . Since there

is a path from � to � on � � , � � defines a path from � to � in
�

along which the edges are colored

the same as the edges from � to � in � . We will construct a path from � to � on � that wanders

along this path in the same way that the path from � to � on � wanders along � . Of course the path

from � to � on � may visit points that do not lie between � and � . In constructing our path from �
to � we need to extend the path in

�
accordingly.

More precisely, let � � � � �1 ����� � �� � and let � � � 1 ����� � � . Let � � � �0 � � �1 �������	� � �� � � �

be the path from � to � on � � . Let � � � 0 � � 1 �������	� � � �
� be the path from � to � on � . Let

� � � �0 � � �1 �������	� � �� � � � be a path from � to � on � � . We will show how to construct a path

� � � 0 � � 1 �������	� � � � � from � to � on � .

The path is defined inductively. We let � 0
� � and, for

� �
1 �������	��� , define � � as

follows:
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� � �


������� ������


� � � if � � � � � , for some � � �

� �� � if � � � � �� , for some �� � otherwise, where
�

is any vertex

connected to � � 
 1 by an edge of color � �

For example, suppose that � � � �
�

�
and � �

� �
�

� � �
�

, and that � � � 1 � � 2 ��� is a

path from � to � on � � . Then the path we construct on � is: � � � � � � � 1 � � 2 � � 1 � � 2 ��� , where
�

is a

vertex connected to � by an edge colored � . This example is shown in Figure 2.3.

� � � � � � �
R R R RB B B B� � � 1 � 2 ������ �����

Figure 2.3: Defining a path from � to � on the sequence � �
� � � � � � �

It is straightforward to verify that the sequence � 0 � � 1 �������	� � � is indeed a path from �
to � on � by checking that � 0

� � , � � � � and, for all 1 � � � � , vertices � � 
 1 and � � are

connected by an edge of color � � .

We are now prepared to give the proof of Lemma 2.3.

Proof of Lemma 2.3. We begin by making a few simple observations. Since � is reachable from �

on a prefix of � � 
 � , there is a path from � to � on which all edges are colored
�

. The shortest such

path is a simple path and has length at most � � 1. Hence, there is a path from � to � on a prefix of

� � 
�� of length at most � � 1. Similarly, there is a path from � to � on a prefix of � � 
 � of length at

most � � 1.

Since � is reachable from � on a prefix of � � � 
 � , there is a path from � to � that begins

with an edge colored
�

and alternates between
�

and � . The shortest such path has length at most

2 � � 1, since in a shortest path � appears exactly once and each other vertex appears at most once

in an even numbered position and at most once in an odd numbered position. Similarly, there is a

path from � to � on a prefix of � � � 
 � of length at most 2 � � 1.

In what follows we will use these simple observations to prove that, on any sequence

� � � 1 ����� � � of length � � � 4 � � 3 
 � � � 1 
 , � is reachable from � on a prefix of � . Consider the
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unique path from � on � on the sequence � 1 ����� � � . By our choice of � � � 4 � � 3 
 � � � 1 
 it must

be the case that either:

1. Some point of � is visited � times on the sequence � 1 ����� � � , or

2. 2 � � 1 distinct points to the right or left of � are visited on the sequence � 1 ����� ��� .
In either case we will show that � is reachable from � on � 1 ����� ��� � , for some � � � � .

We first consider the case where some point � on � is visited � times on � 1 ����� ��� . If � is

visited � times on � 1 ����� ��� then at least 2 � � 2 times we traverse one of the two edges incident to

� . Hence, either we traverse the edge colored
�

adjacent to � at least � � 1 times, or we traverse the

edge colored � adjacent to � at least � � 1 times. Without loss of generality assume that the edge

colored
�

is traversed � � 1 times. (The argument in the case that the edge colored � is traversed

� � 1 times is analogous.)

Let � � � 0 ��� 1 �������	��� � 
 1 ��� � � � be a shortest path from � to � on a prefix of � � 
 � , where

� � � � 1. We will incorporate this path into a walk on � . Since the edge colored
�

adjacent to �

is traversed at least � � 1 times, we can rewrite � as follows:

� � � �
0 � � �

�
1 � � �

�
2 � � ����� �

� � 
 1 � � �
� � � �

where �
�
0 � � �

�
1 � �������	� �

� � 
 1 � are (possibly empty) strings over
� � � � � that are similar to the empty

string, and �
� � � is a string over

� � � � � . For 0 � � �
� , �

� � � is similar to the empty string so,

by Lemma 2.4, for any vertex � in
�

there is a path from � back to � on �
� � � . For 0 � � �

� , let

� � be a path from � � back to � � on �
� � � . Then � 0 ��� 1 � � 1 ��� 2 �������	� � � 
 1 ��� � is a path from � to � on

�
�
0 � � �

�
1 � � ����� �

� � 
 1 � �
.

Now we consider the case where 2 � � 1 distinct points to the right (or left) of � are visited

on the sequence � 1 ����� ��� . We do the proof for the case that 2 � � 1 distinct points to the right of �
are visited and the edge from � to the point to its right is colored

�
. We know that on some prefix

� � � � �1 ����� � �� of � � � 
 � , where � � 2 � � 1, � is reachable from � in
�

. Let � be the point

reachable from � in � on the color sequence � �1 ����� � �� . Since 2 � � 1 points to the right of � are

visited on the sequence � 1 ����� ��� , the point � is reached from � on the sequence � 1 ����� ��� � , for some

� � � � . Thus the sequences � 1 ����� � � � and � � are similar. So, by Lemma 2.4, � is reachable from �

on � 1 ����� � � � , as required.

We can now prove the upper bound on the expected cover time of graphs with two colors

using Lemma 2.2 and a proof analogous to that of Theorem 2.1.
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Theorem 2.2 Let
�

be a two-colored graph with � vertices that is covered from all vertices. The

expected cover time of
�

is at most 2
� � � 2 log � � .

Proof. Let � � � 1 � 2 � 3 ����� be an infinite color sequence and let � be any vertex in
�

. Consider an

arbitrary ordering � � 1 �������	� � of the vertices of
�

. We will consider the random walk in intervals

of length � � � 4 � � 3 
 � � � 1 
 . Suppose that after the first � intervals vertices 1 ������� � � � 1 have

been visited but � has not been visited. Let � � be the current vertex after the first � intervals. Then,

since
�

is covered from from all of its vertices, by Lemma 2.2,
� � � � � � 
 � � and so � is visited

with probability at least 1 � � � in the next interval. Thus, the expected number of intervals until all

vertices are visited is at most � � � 1 
 � � . Since each interval consists of � � � 4 � � 3 
 � � � 1 
 steps,

the expected time to cover
�

from � is at most � � � 1 
 � � � � 2
� � � 2 log � � .

Suppose that the colored graph
�

is not covered from all vertices, but satisfies the weaker

condition that it is covered starting from � . It should be noted that the same techniques can be used

to bound the expected cover time of a random walk starting from � , as a worst case over all color

sequences. It follows from Lemmas 2.1 and 2.3 and the proofs of Theorems 2.1 and 2.2 that if a

random walk, after some number of steps, reaches vertex � without visiting � , then dist � � � � 
 is at

most � , where � is bounded by 2
�

in general, and by � 4 � � 3 
 � � � 1 
 in the case of two-colored

graphs.

2.3 Lower Bounds

In Theorems 2.3 and 2.5 we prove exponential and doubly exponential lower bounds on

the expected cover time of colored graphs with two and three colors, respectively. The lower bounds

are based on the following lemma.

Lemma 2.5 Let
�

be a
�

-colored directed graph and let � be a vertex in
�

. There exists a

� ��� 1 
 -colored undirected graph
� �

and a vertex � � in
� �

such that:

1. the number of vertices in
� �

is twice the number of vertices in
�

,

2.
� �

is covered from all vertices if and only if
�

is covered from all vertices, and

3. for every
�

-color sequence � , there exists a � � � 1 
 -color sequence � � such that the expected

cover time of
� �

from � � on � � is at least twice the expected cover time of
�

from � on � .
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Proof. Let
�

be a
�

-colored directed graph with vertices
� � 1 ������� ��� � � and edge colors

�
1 �������	� � � .

We will construct a � � � 1 
 -colored undirected graph
�
�

with vertex set � � �
, where �

� � � 1 �������	� � � �
and

� �����
1 �������	� � � � . The graph

���
will have an edge colored

� �
1 between � � and

� � , for all � .
There will also be an undirected edge colored � connecting � � and

� � , for each directed edge � � � ��� � 

colored � in

�
. In addition, there will be a complete graph on � in each of the colors 1 �������	� � , and

a complete graph on
�

in the color
���

1.

This construction is illustrated for an example with
� �

1 in Figure 2.4 below.

v

v

v
1

2

3

l

l

l

r

r

r

1

2

3

1

2

3

Figure 2.4: Converting a directed graph into a two-colored undirected graph

Now, for every path � � � � 0 ����� 1 ������� ������� in
�

on color sequence � � � 1 � 2 ����� � � , there

is a corresponding path � � � � � 0 � � 0 � � 1 � � 1 ����� � ��� � ��� in
���

on color sequence � � � � � � 1 
 � 1 � � �
1 
 � 2 ����� � � � 1 
 ��� � � � 1 
 . Note that, for all

�
, the path � includes � � if and only if the corresponding

path � � includes � � and
� � . Moreover, the probability that a random walk on

�
from � � 0 on � takes

the path � is exactly the same as the probability that a random walk on
� �

from � � 0 on � � takes the

path � � . Since every two steps of the random walk on
� �

correspond to one step of the random walk

on
�

, the expected cover time of
� �

on � � from � � is exactly twice the expected cover time of
�

on

� from � � . Hence, the expected cover time of
� �

is at least twice the expected cover time of
�

.

It remains to show that
� �

is covered from all its vertices if and only if
�

is covered from

all its vertices.

For the only if direction, suppose that there exists a vertex � � in
�

and an infinite color

sequence � such that
�

is not covered from � � on � � � 1 � 2 � 3 ����� . Then
� �

is not covered from � �
on � � � � � � 1 
 � 1 � � � 1 
 � 2 � � � 1 
 � 3 ����� . This is because, for all

�
, the probability that the walk

on
� �

visits � � and
� � is exactly the same as the probability that the corresponding walk on

�
visits

� � .
For the if direction, suppose that

�
is covered from all start vertices. We must show

that
���

is also covered from all start vertices. First note that, since
�

is covered from all of its
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vertices, for every color � in
�
1 ������� � � � and every vertex � � in

�
, � � has at least one incoming edge

of color � and at least one outgoing edge of color � . Hence, for every vertex � in
� �

and color � in�
1 ������� � ��� 1 � , � has at least one incident edge of color � that crosses the cut � � � � 
 . From this it

follows that a random walk on
� �

on any infinite sequence visits the set � and the set
�

infinitely

often with probability one.

Now suppose that the color sequence � has the property that colors from the set
�
1 ������� � � �

appear only a finite number of times in � . In this case, the sequence � can be written as � � � � � 1 
 � ,

where � � is a finite color sequence. Then, since the underlying graph colored
� �

1 is connected, a

random walk on � covers
� �

with probability one. Similarly, if
� �

1 appears only a finite number

of times in � , the graph
� �

is covered with probability one.

Assume now that colors from
�
1 �������	� � � and the color

� �
1 appear infinitely often in � .

Let � � be the event that the random walk is at a vertex in � and the next color in the sequence is

in the set
�
1 �������	� � � . Let ��� be the event that the random walk is at a vertex in

�
and the next

color in the sequence is
� �

1. If on the random walk the events � � and ��� occur infinitely often,

the graph is covered with probability one. This is because there are cliques of each of the colors

1 ������� � � on the � vertices, and a clique of color
���

1 on the
�

vertices.

On the other hand, if either of the events � � or ��� happens only a finite number of times,

then the sequence � must be of the form � � � � � 1 
 � 1 � � � 1 
 � 2 � � � 1 
 � 3 ����� , where � � is a finite color

sequence and each � � is in
�
1 ������� � � � . Furthermore, the walk must be at some vertex � � � � at the

end of the walk on � � . In this case, the random walk on
� �

from � � on � � � 1 
 � 1 � � � 1 
 � 2 � � � 1 
 � 3 �����
corresponds to a random walk on

�
from � � on � 1

�
2
�

3 ����� . Since
�

is covered from all of its vertices,

the graph
� �

is covered with probability one in this case.

Lemma 2.5 shows how to simulate a random walk on a
�

-colored directed graph with a

random walk on a � � � 1 
 -colored undirected graph. We use the construction to prove the lower

bounds that match our upper bounds on the expected cover time of colored undirected graphs.

By applying Lemma 2.5 to a family of strongly connected directed graphs with exponential

expected cover time, we obtain Theorem 2.3. An example of such a family of graphs is given by

a sequence of vertices numbered 1 �������	� � with a directed edge from vertex � to vertex � � 1, for

1 � � � � � 1, and a directed edge from vertex � to vertex 1, for 2 � � � � . Hence, we obtain the

following theorem.

Theorem 2.3 There are two-colored undirected graphs that are covered from all vertices and have

expected cover time 2Ω
� � � .
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The doubly exponential lower bound for graphs with three or more colors is a consequence

of Lemma 2.5 and the following theorem:

Theorem 2.4 (Condon and Lipton [10]) There are two-colored directed graphs that can be covered

from all vertices and have expected cover time 22Ω
� � �

.

On a particular sequence of colors a random walk on the � th graph in the family simulates

2
�

tosses of a fair coin and reaches a designated state if and only if all outcomes were heads. In

the paper by Condon and Lipton, the theorem is not stated as above but is instead stated in terms of

proof systems with space-bounded verifiers. The result as stated is a consequence of the connection

between two-colored directed graphs and proof systems, and the example is discussed in detail in

Chapter 4.

By applying the construction of Lemma 2.5 to the family of graphs of Theorem 2.4, we

obtain the following result:

Theorem 2.5 There are three-colored undirected graphs that can be covered from all vertices and

have expected cover time 22Ω
� � �

.

2.4 Concluding Remarks

There is a sizable gap between our upper and lower bounds on the expected cover

time of two-colored graphs. The upper bound is obtained by proving that if
�

is a two-colored

graph that is covered with probability one on all infinite sequences then, for all vertices � and � ,
dist � � � � 
 � � 4 � � 3 
 � � � 1 
 � � � � 2 
 . However, in the graph we construct for the lower bound, all

pairs of vertices have distance dist � � � � 
 � � � � 
 .
This leaves us with the following interesting combinatorial problem. Let

� � � 
 � max� � ��� ��� � � 1 � � 2 �� � ��� � ���
dist � � � � 
 �

where the maximum is taken over only those two-colored graphs that are covered with probability

one on all infinite color sequences. Our analysis shows that
� � � 
 lies somewhere between Ω � � 
 and

� � � 2 
 . It is an interesting open question to determine the true asymptotic behavior of the function� � � 
 .
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Chapter 3

Special Cases and Applications

3.1 Introduction

In this chapter we obtain tighter bounds on the expected cover time of colored graphs in a

variety of interesting special cases. In most of these cases the proofs are elementary applications of

known results about Markov chains. However, in the end we are able to use these results to prove

an interesting theorem about the stationary behavior of Markov chains that are averages or products

of random walks on connected undirected graphs with � vertices. In particular, we address the

question of how the stationary distributions of random walks on undirected graphs scale under the

operations of multiplication and addition. We begin this chapter by describing this application in

detail.

Let
�

1 and
�

2 be a pair of connected nonbipartite undirected graphs with � vertices. Let

� 1 and � 2 denote the finite regular Markov chains that correspond to simple random walks on�
1 and

�
2, respectively, and let

�
1 and

�
2 be their corresponding probability transition matrices.

Let �
1 and �

2 be the unique stationary distributions of � 1 and � 2, respectively. Since � 1 and

� 2 correspond to random walks on undirected graphs, we know that all entries in �
1 and �

2 are

at least 1 � � 2. Consider the Markov chain � average defined by the probability transition matrix
�

average
� 1

2 �
�

1
� �

2 
 . Since
�

1 and
�

2 correspond to connected nonbipartite graphs, it follows

that � average is an ergodic Markov chain. Hence, � average has a unique stationary distribution
�

average. We are interested in bounding the values of the entries of �
average as a function of the values

of the entries of �
1 and �

2. We will show that probabilities in �
average can be exponentially small in

� , even though the probabilities in �
1 and �

2 are all inversely polynomial in � .

Similarly, we consider the Markov chain � product defined by the probability transition
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matrix
�

product
� �

1 �
�

2. Suppose that � product is a regular Markov chain (this is not always

the case; for an example, see Figure 5.1 in Chapter 5 ) and let �
product be the unique stationary

distribution of � product. Again we show that the probabilities in �
product can be exponentially small

in � , even though all probabilities in �
1 and �

2 are inversely polynomial.

The organization of this chapter is as follows. In Section 3.2 we obtain upper bounds on

the expected cover time for two special classes of graphs. In Section 3.3 we prove upper bounds on

the expected cover time for two special types of color sequences. In Section 3.4 we give an example

that shows that all of the bounds given in Sections 3.2 and 3.3 are tight. In Section 3.5 we use the

results from earlier sections to derive the above results about weighted averages and products of

random walks on graphs.

3.2 Special Graphs

3.2.1 Proportional Colored Graphs

In this section we prove polynomial bounds on the expected cover time of a special class

of colored undirected graphs, which we call proportional graphs.

A proportional colored graph is one in which

� � � � 
� � � �
� � � � ��
� � � � �

for all colors � and
�

, and all vertices � .

Theorem 3.1 Let
�

be a proportional colored graph with � vertices that is covered from all of its

vertices. If each of the underlying graphs of
�

is connected and nonbipartite, then the expected

cover time of
�

is polynomial in � .

Proof. Let � be any color. Since the underlying graph colored � is connected and nonbipartite,

a random walk on the sequence � � 
 � is a simple random walk on the underlying graph ��� ��� � 
 ,
which has a unique stationary distribution given by �

� ��� 
 � �
� ��� 
�� 2 � � � � for all vertices � . Since

�
is proportional, the distribution �

� is independent of � . Thus, we will use � to denote �
� for all � .

We wish to bound the expected cover time for a random walk on color sequence � starting

from vertex � . Let � 0 be the � -dimensional row vector with a 1 in the position corresponding to �

and a 0 in all other positions. In general, let � � be the probability distribution of the random walk at
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time � . The vector � � is given by:

� � � � 0 � � 1 ����� � � � �
We will show that, for � polynomial in � , the distribution � � is very close to the distribution

� . We will use pointwise distance as a measure of distance between two distributions. The pointwise

distance between � � and � is given by :

� � � � � � � �
�
� � � ��� 
 � � ��� 
 � �

Since, for every color � , � � is the probability transition matrix of a simple random walk

on a connected nonbipartite undirected graph, its largest eigenvalue is 1 with multiplicity one, and

all of the other eigenvalues are at most 1 � � 
 3 in absolute value [19]. So for � � � 4, the pointwise

distance
� � � � � �

is at most � 
 � . Since each � ��� 
 is at least 1 � � 2, � ����� 
 is at least 1 � � � 2 for all � ,
where � is a positive constant. We can now derive bounds on the expected cover time by viewing

the process as a coupon collector’s problem on � � 2 coupons, where sampling one coupon takes � 4

steps of a random walk. The resulting bound on the expected cover time is
� � � 6 log � 
 .

3.2.2 Graphs with Self-Loops

Suppose that every vertex in
�

has a self-loop of every color at every vertex. That is, for

every color � and vertex � , � � ��� 
 � ��� . We refer to these as graphs with self-loops. If each of the

underlying graphs in a graph with self-loops is connected, then the graph is covered with probability

one from all vertices. This is because for every pair of vertices � and � , the distance dist � � � � 
 is at

most
� � � � 1 
 . In fact, it follows from this reasoning that the expected cover time of graphs with

self-loops is at most exponential in � . This gives us the following theorem.

Theorem 3.2 Let
�

be a colored graph with self-loops with � vertices. If each of the underlying

graphs is connected then the expected cover time of
�

is at most exponential in � .

Notice that graphs with self-loops satisfy the nonbipartite condition of Theorem 3.1, but

in general the stationary distributions of the underlying graphs may be different. In fact, we will

show in Section 3.4 that the bound of Theorem 3.2 is tight.
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3.3 Special Sequences

In this section we assume, as usual, that the graph is covered from all start vertices, but

will make no other assumptions about the graphs themselves. Instead we consider the behavior of

random walks on special types of color sequences. The sequences we will consider are random

sequences and repeated sequences.

3.3.1 Random Sequences

In this case, instead of analyzing the expected cover time on the worst case sequence, we

will assume that at each time step the color is chosen randomly from the set
�
1 ������� � � � . If each of

the underlying graphs is connected then the graph is covered from all its vertices. This is because

for every pair of vertices � and � , a walk beginning at � visits � within � � 1 steps with probability

at least 1 � � � � 
 � 
 1. In fact, it follows from this reasoning that the expected cover time is at most

exponential in this case. Notice that here the expectation is taken over both the random choices in

the steps of the walk and the random choice of the color sequence.

Theorem 3.3 Let
�

be a colored undirected graph with � vertices. If each of the underlying

graphs is connected then the expected cover time on a randomly chosen color sequence is at most

exponential in � .

In Section 3.4 we will show that this bound is tight.

3.3.2 Repeated Sequences

We now consider the behavior of a random walk on sequences � � 1 ����� � � 
�� , where

� 1 ����� � � is a fixed length color sequence. Again it is not difficult to see that the expected cover

time is at most exponential in � . Since
�

is covered from all start vertices, for all vertices � and � , �
is reachable from � on some prefix of � � 1 ����� ��� 
 � . Let � be a shortest path from � to � on a prefix

of � � 1 ����� ��� 
 � . On a shortest path � appears once and every other vertex appears at most once in

a position whose number is congruent to � modulo � , where 0 � � � � . Hence, dist � � � � 
 is at most

� � � 1 
 � . This gives us the following theorem.

Theorem 3.4 Let
�

be a colored undirected graph that is covered from all its � vertices and

let � 1 ����� ��� be a fixed length color sequence. The expected cover time of
�

on the sequence

� � 1 ����� � � 
 � is at most exponential in � .
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In Section 3.4 we will show that this bound is tight.

3.3.3 Corresponding Homogeneous Markov Chains

Random sequences and repeated sequences are similar because in both cases a random

walk corresponds to a homogeneous Markov chain � . In the case of a random sequence, the

relevant Markov chain � has probability transition matrix
1�

��
� � 1

� � , where � � is the probability

transition matrix for a simple random walk on the underlying graph colored � . In the case of a

repeated sequence � � 1 ����� ��� 
 � , every � steps of the random walk correspond to a single step with

probability transition matrix � � 1 ����� � � � .
We can use the following lemma about homogeneous Markov chains to obtain a poly-

nomial bound on the cover time for random and repeated sequences in a large number of special

cases.

Lemma 3.1 Let � be an � -state homogeneous Markov chain with probability transition matrix
�

and let
� ��� be in the interval � 0 � 1 � . Suppose that (1)

�
is irreducible and aperiodic, (2) all

nonzero entries of
�

are at least
�
, and (3) all entries of the stationary distribution of � are at

least � . Then the expected time for the Markov chain � to visit every state is at most 2 � 2 � 
 1 � 
 1.

Proof. Consider the directed graph induced by the nonzero entries of
�

. That is, consider the

graph
� � ��� ��� ��� 
 , where � ��� ��� � � 
 :

� ��� � � 
 	 0 � . Since
�

is irreducible there is a directed

walk on
�

from any starting vertex that visits every vertex at least once and has length at most � 2.

We will bound the expected time for the process to complete such a walk on
�

.

Let � and
�

be a pair of adjacent vertices in the walk. We will bound the expected time for

the process to traverse the edge from � to
�

. Each time the walk is at vertex � it traverses the edge

from � to
�

with probability
� ��� � � 
 . Hence, the expected number of returns to � until the edge from

� to
�

is traversed is 1 � � ��� � � 
 . If
� ��� � � 
 � 1, the expected time to traverse the edge from � to

�
is

1. In what follows we will assume that 0 � � ��� � � 
 � 1.

Let � ��� � � 
 denote the mean recurrence time of vertex � . Then the expected time to return

to � , given that the edge from � to
�

is not traversed, is at most � ��� � � 
 � � 1 �
� ��� � � 
 
 . Hence, the

expected time for the walk to traverse the edge from � to
�

is at most � ��� � � 
�� � ��� � � 
 � 1 �
� ��� � � 
 
 .

Since each non-zero entry of
�

is at least
�
,
� ��� � � 
 and 1 �

� ��� � � 
 are both at least
�
.

Hence,
� ��� � � 
 � 1 �

� ��� � � 
 
 � � � 2, and the expected time for the walk to traverse the edge from

� to
�

is at most 2
� 
 1 � ��� � � 
 . Then, from the fact that the mean recurrence time of state � is the
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reciprocal of its stationary probability � ��� 
 , we get that the expected time for the walk to traverse

the edge from � to
�

is at most 2
� 
 1 � 
 1. It follows that the expected time for � to visit every state

is at most 2 � 2 � 
 1 � 
 1.

We can use Lemma 3.1 to obtain polynomial bounds for repeated and random sequences

whenever the product and weighted average matrices satisfy its three conditions with
�

and �
inversely polynomial in � . Conditions (1) and (2) are not particularly strong conditions. For

example, the weighted average matrix satisfies condition (1) if the underlying graphs are connected

and nonbipartite. The product matrix satisfies condition (1) if, for instance, the underlying graphs

are connected and there is a self-loop of every color at every vertex. Products and weighted averages

always satisfy condition (2) with
�

inversely polynomial in � . Thus our question about polynomial

expected cover time in graphs with self-loops on repeated sequences, and, in general, on randomly

chosen color sequences becomes a question about the behavior of the stationary distributions of

products and weighted averages, respectively. We state this formally below.

Theorem 3.5 Let
�

be a colored undirected graph with � vertices such that each underlying graph

is connected and nonbipartite. Suppose that the stationary distribution of the Markov chain with

probability transition matrix
1�

��
� � 1

� � has all entries bounded below by an inverse polynomial. Then

the expected cover time of
�

on a randomly chosen color sequence is polynomial in � .

Theorem 3.6 Let
�

be a colored undirected graph with � vertices that is covered from all its vertices.

Let � 1 ����� ��� be a fixed length color sequence. Suppose that the Markov chain with probability

transition matrix � � 1 ����� � � � is irreducible and aperiodic, and its stationary distribution has all

entries bounded below by an inverse polynomial. Then the expected cover time of
�

on � � 1 ����� ��� 
 �
is polynomial in � .

3.4 Lower Bounds

In this section we prove that the exponential upper bounds of Theorems 3.2, 3.3, and 3.4

are tight by constructing a two-colored graph with self-loops that has exponential expected cover

time on a randomly chosen sequence of colors and on the sequence � � � 
 � . The graph is shown in

Figure 3.1. The solid lines represent edges colored
�

and the dotted lines represent edges colored

� .
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Figure 3.1: Graph for lower bounds

In what follows we prove that the expected cover time of the graph in Figure 3.1 on a

randomly chosen sequence of colors is exponential in � . Our claim is that, on a randomly chosen

color sequence, the expected time for a random walk that begins at vertex 1 to reach vertex � is

exponential in � .

We refer to 1 �������	� � as the primary vertices, and 1
� ������� � � as the secondary vertices.

Suppose a random walk from vertex � is performed on a randomly chosen sequence of colors until

a primary vertex other than � is reached. We will call such a path a primitive path. The end of any

primitive path from vertex � must be either � � 1 or � � 1. Let � ��� � � � 1 
 be the probability that

the next primary vertex reached is � � 1, and let � ��� � � � 1 
 be the probability that the next primary

vertex reached is � � 1. We will show that, for 2 � � � � � 1, � ��� � � � 1 
 exceeds � ��� � � � 1 
 by a

constant factor. Hence, the walk is biased backwards by a constant, and it is a routine calculation

(see, for example, [15]) to show that the expected time to reach vertex � is exponential in � .

Let
� �� be the set of primitive paths from � to � � 1, and let

� 
� be the set of primitive

paths from � to � � 1. Associated with each path � in
� �� and

� 
� is a probability, which is simply

the product of the probabilities on the edges of � . We will establish a bijection � from
� �� to

� 
� ,

with the property that, for every path � in
� �� , the probability of � is strictly less than the probability

of its image � ��� 
 in
� 
� . It follows from this that � ��� � � � 1 
 	 � ��� � � � 1 
 . Figure 3.2 shows the

relevant transition probabilities for this argument.

Let � be a path � � � 0 � � 1 �������	� � � 
 1 � � � � � � 1 in
� �� . The vertex � � 
 1 must be either �

or � � . Suppose that � � 
 1
� � . Then we define � � � 
 to be the path � � � 0 � � 1 �������	� � � 
 1 � � � 1. The

probability of the path � � � 
 divided by the probability of the path � is equal to 4 � 3 	 1. On the

other hand, if � � 
 1
� � � then let

�
be the largest index such that � � � � . We define � ��� 
 to be the
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Figure 3.2: Transition probabilities when color chosen at random

path of length � given by � � � 0 � � 1 ������� � � � � ��� � 1 
 � �������	� ��� � 1 
 � � � � 1. The probability of the path

� � � 
 divided by the probability of the path � is equal to 15 � 14 	 1.

This argument shows the existence of a sequence on which the expected cover time is

exponential. A similar type of analysis can be used to show that � � � 
 � is one such sequence. The

calculation, however, is tedious and is omitted.

3.5 An Application to Products and Weighted Averages

The construction given in Figure 3.1 has the following interesting application to the

question posed at the beginning of this chapter. Let � � and � � be the probability transition

matrices of the graphs colored
�

and � , respectively. Recall from the discussion in Section 3.3.3

that the matrices � � � � � and � � � �
� � 
�� 2 satisfy conditions (1) and (2) of Lemma 3.1 with

�

inversely polynomial in � . So the fact that the expected cover time of this graph is exponential

shows that the stationary distributions of � � � � � and � � � � � � 
 � 2 each contain at least one entry

that is exponentially small in � . But � � and � � correspond to undirected graphs, so all entries in

their stationary distributions are inversely polynomial. So the example shows that, in general, it is

possible for the stationary distribution of a product or weighted average of random walks on graphs

to contain exponentially small entries, even though all entries of the stationary distributions of the

original random walks are inversely polynomial.
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Chapter 4

Colored Graphs and Complexity Classes

4.1 Introduction

Two-colored directed graphs were first studied by Condon and Lipton [10] in their inves-

tigation of the power of interactive proof systems with space-bounded verifiers.

In an interactive proof system a prover � wishes to convince a verifier � that a given

shared input string � is a member of some language � . The prover and the verifier share independent

read-only access to the input string � . The verifier � also has a private read-write worktape and the

ability to toss coins during its computation.

In a general system, the computation proceeds in rounds. In each round, the verifier tosses

a coin and asks a question of the more powerful prover. Based on the answers of the prover, the

computation continues until eventually the verifier decides to accept or reject � and halts by entering

an accepting or rejecting state.

Interactive proof systems in which the verifier is a probabilistic polynomial time Turing

machine have been studied extensively in the literature. Results such as IP = PSPACE [23], and

NEXPTIME � MIP [4] in the case of multiple provers, have characterized the class of languages

recognized by such systems. Interactive proof systems have also been used to prove hardness of

approximation for a class of combinatorial optimization problems known as MAX SNP in a series

of papers [14], [3], [2] and others.

The systems considered by Condon and Lipton [10] and in this chapter differ from the

standard ones in two ways. The first is that they are one-way, meaning that all communication goes

from the prover to the verifier. Secondly, we are interested in verifiers � that are space-bounded;

that is, verifiers that write on at most � � � 
 tape squares on all inputs of length � . In particular, we
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will be interested in systems where � uses space
� � log � 
 . We will use the term IP1 � SPACE � log � 
 


to denote the class of languages with one-way interactive proofs with logspace verifiers. Related

systems have also been studied in [13]. Since the system is one-way we can think of the prover as

being represented by a proof string and the verifier as having one-way read-only access to the proof.

As we will see, colored graphs are closely related to the class IP1 � SPACE � log � 
 
 .
In this chapter we define the class IP1 � SPACE � log � 
 
 . Our definition differs slightly from

that used by Condon and Lipton, but the differences are purely technical. Once we have defined

IP1 � SPACE � log � 
 
 we will review the correspondence between this class and two-colored directed

graphs. We will prove that every language in PSPACE has a one-way interactive proof system with

a logspace verifier. This result will be used at the end of this chapter and throughout Chapter 5 to

prove that certain problems about colored graphs and from the theory of nonhomogeneous Markov

chains are PSPACE-complete.

4.2 One-way Interactive Proof Systems

A verifier for language � is a three-tape probabilistic Turing machine � that takes as input

a pair � � � � 
 , where � and � are strings over the alphabet
�
0 � 1 � . The string � is called a proof, and

can be infinitely long. The proof � is stored on a one-way infinite, read-only tape. The verifier is

constrained to read � in one direction; in fact, for technical reasons we will require that the head on
� begins on its leftmost symbol and moves to the right in every step. We will also assume, without

loss of generality, that � flips one coin per time step. The string � is stored on a second read-only

tape, but its length is finite, and the head on � can move in both directions. The third tape of � is

a worktape, which is initially inscribed with blanks. We will assume without loss of generality that

� has exactly two halting states, an accepting state � ����������� and a rejecting state �	� ��
������ , and that

� erases its entire worktape and returns its input and worktape heads to the leftmost square before

it accepts or rejects.

Let � be any string in
�
0 � 1 � � . A language � is in IP1 � SPACE � log � 
 
 if there exists a

verifier � that on input � uses
� � log � 
 space on its worktape and satisfies the following halting

and one-sided error conditions:

1. If � is in � , there exists a (finite) proof � � � 0 � 1 �
� such that � accepts � � � � 
 with probability

1.

2. If � is not in � , then on any proof � , � rejects � � � � 
 with probability at least 2 � 3.
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3. � halts (accepts or rejects) with probability 1 on all inputs � � � � 
 . In fact, starting from any

possible configuration of its worktape, state and tape heads, � halts with probability 1.

4.2.1 Example: Coin Flipping Protocol

Condon and Lipton [10] give the following example for �
� �

to show that there exist

one-way interactive proof systems with logspace verifiers that halt on all inputs and take doubly

exponential time to halt on some input. We have adapted their example to satisfy our technical

condition that the verifier read one bit of the proof in every step.

The verifier � behaves as follows on any input � of length � . Let
� ���

log ��� . Let � be an

integer in the range 0 to 2
�
� 1. Consider the encoding of � as an � � � � 
 -bit binary string. In this

encoding the first
�

bits are zero and the remaining � bits are the usual binary encoding of � . Let �
denote the 2

� � � � � 
 -bit string that consists of the encodings of the numbers 0 through 2
�
� 1.

On any proof string the verifier � flips one coin for each � � � � 
 -bit disjoint substring,

and maintains a single bit which tells whether all the coin flips so far were heads. Whenever �
encounters the encoding of the number 2

�
� 1, it halts and rejects if all coin flips were heads.

Otherwise, it resets the bit and repeats the process.

On the proof � � , � repeatedly flips 2
�

coins and halts if and only if all 2
�

outcomes were

heads. Hence, the expected time for � to halt on the proof � � is doubly exponential in � . The

verifier, however, does not halt with probability one on all inputs. In fact, if the encoding of 2
�
� 1

never appears in the proof, then � will never halt.

For this reason the verifier � must check that the proof string consists of the encodings of

the numbers 0 through 2
�
� 1. Since � has only logarithmic space, it must do this probabilistically.

While � scans the string of
�

zeros that begins the � th substring it flips
�

coins. The outcome of the
�

coin flips selects a random position � in the � th substring to check for consistency with the ��� � 1 
 st

substring. When the proof is advanced to bit � of the � th substring the verifier checks whether the bit

is a zero or a one. It then counts and advances through to the � th position in the ��� � 1 
 st substring.

As it does this it remembers the logical AND of all of the lower order bits of the � th substring. If

all of the lower order bits are one, it looks for the corresponding bit in the � � 1st substring to be

the flip of bit � in � . Otherwise, it looks for the two bits to be equal. If the test fails, the verifier �
halts and rejects. Otherwise, it continues. The consistency check of the ��� � 1 
 st substring with the

��� � 2 
 nd substring overlaps with this check in the obvious way.

If the proof contains the encoding of 2
�
� 1 an infinite number of times in � , then the
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verifier � halts with probability one. If the encoding of 2
�
� 1 appears only a finite number of

times, then we can write the proof � as �
1
�

2, where �
1 consists of all of the � � � � 
 -bit substrings

up to the last occurrence of 2
�
� 1, and �

2 consists of the rest of � . Then each subsequence of �
2

of length 2
� � � � � 
 contains at least one inconsistency, and � detects the inconsistency and halts

with positive probability 2 
 � . Hence, � halts with probability one in this case.

4.3 Two-colored Directed Graphs

Two-colored directed graphs were introduced by Condon and Lipton in their study of

proof systems with space-bounded verifiers. We review the correspondence between proof systems

with logspace verifiers and two-colored directed graphs here.

Let � be a logspace verifier and let � be an input of length � for � . A configuration of

� is a quadruple � � � � � ��� � � � 
 , where � is the state of � ,
�

is a string representing the contents of

the
� � log � 
 bit worktape,

� �
is the position of the head on the worktape, and

� � is the position of

the head on the input tape, all encoded in binary. Notice that on inputs of length � , the number of

possible distinct configurations of � is polynomial in � .

Consider the graph
���

defined as follows. The vertices of
���

correspond to the configu-

rations of � on input � . If the verifier in configuration � responds to reading a 0 on the proof string

by moving randomly to a configuration in
� � 1 � � 2 � , then there is an edge colored

�
from the vertex

corresponding to � to the vertices for configurations � 1 and � 2. The edges colored � encode the

actions of the verifier when it reads a 1 in the proof analogously.

The verifier � has a unique starting configuration � 0
� � � 0 � ¯� ����� �̄ � 0 � 0 
 , a unique

accepting configuration � ����������� � � � ����������� � �̄ ����� �̄ � 0 � 0 
 , and a unique rejecting configuration

� � ��
������ � � ��� ��
������ � �̄ ����� ¯� � 0 � 0 
 . Since we have assumed that � ����������� and ��� ��
������ are halting

states of � , configurations � ����������� and � � ��
������ have no outgoing edges in
���

. In fact, � ����������� and

� � ��
������ are the only sinks in
���

since condition 3 says that on any proof, from any configuration �
reaches a halting state with probability one.

4.3.1 Example: Coin Flipping Protocol Revisited

We can now describe in detail the construction of a two-colored directed graph that is

covered with probability one on all infinite sequences and has doubly exponential expected cover

time. This example was used in Section 2.3 of Chapter 2 for the lower bound for undirected graphs
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with three or more colors. The example is based on the coin flipping protocol of Section 4.2.1.

Let � the the
� � log � 
 space verifier of Section 4.2.1. Let � be any string of length � and

let
� �

be the graph of configurations of � on input � . We will augment
� �

with an edge colored
�

and an edge colored � from � ����������� and � � ��
������ to every vertex in
���

. We will call the resulting

graph
����

. Since � halts on all proofs, the graph
�
��

is covered with probability one on all infinite

sequences. However, on the color sequence which corresponds to the encoding of the numbers 0

through 2
�
� 1 repeated ad infinitum, the expected time to reach � � ��
������ is doubly exponential in

� .

4.4 Polynomial Space

In this section we will show that every language in PSPACE has a one-way interactive

proof system of the type defined above. This result will be used later in this chapter to prove

PSPACE-completeness for reachability problems in colored graphs and in Chapter 5 to prove

PSPACE-completeness of problems from the theory of nonhomogeneous Markov chains. The

technique used is similar to that used in the construction of Example 4.2.1.

Theorem 4.1 PSPACE � IP1 � SPACE � log � 
 

Proof. Let � be any language in PSPACE, and let

�
be a binary Turing machine that accepts

� using � � � 
 space on inputs of length � , where � is a polynomial. Without loss of generality,

assume that
�

counts its steps and halts and rejects if it detects that it has looped by repeating a

configuration.

A configuration of
�

is an encoding of the tape contents, the head position and the state

at a given time during the computation. Let
�

be the state set of
�

. We will assume the states in
�

are numbered 1 through � � � . We will encode a tape square of
�

as a � � log � � � � � 2 
 -bit binary

string. The last bit of the string will be used to encode the contents (zero or one) of the tape square.

The other
�
log � � � � � 1 bits will be used to encode the index of the current state of

�
if the head

is currently scanning the square, and will contain all zeros otherwise. Let
� 	 0 be the smallest

integer such that 2 � � � � � 
 . We will represent a configuration using the encodings of the first 2 �
tape squares.

We can now represent an accepting computation of
�

on � by the sequence of configura-

tions in the computation. Since
�

detects when it loops and rejects, the number of configurations

in an accepting computation is bounded. The sequence of configuration encodings will be preceded
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by a string of
�

ones, and each pair of consecutive configuration encodings will be separated by a

string of
�

ones.

An
� � log � 
 space-bounded verifier � can check that a given position in a configuration

is consistent with the next configuration. The verifier must simply remember
� � 1 
 symbols of the

configuration and then count to 2 � � � , advancing through the encoding as it counts. When � has

finished counting, it can check the corresponding positions in the next configuration.

The verifier can choose a random position in the configuration to check by tossing
�

coins

while it reads the
�

ones that precede the configuration. The verifier will overlap the consistency

check of configurations
�

and
� �

1 with the consistency check of configurations
�
� 1 and

�
in the

obvious way.

The verifier can check that the first configuration is correct; that is, that the computation

of
�

begins in the start state with � on its tape. If this test fails, or if the rejecting configuration ever

appears, then � rejects. The verifier can recognize when the accepting configuration appears. If the

computation contains an inconsistency in any of the intermediate steps, � detects it with probability

at least 2 
 � and rejects.

To reduce the probability of error, we concatenate 2 � � 1 copies of the encoding of the

computation of
�

on � . The verifier can count the copies as it does the consistency checks. If �
checks 2 � � 1 computations and no consistency check fails, then � accepts. If � is finite in length

and � reaches the end of � without accepting, then � rejects.

If � is in � , then on the proof � which is the encoding of an accepting computation of
�

on � repeated 2 � � 1 times, � accepts with probability one.

Suppose that � is not in � and let � be any proof. If the first 2 � � � symbols of � do not

encode the starting configuration of
�

on � preceded by
�

ones, then � rejects. Assume that the

starting configuration is correctly encoded, and suppose that the accepting configuration appears

2 � � 1 times in � . Consider � parsed into �
1
�

2 ����� � 2
���

1
� � . The string �

1 is the initial portion of � ,

up to and including the first occurrence of the accepting configuration. For 2 � � � 2 � � 1, � � is the

portion of � that follows � ��
 1, up to and including the � th occurrence of the accepting configuration.

The string � � is everything that follows the � 2 � � 1 
 st occurrence of the accepting configuration in � .

Since � is not in � , for all 1 � � � 2 � � 1, there is an inconsistency in the computation encoded by
� � . So, for all 1 � � � 2 � � 1, � detects an inconsistency in � � and rejects with probability at least

2 
 � . Hence, the probability that � accepts is at most � 1 � 2 
 � 
 2
���

1 � 1 � 3.

Suppose that the accepting configuration appears fewer than 2 � � 1 times in � . Let � � be

all of � after the last occurrence of the accepting configuration. If � � is finite or if � � contains the
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rejecting configuration, then � rejects. Suppose that � � is infinite and does not contain the rejecting

configuration. Consider � � in pieces of length � 22
� �

1 
 � 2 � � � 
 . Since
�

counts its steps and

rejects if it loops, each such piece contains an inconsistency. In each piece the verifier detects an

inconsistency and rejects with probability at least 2 
 � . Hence, � rejects with probability one in this

case.

4.5 Colored Graph Connectivity

In Chapter 2 we gave upper and lower bounds on the expected cover time of colored

undirected graphs that are covered from all start vertices. We now investigate the complexity of

determining whether a given colored undirected graph satisfies this condition. This condition is

a generalization of the connectivity property for undirected graphs, and we will show that it is

complete for natural space-bounded complexity classes. And again, as in Chapter 2, the complexity

of the problem differs significantly in the case of two colors versus three or more colors. More

formally, we consider the following decision problem:
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COLORED GRAPH CONNECTIVITY

INSTANCE: Colored undirected graph
�

QUESTION: Is
�

covered from all start vertices with probability 1 on all infinite

sequences?

and show that COLORED GRAPH CONNECTIVITY for graphs with two colors is complete for

nondeterministic logspace (NL), and for graphs with three or more colors it is PSPACE-complete.

In general, there is a close relationship between space-bounded complexity classes and

problems of reachability in graphs. For instance, associated with any � � � 
 space-bounded Turing

machine
�

and input � of length � there is a directed graph
� �

with a vertex for each of the
� � � 2

� � � � 

configurations of

�
on � , and an edge from � � to � � if configuration � � yields configuration � � in

one step on
�

. The question of whether
�

accepts � is equivalent to the question of whether there

is a path from the starting configuration to an accepting configuration in
� �

. In the case that � � � 
 is

equal to log � , the graph
���

has
� � � 2 
 vertices. This demonstrates that � - � CONNECTIVITY (i.e.,

given a directed graph
�

and vertices � and � , is there a path from � to � in
�

?) is complete for NL.

Another example is the correspondence between one-way interactive proof systems with

space-bounded verifiers and two-colored directed graphs described in Section 4.3 of Chapter 4. The

results of this section generalize these ideas.

The organization of the rest of this section is as follows. In Section 4.5.1, we show

that, in general, COLORED GRAPH CONNECTIVITY is in PSPACE, and that when restricted to

graphs with two colors the problem is in NL. In Section 4.5.2 we show that COLORED GRAPH

CONNECTIVITY is hard for NL, and that the problem on graphs with three or more colors is

PSPACE-hard.

4.5.1 Space-bounded Algorithms

We begin by proving combinatorial conditions that are equivalent to the connectivity

property for colored graphs. These conditions will be used to obtain algorithms that work within

the space bounds stated above.

Lemma 4.1 Let
�

be a colored undirected graph with � vertices. The following conditions are

equivalent:

(1)
�

is covered from all start vertices with probability one on all infinite sequences.

(2) For all vertices � and � , the distance dist � � � � 
 is at most 2
�
.
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Proof. That � 1 
 � � 2 
 is simply Lemma 2.1. To see that � 2 
 � � 1 
 , notice that since, for all �

and � , dist � � � � 
 is at most 2
�

, a random walk of length � � � 1 
 2 � on any color sequence from any

starting vertex covers the graph with positive probability. It follows that any infinite random walk

covers the graph with probability one.

We can now use condition (2) above to obtain an algorithm for colored graph connectivity

that uses polynomial space. Given a colored graph
�

with � vertices, Lemma 4.1 tells us that
�

is

not covered from all starting vertices if and only if there exists a pair of vertices � and � , and a color

sequence � of length 2
�

such that � is not reachable from � on any prefix of � .

We will demonstrate that a nondeterministic polynomial space-bounded Turing machine,

given
�

, can recognize that
�

is not covered from all vertices. Then, since PSPACE is closed

under complement and under the addition of nondeterminism, it follows that COLORED GRAPH

CONNECTIVITY is in PSPACE.

A nondeterministic polynomial space-bounded Turing machine can simply guess vertices
� and � and count to 2

�
, guessing the sequence � one character at a time and verifying that � is

not reachable from � on each successive prefix of � . For this verification a single � � � boolean

matrix
�

must be stored. This algorithm is given in detail in Figure 4.1. Throughout, we use 	 � to

denote the � � � adjacency matrix for edges of color
�

. The algorithm in Figure 4.1 uses space that

is polynomial in the size of its input and so we have that COLORED GRAPH CONNECTIVITY is

in PSPACE.

guess distinct vertices � and �

guess a color � 1 and set
� � 	 � 1

for � � 2 to 2
�

do

if
� � � � � 
 ��

0 then reject

guess a color � � and set
� � � � 	 ���

accept

Figure 4.1: PSPACE algorithm for COLORED GRAPH CONNECTIVITY
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The connectivity problem for two-colored graphs can be solved in NL. This would appear

to be an easy extension of the result above. The approach would be to prove a lemma analogous

to Lemma 4.1 with 2
�

replaced by � 4 � � 3 
 � � � 1 
 . However, in the algorithm of Figure 4.1 an

� � � matrix is stored and this would violate the logarithmic space restriction. Instead we use the

following equivalence:

Lemma 4.2 Let
�

be a two-colored undirected graph with � vertices. The following conditions

are equivalent:

(1)
�

is covered from all start vertices with probability one on all infinite sequences.

(2) For all vertices � and � , � is reachable from � on a prefix of each of � � 
 � , � � 
 � , � � � 
 � and

� � � 
�� .

Proof. Suppose that
�

is covered from all start vertices. Then, for any pair of vertices � and � ,
a random walk from � on any sequence of colors visits � with probability one. It follows that � is

reachable from � on each of � � 
 � , � � 
 � , � � � 
 � and � � � 
 � .

For the converse, suppose that for all � and � , � is reachable from � on a prefix of each of

� � 
 � , � � 
 � , � � � 
 � and � � � 
 � . Then, by Lemma 2.3, dist � � � � 
 is at most � 4 � � 3 
 � � � 1 
 � � ,
for all � and � . It follows that a random walk of length � � � 1 
 � on any sequence from any starting

vertex covers the graph with positive probability. Hence, the graph is covered with probability one

on all infinite sequences.

Now we are prepared to show that COLORED GRAPH CONNECTIVITY for two-

colored graphs is in NL. A nondeterministic logspace machine can simply run through all vertices
� and � and verify that there is a path from � to � on a prefix of each of � � 
 � , � � 
 � , � � � 
 � and

� � � 
 � . Since such paths, if present, have length bounded by either � � 1 or 2 � � 1, the machine

can nondeterministically guess and check these paths using only logarithmic space. The overall

algorithm is given in Figure 4.2. Throughout we use 	 0 to denote the adjacency matrix for the edges

colored
�

, and 	 1 to denote the adjacency matrix for the edges colored � . The algorithm uses

space that is logarithmic in � and so we have shown that COLORED GRAPH CONNECTIVITY

for graphs with two colors is in NL.

4.5.2 Hardness Results

In this section we prove the following two main results about COLORED GRAPH

CONNECTIVITY:
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for all distinct vertices � and �

set � 0
� �

/* Check for a path from � to � on � � 
 � */

guess a length � such that 0 � � � �
for � = 1 to � � 1 do

guess vertex � � and if 	 0 � � ��
 1 ��� � 
 � 0 then reject

if 	 0 � � � 
 1 � � 
 � 0 then reject

/* Check for a path from � to � on � � 
 � */

guess a length � such that 0 � � � �
for � = 1 to � � 1 do

guess vertex ��� and if 	 1 � ����
 1 ��� � 
 � 0 then reject

if 	 1 � � � 
 1 � � 
 � 0 then reject

/* Check for a path from � to � on � � � 
 � */

guess a length � such that 0 � � � 2 �
for � = 1 to � � 1 do

guess vertex ��� and if 	 � ��
 1 � mod2 � � ��
 1 ����� 
 � 0 then reject

if 	 � � 
 1 � mod2 � � � 
 1 � � 
 � 0 then reject

/* Check for a path from � to � on � � � 
 � */

guess a length � such that 0 � � � 2 �
for � = 1 to � � 1 do

guess vertex � � and if 	 � mod2 � � ��
 1 ��� � 
 � 0 then reject

if 	 � mod2 � � � 
 1 � � 
 � 0 then reject

accept

Figure 4.2: NL algorithm for two-colored graphs
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Theorem 4.2 COLORED GRAPH CONNECTIVITY for graphs with two colors is NL-complete.

Theorem 4.3 COLORED GRAPH CONNECTIVITY for graphs with three or more colors is

PSPACE-complete.

We have already shown that the problem is in PSPACE in general, and in NL for graphs

with two colors. We now complete the proofs of Theorems 4.2 and 4.3 by giving proofs of hardness.

Proof of Theorem 4.2. We have already shown that COLORED GRAPH CONNECTIVITY for

graphs with two colors is in NL in Section 4.5.1. Here we prove that every problem in NL can be

reduced to COLORED GRAPH CONNECTIVITY on a two-colored graph.

We will use the fact that STRONG CONNECTIVITY (i.e., given a directed graph
�

, is
�

strongly connected?) is complete for NL. The proof of this is a straightforward reduction from � - �
CONNECTIVITY and can be found as an exercise Hopcroft and Ullmans’ book [17] on the theory

of computation.

Lemma 2.5 shows how to construct a two-colored undirected graph
� �

that is covered

from all vertices if and only if
�

is strongly connected. Since the construction of Lemma 2.5 can

be carried out by a logspace Turing machine transducer, this completes the proof.

Next we show that COLORED GRAPH CONNECTIVITY for graphs with at least three

colors is PSPACE-complete. For this we will use the connection between two-colored directed

graphs and one-way proof systems with logspace verifiers, along with the fact that every language

in PSPACE has a one-way proof system with a logspace verifier (Theorem 4.1) and the construction

of Lemma 2.5.

Proof of Theorem 4.3. We have already shown that COLORED GRAPH CONNECTIVITY is

in PSPACE in Section 4.5.1. We now prove that every problem in PSPACE can be reduced to

COLORED GRAPH CONNECTIVITY.

Recall from Theorem 4.1 that every language in PSPACE has a one-way proof system

with a logspace verifier � . Let
���

be the two-colored directed graph defined in Section 4.3. Recall

that the vertices of
���

correspond to the configurations of � on input � . The edges colored
�

encode the transitions of � when the next proof bit read is 0, and the edges colored � encode

the transitions when the next proof bit is 1. A pair of edges of the same color leaving a vertex

correspond to a random coin flip of the verifier. Recall that
� �

has vertices � 0, � ����������� and � � ��
������ ,
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which correspond to the unique starting, accepting, and rejecting configurations of � , respectively.

Recall also that � ����������� and � � ��
������ have no outgoing edges.

We will augment
� �

with the following edges. There will be an edge � � ����������� ��� 
 colored� , for each vertex � for which there is an edge � � 0 ��� 
 of color � . There is also an edge colored
�

and an edge colored � from � � ��
������ to every vertex in
� �

. We will call the augmented graph
� ��

.

We now claim that
� ��

is covered from all start vertices if and only if � is not in � . Since PSPACE

is closed under complement, this gives the desired result.

For the if direction, suppose that � is not in � and let � be any proof. Since � halts from all

starting configurations, a random walk on
� ��

from any starting vertex on color sequence � reaches

� ����������� or � � ��
������ with probability one. The probability that the walk reaches � � ��
������ , given that

it has reached one of these two vertices, is at least 2 � 3. If � ����������� is reached, by construction of
� ��

the remainder of the walk simulates � from its starting configuration, so again � ����������� or � � ��
������ is

reached with probability one, and � � ��
������ is reached with probability at least 2 � 3. Hence, a random

walk on
����

from any start vertex, on any infinite sequence, repeatedly reaches � � ��
������ . Since there

is an edge of each color from � � ��
������ to every other vertex in
� ��

,
� ��

is covered with probability

one.

For the only if direction, suppose that � is in � . Then there is a finite proof � that takes �
from the starting configuration to the accepting configuration with probability one. On the sequence

of colors corresponding to repeating � ad infinitum, a random walk on
� ��

from � 0 never visits

� � ��
������ . This is because � ����������� is repeatedly reached on each copy of � with probability one.

The remainder of the proof comes from converting the two-colored directed graph
� �

to

a three-colored undirected graph using the construction of Lemma 2.5.
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Chapter 5

Applications

5.1 Introduction

In this chapter we use the machinery of colored graphs to prove complexity theoretic

results about nonhomogeneous Markov chains. The questions that we consider are fundamental in

the theory of nonhomogeneous Markov chains and have applications to the theory of coding and

information of finite-state channels.

Recall that a finite nonhomogeneous Markov chain � is defined by an infinite sequence
�

1 � � 2 � � 3 ������� of � � � stochastic matrices, where
� � is the probability transition matrix for time

step � . Natural complexity theoretic questions arise when we think of the matrices that define the

nonhomogeneous Markov chain � as being drawn from a finite set
� ��� � 1 ������� � ��

� of � � �

stochastic matrices.

In this chapter we consider the problem of deciding, given such a set
�

, whether all finite

products, or words, over
�

are indecomposable. In order for all words to be indecomposable, each

of the individual matrices � 1 ������� � � 
 must be indecomposable. It is also necessary that each of the

individual matrices be aperiodic; if there is a word
�

of any length of period � 	 1, then the word
� � is decomposable.

The condition that each of the matrices � 1 ������� � ��
 be indecomposable and aperiodic,

however, is not a sufficient condition. For example, consider the product of the matrices whose

nonzero entries are represented by the directed graphs pictured in Figure 5.1. Although the individual

matrices are indecomposable and aperiodic, their product is decomposable.

We show that the problem of deciding whether all words are indecomposable is PSPACE-

complete. This problem is fundamental in information theory, as it is a necessary and sufficient
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1 1 1

  X =
2 3 2 3 2 3

Figure 5.1: Individual matrices that are irreducible and aperiodic, but whose product is
decomposable

condition for optimal coding over finite-state indecomposable channels.

In addition, we show that the related problem of deciding whether all infinite products are

weakly ergodic is PSPACE-complete, and that to decide whether all infinite products are strongly

ergodic is PSPACE-hard.

In Section 5.2 we motivate the results of this chapter by giving some background for the

application to information theory. For more details a good source is the book by Cover and Thomas

[11] or Shannon’s original 1948 paper [24]. In Section 5.3 we give the proofs for the two main

theorems of this chapter, described above.

5.2 Information Theory

5.2.1 Preliminaries

Information theory is concerned with the problem of transmitting messages or signals

over a device known as a channel. We begin this section by defining some of the basic notions of

information theory. For now we will be concerned only with those channels which transmit signals

with no possibility of loss or corruption.

The capacity � of such a channel is defined to be � � lim� � �
log

� � � 

� , where

� � � 
 is the

number of possible signals of duration � . In a simplified situation where the channel can transmit

one of � possible messages per unit time, the capacity � is equal to log � . In general, channel

capacity is a measure of the maximum number of bits of information that can be transmitted per

unit of time.

We can think of a discrete source as generating its message symbol by symbol, where

successive symbols depend probabilistically on previous symbols. This setup is modeled by an

ergodic Markov chain � described by an � ��� stochastic matrix
�

, and is powerful enough to

model natural languages and continuous information sources discretized by a quantizing process.
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The rate at which rate information is produced by the source � is defined using entropy.

Entropy was defined by Shannon in his original 1948 paper [24]. The entropy of a discrete

random variable
�

which takes on value � ��� with probability � � � 
 is defined to be:

� � � 
 � �
�
� � � � 
 log � � � 
 �

Intuitively,
� � � 
 measures the amount of uncertainty in the random variable

�
. Alter-

natively, entropy can be interpreted as the number of bits of information contained in the random

variable
�

; that is, the number of bits required, on average, to describe
�

. The entropy function
� � � 
 takes on values in the interval � 0 � log � � � � .

For instance, suppose that
�

is a random variable that is either 0 or 1, each with equal

probability. Then the entropy
� � � 
 is equal to 1, which is the maximum value of the entropy in

this case. On the other hand, suppose that
�

always takes the value 0. It is not surprising that in

this case
� � � 
 is 0, since the random variable

�
contains no information.

The joint entropy of random variables
�

and � , which take on values � and � with

probability � � � � � 
 is defined to be:

� � � � � 
 � �
�
�
� 

� � � � � 
 log � � � � � 
 �

In general,
� � � 1 �������	� � � 
 � �

�
�

1 ������� �
� � � � � 1 ������� � � � 
 log � � � 1 ������� � � � 
 .

The conditional entropy of � given
�

is defined to be:

� ��� � � 
 �
�
� � � � 
 � ��� � � �

� 
 �

The joint and conditional entropies of
�

and � are related by the following identity:

� � � � � 
 � � � � 
 � � ��� � � 
 �
This identity has the following natural interpretation. It says that the amount of uncertainty

in the pair of random variables
�

and � is equal to the amount of uncertainty in
�

plus the amount

of uncertainty in � when
�

is known. Put another way, the number of bits required to express both
�

and � is equal to the number of bits required to express
�

plus the number of bits required to

express � when
�

is known.

Let
� � � � be a stochastic process. Then the entropy rate of

� � � � is defined to be:

lim� � �
1
�
� � � 1 �������	� � � 
 �
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provided the limit exists. If
� � � � is a stationary ergodic process then there is a theorem which says

that the limit exists. In the special case that
� � � � is an ergodic Markov chain � with stationary

distribution � and probability transition matrix
�

, the entropy rate is given by the following simple

formula:
� � � 
 � �

�
� � �

� ��� 
 � ��� � � 
 log
� ��� � � 
 �

Note that if � is generating i.i.d. random variables
� � � �

then
� � � 
 � � � � 
 .

An analogue of the law of large numbers known as the Asymptotic Equipartition Property

(AEP) says that for large
�

there is a typical set (i.e., a set of probability approaching 1) of about

2
��� ��� � sequences of length

�
, each with probability about 2 


��� ��� � . This means that typical

sequences of length
�

can be represented using approximately
� � � � 
 bits. Hence, the entropy

rate is a measure of the average number of bits of information produced by � per unit of time.

Shannon [24] proved the AEP in the i.i.d. case and stated it for stationary ergodic processes. Later

McMillan [20] and Breiman [6] proved the AEP for stationary ergodic processes. This classical

result is known as the Shannon-McMillan-Breiman Theorem.

In the case of noiseless communication the rate of information transmission is defined to

be min
� � � � � where � is the capacity of the channel and

�
is the entropy or information rate of

the source. When information is transmitted at a rate equal to the capacity � of the channel, the

source and channel are said to be properly matched.

5.2.2 Noisy Communication and the Finite-State Channel

In noisy communication the input to the channel is subject to random noise during trans-

mission. In general, the output of the channel is a function of the input to the channel, the state of

the channel at the time of transmission and random noise. This model of a finite-state channel was

formalized by Blackwell, Breiman and Thomasian [5].

Formally, a finite-state channel is defined by a source and a channel. The source is a pair

� � � � 
 , where
�

is a
� � �

stochastic matrix corresponding to an ergodic Markov chain, and � is

a function from � � � � � 1 �������	� � � to � 	 � � � 1 ������� � 	 � . The channel is a set of 	 � � �
stochastic

matrices � 1 �������	� � 
 , and a function � from � � � � � 1 �������	� � � to � ��� � � 1 ������� � � � .
The elements of � � � are considered the states of the source, and the elements of � � � are

the states of the channel. The set � 	 � is the input alphabet and the set � � � is the output alphabet.

Suppose that
�

and
�

are the states of the source and channel, respectively, at the beginning of a

cycle. The source moves into a new state
� �

according to transition matrix
�

(i.e.,
� � � � � � 
 is the
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probability that the new state is
� �

) and emits � � � � 
 , which is fed into the channel. The channel then

moves into state
� �

according to the transition matrix � � ��� � � and emits �
� � � 
 , completing the cycle.

In the next cycle
� �

and
� �

are the initial states of the source and channel.

The joint motion of the source and channel is described by the source-channel matrix��
, a

� � � � �
stochastic matrix whose rows and columns are indexed by pairs � � � � 
 , where�

� � � � and
�
� � � � . The entry of

��
in the � � � � 
 th row and the � � � � � � 
 th column is given by

� � � � � � 
 � � ��� � � � � � � � 
 . A channel is called indecomposable if for every source the source-channel

matrix is indecomposable.

Let
� � � � � � � 
 � be the Markov chain with probability transition matrix

��
. Consider the

ergodic processes
�
� � � � � � � 
 � , � � � � � � � � 
 � and

� � � � � � � 
 � , and denote their entropies by
� � � 
 , � ��� 
 and

� � � � � 
 , respectively. The capacity of a finite-state indecomposable channel is

defined to be the upper bound
�

over all sources
�

of
� � � 
 � � ��� 
 � � � � � � 
 . Recall that

the joint entropy
� � � � � 
 � � � � 
 � � ��� � � 
 measures the amount of information in

�
plus the

amount of information in � when
�

is known. Hence,
� � � ��� 
 � � � � � � 
 can be interpreted

as the amount of information received, less the amount of information that is due to noise in the

channel. Intuitively, the capacity is the maximum possible rate of transmission of information; that

is, the rate when the source is properly matched to the channel.

Let � be an error probability in the interval � 0 � 1 � . We say that it is possible to transmit

information at rate
�

if, for all sufficiently large
�

, there exist � �
2
� �

distinct sequences
�

1 ������� � ��� in � 	 � � and � disjoint subsets � 1 �������	� � � of � � � � satisfying the following condition.

For all
�
� �	� � and

�
� � � � , the probability that the output sequence is in � � when the channel starts

in state
�

with input � � is at least 1 � � . The rate
�

measures the number of bits of information that

are effectively transmitted per unit of time.

The collection of pairs � � � � � � 
 is called a code. The sequences �
1 �������	� � � are the

codewords. These are the only sequences of length
�

transmitted by the sender. If the receiver

receives a message � � � � � , then he interprets the original message as having been � � . This is

called decoding. The probability that the receiver decodes incorrectly is at most � .

Shannon’s coding theorem states that it is possible to transmit information with arbitrarily

small (but positive) error probability at any rate less than the channel capacity but at no greater

rate. In [5] Blackwell, Breiman and Thomasian give a proof of Shannon’s theorem for finite-state

indecomposable channels.

Theorem 5.1 (Blackwell, Breiman and Thomasian [5]) For any indecomposable channel it is
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possible to transmit at any rate less than the capacity of the channel but not at any greater rate.

To verify that this result is valid for a particular finite-state channel we must know that the

channel is indecomposable. Towards this end the authors give the following necessary and sufficient

condition for channel indecomposability.

Theorem 5.2 (Blackwell, Breiman and Thomasian [5]) A channel � 1 �������	� � 
 is indecomposable if

and only if every finite word � � 1 ����� � � � is an indecomposable stochastic matrix, where
� �

1 � 2 ����� �
and � � � � 	 � .

5.3 Complexity Results

In this section we investigate the complexity of deciding,given a finite set
� � � � 1 �������	� � 
 �

of � � � stochastic matrices, whether all words over
�

are indecomposable. Several authors, moti-

vated by the coding theorem, studied this question during the 1960s. Thomasian gave the first finite

criterion for channel indecomposability in the following theorem.

Theorem 5.3 (Thomasian [25]) Let
� � � � 1 �������	� � 
 � be a set of � � � stochastic matrices.

All finite words over
�

are indecomposable if and only if all words of length at most 2
� 2

are

indecomposable.

Interestingly, the proof of Theorem 5.3 uses a similar idea to the one used in Chapter 2

in the proof of the doubly exponential upper bound on expected cover time. We include the proof

here.

Proof of Theorem 5.3. Assume that there is a decomposable word over
�

and let
� � � � 1 ����� � � �

be the shortest decomposable word. Suppose, for contradiction, that � 	 2
� 2

. Then, since there

are only 2
� 2

different types of � � � matrices, for some
� � �

, the word � � 1 ����� � � � is of the same

type as the word � � 1 ����� � � � . Hence, � � 1 ����� � � � � � ��� 1 ����� � � � is of the same type as
�

, and thus is a

decomposable word of length strictly less than � , which is a contradiction.

As Thomasian points out in his paper, the result of Theorem 5.3 gives an immediate

algorithm for channel indecomposability. The algorithm simply enumerates all words of length up

to 2
� 2

and checks that each one is indecomposable. The running time of this algorithm is doubly

exponential in � . However, by eliminating the need to repeatedly examine matrices of the same

type, we can solve this problem in singly exponential time as follows.
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Consider the directed graph
�

whose vertices correspond to the 2
� 2

different � � � zero-

one matrices 	 � . For every ordered pair of vertices 	 � and 	 � , there is a directed edge from 	 � to 	 �

in
�

if, for some � � � � , ��	 � � � � � � 	 � . For every vertex 	 � other than the identity matrix, mark

	 � if it is decomposable. Since we can determine whether the matrix 	 � is decomposable in
� � � 2 


time using graph searching, we can construct and mark the graph
�

in time
� � 2 � 2 � � 2 � 	 
 
 . Now,

there is a decomposable word over
�

if and only if there is a path in
�

from the identity matrix
�

to

some decomposable matrix 	 � �� �
. We can determine whether such a path exists by performing

a depth-first search of
�

from
�

. This takes time linear in the size of
�

. Hence, the total running

time of this algorithm is
� � 2 � 2 � � 2 � 	 
 
 .

Even this exponential time algorithm is impractical for modest values of � . Several

authors worked on improving Thomasian’s procedure by reducing the length of the words that are

examined. Using ideas from Hajnal [16], Wolfowitz [26] proposed the following improvement to

Thomasian’s procedure. A matrix
�

is scrambling if, for every pair of indices � 1 and � 2, there

exists an index � such that
� ��� 1 � � 
 	 0 and

� ��� 2 � � 
 	 0; that is, every pair of states share a

common consequent. Wolfowitz observed that any word with a scrambling matrix as a factor is

indecomposable; therefore, when running Thomasian’s procedure one could disregard any word

that is scrambling or contains a scrambling word as a subword.

In a subsequent paper, however, Paz [21] showed that even when scrambling matrices are

discarded, Thomasian’s procedure could be made to examine words of length as large as 2
� 2 
 � . In

the same paper, Paz proposed an alternative decision procedure that examines words of length at

most 1
2 � 3 � � 2

� � 1 � 1 
 . Nevertheless, in the worst case algorithms based on any of these criteria

take exponential time when the graph searching strategy is employed.

The result of Theorem 5.4 is two-fold. It first improves upon the exponential upper bound

given above by showing that the problem can be solved in PSPACE. Secondly, it shows that it is

unlikely that these exponential time algorithms will be substantially improved, by showing that the

problem is PSPACE-hard.

The first part of the result is a simple observation based on Thomasian’s criterion. Suppose

that there is a decomposable word
� � � � 1 ����� � � � , where � � � � 	 � and ��� 2

� 2
. A nondeterministic

polynomial space-bounded Turing machine can generate the indices � � , for
� �

1 ������� � � , one at a

time and incrementally compute � � � � , where
� � � � � 1 ����� � � � . Once � ���

has been computed, the

algorithm can verify in polynomial time that
�

is indeed a decomposable word. Since PSPACE is

closed under the addition of nondeterminism and under complement, this shows that Thomasian’s

criterion can be carried out in PSPACE.
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For the proof of hardness we use the characterization of PSPACE by the class IP1 � SPACE � log � 
 

from Chapter 4.

Theorem 5.4 Given a set
� � � � 1 �������	� ��

� of two or more � � � stochastic matrices, it is

PSPACE-complete to decide whether all words over
�

are indecomposable.

Proof. We have already described how a polynomial space Turing machine can decide, on input� � � � 1 ������� � � 
 � , whether all words over
�

are indecomposable. It remains to show that the

problem is PSPACE-hard.

Let � be any language in PSPACE and let � be an input of length � for which we wish

to determine whether � � � . By Theorem 4.1, � has one-way proofs of membership that can

be checked by an
� � log � 
 space-bounded verifier � . As in the previous chapter, let

� �
be the

two-colored directed graph of the computation of � on � . Recall that the vertices of
� �

correspond

to configurations of � , and that � 0, � ����������� and � � ��
������ correspond to the unique starting, accepting

and rejecting configurations of � , respectively. Recall also that vertices � ����������� and � � ��
������ are

the only sinks since they correspond to the two halting configurations. We will augment
� �

with an

edge � � ����������� ��� 
 of color � , for each vertex � for which there is an edge � � 0 ��� 
 of color � . We will

also add a self-loop � � � ��
������ ��� � ��
������ 
 in each of the two colors. We will call the resulting graph� ��
. Note that every vertex in

� ��
has at least one outgoing edge of each color.

Let
� � � � 1 � � 2 � , where � 1 is the probability transition matrix for a random walk on the

edges colored
�

, and � 2 is the probability transition matrix for a random walk on the edges colored

� . We claim that � is not in � if and only if all words over
�

are indecomposable. Since PSPACE

is closed under complement, the result follows from this claim.

Suppose that � � � . Then there is a finite proof � for which � accepts with probability

one. Let � denote the length of � and let
� � � �

1 ����� � � � be the word corresponding to � . Since

the verifier � accepts with probability 1 on � , by construction of
� ��

the entry of
�

whose row and

column correspond to � ����������� contains a 1. By construction of
�
��

the entry of
�

whose row and

column correspond to � � ��
������ also contains a 1. Hence
�

is a decomposable matrix with at least

two essential classes, one containing � ����������� and another containing � � ��
������ .
Suppose that � �� � and let � be any proof. Let � �

1 � �

2 ����� be the infinite sequence of

matrices corresponding to � . This sequence of matrices has a corresponding random walk on
� ��

.

Since � halts on all proofs, such a random walk eventually reaches either � ����������� or � � ��
������ . The

probability that the walk reaches � � ��
������ , given that it has reached one of these two vertices, is at

least 2 � 3. Suppose that the walk reaches � � ��
������ . Then, by construction of
� ��

, the walk stays in
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� � ��
������ forever. On the other hand, suppose that the walk reaches � ����������� . Then, by construction

of
� ��

, the remainder of the walk simulates the computation of � from its starting configuration,

so again one of � ����������� or � � ��
������ is reached, and � � ��
������ is reached with probability at least 2 � 3.

Hence, � � ��
������ is reached with probability 1 on � �

1 � �

2 ����� , and once it is reached the walk stays

there forever. Hence, all words have a single essential class which contains only the index � � ��
������ .

Theorem 5.5 Given a set
� � � � 1 �������	� ��

� of two or more � � � stochastic matrices, it is

PSPACE-complete to decide whether all infinite products over
�

are weakly ergodic. To decide

whether all infinite products over
�

are strongly ergodic is PSPACE-hard.

The part of Theorem 5.5 concerning weak ergodicity is obtained as a corollary to Theorem

5.4 using the following result of Wolfowitz.

Theorem 5.6 (Wolfowitz [26]) Let
� ��� � 1 �������	� � 
 � be a set of � ��� stochastic matrices. All

infinite products over
�

are weakly ergodic if and only if all finite words over
�

are indecomposable.

This equivalence shows that the problem of deciding whether all infinite products over
�

are weakly ergodic is also PSPACE-complete.

The part of Theorem 5.5 concerning strong ergodicity is obtained by observing that in

the proof of Theorem 5.4, if � is not in � then all infinite products converge to the � ��� matrix

in which all rows have a one in the column corresponding to � � ��
������ and zeros elsewhere. On the

other hand, if � is in � then there is an infinite product that is not weakly ergodic.

5.4 Concluding Remarks

In this chapter we have addressed the computational complexity of deciding, given a finite

set
� ��� � 1 ������� � ��
 � of � ��� stochastic matrices, whether all nonhomogeneous Markov chains

defined as products over
�

are ergodic. We have shown that deciding whether all products are

weakly ergodic is PSPACE-complete. We have also shown that the related problem of deciding

whether all finite words over
�

are indecomposable is PSPACE-complete, and have discussed the

application of this question to coding and information of finite-state channels. Our results show that

these are hard problems and give strong evidence that the known polynomial space (exponential

time) algorithms are the best possible.
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We have also shown that to decide whether all infinite products over
�

are strongly ergodic

is PSPACE-hard. It is unclear how close this result comes to capturing the true computational

complexity of the problem. Although recent work has addressed related questions [12] [18], no

effectively computable algorithm is known.
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