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Abstract

This thesis introduces a model of a random walk on a colored undirected graph. Such
a graph has a single vertex set and & distinct sets of edges, each of which has a color. A particle
begins at a designated starting vertex and an infinite color sequence C' is specified. Attimet the
particle traverses an edge chosen uniformly at random from those edges of color €'y incident to the
current vertex.

The first part of this thesis addresses the extent to which an adversary, by choosing the
color sequence, can affect the behavior of the random walk. In particular, we consider graphs that
are covered with probability oneon all infinite sequences, and study their expected cover timeinthe
worst case over all color sequences and starting vertices. We prove tight doubly exponentia upper
and lower boundsfor graphswith three or more colors, and exponential boundsfor the special case
of two-colored graphs. We obtain stronger bounds in several interesting special cases, including
random and repeated sequences. These exampl es have applicationsto understanding how the entries
of the stationary distributionsof ergodic Markov chains scale under various elementary operations.



The random walks we consider are closely related to space-bounded complexity classes
and atype of interactive proof system. The second part of the thesisinvestigates these rel ationships
and usesthem to obtain compl exity resultsfor reachability problemsin colored graphs. In particular,
we show that the problem of deciding whether a given colored graph is covered with probability
one on al infinite sequences is complete for natural space-bounded complexity classes.

We also use our techniques to obtain complexity results for problems from the theory
of nonhomogeneous Markov chains. We consider the problem of deciding, given a finite set
C ={C1q,...,C4} of n x n stochastic matrices, whether every infinite sequence over C forms an
ergodic Markov chain, and prove that it is PSPACE-complete. We a so show that to decide whether
agiven finite-state channel isindecomposableis PSPACE-complete. Thisquestionis of interest in
information theory where indecomposability is a necessary and sufficient condition for Shannon’s
theorem.

This work was supported in part by a Lockheed graduate fellowship and NSF grant
CCR92-01092.



Contents

1

I ntroduction

1.1 Notationand Terminology . . . . . . . . . .

1.2 MarkovChainBackground . . . . .. .. .. ... ... ... ...
121 HomogeneousMarkovChains. . . . . .. ... ... ... .. .....
1.2.2 NonhomogeneousMarkov Chains . . . . . ... ... ... .......

Cover Time

21 Introduction . . . . . . . .. e e e e e
22 UpperBounds . . . . . . .. e
23 LowerBounds . . . . . . ... e e e e e e
24 ConcludingRemarks . . . . . . . . . ..

Special Cases and Applications

31 Introduction . . . . . . ... e e

32 Specid Graphs . . . . . . .
3.21 Proportional ColoredGraphs . . . . . .. ... ... ... ... ..
322 GraphswithSdf-Loops . . . . . . . ... ... ...,

3.3 Specid SequUENCES . . . . . . L e e e
331 RandomSequences . . . . . . .. . ...
332 RepeatedSequences . . . . . . ... .ol
3.3.3 Corresponding Homogeneous Markov Chains . . . . . . .. .. ... ..

34 LowerBounds . . . . . ...

3.5 AnApplication to Products and Weighted Averages . . . . . . . .. .. ... ..

Colored Graphs and Complexity Classes

4.1 Introduction . . . . . . .. e e e e e e

42 Oneway Interactive Proof Systems . . . . . . . .. ... ... ...
421 Example: CoinFlippingProtocol . . . . . ... ... ... .......

4.3 Two-colored DirectedGraphs . . . . . . . . . .. ...
431 Example: Coin Flipping Protocol Revisited . . . . . . . .. .. ... ..

44 Polynomiad Space . . . . . ... e

45 Colored Graph Connectivity . . . . . . . . . .. ...
451 Space-bounded Algorithms . . . . . .. ... o Lo

ab~rbhweek

(¢ JENIEN



452 HardnessResults. . . . . . . . . .. e

5 Applications
5.1 Introduction . . ..
5.2 Information Theory
521 Preiminaries

5.2.2 Noisy Communication and the Finite-StateChannel . . . . . . . . .. ..

5.3 Complexity Results
5.4 Concluding Remarks

Bibliography

29

32
32
33
33
35
36
38

40



Acknowledgements

There are many peopleto thank for the role they played during my graduate school years.

First there is my advisor, Manuel Blum, whose enthusiasm and encouragement gave me
the confidence to develop my independence and a sense of research taste and style. Alistair Sinclair
also deserves special mention. | haverelied heavily on hisinsight and advice. Inadditiontobeing a
second advisor, Alistair isalso agood friend. | would like to thank Yuval Peres for his suggestions
which greatly helped to improve the clarity of thisthesis. The work in this thesis was done jointly
with Anne Condon at the University of Wisconsin. | have learned a great deal working with Anne
and have enjoyed it tremendously. Thanks to Dick Karp and Umesh Vazirani for their excellent
teaching and for useful discussions.

Berkeley has a wonderful group of graduate students and researchers and | have made
some of my dearest friends here. Over long distances my friendships with Sandy Irani and Ronitt
Rubinfeld have only grown stronger. To me they are like family. Graduate school would not have
been the same without Dana Randall. | continue to be amazed by her generosity and her ability to
read my mind. Mike Luby has also been very special and | thank him for hisfriendship and advice.
| have learned and laughed a lot in many long conversations with Amie Wilkinson. Some of the
best laughs | have ever had were shared with Nina Amentaand Will Evans; | have appreciated their
warmth and humor. | have greatly enjoyed time spent with Madhu Sudan, Francesca Barrientos,
Sara Robinson, Mike Mitzenmacher, Z Sweedyk, Deborah Weisser, Mike Schiff, Ramon Caceres
and Dan Jurafsky.

Finally, I would like to thank my mother, Joan Moderes, for her love and support.



Chapter 1

| ntroduction

A k-colored graph G isak + 1-tuple(V, Fy, ..., Ex), where V isafinite set of vertices
andeach F; C V x V isaset of edges. We will refer tothe set F; asthe edges of color ¢. If, for al
i, whenever (u, v)isin £; (v, u) isdsoin F;, then G isak-colored undirected graph. In thiscase
we will write {u, v} to represent the undirected edge that connects vertices  and ». Otherwise, G
isak-colored directed graph. Unless otherwise specified the graphs considered in thisthesiswill be
undirected. Aswewill see, undirected colored graphs are as general as their directed counterparts.

Thisthesisintroducesamodel of arandomwalk on acolored undirected graph. A random
walk on a colored graph proceeds asfollows. A particlebegins at adesignated starting vertex and an
infinite color sequence C' over the alphabet {1, . .., £} isspecified. At timet the particle traverses
an edge chosen uniformly at random from those edges of color €, incident to the current vertex.
The case of £ = 1 corresponds to a simple random walk on an undirected graph.

This thesis investigates intrinsic properties of random walks on colored graphs, such as
expected cover time, as well as applications in computational complexity, where there are direct
applications to the theory of nonhomogeneous Markov chains and coding and information theory.
Many of the results have appeared in the papers [9] and [8].

We begin in Chapter 2 with an investigation of the expected cover time of random walks
on colored graphs. The cover timeof the colored graph G isthenumber of stepsuntil arandom walk
visitsal of the vertices of (&, as aworst case over al starting vertices and infinite color sequences.
We consider only those graphs that are covered with probahility one on al infinite sequences from
all start vertices, since without this property there is no bound on the cover time. We show that
the expected cover time of colored graphs with two colorsis exponential in the number of vertices,
and that graphs with three or more colors have doubly exponentia expected cover time. Since it
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iswell-known that connected undirected graphs (the case of one color) have polynomial expected
cover time, these results establish athree-level hierarchy of cover timesin colored graphs.

In Chapter 3 we go on to prove tighter bounds on the expected cover timein avariety of
interesting special cases. These cases are of two types. we consider both special classes of colored
graphsand special types of color sequences. We show that if a colored graph isproportional thenits
expected cover timeispolynomial. The proportionality property simply saysthat arandomwalk on
each of the underlying graphs (V, £;) isan ergodic Markov chain, and that, in addition, the Markov
chains for random walkson al of the (V, £;) share the same stationary distribution.

We aso consider the case where each underlying graph (V, ;) is connected and has a
self-loop at every vertex; that is, (7, j) € E; forall j. Inthiscase, arandomwalk on(V, ;) isagain
an ergodic Markov chain; however, the stationary distributions of the Markov chains corresponding
to each of the (V, F;) may differ. Inthis case, we givetight exponential upper and lower bounds on
the expected cover time. Hence, when the stationary distributionsof the underlying graphs coincide
the expected cover time is polynomial, but when the stationary distributions differ the expected
cover timeis exponential .

Finally, we consider the behavior of random walks on colored graphs when the color
sequence is chosen at random and when the color sequence consists of afinite sequence C'y ... ()
repeated ad infinitum. In both of these cases the random walk corresponds to a homogeneous
Markov chain, and we can show that the expected cover time is at most exponentia. In the case
that the corresponding homogeneous Markov chain is ergodic and all of the entries of its stationary
distribution are inversely polynomial, the expected cover timeis polynomial. We give an example
of a colored graph for which the homogeneous Markov chains defined by random and repeated
sequences is ergodic, but the expected cover time is still exponential. Hence, we prove tight
exponential upper and lower bounds on random and repeated sequences. Moreover, the example
showsthat it is possiblefor an ergodic Markov chain that is composed of an average or product of
random walks on connected undirected graphs to have exponentially small entries in its stationary
distribution, even though the entries of the stationary distributionsfor the origina random walksare
only inversely polynomial.

Two-colored directed graphs were first studied by Condon and Lipton [10] in their inves-
tigation of one-way interactive proof systems with space-bounded verifiers. In an interactive proof
system a prover P wishes to convince a verifier V' that a given shared input string = is a member
of some language /.. The prover and the verifier share independent read-only access to the input
string z. Theverifier V also hasaprivate read-write worktape and the ability to toss coinsduring its
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computation. In our case, we are interested in verifiers V' that are space-bounded; that is, verifiers
that write on at most s(n ) tape squares on all inputsof length n. In particular, we will beinterested
in systems where the verifier uses space O(logn) on al inputs of length n.

In a genera system, the computation proceeds in rounds. In each round, the verifier
tosses a coin and asks a question of the more powerful prover. Based on the answers of the prover,
the computation continues until eventually the verifier decides to accept or reject = and halts by
entering an accepting or rejecting state. The systems we consider are one-way in the sense that all
communi cation goes fromthe prover to the verifier. Sincethe systemisone-way we can think of the
prover as being represented by aproof string and the verifier as having one-way read-only accessto
the proof. We say that alanguage /. has a one-way interactive proof system with alogspace verifier
if there exists a probabilistic Turing machine V' that on all inputs z of length n uses space O(logn)

and satisfies the following one-sided error conditions:
1. If z isin L, then there is some finite proof string that causes V' to accept with probability 1.
2. If z isnotin L, then on any finite or infinite proof V' rejects with probability at |east 2/3.

In Chapter 4 we further the study of one-way interactive proof systemswith logspace ver-
ifiers by showing that every language in PSPACE, the class of languages recognized by polynomial
space-bounded Turing machines, has a one-way interactive proof system with a logspace verifier.
In [10] the authors show that the question of whether a logspace verifier V' accepts or rgects its
input correspondsto areachability questionin an appropriately defined two-col ored directed graph.
We use this correspondence in conjunction with the PSPACE result to prove PSPACE-compl eteness
results for connectivity problems for colored graphs. In particular, we show that the problem of
deciding, given acolored graph G with three or more colors, whether G is covered with probability
one on all infinite sequences is PSPACE-complete. We also show that the anal ogous problem for
two-colored graphs is complete for nondeterministic logspace.

As was noted earlier, the random walks of this thesis correspond to nonhomogeneous
Markov chains. In a nonhomogeneous Markov chain the probability transition matrix can change
in each time step. Natural complexity-theoretic questions arise when we think of the matrices that
define the Markov chain as being drawn from afiniteset C = {C1,...,C4} of n x n stochastic
matrices. In Chapter 5 we use the machinery of colored graphs to prove PSPACE-completeness

of severa problems from the study of nonhomogeneous Markov chains. Every infinite product

H C;, over the set C defines a finite nonhomogeneous Markov chain. We show that the problem
=1
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of deciding whether every infinite product over C defines an ergodic Markov chain is PSPACE-
complete. We also show that the related problem of deciding whether al finite words over C are
indecomposableis PSPACE-complete. Thisquestion has applicationsto coding and information of
finite-state channels. In particular, it is a necessary and sufficient condition for Shannon’s coding
theorem for finite-state channels. Hence, we show that to decide whether agivenfinite-state channel
has an optimal code is PSPACE-complete.

The application to Shannon’s theorem for finite-state channels lead to a series of papers
[25] [26] [21] investigating the complexity of deciding whether al words over a given set C
are indecomposable. This work resulted in severa finite decision procedures, all of which are
easily seen to be in PSPACE and EXPTIME (deterministic time 2 for some constant ¢). Our
PSPACE-compl eteness result gives strong evidence that the currently known algorithms are the best
possible. They show that a subexponentia time algorithm would imply a separation of PSPACE
from EXPTIME, which would be amajor breakthrough in complexity theory.

The remainder of this chapter isa brief description of the notation and terminology that
will be used in thisthesis, as well as areview of the necessary Markov chain background.

1.1 Notation and Ter minology

Let G = (V, Fa,..., E}y) beak-colored undirected graph with n vertices. We will refer
to the undirected graph (V, F;) asthe underlying graph colored i. For each color 7 and vertex », the
degreed;(v)is|{w : {v,w} € E;}|. For each color i, wewill use A; to denote then x n adjacency
matrix for the edge set £;. Then x n stochastic matrix P; isthe probability transition matrix for a

simplerandom walk on (V, E;), and is given by:

Pluw)= ) a0’ if (u,v) € £
0, otherwise.
Let C' = C1C2C3. .. be an infinite color sequence over the aphabet {1,..., %} and let
s € V beavertex in G. A random walk starting from s on the color sequence ' proceeds as
follows. Thewalk begins at time O at the vertex s. Suppose that at timet > 0thewalk is at vertex
u. Then, for all vertices v, at timet + 1 the walk movesto vertex » with probability Pc, (u, v).
Let C1...C; be a finite color sequence. We use (C1...C})% to denote the infinite

sequence obtained by repeating C'; . . . C; ad infinitum.
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1.2 Markov Chain Background

In this section we review the Markov chain terminol ogy and background that will be used
in the chapters that follow.

1.2.1 Homogeneous Markov Chains

Ann x n stochastic matrix M defines ahomogeneous Mar kov chain M whose state space
istheset [»] = {1,...,n}, and for which the probability of going from state i to state j in one step
isgivenby M (i, j).

The Markov chain M is said to be ergodic if the limit tILTo M'" exists and has all rows
equal. An equivalent condition for ergodicity is that the probability transition matrix M is both
indecomposable and aperiodic.

In order to define indecomposable and aperiodic, consider the directed graph ' induced
by the nonzero entries of M. That is, consider the directed graph G' = ([n], ) with vertex set
[n] ={1,...,n}andedgeset I = {(i,7): M(i,7) > O}. Let G’ = (V', ') bethedirected graph
whose vertices correspond to the strongly connected components of . There is a directed edge
(C, ") from component C' to component C” if and only if thereexistsan: € C'andaj € C' such
that (7, ) € F. Thegraph GG is called the component graph of G and is necessarily acyclic.

Thematrix M isindecomposable if the component graph G’ contains exactly one vertex
that isasink; that is, thereisexactly onevertex with no non-loop edgesleavingit. Intheterminology
of nonnegative matrices, each vertex in the component graph corresponds to acommunicating class
of indicesof M. Sink vertices correspond to essential classes. Other verticesareinessential classes.
The stochastic matrix M isindecomposableif it contains exactly one essential class of indices. For
examples, see Figure 1.1 below. In thefirst example, {v1, v3} isan inessentia classand {v,} isan
essential class, so the chain isindecomposable. In the second example, {w1} isan inessential class
and {w,}, {w3} are essentid classes, so the chain is decomposable.

The greatest common divisor of the lengths of all cyclesin G iscalled the period p of M.
Thematrix M isaperiodicif p isequal to one.

Noticethat ergodicity iscompletely determined by the positionsof the non-zero entriesin
the probability transition matrix M, and is independent of the actual valuesin those positions. We
will define the type of A to bethen x n matrix (M) that hasalin position (7, j) if M(7,j) > O,
and a0 otherwise. Stochastic matrices M1 and M> are said to be of the sametypeif (M1) = (M>);

that is, if they have positive e ements and zero e ementsin the same positions.
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Indecomposable Decomposable

Figure 1.1: Exampleillustrating the definition of indecomposable

An ergodic Markov chain M hasauniquelimiting or stationary distributionwhich isthe
n-dimensional row vector 7 corresponding to any row of the limit tlim M. The vector 7 satisfies
7(¢) > Ofor al 1, Zﬂ'(@) =1l,and7M = .

A strongezr definition of ergodicity isthat the limit tILTo M exists, is positive, and has al
rows equal. An equivalent set of conditionsisthat the matrix M isirreducible and aperiodic. The
matrix M isirreducibleif the graph ¢ induced by the nonzero entries of M is strongly connected.
That is, for every pair of vertices v and », v isreachable from » and « is reachable from ». In this
case M contains one communicating class of indices. Following Seneta[22] we will call such an
ergodic Markov chain regular. In aregular Markov chain al entries in the stationary distribution
are strictly positive.

A random walk on a connected undirected nonbipartite graph G = (V, F) forms a
regular Markov chain. It is easy to verify that its unique stationary distribution = is given by
m(v) = d(v)/2|E|,fordl v € V.

1.2.2 Nonhomogeneous M arkov Chains
A finite nonhomogeneous Markov chain M is defined by an infinite sequence
My, Mo, M3, . ..

of n x n stochastic matrices. Once again the state space of the Markov chainis[n] but thetransition
probabilities can be different at different time steps. The matrix M; is the probability transition
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matrix for the ith time step. A homogeneous Markov chain with probability transition matrix M is

the special case M, M, M, . . ..
t4t!
Let M (**) denote the product J] Mx. The nonhomogeneous Markov chain M is said
k=t
to beergodic if, for each t, ast’ — oo :

| M (i, 5y = MED( j)| — 0, forall 4,4, ;.

That is, M isergodicif, for al ¢, ast’ tendsto infinity the rows of the matrix A (:*') tend
to equality. If, in addition, for all ¢, M (") tendsto a limit as ¢’ tends to infinity then the Markov
chain M issaid to be strongly ergodic. Otherwise, M is said to be weakly ergodic.

The following exampl e illustrates the difference between weak and strong ergodicity for
nonhomogeneous Markov chains. Consider the matrices A1 and A, whose nonzero entries are
represented by the directed graphs shown in Figure 1.2. All infinite products over { A1, A»} are

O———ED CO® @

Figure 1.2: Exampleillustrating the difference between weak and strong ergodicity

weakly ergodic since in both of the graphs the next state is independent of the previous state.
However, the infinite product A1 A2A1A2A; - - - isnot strongly ergodic.



Chapter 2

Cover Time

2.1 Introduction

In this chapter we investigate the expected cover time of colored graphs. We say that a
colored graph G can be covered from s if, on every infinite sequence C' of colors, a random walk
on (' starting at s visits every vertex with probability one. The expected cover time of GG is defined
to be the supremum, over all infinite sequences C' and start vertices s, of the expected timeto cover
G on C starting at s. Throughout this chapter we only consider those graphs ' that can be covered
from all start vertices. This property is needed since without it there is no bound on the cover time.

The condition that ¢ be covered from al itsvertices makesit necessary for the underlying
graphs of each color to be connected. Thisis because G must be covered with probability one on
the sequence (¢)“ for al colors ¢. The condition that all of the underlying graphs are connected,
however, isnot asufficient condition. For instance, consider the graph of Figure 2.1, wherethe solid
lines are the edges colored 2 and the dotted lines are the edges colored B. Both of the underlying

Figure 2.1: Underlying graphs connected but not covered from all start vertices

graphs are connected; however, a random walk on the sequence (R B)“ starting from s does not

cover the graph.
Theproperty that ¢ becovered from all of itsverticesisageneralization of theconnectivity
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property for undirected graphs. In this chapter we use the property as stated. In Chapter 4 we return
to give an exact combinatorial characterization and to investigate the computational complexity of
determining whether or not it is satisfied.

The expected cover time of asimplerandom walk on an undirected graph (the case of one
color) has been well-studied, and various polynomia bounds on the expected cover time have been
shown [1] [7]. In what followswe prove the following two main results on the expected cover time
of colored graphs with n vertices:

Theorems 2.1 and 25 The expected cover time of colored graphs is bounded above by

227" "and there are graphs with three colors that achieve this bound.

Theorems 2.2 and 2.3 The expected cover time of two-colored graphs is bounded above
by 27°4()  and there are graphs with two colors that achieve this bound. More precisely, we
prove an upper bound of 20(7*1097) and a lower bound of 22().

These results combined with known results about the one color case establish athree-level hierarchy

of cover timesin colored graphs.

2.2 Upper Bounds

Let G beacolored graph and let s and ¢ be two vertices of G. We say that ¢ is reachable
froms on the color sequence C' = (1 ... . (, if thereisa sequence of verticess = vg, v1,...,v = 1
such that G contains an edge of color C; between v;_; and v;, for 1 < 7 < [. We cal vg, v1, ...,
apathfromstotzonC'.

For any pair of vertices s and ¢, we define the distance dist( s, ¢) to be the minimum  such
that ¢ is reachable from s on a prefix of every sequence of length /. Notice that since we assume
that G is covered from all start vertices, dist(s, ¢) is necessarily finite. The key to proving the upper
bounds on the cover timeisto obtain good bounds on the maximum distance between verticesin a
colored graph.

Lemma2.1 Let G be a colored graph with n vertices, and let s and ¢ be verticesin G. If G is

covered fromall of its vertices, then dist(s, t) isat most 2".

Proof. Let C' = (' ...C; beany color sequence of length/ = 2". Assumethat ¢ is not reachable
from s on any prefix of C'. Let So = {s} and, for 1 < i < [, let S; be the set of vertices
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reachable from s on the color sequence C';...C;. By assumption, ¢ is not in any of the sets
S:, but by the pigeonhole principle S; = S for some j # k. Hence, on the infinite sequence
C1...Ci(Cj41...Cy)%, tisnever reached from s, which is acontradiction. O

We are now prepared to prove the following theorem:

Theorem 2.1 Let (¢ be a colored graph with » vertices that is covered from all vertices. The

expected cover time of 7 is at most 227

Proof. LetC' = C'1C>C3. .. beaninfinitecolor sequence and let s be any vertex in G. Consider an
arbitrary ordering s = 1, ..., n of the vertices of G. We will consider therandom walk in intervals
of length [ = 2". Suppose that after thefirst 7 intervalsvertices 1, .. ., ¢ — 1 have been visited but ¢
has not been visited. Let v; be the current vertex after thefirst ¢ intervals. Then, since G is covered
from al start vertices, by Lemma 2.1, dist(v;, ) isat most /. Hence, ¢ isvisited ininterval 7 + 1
with probability at least 1/n'. Thus, the expected number of intervals until all vertices are visited
isa most (n — 1)n!. Since each interval consists of I = 2" steps, the expected time to cover G is
amost (n — 1)2"n?" = 22° . ¢

The result in Theorem 2.1 is independent of the number of colorsin . In the case
of graphs with two colors, however, the expected cover timeis only singly exponential in n. In
what follows we will assume that the two colors are red and blue, and denote them by R and B,

respectively. The approach isto strengthen Lemma 2.1 asfollows.

Lemma 2.2 Let (G be atwo-colored graph with » vertices, and let s and ¢ be verticesin . If G is
covered fromall of its vertices, then dist(s, t) isat most (4n — 3)(n — 1).

Once Lemma 2.2 isin place, the proof follows the same general outline as the proof of
Theorem 2.1. However, in subsequent chapters we will need a slightly different statement from the

onegivenin LemmaZ2.2. Instead wewill prove the following equivaent lemma.

Lemma 2.3 Let G be a two-colored graph with » vertices, and let s and ¢ be verticesin G. If tis
reachable from s on a prefix of each of (R)“, (B)“, (RB)“ and (BR)“, then dist(s,?) isat most
(4n — 3)(n — 1).

Notice that Lemma 2.2 follows easily from Lemma 2.3, since if a random walk from s
visits¢ with probability one on all infinite sequences then ¢ must be reachable from s on a prefix of
esch of (R)“, (B)¥, (RB)¥ and (BR)“.
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To prove Lemma 2.3 we will relate arbitrary color sequences to prefixes of the four
sequences (R)“, (B)“, (RB)“ and (BR)“ using the infinite aternating path » shown in Figure
2.2. Alternate edges of this graph are colored R and B. Thus any sequence of colors defines a
unique path from any fixed starting point p on P. For clarity we will refer to the vertices of P as
points to distinguish them from the vertices of .

R B R B R B R B

p

Figure 2.2: Alternating path P with fixed starting point p

We say that two finite color sequences C' and C” are similar if, starting from any point p,
the unique point reached on the color sequence C' is the same as the unique point reached on C".
For instance, the sequences RRBBRB and BBRRRBRR are similar. The following lemmais
the key to proving Lemma 2.3.

Lemma 2.4 Supposethat C' issimilar to C’, where C’ isa prefix of (RB)“ (or (BR)“), and let u

and v be vertices of 5. If thereis a path from« to » on C”, then thereis a path from« to » on C'.

Proof. Let ¢ bethe unique point on P that is reached from p on sequences C' and C’. Since there
isapath from u to » on C’, C’ defines a path from « to » in G dong which the edges are colored
the same as the edges from p to ¢ in . We will construct a path from « to » on C' that wanders
along this path in the same way that the path from p to ¢ on C' wandersaong P. Of course the path
from p to ¢ on C' may visit pointsthat do not lie between p and ¢. In constructing our path from »
to » we need to extend the path in G accordingly.

Moreprecisdly, let C' = C1...C! ,andletC = Cy...C,,. Letp = py,pY,....0L = ¢
be the path from p to g on C’. Let p = po, p1,...,pm = ¢ bethe path from ptoq on C. Let
uw = ug,ul,...,u, = v beapah from u tov on C’. We will show how to construct a path
u = ug, U1, .- -, Uy = v fromutovonC.

The path is defined inductively. We let uo = « and, for ;7 = 1,...,m, define u; as
follows:
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u;, if p; = p;, forsomei < j

!/

ui, if p; = pl, for somes

W =
J . .
w, otherwise, where w is any vertex

connected to «;_1 by an edge of color C';

For example, supposethat C’ = RBR and C' = BBRBBBR, and that u, u1, u, v isa
path from « to v on C’. Then the path we construct on C' is. u, w, u, u1, up, ug, uz, v, Wherew isa
vertex connected to « by an edge colored B. Thisexampleis shown in Figure 2.3.

R B R B R B R B

WU U up v

Figure 2.3: Defining a path from » to » on the sequence C' = BBRBBBR

It is straightforward to verify that the sequence ug, u1, . . ., u,, iSindeed a path from «
to » on C' by checking that ug = u, u,, = v and, foral 1 < j < m , vertices u;_1 and u; are
connected by an edge of color C';.

0
We are now prepared to give the proof of Lemma 2.3.

Proof of Lemma 2.3. We begin by making afew simple observations. Sincet isreachable from s
on aprefix of (), thereisapath from s to ¢ on which al edges are colored R. The shortest such
path isa simple path and has length at most » — 1. Hence, thereis a path from s to ¢ on a prefix of
(R)v of length at most » — 1. Similarly, thereisapath from s to ¢ on a prefix of (B)“ of length at
most n — 1.

Since ¢ isreachable from s on a prefix of (RB)“, thereis apath from s to ¢ that begins
with an edge colored i and alternates between R and B. The shortest such path has length at most
2n — 1, since in a shortest path ¢ appears exactly once and each other vertex appears at most once
in an even numbered position and at most once in an odd numbered position. Similarly, thereisa
path from s to ¢ on aprefix of ( BR)“ of length at most 2n — 1.

In what follows we will use these simple observations to prove that, on any sequence
C=Cp...Crof lengthl = (4n — 3)(n — 1), t isreachable from s on aprefix of C'. Consider the
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unique path from p on P on the sequence C'; . . . C}. By our choiceof [ = (4n — 3)(n — 1) it must
be the case that either:

1. Somepoint of P isvisited n timeson the sequence 'y ...C, or

2. 2n — 1 distinct points to the right or |eft of p are visited on the sequence C'; ... (.

In either case we will show that ¢ isreachable fromson Cy...Cy, for somel’ < {.

We first consider the case where some point ¢ on P isvisited n timesonCy...Cp. If ¢ is
visited n timeson C ... C; then at least 2n — 2 times we traverse one of the two edges incident to
¢. Hence, either we traverse the edge colored R adjacent to ¢ at least n — 1 times, or we traverse the
edge colored B adjacent to ¢ at least » — 1 times. Without loss of generality assume that the edge
colored R istraversed n — 1times. (The argument in the case that the edge colored B is traversed
n — 1ltimesisanalogous.)

Lets = vo,v1,...,0m-1, vy = t beashortest path from s to¢ on aprefix of ( R)*, where
m < n — 1. Wewill incorporate this path into awak on C'. Since the edge colored R adjacent to ¢

istraversed at least n — 1 times, we can rewrite C' asfollows:
C=CORCORCAR.. . .ctr-DRCm),

whereC @, c®, .. c0m=1) are(possibly empty) stringsover { R, B} that are similar to the empty
string, and '™ is astring over { R, B}. For 0 < i < m, C') is similar to the empty string so,
by Lemma 2.4, for any vertex » in G there is a path from » back to » on C'9). For 0 < i < m, let
p; be a path from »; back to »; on C'9. Then po, v1, p1, v2, . . ., Pm—_1, ¥m IS apath from s to ¢ on
CORCOR...ctn-DR.

Now we consider the case where 2n — 1 distinct pointsto theright (or left) of p arevisited
on the sequence (1 . . . C;. We do the proof for the case that 2 — 1 distinct pointsto the right of p
are visited and the edge from p to the point to itsright is colored R. We know that on some prefix
C'=C1...Cl of (RB)¥, wherem < 2n — 1, t isreachable from s in G. Let ¢ be the point
reachable from p in P on the color sequence 7 ...C! . Since 2n — 1 pointsto theright of p are
visited on thesequence (1 . . . (', the point ¢ isreached from p onthe sequence C; . . . C'y, for some
" < 1. Thusthe sequences C;...Cy and C' are similar. So, by Lemma 2.4, ¢ is reachable from s
onCy...Cy, asrequired. O

We can now prove the upper bound on the expected cover time of graphs with two colors
using Lemma 2.2 and a proof analogous to that of Theorem 2.1.
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Theorem 2.2 Let ¢ be a two-colored graph with » vertices that is covered fromall vertices. The

expected cover time of G isat most 20(*10gn)

Proof. LetC' = C'1C>C3. .. beaninfinitecolor sequence and let s beany vertex in G. Consider an
arbitrary ordering s = 1, ..., n of the vertices of G. We will consider therandom walk in intervals
of length ! = (4n — 3)(n — 1). Suppose that after the first ¢ intervals vertices 1,...,¢ — 1 have
been visited but ¢ has not been visited. Let v; be the current vertex after thefirst 7 intervals. Then,
since G is covered from from all of its vertices, by Lemma 2.2, d(v;,t) < [ and so ¢ is visited
with probability at least 1/n' in the next interval. Thus, the expected number of intervals until all
vertices arevisited isat most (n — 1)n!. Since each interval consistsof | = (4n — 3)(n — 1) steps,
the expected time to cover ¢ from s isat most (n — 1)n!l = 20(n*logn), O

Suppose that the colored graph ' is not covered from all vertices, but satisfies the weaker
condition that it is covered starting from s. It should be noted that the same techniques can be used
to bound the expected cover time of a random walk starting from s, as a worst case over al color
sequences. It follows from Lemmas 2.1 and 2.3 and the proofs of Theorems 2.1 and 2.2 that if a
random walk, after some number of steps, reaches vertex » without visiting ¢, then dist(v, ) is at
most /, where [ is bounded by 2" in general, and by (4n — 3)(n — 1) in the case of two-colored

graphs.

2.3 Lower Bounds

In Theorems 2.3 and 2.5 we prove exponential and doubly exponential lower bounds on
the expected cover time of colored graphswith two and three col ors, respectively. Thelower bounds
are based on the following lemma.

Lemma25 Let G be a k-colored directed graph and let s be a vertex in G. There exists a
(k + 1)-colored undirected graph " and a vertex s’ in G’ such that:

1. the number of verticesin G’ is twice the number of verticesin G,
2. " iscovered fromall verticesif and only if G is covered fromall vertices, and

3. for every k-color sequence C', thereexistsa (k + 1)-color sequence C’ such that the expected
cover time of G’ from s’ on C" is at least twice the expected cover time of G froms on C'.
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Proof. Let G beak-colored directed graph with vertices {v1, ..., v, } and edge colors{1,..., k}.
Wewill construct a( .+ 1)-colored undirected graph G’ with vertex set LUR, where L = {l4,...,1,}
and R = {r1,...,7,}. Thegraph G’ will have an edge colored % + 1 between /; and r;, for al i.
There will also be an undirected edge colored ¢ connecting /; and r;, for each directed edge (v;, v;)
colored ¢ in G. In addition, there will be a complete graph on 7. in each of thecolors 1, ..., k, and
acompletegraph on R inthecolor £ + 1.

This construction isillustrated for an example with £ = 1 in Figure 2.4 below.

Figure 2.4: Converting a directed graph into a two-colored undirected graph

Now, for every path p = v;,, v;,, ..., v;,, iInG oncolor sequence C' = C1C3...C,,, there
is a corresponding path p’ = l;yrioli, 74, - - - 1i,, i, in G’ on color sequence C' = (k + 1)C1(k +
1)Cs...(k+1)Ci(k+1). Notethat, for all 7, thepath p includesw; if and only if the corresponding
path p" includes/; and r;. Moreover, the probability that arandom walk on &' from »;, on C' takes
the path p is exactly the same as the probability that arandom walk on G’ from /;, on C” takesthe
path p’. Since every two steps of the random walk on GG’ correspond to one step of the random walk
on G, the expected cover timeof G’ on C' from [; is exactly twice the expected cover time of G on
C from v;. Hence, the expected cover timeof GG’ isat |east twice the expected cover time of .

It remainsto show that G is covered from al itsverticesif and only if GG is covered from
all its vertices.

For the only if direction, suppose that there exists a vertex »; in G and an infinite color
sequence C' such that G isnot covered from »; on C' = C'1C2C3 - - -. Then G” isnot covered from /;
onC’' = (k+ 1)C1(k + 1)Co(k + 1)C3- - -. Thisis because, for all 7, the probability that the walk
on G’ visitsl; and r; is exactly the same as the probability that the corresponding walk on G visits
’Uj .

For the if direction, suppose that & is covered from al start vertices. We must show

that G is aso covered from all start vertices. First note that, since &G is covered from all of its
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vertices, for every color cin{1, ..., k} and every vertex »; in GG, v; has at least one incoming edge
of color ¢ and at |least one outgoing edge of color ¢. Hence, for every vertex » in G’ and color ¢ in
{1,...,k + 1}, v has at least oneincident edge of color ¢ that crossesthe cut (I, R). From thisit
follows that arandom walk on G’ on any infinite sequence visits the set . and the set R infinitely
often with probability one.

Now supposethat the color sequence C' hasthe property that colorsfromtheset {1, ..., k}
appear only afinite number of timesin C'. In thiscase, the sequence C' can bewrittenasC’(k +1)«,
where C” isafinite color sequence. Then, since the underlying graph colored & + 1 is connected, a
random walk on C' covers G’ with probability one. Similarly, if £ + 1 appears only afinite number
of timesin C, the graph GG’ is covered with probability one.

Assume now that colorsfrom {1, .. ., £} and the color & + 1 appear infinitely oftenin C'.
Let £, be the event that the random walk is at avertex in £, and the next color in the sequence is
intheset {1,...,k}. Let Fr bethe event that the random walk is at a vertex in R and the next
color inthe sequenceis £ + 1. If on the random walk the events £';, and F'r occur infinitely often,
the graph is covered with probability one. This is because there are cliques of each of the colors
1,...,konthe I vertices, and aclique of color £ + 1 onthe R vertices.

On theother hand, if either of the events 1, or E'r happens only afinite number of times,
then the sequence C' must be of theform C”(k 4 1)e1(k+1)co(k+1)c3. . ., where C” isafinite color
sequence and each ¢; isin {1, ..., k}. Furthermore, the walk must be at some vertex [; € L at the
end of thewalk on C”. Inthiscase, therandomwalk on G’ from{; on (k4 1)c1(k+1)co(k+1)cs. ..
correspondsto arandomwalk on G from »; oncicacz - - -. Since GG iscovered fromall of itsvertices,
the graph G is covered with probability onein this case. |

Lemma 2.5 shows how to simulate a random walk on a k-colored directed graph with a
random walk on a (k£ 4 1)-colored undirected graph. We use the construction to prove the lower
boundsthat match our upper bounds on the expected cover time of colored undirected graphs.

By applying LemmaZ2.5toafamily of strongly connected directed graphswith exponentia
expected cover time, we obtain Theorem 2.3. An example of such afamily of graphsis given by
a sequence of vertices numbered 1, ..., n with a directed edge from vertex 7 to vertex 7 + 1, for
1< < n -1, andadirected edge from vertex 7 to vertex 1, for 2 < i < n. Hence, we obtain the

following theorem.

Theorem 2.3 There are two-colored undirected graphs that are covered fromall vertices and have

expected cover time 22(),



CHAPTER 2. COVERTIME 17

Thedoubly exponential lower bound for graphswith three or more colorsisaconsegquence

of Lemma 2.5 and the following theorem:

Theorem 2.4 (Condon and Lipton[10]) There are two-col ored directed graphs that can be covered
(n)

fromall vertices and have expected cover time 22°

On aparticular sequence of colorsarandom walk on the nth graph in the family simulates
2" tosses of afair coin and reaches a designated state if and only if al outcomes were heads. In
the paper by Condon and Lipton, the theorem is not stated as above but isinstead stated in terms of
proof systemswith space-bounded verifiers. Theresult as stated isa consequence of the connection
between two-colored directed graphs and proof systems, and the example is discussed in detail in
Chapter 4.

By applying the construction of Lemma 2.5 to the family of graphs of Theorem 2.4, we

obtain the following result:

Theorem 2.5 There are three-colored undirected graphsthat can be covered fromall vertices and

have expected cover time 22°(").

2.4 Concluding Remarks

There is a sizable gap between our upper and lower bounds on the expected cover
time of two-colored graphs. The upper bound is obtained by proving that if G is a two-colored
graph that is covered with probability one on all infinite sequences then, for all vertices s and ¢,
dist(s,t) < (4n — 3)(n — 1) = O(n?). However, in the graph we construct for the lower bound, all
pairs of vertices have distance dist(s, ) = O(n).

Thisleaves us with the following interesting combinatoria problem. Let

din)=  max dist(s,1),

G:([n]vElvEZ)
s,t€[n]

where the maximum is taken over only those two-colored graphs that are covered with probability
oneonal infinite color sequences. Our analysis showsthat d(n) lies somewhere between Q(n) and
O(n?). It isan interesting open question to determine the true asymptotic behavior of the function
d(n).
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Chapter 3

Special Cases and Applications

3.1 Introduction

In this chapter we obtain tighter bounds on the expected cover time of colored graphsin a
variety of interesting special cases. In most of these cases the proofs are elementary applications of
known results about Markov chains. However, in the end we are able to use these results to prove
an interesting theorem about the stationary behavior of Markov chainsthat are averages or products
of random walks on connected undirected graphs with n vertices. In particular, we address the
guestion of how the stationary distributions of random walks on undirected graphs scale under the
operations of multiplication and addition. We begin this chapter by describing this application in
detail.

Let 1 and G, be apair of connected nonbipartite undirected graphs with » vertices. Let
M1 and M denote the finite regular Markov chains that correspond to simple random walks on
(1 and GG, respectively, and let M4 and M be their corresponding probability transition matrices.
Let 7, and 7> be the unique stationary distributions of M and M, respectively. Since M; and
M, correspond to random walks on undirected graphs, we know that all entriesin 7, and 7, are
at least 1/n?. Consider the Markov chain M aerage defined by the probability transition matrix
Maverage = %(Ml + M>). Since M1 and M correspond to connected nonbipartite graphs, it follows
that M aerage IS an ergodic Markov chain. Hence, M aerage has a unique stationary distribution
Taverage- VW are interested in bounding the val ues of the entries of maerage @ afunction of the values
of the entries of 71 and m,. We will show that probabilitiesin 7 erage Can be exponentialy small in
n, even though the probabilitiesin 7, and =, are dl inversely polynomial in n.

Similarly, we consider the Markov chain M proquct defined by the probability transition
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matriX Mproduet = M1 - Mo. Suppose that M proquct IS @ regular Markov chain (thisis not aways
the case; for an example, see Figure 5.1 in Chapter 5) and let myroduct be the unique stationary
distribution of M proguct- Again we show that the probabilitiesin mproduct can be exponentially small
in n, even though al probabilitiesin w1 and 7, are inversely polynomial.

The organization of this chapter isas follows. In Section 3.2 we obtain upper bounds on
the expected cover timefor two specia classes of graphs. In Section 3.3 we prove upper boundson
the expected cover timefor two special types of color sequences. In Section 3.4 we give an example
that showsthat all of the bounds given in Sections 3.2 and 3.3 are tight. In Section 3.5 we use the
results from earlier sections to derive the above results about weighted averages and products of

random walks on graphs.

3.2 Special Graphs

3.21 Proportional Colored Graphs

In this section we prove polynomial bounds on the expected cover time of a specia class
of colored undirected graphs, which we call proportional graphs.
A proportional colored graph isonein which

for all colors and 7, and all vertices v.

Theorem 3.1 Let G be a proportional colored graph with » vertices that is covered fromall of its
vertices. If each of the underlying graphs of G is connected and nonbipartite, then the expected

cover timeof GG ispolynomial in n.

Proof. Let ¢ be any color. Since the underlying graph colored ¢ is connected and nonbipartite,
a random walk on the sequence (¢)“ is a simple random walk on the underlying graph (V, E..),
which has a unique stationary distribution given by 7.(7) = d.(¢)/2| E,| for dl vertices . Since ¢
is proportional, the distribution .. isindependent of ¢. Thus, we will use = to denote .. for al c.
We wish to bound the expected cover timefor arandom walk on color sequence ' starting
from vertex s. Let vy be the n-dimensional row vector with a 1 in the position corresponding to s
and a0in al other positions. In general, let v, bethe probability distribution of the random walk at
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time¢. The vector »; is given by:

v = volo, - Po,.

Wewill show that, for ¢ polynomial in n, thedistribution »; isvery closeto thedistribution
7. Wewill use pointwi se distance asameasure of distance between two distributions. The pointwise
distance between »; and 7 isgiven by :

[loe =7l = Y Jo(i) = (i),

k3

Since, for every color ¢, P. isthe probability transition matrix of a simple random walk
on a connected nonbipartite undirected graph, itslargest eigenvalue is 1 with multiplicity one, and
al of the other eigenvalues are at most 1 — »—2 in absolute value [19]. So for ¢ = n*, the pointwise
distance ||v, — || isa most e=". Since each (i) isat least 1/n?, v,(7) isat least 1/en? for all 4,
where ¢ is a positive constant. We can now derive bounds on the expected cover time by viewing
the process as a coupon collector’s problem on ¢n? coupons, where sampling one coupon takes n*
steps of arandom walk. The resulting bound on the expected cover timeis O(n®logn). |

3.22 Graphswith Self-Loops

Suppose that every vertex in G has a self-loop of every color at every vertex. That is, for
every color 7 and vertex v, (v,v) € E;. We refer to these as graphs with self-loops. If each of the
underlying graphsin agraph with self-loopsis connected, then the graph is covered with probability
one from al vertices. Thisis because for every pair of vertices s and ¢, the distance dist(s, ) is at
most k(n — 1). In fact, it follows from this reasoning that the expected cover time of graphs with

self-loopsisat most exponential in ». This gives us the following theorem.

Theorem 3.2 Let (¢ be a colored graph with self-loops with » vertices. If each of the underlying
graphsis connected then the expected cover time of ¢ is at most exponential in n.

Notice that graphs with self-loops satisfy the nonbipartite condition of Theorem 3.1, but
in genera the stationary distributions of the underlying graphs may be different. In fact, we will
show in Section 3.4 that the bound of Theorem 3.2 istight.
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3.3 Special Sequences

In this section we assume, as usual, that the graph is covered from all start vertices, but
will make no other assumptions about the graphs themselves. Instead we consider the behavior of
random walks on special types of color sequences. The sequences we will consider are random
sequences and repeated sequences.

3.3.1 Random Sequences

In this case, instead of anayzing the expected cover time on the worst case sequence, we
will assumethat at each time step the color is chosen randomly fromthe set {1, .. ., £}. If each of
the underlying graphs is connected then the graph is covered from al itsvertices. Thisis because
for every pair of vertices s and ¢, awalk beginning at s visitst within n — 1 stepswith probability
a least 1/(nk)"~1. In fact, it follows from this reasoning that the expected cover time s at most
exponential in this case. Notice that here the expectation is taken over both the random choicesin

the steps of the walk and the random choice of the color sequence.

Theorem 3.3 Let (¢ be a colored undirected graph with n vertices. If each of the underlying
graphs is connected then the expected cover time on a randomly chosen color sequence is at most

exponential inn.

In Section 3.4 we will show that thisbound is tight.

3.3.2 Repeated Sequences

We now consider the behavior of a random wak on sequences (C'1...C})¥, where
C1...Cyisafixed length color sequence. Again it is not difficult to see that the expected cover
timeisat most exponential inn. Since G iscovered from all start vertices, for all verticess and ¢, ¢
is reachable from s on some prefix of (C1...C)¥. Let p be ashortest path from s to ¢ on a prefix
of (C1...Cy)*. Onashortest path ¢ appears once and every other vertex appears at most once in
a position whose number is congruent to : modulo /, where 0 < 7 < [. Hence, dist(s, ¢) isat most

(n — 1)I. Thisgives us the following theorem.

Theorem 3.4 Let G be a colored undirected graph that is covered from all its » vertices and
let C1...C; be a fixed length color sequence. The expected cover time of G on the sequence
(C1...Cp)* isat most exponential in n.
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In Section 3.4 we will show that thisbound is tight.

3.3.3 Corresponding Homogeneous Markov Chains

Random sequences and repeated sequences are similar because in both cases a random

walk corresponds to a homogeneous Markov chain M. In the case of a random sequence, the
k

relevant Markov chain M has probability transition matrix %E P;, where P; is the probability

transition matrix for a simple random walk on the underlyingzarlaph colored ¢. In the case of a
repeated sequence (C'1 ... C)%, every [ steps of the random walk correspond to a single step with
probability transition matrix Pe, - - - Pc,.

We can use the following lemma about homogeneous Markov chains to obtain a poly-
nomial bound on the cover time for random and repeated sequences in a large number of special
cases.

Lemma 3.1 Let M be an n-state homogeneous Markov chain with probability transition matrix
M and let 4, ¢ be in the interval (0, 1]. Suppose that (1) M isirreducible and aperiodic, (2) all
nonzero entries of M are at least ¢, and (3) all entries of the stationary distribution of M are at
least ¢. Then the expected time for the Markov chain M to visit every stateisat most 2n2¢ 11

Proof. Consider the directed graph induced by the nonzero entries of M. That is, consider the
graph G = ([n], &), where £ = {(7,7): M(¢,7) > 0}. Since M isirreducible thereis a directed
walk on G from any starting vertex that visits every vertex at least once and has length at most 2.
We will bound the expected time for the process to complete such awalk on &'

Let 7 and 5 beapair of adjacent verticesin thewak. We will bound the expected time for
the process to traverse the edge from ¢ to 5. Each timethe walk is at vertex i it traverses the edge
from i to j with probability M (¢, 7). Hence, the expected number of returnsto 7 until the edge from
itojistraversedis1/M(s, 7). If M(4,j)= 1, the expected timeto traverse the edgefromi to j is
1. Inwhat follows we will assumethat 0 < M(7,j) < 1.

Let 7°(4, ) denote the mean recurrence time of vertex 7. Then the expected timeto return
to ¢, given that the edge from 7 to j is not traversed, is at most 7'(4,¢)/(1— M (%,7)). Hence, the
expected time for the walk to traverse the edge from i to j isat most 7°(7,4) /M (4,5 )(1— M(3,7)).

Since each non-zero entry of M isat least §, M (i,j)and 1 — M(z, 5) are both at least 6.
Hence, M (i,7)(1— M(4,7)) > 6/2, and the expected time for the walk to traverse the edge from
i t0 j isa most 26717°(4,7). Then, from the fact that the mean recurrence time of state i is the
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reciprocal of its stationary probability (%), we get that the expected time for the walk to traverse
the edge from i to j isat most 26~ 1e~L. It follows that the expected timefor M to visit every state
isat most 2n26~te L, O

We can use Lemma 3.1 to obtain polynomia bounds for repeated and random sequences
whenever the product and weighted average matrices satisfy its three conditions with ¢ and ¢
inversely polynomial in n. Conditions (1) and (2) are not particularly strong conditions. For
example, the weighted average matrix satisfies condition (1) if the underlying graphs are connected
and nonbipartite. The product matrix satisfies condition (1) if, for instance, the underlying graphs
are connected and thereisaself-loop of every color at every vertex. Products and weighted averages
always satisfy condition (2) with 6 inversely polynomia in n. Thusour question about polynomial
expected cover time in graphs with self-loops on repeated sequences, and, in general, on randomly
chosen color sequences becomes a question about the behavior of the stationary distributions of

products and weighted averages, respectively. We state thisformally below.

Theorem 3.5 Let (¢ bea colored undirected graph with » vertices such that each underlying graph
is connected and nonbipartite. Suppose that the stationary distribution of the Markov chain with
k

probability transitionmatrix % Z P, hasall entriesbounded bel ow by an inversepolynomial. Then

=1
the expected cover time of G on a randomly chosen color sequence is polynomial in n.

Theorem 3.6 Let G beacolored undirected graphwith » verticesthat iscovered fromall itsvertices.
Let Cy...C) be a fixed length color sequence. Suppose that the Markov chain with probability

transition matrix Pc, - - - Pc, isirreducible and aperiodic, and its stationary distribution has all

i
entries bounded below by aninverse polynomial. Then the expected cover timeof G on(Cy...Cp)*

ispolynomial inn.

3.4 Lower Bounds

In this section we prove that the exponentia upper bounds of Theorems 3.2, 3.3, and 3.4
are tight by constructing a two-colored graph with self-loops that has exponential expected cover
time on arandomly chosen sequence of colors and on the sequence ( R B)“. Thegraphisshownin
Figure 3.1. The solid lines represent edges colored R and the dotted lines represent edges colored
B.
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Figure 3.1: Graph for lower bounds

In what follows we prove that the expected cover time of the graph in Figure 3.1 on a
randomly chosen sequence of colorsis exponentia in n. Our claim is that, on a randomly chosen
color sequence, the expected time for a random walk that begins at vertex 1 to reach vertex » is
exponentia inn.

We refer to 1,...,n as the primary vertices, and 1’,...n’' as the secondary vertices.
Suppose arandom walk from vertex 7 is performed on arandomly chosen sequence of colors until
aprimary vertex other than ¢ isreached. We will call such a path a primitive path. The end of any
primitive path from vertex : must be either i + 1 or : — 1. Let p(i,7 — 1) be the probability that
the next primary vertex reached is: — 1, and let p(7, i + 1) be the probability that the next primary
vertex reached is7 + 1. We will show that, for2 < ¢ < n — 1, p(i,i — 1) exceeds p(¢,7 + 1) by a
constant factor. Hence, the walk is biased backwards by a constant, and it is aroutine calculation
(see, for example, [15]) to show that the expected time to reach vertex n is exponentia in n.

Let P be the set of primitive paths from i to i + 1, and let P, be the set of primitive
paths from i to 7 — 1. Associated with each path p in P;" and P;~ isa probability, which is simply
the product of the probabilities on the edges of p. We will establish a bijection ¢ from P to P,
with the property that, for every path p in P;, the probability of p isstrictly lessthan the probability
of itsimage ¢(p) in P”. It follows from thisthat p(7,7 — 1) > p(7,7 + 1). Figure 3.2 shows the
relevant transition probabilitiesfor thisargument.

Let p beapathi = po,p1,...,pi—1,p1 = i + 1in P, Thevertex p;_1 must be either i
or i'. Supposethat p;_1 = i. Then we define ¢(p) to be the path i = po, p1,...,pi—1,i — 1. The
probability of the path ¢(p) divided by the probability of the path p isequal to 4/3 > 1. On the
other hand, if p;_1 = ¢’ thenlet j be the largest index such that p; = i. We define ¢(p) to be the
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Figure 3.2: Transition probabilitieswhen color chosen at random

path of length [ given by i = po, p1,...,p;, (i —1),...,(i — 1)',7 — 1. The probability of the path
¢(p) divided by the probability of the path p isequal to 15/14 > 1.

This argument shows the existence of a sequence on which the expected cover timeis
exponential. A similar type of analysis can be used to show that ( R B)“ is one such sequence. The
caculation, however, istedious and is omitted.

3.5 An Application to Products and Weighted Averages

The construction given in Figure 3.1 has the following interesting application to the
guestion posed at the beginning of this chapter. Let Pr and Pg be the probability transition
matrices of the graphs colored R and B, respectively. Recall from the discussion in Section 3.3.3
that the matrices Pr - Pg and (Pr + Pp)/2 satisfy conditions (1) and (2) of Lemma 3.1 with 6
inversely polynomia in n. So the fact that the expected cover time of this graph is exponentia
shows that the stationary distributionsof Pr - Pg and ( Pr + Pg)/2 each contain at |east one entry
that is exponentialy small in n. But Pr and Pg correspond to undirected graphs, so all entriesin
their stationary distributionsare inversely polynomial. So the example showsthat, in generd, it is
possiblefor the stationary distribution of a product or weighted average of random walks on graphs
to contain exponentially small entries, even though al entries of the stationary distributions of the
original random walks are inversely polynomial.
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Chapter 4

Colored Graphsand Complexity Classes

4.1 Introduction

Two-colored directed graphs were first studied by Condon and Lipton [10] in their inves-
tigation of the power of interactive proof systemswith space-bounded verifiers.

In an interactive proof system a prover P wishes to convince a verifier V' that a given
shared input string = isamember of somelanguage I.. The prover and the verifier shareindependent
read-only accessto theinput string z. The verifier V' aso has aprivate read-write worktape and the
ability to toss coins during its computation.

Inageneral system, the computation proceeds inrounds. In each round, the verifier tosses
a coin and asks a question of the more powerful prover. Based on the answers of the prover, the
computation continuesuntil eventually theverifier decidesto accept or reject = and halts by entering
an accepting or regjecting state.

Interactive proof systemsin which the verifier is a probabilistic polynomia time Turing
machine have been studied extensively in the literature. Results such as IP = PSPACE [23], and
NEXPTIME C MIP [4] in the case of multiple provers, have characterized the class of languages
recognized by such systems. Interactive proof systems have aso been used to prove hardness of
approximation for a class of combinatorial optimization problems known as MAX SNPin aseries
of papers[14], [3], [2] and others.

The systems considered by Condon and Lipton [10] and in this chapter differ from the
standard onesin two ways. Thefirst isthat they are one-way, meaning that all communication goes
from the prover to the verifier. Secondly, we are interested in verifiers V' that are space-bounded;

that is, verifiers that write on at most s(n) tape squares on al inputs of length . In particular, we
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will beinterestedin systemswhere V' usesspace O (log ). Wewill usetheterm |P1(SPACE(logn))
to denote the class of languages with one-way interactive proofs with logspace verifiers. Related
systems have also been studied in [13]. Since the system is one-way we can think of the prover as
being represented by aproof string and the verifier as having one-way read-only access to the proof.
Aswe will see, colored graphs are closely related to the class IP1(SPACE(logn)).

Inthischapter we definetheclass 1P (SPACE(logn)). Our definition differsslightly from
that used by Condon and Lipton, but the differences are purely technical. Once we have defined
IP1(SPACE(logn)) we will review the correspondence between this class and two-colored directed
graphs. We will prove that every language in PSPACE has a one-way interactive proof system with
alogspace verifier. Thisresult will be used at the end of this chapter and throughout Chapter 5 to
prove that certain problems about colored graphs and from the theory of nonhomogeneous Markov
chains are PSPACE-complete.

4.2 One-way | nteractive Proof Systems

A verifier for language I isathree-tape probabilistic Turing machine V' that takesasinput
apair (z, ), wherez and 7 are strings over the alphabet {0, 1}. The string 7 is called a proof, and
can be infinitely long. The proof = is stored on a one-way infinite, read-only tape. The verifier is
constrained to read 7 in one direction; in fact, for technical reasonswe will require that the head on
7 begins on itsleftmost symbol and movesto theright in every step. We will also assume, without
loss of generality, that V' flips one coin per time step. The string z is stored on a second read-only
tape, but its length is finite, and the head on = can move in both directions. Thethird tape of V' is
aworktape, which isinitialy inscribed with blanks. We will assume without loss of generality that
V has exactly two halting states, an accepting state gaccept and arejecting state greject, and that
V erases its entire worktape and returnsits input and worktape heads to the |eftmost square before
it accepts or rgjects.

Let = be any string in {0, 1}". A language L isin IP1(SPACE(logn)) if there exists a
verifier V' that on input z uses O(logn) space on its worktape and satisfies the following halting
and one-sided error conditions:

1. If zisin L, thereexistsa(finite) proof = € {0, 1}* suchthat V' accepts(z, =) with probability
1

2. If z isnotin L, then on any proof «, V' rejects (z, 7) with probability at least 2/3.
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3. V halts (accepts or rejects) with probability 1 on al inputs (z, 7). In fact, starting from any
possible configuration of its worktape, state and tape heads, V' haltswith probability 1.

421 Example: Coin Flipping Protocol

Condon and Lipton [10] give the following example for . = () to show that there exist
one-way interactive proof systems with logspace verifiers that halt on all inputs and take doubly
exponentia time to halt on some input. We have adapted their example to satisfy our technical
condition that the verifier read one bit of the proof in every step.

Theverifier V behaves asfollowsonany input z of lengthn. Let & = [logn|. Leti bean
integer intherange 0 to 2" — 1. Consider the encoding of ¢ as an (n + k)-bit binary string. In this
encoding thefirst £ bitsare zero and the remaining » bits are the usual binary encoding of :. Let
denotethe 2" (n + k)-bit string that consists of the encodings of the numbers O through 2™ — 1.

On any proof string the verifier V' flips one coin for each (n + k)-bit digoint substring,
and maintains a single bit which tells whether al the coin flips so far were heads. Whenever V
encounters the encoding of the number 2™ — 1, it halts and regjects if al coin flips were heads.
Otherwise, it resets the bit and repeats the process.

Onthe proof C'“, V' repeatedly flips 2" coinsand haltsif and only if all 2 outcomeswere
heads. Hence, the expected time for V' to halt on the proof C'“ is doubly exponentia in n. The
verifier, however, does not halt with probability one on al inputs. In fact, if theencoding of 2™ — 1
never appears in the proof, then V" will never halt.

For thisreason the verifier V- must check that the proof string consistsof the encodings of
the numbers 0 through 2" — 1. Since V' has only logarithmic space, it must do this probabilistically.
While V' scansthe string of £ zeros that begins the ;th substring it flips £ coins. The outcome of the
k coinflips selects arandom position b in the ith substring to check for consistency withthe (7 + 1)st
substring. When the proof isadvanced to bit b of the :th substring the verifier checks whether the bit
isazero or aone. It then counts and advances through to the bth positionin the (¢ 4+ 1)st substring.
Asit does thisit remembers the logical AND of all of the lower order bits of the :th substring. If
all of the lower order bits are one, it looks for the corresponding bit in the 7 + 1st substring to be
theflip of bit 4 in 7. Otherwise, it looksfor the two bitsto be equal. If the test fails, the verifier V/
halts and rejects. Otherwise, it continues. The consistency check of the (7 + 1)st substring with the
(7 4+ 2)nd substring overlaps with this check in the obvious way.

If the proof contains the encoding of 2™ — 1 an infinite number of timesin r, then the
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verifier V' halts with probability one. If the encoding of 2" — 1 appears only a finite number of
times, then we can write the proof = as 7172, where w1 consists of al of the (n + £)-bit substrings
up to the last occurrence of 2" — 1, and 7, consists of the rest of 7. Then each subsequence of 75
of length 2"(n + k) contains at |east one inconsistency, and V' detects the inconsistency and halts
with positive probability 2=*. Hence, V" halts with probability onein this case.

4.3 Two-colored Directed Graphs

Two-colored directed graphs were introduced by Condon and Lipton in their study of
proof systems with space-bounded verifiers. We review the correspondence between proof systems
with logspace verifiers and two-colored directed graphs here.

Let V' be alogspace verifier and let = be an input of length » for V. A configuration of
V isaquadruple (¢, w, h., h;), where ¢ isthe state of V', w is a string representing the contents of
the O(logn) bit worktape, ., is the position of the head on the worktape, and £, is the position of
the head on the input tape, al encoded in binary. Notice that on inputs of length n, the number of
possible distinct configurations of V' is polynomial in n.

Consider the graph &',. defined as follows. The vertices of ;. correspond to the configu-
rationsof V oninput z. If the verifier in configuration C' responds to reading a0 on the proof string
by moving randomly to aconfigurationin {C'1, C}, then thereisan edge colored R from the vertex
corresponding to C' to the vertices for configurations C'1 and C'>. The edges colored B encode the
actions of the verifier when it reads a 1 in the proof analogously.

The verifier V' has a unique starting configuration vo = (qo,b---5,0,0), a unique
accepting configuration vaccept = (Gaccept. 0 -+ 0,0,0), and a unique rejecting configuration
Vreject = (reject, b - 0,0,0). Since we have assumed that gaccept aNd greject are hating
states of V', configurations vaccept and vreject have no outgoing edgesin G.. Infact, vaccept and
vreject A€theonly sinksin (. since condition 3 saysthat on any proof, from any configuration V'
reaches a halting state with probability one.

431 Example: Coin Flipping Protocol Revisited

We can now describe in detail the construction of a two-colored directed graph that is
covered with probability one on all infinite sequences and has doubly exponentia expected cover
time. Thisexample was used in Section 2.3 of Chapter 2 for the lower bound for undirected graphs
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with three or more colors. The exampleis based on the coin flipping protocol of Section 4.2.1.

Let V thethe O(logn) space verifier of Section 4.2.1. Let z beany string of length » and
let &, be the graph of configurationsof V" oninput z. We will augment .. with an edge colored R
and an edge colored B from vaccept aNd vreject tO every vertex in G,.. We will call the resulting
graph GG.. Since V' haltson al proofs, the graph G, is covered with probability one on all infinite
sequences. However, on the color sequence which corresponds to the encoding of the numbers O
through 2" — 1 repeated ad infinitum, the expected time to reach vyeject IS doubly exponential in

n.

4.4 Polynomial Space

In this section we will show that every language in PSPACE has a one-way interactive
proof system of the type defined above. This result will be used later in this chapter to prove
PSPACE-completeness for reachability problems in colored graphs and in Chapter 5 to prove
PSPACE-completeness of problems from the theory of nonhomogeneous Markov chains. The
technique used is similar to that used in the construction of Example 4.2.1.

Theorem 4.1 PSPACE C IP;(SPACE(logn))

Proof. Let L be any language in PSPACE, and let M be a binary Turing machine that accepts
L using p(n) space on inputs of length n, where p is a polynomial. Without loss of generdlity,
assumethat M counts its steps and halts and rejects if it detects that it has looped by repeating a
configuration.

A configuration of M isan encoding of the tape contents, the head position and the state
at a given time during the computation. Let ¢) be the state set of M. We will assume the statesin
) are numbered 1 through |@Q|. We will encode atape square of M asa([log|Q|| + 2)-bit binary
string. Thelast bit of the string will be used to encode the contents (zero or one) of the tape square.
The other [log|@|] + 1 bitswill be used to encode the index of the current state of M if the head
is currently scanning the square, and will contain al zeros otherwise. Let &£ > O be the smallest
integer such that 2* > p(n). We will represent a configuration using the encodings of the first 2%
tape squares.

We can now represent an accepting computation of M on z by the sequence of configura-
tionsin the computation. Since M detects when it loops and rejects, the number of configurations
in an accepting computation isbounded. The sequence of configuration encodingswill be preceded
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by a string of & ones, and each pair of consecutive configuration encodings will be separated by a
string of & ones.

An O(logn) space-bounded verifier V' can check that a given position in a configuration
is consistent with the next configuration. The verifier must simply remember O(1) symbolsof the
configuration and then count to 2¢ + %, advancing through the encoding as it counts. When V' has
finished counting, it can check the corresponding positionsin the next configuration.

Theverifier can choose arandom positionin the configuration to check by tossing £ coins
while it reads the & ones that precede the configuration. The verifier will overlap the consistency
check of configurations j and 7 + 1 with the consistency check of configurationsj — 1 and j inthe
obviousway.

The verifier can check that the first configuration is correct; that is, that the computation
of M beginsinthestart statewith z onitstape. If thistest fails, or if thereecting configuration ever
appears, then V' regjects. The verifier can recognize when the accepting configuration appears. If the
computation containsan inconsistency in any of the intermediatesteps, V' detectsit with probability
at least 2% and rejects.

To reduce the probability of error, we concatenate 2°+1 copies of the encoding of the
computation of M on z. The verifier can count the copies as it does the consistency checks. If V'
checks 2¢+1 computations and no consistency check fails, then V' accepts. If 7 isfinitein length
and V reaches the end of 7 without accepting, then V' regjects.

If z isin I, then on the proof = which is the encoding of an accepting computation of M
on z repeated 2%+ times, V' accepts with probability one.

Supposethat z isnotin L and let = be any proof. If thefirst 2% + & symbolsof = do not
encode the starting configuration of M on z preceded by & ones, then V' rglects. Assume that the
starting configuration is correctly encoded, and suppose that the accepting configuration appears
2%+1 timesin 7. Consider w parsed into w175 . . Toe417m’. Thestring 7 istheinitial portion of T,
up to and including the first occurrence of the accepting configuration. For 2 < i < 2%+1 7, isthe
portion of « that follows;_1, up to and including the ith occurrence of the accepting configuration.
The string 7’ is everything that followsthe (2*+1)st occurrence of the accepting configurationin .
Sincez isnotin L, for al 1 < i < 25+, thereis an inconsistency in the computation encoded by
m;. So, for al 1 < i < 2%+1 V detects an inconsistency in «; and rejects with probability at |east
2~ Hence, the probability that V acceptsisat most (1 — 2-%)2" < 1/3.

Suppose that the accepting configuration appears fewer than 25+ timesin =. Let 7’ be
all of = after the last occurrence of the accepting configuration. If =/ isfinite or if =’ contains the
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rejecting configuration, then V' rejects. Supposethat 7’ isinfinite and does not contain the rejecting
configuration. Consider =’ in pieces of length (22k + 1)(2¥ + k). Since M counts its steps and
rejects if it loops, each such piece contains an inconsistency. In each piece the verifier detects an
inconsistency and rejects with probability at least 2=*. Hence, V' rejects with probability onein this

case. O

45 Colored Graph Connectivity

In Chapter 2 we gave upper and lower bounds on the expected cover time of colored
undirected graphs that are covered from all start vertices. We now investigate the complexity of
determining whether a given colored undirected graph satisfies this condition. This condition is
a generalization of the connectivity property for undirected graphs, and we will show that it is
completefor natural space-bounded complexity classes. And again, asin Chapter 2, the complexity
of the problem differs significantly in the case of two colors versus three or more colors. More
formally, we consider the following decision problem:
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COLORED GRAPH CONNECTIVITY
INSTANCE: Colored undirected graph ¢
QUESTION: Is G covered from all start vertices with probability 1 on all infinite

sequences?

and show that COLORED GRAPH CONNECTIVITY for graphs with two colors is complete for
nondeterministic logspace (NL), and for graphs with three or more colorsit is PSPACE-compl ete.

In generdl, there is a close relationship between space-bounded complexity classes and
problems of reachability in graphs. For instance, associated with any s(n) space-bounded Turing
machine M andinput z of length n thereisadirected graph 7, with avertex for each of theO(nZS(”) )
configurations of A/ on z, and an edge from C'; to C; if configuration C'; yields configuration C'; in
one step on M. The question of whether M accepts z is equivalent to the question of whether there
isapath from the starting configuration to an accepting configurationin GG, Inthecasethat s(n) is
equal to logn, thegraph G, has O(n?) vertices. Thisdemonstratesthat s-t CONNECTIVITY (i.e,
given adirected graph G and vertices s and ¢, isthere apath from s to ¢ in G?) iscompletefor NL.

Another example is the correspondence between one-way interactive proof systemswith
space-bounded verifiers and two-col ored directed graphs described in Section 4.3 of Chapter 4. The
results of this section generalize these idess.

The organization of the rest of this section is as follows. In Section 4.5.1, we show
that, in general, COLORED GRAPH CONNECTIVITY isin PSPACE, and that when restricted to
graphs with two colors the problem isin NL. In Section 4.5.2 we show that COLORED GRAPH
CONNECTIVITY is hard for NL, and that the problem on graphs with three or more colors is
PSPACE-hard.

45.1 Space-bounded Algorithms

We begin by proving combinatorial conditions that are equivalent to the connectivity
property for colored graphs. These conditions will be used to obtain agorithms that work within
the space bounds stated above.

Lemma4.1 Let G be a colored undirected graph with » vertices. The following conditions are

equivalent:

(1) G iscovered fromall start vertices with probability one on all infinite sequences.

(2) For all vertices s and ¢, the distance dist(s, ) isat most 2".
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Proof. That (1) = (2) issimply Lemma2.1. To seethat (2) = (1), notice that since, for all s
and ¢, dist(s,?) isat most 2", arandom walk of length (n — 1)2" on any color sequence from any
starting vertex covers the graph with positive probability. It followsthat any infinite random walk
covers the graph with probability one. m

We can now use condition (2) above to obtain an algorithm for colored graph connectivity
that uses polynomial space. Given acolored graph GG with n vertices, Lemma4.1 tellsusthat G is
not covered from all starting vertices if and only if there existsa pair of vertices s and ¢, and acolor
sequence ' of length 2" such that ¢ is not reachable from s on any prefix of C'.

We will demonstrate that a nondeterministic polynomia space-bounded Turing machine,
given (&, can recognize that G is not covered from all vertices. Then, since PSPACE is closed
under complement and under the addition of nondeterminism, it follows that COLORED GRAPH
CONNECTIVITY isin PSPACE.

A nondeterministic polynomial space-bounded Turing machine can simply guess vertices
s and ¢ and count to 2", guessing the sequence ' one character at a time and verifying that ¢ is
not reachable from s on each successive prefix of C'. For this verification asingle n x n boolean
matrix M must be stored. Thisalgorithmisgivenindetail in Figure 4.1. Throughout, weuse A ; to
denotethe n x n adjacency matrix for edges of color 5. The algorithm in Figure 4.1 uses space that
ispolynomial in the size of itsinput and so we have that COLORED GRAPH CONNECTIVITY is
in PSPACE.

guess distinct vertices s and ¢

guessacolor Cyand set M — A,
for : = 2to 2* do
if M(s,t)# Othen reject

guessacolor C; andset M — M x Ag,

accept

Figure 4.1: PSPACE agorithm for COLORED GRAPH CONNECTIVITY
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The connectivity problem for two-colored graphs can be solved in NL. Thiswould appear
to be an easy extension of the result above. The approach would be to prove a lemma analogous
to Lemma 4.1 with 2" replaced by (4n — 3)(n — 1). However, in the algorithm of Figure 4.1 an
n X n matrix is stored and this would violate the logarithmic space restriction. Instead we use the

following equivalence:

Lemma4.2 Let G be a two-colored undirected graph with » vertices. The following conditions
are equivalent:

(1) G iscovered fromall start vertices with probability one on all infinite sequences.

(2) For all vertices s and ¢, ¢ isreachable from s on a prefix of each of (R)“, (B)*, (RB)* and
(BR)“.

Proof. Suppose that G is covered from al start vertices. Then, for any pair of vertices s and ¢,
arandom walk from s on any sequence of colors visits ¢ with probability one. It followsthat 7 is
reachable from s on each of (R)“, (B)“, (RB)* and (BR)“.

For the converse, suppose that for all s and ¢, ¢ is reachable from s on a prefix of each of
(R)¥, (B)*, (RB)* and (BR)“. Then, by Lemma2.3, dist(s, ) isat most (4n — 3)(n — 1) = [,
for al s and ¢. It followsthat arandom walk of length (n — 1)I on any sequence from any starting
vertex covers the graph with positive probability. Hence, the graph is covered with probability one
on al infinite sequences. m

Now we are prepared to show that COLORED GRAPH CONNECTIVITY for two-
colored graphsisin NL. A nondeterministic logspace machine can simply run through all vertices
s and ¢ and verify that there is a path from s to ¢ on a prefix of each of (R)“, (B)“, (RB)“ and
(BR)¥. Since such paths, if present, have length bounded by either n — 1 or 2n — 1, the machine
can nondeterministically guess and check these paths using only logarithmic space. The overall
algorithmisgiveninFigure4.2. Throughout we use Ag to denote the adjacency matrix for the edges
colored R, and A; to denote the adjacency matrix for the edges colored B. The agorithm uses
space that is logarithmic in » and so we have shown that COLORED GRAPH CONNECTIVITY

for graphs with two colorsisin NL.

45.2 Hardness Reaults

In this section we prove the following two main results about COLORED GRAPH
CONNECTIVITY:
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for al distinct vertices s and ¢
set vg — s

* Check for apath from s tot on (R)~ */
guess alength/suchthat0 </ < n
for i=1to /—1do
guess vertex v; and if Ag(v;—1,v;) = Othen reect
if Ao(vi—1,t) = Othen regject

* Check for apath from s tot on ( B)“ */
guess alength/suchthat0 <l < n
for i=1to /—1do
guessvertex v; and if Ai(v;_1,v;) = Othenreect
if A1(v;_1,t) = Othenreject

* Check for apathfrom s tot on (RB)“ */
guess alength/ suchthat 0 < [ < 2n
for i=1to /—1do
guessvertex v; and if A(;_1ymod2(vi-1,v;) = Othen reject
if Ag_1ymode(vi-1,1) = Othen reject
* Check for apathfrom s tot on (BR) */
guess alength/ suchthat 0 < [ < 2n
for i=1to /—1do
guess vertex v; and if A;mod2(vi—1, v;) = 0then reject
if Ajmod2(v1—1,t) = Othen reject

accept

Figure 4.2: NL agorithm for two-colored graphs
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Theorem 4.2 COLORED GRAPH CONNECTIVITY for graphs with two colorsis NL-compl ete.

Theorem 4.3 COLORED GRAPH CONNECTIVITY for graphs with three or more colors is
PSPACE-complete.

We have aready shown that the problem isin PSPACE in general, and in NL for graphs
withtwo colors. We now compl etethe proofs of Theorems4.2 and 4.3 by giving proofs of hardness.

Proof of Theorem 4.2. We have aready shown that COLORED GRAPH CONNECTIVITY for
graphs with two colorsisin NL in Section 4.5.1. Here we prove that every problem in NL can be
reduced to COLORED GRAPH CONNECTIVITY on atwo-colored graph.

Wewill usethefact that STRONG CONNECTIVITY (i.e., givenadirected graph &7, isGG
strongly connected?) is completefor NL. The proof of thisis a straightforward reduction from s-t
CONNECTIVITY and can be found as an exercise Hopcroft and Ullmans' book [17] on the theory
of computation.

Lemma 2.5 shows how to construct a two-colored undirected graph G that is covered
from al vertices if and only if G is strongly connected. Since the construction of Lemma 2.5 can
be carried out by alogspace Turing machine transducer, this compl etes the proof. |

Next we show that COLORED GRAPH CONNECTIVITY for graphswith at least three
colors is PSPACE-complete. For this we will use the connection between two-colored directed
graphs and one-way proof systemswith logspace verifiers, aong with the fact that every language
in PSPACE hasaone-way proof system with alogspace verifier (Theorem 4.1) and the construction
of Lemma2.5.

Proof of Theorem 4.3. We have already shown that COLORED GRAPH CONNECTIVITY is
in PSPACE in Section 4.5.1. We now prove that every problem in PSPACE can be reduced to
COLORED GRAPH CONNECTIVITY.

Recall from Theorem 4.1 that every language in PSPACE has a one-way proof system
with alogspace verifier V. Let (¢, bethe two-colored directed graph defined in Section 4.3. Recall
that the vertices of ,. correspond to the configurations of V' on input 2. The edges colored R
encode the transitions of V' when the next proof bit read is O, and the edges colored B encode
the transitions when the next proof bitis1. A pair of edges of the same color leaving a vertex
correspond to arandom coin flip of the verifier. Recall that ¢, has vertices vo, vaccept @d vreject,
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which correspond to the unique starting, accepting, and rejecting configurations of V', respectively.
Recall aso that vaccept and vreject have No outgoing edges.

We will augment . with the following edges. Therewill be an edge (vaccept, v) colored
¢, for each vertex » for which there is an edge (v, v) of color ¢. Thereis also an edge colored R
and an edge colored B from vreject t0 every vertex in G.. We will call the augmented graph G7,.
We now claim that G/, is covered from all start verticesif and only if z isnotin L. Since PSPACE
is closed under complement, this gives the desired result.

For theif direction, supposethat z isnotin L and let = beany proof. Since V" hatsfromall
starting configurations, arandom walk on G, from any starting vertex on color sequence = reaches
Vaccept OF Ureject With probability one. The probability that the walk reaches vreject, given that
it has reached one of these two vertices, isat least 2/3. If vaccept IS reached, by construction of G,
theremainder of thewalk simulates V' fromits starting configuration, S0 again vaccept Of vreject IS
reached with probability one, and vre ject IS reached with probability at least 2/3. Hence, arandom
walk on G, from any start vertex, on any infinite sequence, repestedly reaches vreject. Sincethere
isan edge of each color from vyeject t0 every other vertex in 7, G, is covered with probability
one.

For the only if direction, supposethat = isin L. Then thereisafinite proof = that takes V'
from the starting configuration to the accepting configuration with probability one. On the sequence
of colors corresponding to repesting = ad infinitum, a random walk on G, from vg never visits
Vreject. T1hiISISDECAUSE vaccept IS repeatedly reached on each copy of = with probability one.

The remainder of the proof comes from converting the two-colored directed graph G . to
athree-colored undirected graph using the construction of Lemma 2.5. O
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Chapter 5

Applications

5.1 Introduction

In this chapter we use the machinery of colored graphs to prove complexity theoretic
results about nonhomogeneous Markov chains. The questionsthat we consider are fundamenta in
the theory of nonhomogeneous Markov chains and have applications to the theory of coding and
information of finite-state channels.

Recall that a finite nonhomogeneous Markov chain M is defined by an infinite sequence
M1, My, M3, . .. of n x n stochastic matrices, where M; isthe probability transition matrix for time
step 2. Natural complexity theoretic questions arise when we think of the matrices that define the
nonhomogeneous Markov chain M as being drawn from afiniteset C = {C,...,C4} of n x n
stochastic matrices.

In this chapter we consider the problem of deciding, given such aset C, whether al finite
products, or words, over C are indecomposable. In order for all wordsto be indecomposable, each
of theindividual matrices C'y, . . ., C'4 must beindecomposable. It isaso necessary that each of the
individual matrices be aperiodic; if thereisaword W of any length of period p > 1, then the word
WP is decomposable.

The condition that each of the matrices C'y, ..., C'4 be indecomposable and aperiodic,
however, is not a sufficient condition. For example, consider the product of the matrices whose
nonzero entriesarerepresented by thedirected graphspicturedin Figure5.1. Althoughtheindividua
matrices are indecomposable and aperiodic, their product is decomposable.

We show that the problem of deciding whether al words are indecomposableis PSPACE-
complete. This problem is fundamental in information theory, as it is a necessary and sufficient
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X \ -
Figure 5.1: Individua matrices that are irreducible and aperiodic, but whose product is
decomposable

condition for optimal coding over finite-state indecomposable channels.

In addition, we show that the related problem of deciding whether al infinite productsare
weakly ergodic is PSPACE-complete, and that to decide whether al infinite products are strongly
ergodic is PSPACE-hard.

In Section 5.2 we motivate the results of this chapter by giving some background for the
application to information theory. For more details agood sourceisthe book by Cover and Thomas
[11] or Shannon's origina 1948 paper [24]. In Section 5.3 we give the proofs for the two main

theorems of this chapter, described above.

5.2 Information Theory

521 Prdiminaries

Information theory is concerned with the problem of transmitting messages or signals
over a device known as a channel. We begin this section by defining some of the basic notions of
information theory. For now we will be concerned only with those channelswhich transmit signals
with no possibility of lossor corruption.

The capacity C' of such achannel isdefinedtobe C' = Lryo

IOgiV(t) , Where N (t) isthe
number of possible signals of duration ¢. In asimplified situation where the channel can transmit
one of n possible messages per unit time, the capacity ¢’ is equal to logn. In general, channel
capacity is a measure of the maximum number of bits of information that can be transmitted per
unit of time.

We can think of a discrete source as generating its message symbol by symbol, where
successive symbols depend probabilistically on previous symbols. This setup is modeled by an
ergodic Markov chain M described by an » x n stochastic matrix M, and is powerful enough to

model natural languages and continuous information sources discretized by a quantizing process.
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Therate at which rate information is produced by the source M is defined using entropy.
Entropy was defined by Shannonin hisorigina 1948 paper [24]. Theentropy of adiscrete
random variable X which takes on vaue z € X’ with probability p(z) is defined to be:

Zp ) logp(z

Intuitively, H (X ) measures the amount of uncertainty in the random variable X. Alter-
natively, entropy can be interpreted as the number of bits of information contained in the random
variable X'; that is, the number of bits required, on average, to describe X. The entropy function
H(X)takesonvaluesin theinterval [0, log|X|].

For instance, suppose that X is arandom variable that is either O or 1, each with equal
probability. Then the entropy # (X ) isequa to 1, which is the maximum value of the entropy in
thiscase. On the other hand, suppose that X aways takes the value 0. It is not surprising that in
thiscase H(X') is0, since the random variable X contains no information.

The joint entropy of random variables X and Y, which take on values = and y with
probability p(z, y) isdefined to be:

H(X,Y) Zp z,y)logp(z, y).

T,y

Ingeneral, H(X1,...,X,) = - Z p(z1,...,z,)l09p(z1, ..., 25).

T1,..,Tn

The conditional entropy of Y given X is defined to be:
H(Y|X)= Zp H(Y|X = z).
Thejoint and conditional entropiesof X and Y are related by the following identity:
H(X,Y)=H(X)+ H(Y|X).

Thisidentity hasthefollowing natural interpretation. It saysthat theamount of uncertainty
in the pair of random variables X and Y isequal to the amount of uncertainty in X plusthe amount
of uncertainty in Y when X isknown. Put another way, the number of bits required to express both
X and Y isequa to the number of bits required to express X plus the number of bits required to
express Y when X isknown.

Let { X;} beastochastic process. Then the entropy rate of { X} is defined to be:

lim 1H(Xl, X)),

n—oo n
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provided the limit exists. If { X;} isastationary ergodic process then there is a theorem which says
that the limit exists. In the specia case that { X} is an ergodic Markov chain M with stationary
distribution = and probability transition matrix A , the entropy rate isgiven by the following simple

formula:
H(M) == n(i)M(i,5)logM(i, 5).
¥
Notethat if M isgeneratingi.i.d. random variables X; = X then H(M) = H(X).

An analogue of the law of large numbers known asthe Asymptotic Equipartition Property
(AEP) saysthat for large N thereisatypical set (i.e., aset of probability approaching 1) of about
2NH(M) sequences of length N, each with probability about 2=V# (M) This means that typical
sequences of length N can be represented using approximately N H (M) bits. Hence, the entropy
rate is a measure of the average number of bits of information produced by M per unit of time.
Shannon [24] proved the AEP in thei.i.d. case and stated it for stationary ergodic processes. Later
McMillan [20] and Breiman [6] proved the AEP for stationary ergodic processes. This classical
result is known as the Shannon-McMillan-Breiman Theorem.

In the case of noiseless communication the rate of information transmission is defined to
be min{C, H} where C' isthe capacity of the channel and H isthe entropy or information rate of
the source. When information is transmitted at a rate equal to the capacity C' of the channel, the
source and channel are said to be properly matched.

5.2.2 Noisy Communication and the Finite-State Channel

In noisy communication the input to the channel is subject to random noise during trans-
mission. In general, the output of the channel is a function of the input to the channel, the state of
the channel at the time of transmission and random noise. This model of afinite-state channel was
formalized by Blackwell, Breiman and Thomasian [5].

Formally, afinite-state channdl is defined by a source and achannel. The sourceisapair
(M, ¢),where M isa D x D stochastic matrix corresponding to an ergodic Markov chain, and ¢ is
afunctionfrom[D] = {1,..., D}to[A] ={1,..., A}. Thechannel isaset of A R x R stochastic
matricesC', ..., C4, and afunction ¢ from [R] = {1,...,R}to[B] ={1,..., B}.

The elements of [ D] are considered the states of the source, and the elements of [ R] are
the states of the channel. The set [A] is the input aphabet and the set [ B] is the output a phabet.
Suppose that d and r are the states of the source and channel, respectively, at the beginning of a

cycle. The source moves into a new state d’ according to transition matrix M (i.e., M(d,d’) isthe
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probability that the new stateis d’) and emits¢(d’), which isfed into the channel. The channel then
moves into state 7' according to the transition matrix C' 4y and emits«(r'), completing the cycle.
In the next cycle d’ and r" are theinitia states of the source and channdl.

The joint motion of the source and channel is described by the source-channel matrix
ﬁ, a DR x DR stochastic matrix whose rows and columns are indexed by pairs (d, ), where
d € [D] and r € [R]. Theentry of M in the (d,r)th row and the (d’,')th column is given by
M(d,d")Cyqry(r,r'). A channel is called indecomposableif for every source the source-channel
matrix isindecomposable.

Let {(d,,r,)} bethe Markov chain with probability transition matrix 7. Consider the
ergodic processes {z, = ¢(d,)}, {yn = ¥(r,)} and {(z,,y,)}, and denote their entropies by
H(X),H(Y)and H(X,Y), respectively. The capacity of afinite-stateindecomposable channel is
defined to be the upper bound H over al sources M of H(X )+ H(Y)— H(X,Y). Recal that
thejoint entropy #(X,Y) = H(X )+ H(Y|X) measurestheamount of informationin X plusthe
amount of informationin Y when X isknown. Hence, H = H(Y) — H(Y|X) can beinterpreted
as the amount of information received, less the amount of information that is due to noise in the
channel. Intuitively, the capacity isthe maximum possible rate of transmission of information; that
is, the rate when the source is properly matched to the channe.

Let ¢ be an error probability in theinterval (0, 1]. We say that it is possible to transmit
information at rate ' if, for all sufficiently large NV, there exist J = 29N distinct sequences
ai,...,azin[A}N and J digoint subsets By, ..., By of [B]" satisfying the following condition.
Foral j € [J] and r € [R], the probability that the output sequenceisin B; when the channel starts
instater withinput a; isat least 1 — e. The rate G measures the number of bits of information that
are effectively transmitted per unit of time.

The collection of pairs (a;, B;) is caled a code. The sequences ay,...,a; are the
codewords. These are the only sequences of length NV transmitted by the sender. If the receiver
receives a message b; € B;, then he interprets the original message as having been «;. Thisis
called decoding. The probability that the receiver decodes incorrectly isat most e.

Shannon’s coding theorem statesthat it is possibleto transmit information with arbitrarily
small (but positive) error probability at any rate less than the channel capacity but at no greater
rate. In [5] Blackwell, Breiman and Thomasian give a proof of Shannon’s theorem for finite-state

indecomposabl e channels.

Theorem 5.1 (Blackwell, Breiman and Thomasian [5]) For any indecomposable channd it is
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possibleto transmit at any rate less than the capacity of the channel but not at any greater rate.

To verify that thisresultisvaid for aparticul ar finite-state channel we must know that the
channel isindecomposable. Towardsthisend theauthors givethe foll owing necessary and sufficient
condition for channel indecomposability.

Theorem 5.2 (Blackwell, Breiman and Thomasian[5]) Achannel 'y, . . ., C 4 isindecomposableif
and only if every finiteword C';, - - - C;, isan indecomposable stochastic matrix, wherek = 1,2, ...
and i]' € [A]

5.3 Complexity Results

Inthissectionweinvestigatethecomplexity of deciding, givenafinitesetC = {C'1,...,C4}
of n x n stochastic matrices, whether all words over C are indecomposable. Severa authors, moti-
vated by the coding theorem, studied this question during the 1960s. Thomasian gave thefirst finite
criterion for channel indecomposability in the following theorem.

Theorem 5.3 (Thomasian [25]) Let C = {C41,...,C 4} be a set of n x n stochastic matrices.
All finite words over C are indecomposable if and only if all words of length at most 2"* are

indecomposable.

Interestingly, the proof of Theorem 5.3 uses a similar idea to the one used in Chapter 2
in the proof of the doubly exponential upper bound on expected cover time. We include the proof

here.

Proof of Theorem 5.3. Assumethat thereis a decomposablewordover C andlet W = C, - - -,
be the shortest decomposable word. Suppose, for contradiction, that [ > on? Then, since there
are only 27° different types of n x n matrices, for some j < k, theword C;, - - - C;; isof the same

typeastheword C;, - - - C;,. Hencg, C;, - - - C; C --(;, isof thesametypeas W, and thusis a

Tkl

decomposable word of length strictly lessthan /, which is a contradiction. |

As Thomasian points out in his paper, the result of Theorem 5.3 gives an immediate
algorithm for channel indecomposability. The agorithm simply enumerates al words of length up
to 2" and checks that each oneis indecomposable. The running time of this algorithm is doubly
exponential in n. However, by eliminating the need to repeatedly examine matrices of the same

type, we can solve this problem in singly exponential time as follows.
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Consider the directed graph G whose vertices correspond to the 2"* different n x n zero-
onematrices A;. For every ordered pair of vertices A; and A ;, thereisadirected edge from A; to A;
inG if, forsomeCy, € C, (A; - Ci) = A;. For every vertex A; other than the identity matrix, mark
A; if itis decomposable. Since we can determine whether the matrix A; isdecomposablein O(n?)
time using graph searching, we can construct and mark thegraph G inti me()(2”2(n2 + A)). Now,
thereis adecomposableword over C if and only if thereisapathin GG from the identity matrix 7 to
some decomposable matrix A; # I. We can determine whether such a path exists by performing
a depth-first search of G from /. Thistakestime linear in the size of G. Hence, the total running
time of thisalgorithmis O(2"*(n2 + A)).

Even this exponential time agorithm is impractical for modest values of n. Severa
authors worked on improving Thomasian’s procedure by reducing the length of the words that are
examined. Using ideas from Hajnal [16], Wolfowitz [26] proposed the following improvement to
Thomasian's procedure. A matrix M is scrambling if, for every pair of indices i1 and i, there
exists an index ¢ such that M(i1,7) > O and M(ip, i) > O; that is, every pair of states share a
common consequent. Wolfowitz observed that any word with a scrambling matrix as a factor is
indecomposable; therefore, when running Thomasian’s procedure one could disregard any word
that is scrambling or contains a scrambling word as a subword.

In a subsequent paper, however, Paz [21] showed that even when scrambling matrices are
discarded, Thomasian's procedure could be made to examine words of length aslarge as 27" In
the same paper, Paz proposed an aternative decision procedure that examines words of length at
most (3" — 2°*1 + 1). Nevertheless, in the worst case algorithms based on any of these criteria
take exponential time when the graph searching strategy is employed.

Theresult of Theorem 5.4 istwo-fold. It first improves upon the exponential upper bound
given above by showing that the problem can be solved in PSPACE. Secondly, it showsthat it is
unlikely that these exponential time algorithmswill be substantially improved, by showing that the
problem is PSPACE-hard.

Thefirst part of theresultisasimpleobservation based on Thomasian’scriterion. Suppose
that thereisadecomposableword W = C, - - - C;,, wherei; € [A]and/ < 27*. A nondeterministic
polynomial space-bounded Turing machine can generate the indices :;, for j = 1,...,/, one a a
timeand incrementally compute (M), where M; = C, - - -C;,. Once (W) has been computed, the
algorithm can verify in polynomial timethat 17 isindeed a decomposable word. Since PSPACE is
closed under the addition of nondeterminism and under complement, this shows that Thomasian’'s
criterion can be carried out in PSPACE.
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For the proof of hardnesswe usethe characterization of PSPACE by theclass|P1(SPACE(logn))
from Chapter 4.

Theorem 54 Given aset C = {C1,...,C4} of two or more n x n stochastic matrices, it is
PSPACE-compl ete to decide whether all words over C are indecomposable.

Proof. We have aready described how a polynomial space Turing machine can decide, on input
C = {C1,...,C4}, whether al words over C are indecomposable. It remains to show that the
problem is PSPACE-hard.

Let 7 be any language in PSPACE and let » be an input of length »n for which we wish
to determine whether = € L. By Theorem 4.1, I has one-way proofs of membership that can
be checked by an O(logn) space-bounded verifier V. As in the previous chapter, let G, be the
two-colored directed graph of the computation of V' on z. Recall that the vertices of ¢, correspond
to configurationsof V', and that vo, vaccept @d vreject COrrespond to the uniquestarting, accepting
and rejecting configurations of V', respectively. Recall aso that vertices vaccept anNd vreject A€
the only sinks since they correspond to the two halting configurations. We will augment ,. with an
edge (vaccept, v) Of color ¢, for each vertex » for which there isan edge (o, v) of color c. We will
also add aself-00p (vreject, vreject) iN €ach of the two colors. We will call the resulting graph
G!.. Notethat every vertex in G!, has at least one outgoing edge of each color.

LetC = {C1, C2}, where C isthe probability transition matrix for arandom walk on the
edges colored R, and (', isthe probability transition matrix for arandom walk on the edges col ored
B. Weclaimthat z isnot in L if and only if all words over C are indecomposable. Since PSPACE
is closed under complement, the result follows from this claim.

Supposethat z € L. Then thereisafinite proof = for which V' accepts with probability
one. Let [ denotethelength of = and let W = C';, - - - C, be the word corresponding to 7. Since
the verifier V' accepts with probability 1 on 7, by construction of G/, the entry of W whose row and
column correspond t0 vaccept CONtaiNsa l. By construction of G, the entry of W whose row and
column correspond t0 vreject @S0 containsal. Hence W is a decomposable matrix with at least
two essential classes, one containing vaccept @d another containing vreject-

Suppose that =z ¢ I and let = be any proof. Let C,C, ... betheinfinite sequence of
matrices corresponding to w. This sequence of matrices has a corresponding random wak on G”..
Since V' haltson al proofs, such arandom walk eventually reaches either vaccept OF vreject- The
probability that the walk reaches vyeject, given that it has reached one of these two vertices, is at
least 2/3. Suppose that the walk reaches vyeject- Then, by construction of G, the walk staysin
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vreject fOrever. On the other hand, suppose that the walk reaches vaccept. Then, by construction
of GG, the remainder of the walk simulates the computation of V' from its starting configuration,
SO again one of vaccept OF Vreject iSreached, and vreject iSreached with probability at least 2/3.
Hence, vreject iSreached with probability 1 on €', (', ..., and once it is reached the walk stays
there forever. Hence, all words have asingle essentia classwhich contains only the index vreject-

|

Theorem 55 Given aset C = {C1,...,C4} of two or more n x n stochastic matrices, it is
PSPACE-complete to decide whether all infinite products over C are weakly ergodic. To decide
whether all infinite products over C are strongly ergodic is PSPACE-hard.

Thepart of Theorem 5.5 concerning weak ergodicity isobtained asacorollary to Theorem

5.4 using the following result of Wolfowitz.

Theorem 5.6 (Wolfowitz [26]) Let C = {C1,...,C 4} beaset of n x n stochastic matrices. All

infinite products over C areweakly ergodic if and only if all finitewords over C are indecomposable.

This eguivalence shows that the problem of deciding whether al infinite products over C
are weakly ergodic is also PSPACE-complete.

The part of Theorem 5.5 concerning strong ergodicity is obtained by observing that in
the proof of Theorem 5.4, if z isnot in L then al infinite products converge to the n x n matrix
in which all rows have a one in the column corresponding t0 vyeject and zeros elsewhere. On the
other hand, if z isin I then thereis an infinite product that is not weakly ergodic.

5.4 Concluding Remarks

In this chapter we have addressed the computational complexity of deciding, given afinite
setC = {C1q,...,C4} of n x n stochastic matrices, whether al nonhomogeneous Markov chains
defined as products over C are ergodic. We have shown that deciding whether al products are
weakly ergodic is PSPACE-complete. We have also shown that the related problem of deciding
whether all finite words over C are indecomposable is PSPACE-complete, and have discussed the
application of this question to coding and information of finite-state channels. Our results show that
these are hard problems and give strong evidence that the known polynomia space (exponential

time) algorithms are the best possible.
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We have a so shown that to decide whether al infinite productsover C are strongly ergodic
is PSPACE-hard. It is unclear how close this result comes to capturing the true computational
complexity of the problem. Although recent work has addressed related questions [12] [18], no
effectively computable agorithm is known.
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