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Abstract

Today, multiprocessor systems can be used even for the solution of small problems.
In contrast to this advantage in the development of hardware solutions there are only
a few methods to specify and to generate efficient parallel programs especially in the
area of heterogenous systems.

In the report we intend to show that Petri Nets are a suitable description language
for doing so. An important point in this favour is that Petri Nets can represent
both aspects influencing the quality of a solution in an uniform model: the software
and the hardware on which the generated program will be executed. In that way
the executable program can be derived by compiling the corresponding part of the
model. Therefore powerful transformations of a given Petri Net are required in an
iteration process. Thats why a classification about such transformations is given
in the main part of our contribution, furthermore an new one will be introduced.
Because run time input data strongly influence the performance a possibility of a
dynamic implementation arising from such a transformation will be discussed too.
Finally we demonstrate and compare the achieved results for one typical example.
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1 Introduction

There are several approaches in order to improve the performace of a given problem solution.
On one side a better time efficiency yields from an improvement of the hardware, for instance
the use of more memory or coprocessor units. On the other side more important results
can be achieved by using parallel computer architectures. Today different types of parallel
architectures are available even for smaller problems. In a first approximation all parallel
systems can be considered as a number of processing units, a communication network and
several software units. The effective use of these structures requires a lot of new approaches
and methods in order to solve the following problems and optimizing the results:

e identify parallel executable parts
e map these tasks to the processing units
e define the communication structure and

o determine the communication

Difficulties in the software development process described above often arise from the
following facts:

e One cannot think parallel.
e There are only a few standardisation projects for parallel HLL

Portability of programs can not be achieved because of the different hardware, espe-

cially in the communication structures.

The complexity of problems is often very high (class NP)

To avoid these disadvantages in the development process of parallel software several
methods were derived increasing the acceptance of parallel processing machines. They are
based on the use one or more of the following four main ways:

e parallelizing existing serial standard software
e specification within a parallel HLL
e specification with an objectoriented, parallel HLL

e modelling with a graphical description language such as graphs, Petri Nets, dataflow
diagrams and compiling these solutions into executable code

A lot of parallel programs can be generated for solving the same problem even from the
same algorithm, but it is very difficult to compare the different results. In most cases this
comparision can be made only by time and cost extensive run time tests. So the use of
other new approaches is indicated.



2 Petri Net based Modelling and Specification

There exist a lot of possible quality arguments and needs showing once more the complexity
and needs for a good development of parallel software:

e the execution of the program in real time (mostly)
e the execution of parts in a special time interval
e the execution of special parts on a special group of machines

e low communication (especially in workstation clusters, where we have a very slow and
therefore very expensive communication, which often does not meet the requirements
of the user)

e the waiting times of all processes should be minimized

e the number of processes should be equal to the number of really parallel executable
parts (fireable transitions) of the solution

It seems from the high number of difficulties and new features that common program-

ming languages can not meet the requirements for the effective development of parallel
programs. In such a way graphical descriptions became more and more important. Finally,
from the topics shown above it should be evident that effective parallel programming means
to optimize both hard- and software structures. In such a way a model is needed which can
represent these aspects in one description. Petri Nets have proved to be an efficient tool
to represent complicated systems, especially because time dependencies and stochastics are
included (see [4]). Therefore the authors suggest a way basing on a (at least) three level
Petri Net modell of the system architecture derived from the results described in [5]. An-
other advantage should be that during the whole implementation all other problems can be
solved in only one software unit based on the language of nets.
The lowest layer of such a model will be built by the physical structure of the communi-
cation topology with its input and output points from i/o devices of the machines and an
interface, if there is a configuration possibility with switches (for instance é-networks). The
next layer represents all functions which are hidden in the operating system, especially the
routing of information between the concurrent working communication channels, waiting
queues and scheduling informations. The reader should note, that these informations have
to be a part of a hardware library of the used system which can be reused each time. The
third part will be built by the application of the user which was former the only part of
the model description. The interfaces between the layers are transitions. In such a way
the elements of the second layer contain a refinement and an additional connection of those
ones from the first level and so on.

As an example we consider the high performance workstation cluster suggested in [9].
In order to improve the performance of the ethernet connection a set of workstations is
connected with a very efficient hardware construction (see figure 1, 2). When using a
concurrent communication structure the transmission will be about two times faster for
the two dimensional structure. This result can be obtained from theoretical considerations,
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Figure 1: 2-dimensional Workstation Cluster Architecture

practical experience or from a simulation using our proposed method. A very rough picture
of only one node is given in figure 3. It shows the two lowest layers of the hardware;
informations will be represented by tokens. The color of the token represents the final
destination of the packets, furthermore the token can be considered as a container for any
appended message. The multiplicity of the arcs leaving the places representing the exclusive
usable bus (global capacity 1) describes the routing of the information between the nodes
and buses. On the second level, each node contains buffers and queues for the incoming
and outgoing messages and some software for selecting, receiving and sending informations
from tasks running at this processing unit. The CPU place and the testing arcs describe
the timesharing within the node for several tasks. All time dependend parameters must
be determined by statistical measurement and are connected with the parameters of the
transitions. The transitions #, and #; form the interface to the application layer in the
described way.
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Figure 2: Concurrent Communication in the Cluster



While only considering performance improvements for the architecture at all, a stochas-
tic firing process can model the access to the communication ressources. Even this very easy
model is suitable for a more performance oriented description of the system architecture. It
can be shown that the amount of packets waiting for transmission in the buffers of a node is
strongly related to the performance of the communication network for a given application.
By considering the number of tokens in the places of the model corresponding to the buffers
it can be proved that the performance of the architecture is really about two times higher
than the performance of a one dimensional cluster.
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Figure 3: (Colored) Petri Net Model of one Processing Unit

More information about the systems architecture we can get by reachability analysis

and other analyze methods. Main properties such as time behaviour and bottlenecks can
be predicted with a good quality. If the architecture does not meet the requirements the
responsible parameters can be changed and a better solution can be derived in an iterative
development process (see figure 4).
Note that the suggested simulations/analyses always need a first mapping of elements or
groups of elements to the processor executing them. This is a result from the compilation
of the given net described in the following section. Another compilation is needed before
each new iteration step which can be influenced by several free selectable options derived
from the results of the quality considerations.
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3 Approaches for the Compilation of Petri Nets

As shown, Petri Nets can be established to be an effecient tool to represent complicated
systems. Nevertheless, in general it is not easy to transform a technical system, given as
a Petri Net, for implementation on a multiprocessor system. One purpose of the present
contribution is to present a procedure for doing so. Therefore it is useful to find algorithms
to solve a lot of problems in a transparent way or hide some parts for a wide group of users.
While doing so Petri Nets as one kind of a graphical description language became more and
more interesting for modelling parallel software solutions (see [7]) and their acceptance will
be increasing.
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Figure 5: Overview about Exisiting Implementation Approaches

At first the needs of implementing Petri Net solutions will be considered by the following
definitions. Implementing a given Petri Net means:

e ... to implement a parallel program with the same behaviour of its input and output
data streams like the net. -1-
e ... to find out structures of a parallel program corresponding to structural units of

the Petri Net in such a way, that the state (or a class of states) of the program can
be derived from the marking (or a class of markings) of the net and vice versa. Doing
so each implementation of a given Petri Net is a kind of a fast simulation too. -2-

e ... to write a program, which shall transform the marking mg step by step into
markings m; by checking and firing the transitions of the net in accordance to the
firing rule. -3-

Fach of the given definitions can be used in order to find several approaches implement-
ing the net.
But today there are only a few approaches for implementing Petri Net models on different
multiprocessor architectures (a classification is also given in figure 5).



From the authors point of view all known methods for Petri Nets today fall into two basic
types. The first one - so called direct type- means to implement one process for every
transition (for instance [10] or [14]) is closely related to definition -3-. The second, indirect
one is to cover ([7]) or to decompose a given Petri Net by state machines, and then to
implement one process for every state machine (see definition -2-). Especially if a Petri
Net has a high number of transitions, the first method yields in each case a solution with
a plenty of superfluous processes or processing time and a large communication overhead.
In general, the second group of methods generate a more efficiant code, but, in contrast to
the first one, it does not apply to all Petri Nets.

So in [1] an interesting approach can be found using P-Invariants in order to cover a net
with state machines. This approach requires that the multiplicity of all arcs must be one
otherwise additional places will be inserted such that the efficiancy of the generated code
can be compared with those of the direct methods.

For persistent, bounded Petri Nets another idea can be used. It is justified by the experience
that, at least in many Petri Nets arising from practical problems, the number of circulating
tokens is much smaller than the number of transitions. Very often these tokens represent
physical objects and the movement of these objects activates several procedures. Using a
special transformation one state machine for each token circulating in a given net will be
generated with a number of additional places, forming a system of state machines which
simulates the original net and can be implemented very easy (for details see [12]).

The main disadvantage of known approaches is the transformation of a subset of places into
global data objects in a shared memory. These data objects normally contain integer values
corresponding to the number of tokens in the places. Accessing the data objects by more
than one process causes a lot of management problems and aggravates real parallel work
of these processes. In the end a lot of technical systems (like transputer systems or PVM
implementations !, see [13]) require a client server relation instead of a shared memory
for solving this problem and so the number of parallel working processes is increased. So
another transformation is introduced in this report avoiding these problems, giving good
possibilities for a good performance of the derived program and allowing an expanded use
of the method from [1]. It is based on the substitution of each place by a special place
construct in accordance to the given structure of the net.

!Parallel Virtnal Machine for UNIX clusters from the Oak Ridge National Laboratory (see: Sunderam,
V.S.: PVM.- in: Concurrency: Praktice and Experience, Dec. 1990, pp. 315-339, Atlanta 1990)



4 Transforming Petri Nets using Place Constructs

4.1 Definitions, notations and preliminary considerations

In order to introduce the transformation below only simple P/T-Nets will be used. But
the reader should note that the idea can be generalized for other classes, especially colored
nets, too.

As usual a Petri Net @ is a 5-tupel (P, T, F,V,mg) such that

(i)  P,T are disjoint finite nonempty sets, the sets of places
and transitions, respectively

i) FCPxTUT X P, the set of arcs

iii) V :F — N, the multiplicity function

iv) mg: P — Ny, the initial marking

(
(
(
(N and Ng denote the sets of positive and nonnegative integers, respectively.)
ForteT (pe€ P) let

Ft=A{plpe P, (p,t)€F}

Fp:{t|pEP, (t,p)EF}
and
tF={plpe P, (t,p)€ F}
pl’=A{ilpe P, (p1)€ F}

An unmarked Petri Net is a 4-tupel (P, T, F, V) subject to the conditions (%), (i), (¢i7) of
the definition of a Petri Net.

We find it convenient to continue V on F* C P X T UT x P by defining V(f) = 0 for
fe(PxTUTx P)\ F. Then F is uniquely determined by V', and so a Petri Net can be
described by the 4-tupel (P,T,V,mg), as well.

A transition ¢ € T is able to fire at a marking m if for every p € P, (p,t) € F

m(p) 2 V((p,1))

Firing ¢ € T at m means to substitute m by my., where

m(p) =V((p,1)) = (p,1)€F
Mpew(P) = mEp§+V((t7p)) D (Lp el
m(p 1 else

for any p € P.

A Petri Net (P, T, F,V,mg) is said to be a state machine if

(i) |Ft| = |tF|=1forany t €T
(i) V(f)=1forany fe ¥V
(i) Sepmolp) = 1



Obviously, a state machine is 1-bounded and conservative.
A Petri Net (P, T, F,V,mg) is defined to be a system of concurrent state machines (briefly
an SCS) if there is a collection of pairwise disjoint state machines Y= (Pi, T FL VY, mé);
i = 1(1)k such that

(i) P2OULP

(i) T =Ui,T"

(i) F'=(P'xT'UT' x P)n Ffori=1(1)k
(iv) V' is the restriction of V on F*, for i = 1(1)k
(v)  mj is the restriction of mg on P, for i = 1(1)k.

ﬁ 1 1
1 1

System of Concurrent System of Cooperatin
State Machines (SCS) State Machines (SCOS

SM = state machine
Figure 6: Systems of State Machines

If the state machines are connected by merging two ore more transitions from different
state machines, than such a system is called a system of cooperating state machines (see

figure 6).

For modelling automation systems it is necessary to add some components to the stan-
dard Petri Net definition in order to describe the input and the output of data ([3]):

(1)  wx,
a set of boolean expressions associated with the transitions.
If t € T, wy(t) is considered to be an additional condition
to fire t.
(2.)  wy,
a set of boolean output variables connected with the places of the
Petri Net. wy(p) € wy is TRUE, if p is labeled.
(3.)  wa,
a set of procedures associated with the places of P.
Procedures are started when a new token reaches the place.



4.2 The Transformation

In the following, a Petri Net transformation is shown resulting in a net with particular
properties. It is based on separating conflict structures followed by a transformation of the
remaining net. Afterwards, the net can be implemented in a message based manner.

4.2.1 Conflict situations

Conflicts directly influence the transformation of a Petri Net. Places with more than one
posttransition are the reason for conflicts in a Petri Net. Such constructs are called static
conflict situations. For the present contribution it is necessary to consider several static
conflicts in a given Petri Net ® in a more detailed way (see figure 7). All the structures
consist of a set of transitions A and a set of preplaces S of the transitions of A while there
is at least one transition to each other one such that they have a common preplace.

All non-free-choice conflict structures result in problems during the (basic) transformation
and have to be cut out in a first step described below.

V() V() Va(f) V)

V()
Y V()

V() Q?:I Vi) V()

Vi)

a) freechoice b) standard c) unsolved  d) connected

@

Figure 7: Static Conflict Structures in a Petri Net

Let 1T and © be set systems for all conflict structures of a given Petri Net with

T = {5, 5%, ..., Sulh € N}

and

0= {A17A27 7Ah|h € N}
The function K(II,0) is defined as follows:

(H/,Q/) of i, AN A; #0
with H/:(H\Si\Sj)U{SiUS]‘}
and Q/I(Q\Ai\AJ‘)U{AiUAJ‘}

(H,@) iof Vi, j:ANA =0

K(II,0) =

Obviously, there is a & € N such that K*(I[,©) = K**1(11, ©). In this case K*(Ily, ©g)
is called a maximal conflict set.

For @ = {qlq € P,[pF(q)| > 1}, (Il, ©g) with
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Mo = {M;|M; = {q;},1=1(1)|Q]}

and

0o = {Ni|N; = {t|(q;,1) € F'}, 1 = L(1)[Q}

is the set of places and their posttransitions which could be the source of a conflict.
Furthermore, the connection between some of such sources via their transitions (figure
(7d)) is represented in the maximal conflict set K*(II,@).

In order to get a set with all preplaces of t € ® we modify in (I, 0) = K*(Ily, ©p) the set
system Il by II' = {p|3t € © : (p,t) € F}.

For further transformation we have to cut out such structures (see figure 8) from a given
Petri Net ®. The main idea consists in a functional separation of the pre- and the postarea
of a transition. The fireability of such a transition can completely be tested in the first
subnet. The postarea of the transition located in the second subnet only sets tokens on
places, if this transition has got a message from the prearea.

Conflict
structure

4 Message

Figure 8: Separation of Conflict Structures

A later discussion shows that only conflicts containing the more difficult subconflict
situation from figure 7c must be cut out.

4.2.2 Transformation of the remaining Petri Net

The transformation of the modified Petri Net & = (P, T, F,V,mg) (a net without static
conflict structures) described in this section is carried out in three steps. At first, we define
an unmarked place construct (P'(p),T"(p), I'(p), V'(p)) for each p € P of a given Petri Net
®. After doing so, these constructs will be joined by arcs, and a corresponding marking m’ is
defined. Thus, we get a corresponding Petri Net &' = (P', 7' F', V', m') with P' = |J P'(p),
T'=UT'(p) and F' O U F'(p).

11



(1.)
Let p € P, touy € T the only transition with (p,f,u) € F and V,, the multiplicity of
(p,tout). Then we define

u = Vour + maz(Vi|i = 1(1)| Fp|) — 1.

Now each p € P will be transformed into a place construct with a set of places P'(p)

defined by

Pl(p) = {p67 "7p;'7 Ty ey ‘r6|i = 0(1)u7 €= 1(1)|toutF|}
For the definition of the sets of transitions and arcs Cy(p), Ca(p) and Cs(p) are defined
by:

Ci(p) = Ala,b,0)] a=0(1)Vour — 1,6 =1(1)[ Fp|,
c=a+Vyra+ Vi < Vot

Cy(p) = {(a,b,c)] a=Vou(Du,b=0,c=a— Vyy :
@ Z Vout}

Cs(p) = {(a,b,0)] a=0(1)Vour — 1, =1(1)[Fp]|,
C:a‘|“/b_vout:a+‘/b Zvout}

With these definitions let

C(p) = L_J Ci(p)-

Corresponding to the elements of C'(p), the following transitions and arcs are added for
each (a,b,c) € C(p) to the sets T'(p) and F'(p), respectively:

tapo(p) € T'(p),
(P tape) € F'(p) with V(P lape)) =1
and
(tape,p) € F'(p) with V((tape p.)) = 1.
Finally, we add for each (a,b,¢) € Cy U C5 arcs with

(tapeo i) € F'(p) with  ((tape, 2i)) =1

for all i = 1(1)|tou F].
In a last step places without pretransitions and their postarcs and posttransitions will be
removed from the place constructs. An example of such a place construct is given in figure

9.
(2.)
Let e = 1(1)|toueF’|. Then one z. € P'(p) exists corresponding to each of the postplaces

V1, V2, .., Ve Of toye. Furthermore ¢, .(v.) € T'(v.) are the transitions of the corresponding
place constructs. Now we add for all (a,b,c) € C1(v.) U Cs(v.) an arc to ¥’ with

(Teytape(ve)) € F' with V((ze,tape(ve))) = 1.

12



(3.)

t :
Vi =3 ' transformation

Vout =1 to12

tout

ltout FI=1

Figure 9: Example of an easy Place Construct

A marking m’ of @' is said to be corresponding ? to m of ® if for all place constructs

Yprepip ™ (py) =1

Vi, : m( i(p)) = m'(z;(p))
Vi,j:if m'(pi)=1,p, € P'(p)
i+ m'(2;(p)) * Vour = m(p)

As a the result of the transformation we get a transformed Petri Net ®’ which simulates

the behaviour of ®. An important property of ®' is that the multiplicity function equals 1
for all arcs of the net.

2there are possible markings among the corresponding markings which do not influence the correct control

flow
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5 Implementation

5.1 Remarks about Systems of State Machines

The aim of the transformations described above was to decompose a given Petri Net into
a special one building a system of concurrent or cooperating state machines (or a mixed
structure of both). This aim is also achieved, if the transformed net can be covered with
state machines in another easy way.

The reason for doing so is that every state machine can be implemented as a single process.
Each of these processes is sequential since any marking of an ordinary state machine con-
tains exactly one tolen and has therefore one fireable transition each time. To implement a
transition is a tedious task, and, in general, functions should be used for it. Doing so, the
only difference between the implementation of systems of concurrent and cooperating state
machines is in the used communication procedure of these functions. Therfore shared data
objects or rendesvouz routines are used respectively (see figure 10). These differences and
the use of different hardware dependent communication concepts are the reason for achiev-
ing advantages using transition functions; all requirements for the communication will be
encapsulated and only the transition function has to be adapted to the special hardware
and communication structure. Examples for the inner structure of such functions can be
seen from [11].

DATA

shared memory

or server process rendesvouz

SCS SCOS

Figure 10: Communication between the State Machines

5.2 Implementing the Transformed Net

The task of implementing the transformed net desribed above comes along with some dif-
ferent requirements than implementing systems of state machines. Implementing ®’ means
to find out interpretations for special elements of the given Petri Net. In our case this job
falls into two parts: implementing the conflict structures and implementing the transformed
remaining Petri Net &', which can easily be covered with state machines.

The main problem with implementing conflict structures results from the shared use of
a data object representing places with more than one posttransition. Qur approach avoids

14



these problems, because all elements of the conflict structure (/(Il, ®)) will be cut out and
implemented as a single process, containing all elements for the complete solution of the
conflict in a loop. The connection of the conflict structures with the remaining net can be
represented by messages, as described above by the shared implementation of a transition
in cooperating state machines.

Now let us consider the remaining Petri Net ®’. One advantage of the described trans-
formation is that the place constructs without the places x; are state machines. These state
machines are connected via x; and their incident arcs, thus forming so-called systems of
concurrent state machines (SCS).

In a first approach these SCS can be implemented by creating a single process of a parallel
program for each state machine ([11]). Following this idea, the z;-elements of ®' are inter-
preted as communication structures between these processes.

Places connecting state machines are usually implemented as data objects in a shared mem-
ory or a server process ([12]). But resulting from the transformation described above, each
x; has prearcs only relating to transitions in exactly one state machine, and has postarcs
only relating to transitions in exactly one other state machine. Therefore, information about
the state of any z; will be managed by only one process and so this communication can be
implemented by the use of send and receive procedures and the belonging message buffers.
A second approach implementing the transformed Petri Net is based on special structure
effects of the transformed Petri Net.

S RN I

Sequence  Endof process  Alternative
|-O
message

Waiting for Start of a End of processwith
start new process  synchronization

Figure 11: Elements in the Reduced Transformed Petri Net

Let us consider @’ without the places p; of P’ and without their transitions ¢, . derived
from the elements of Cy(p). It can be shown that such nets consist of six basic elements
with an interpretation shown in figure 11. Because the multiplicity of all arcs equals 1, each
token in one of the z;-places corresponds to a set of parallel processes corresponding to the
given interpretation of elements. For more than one token we get a superposition of such
process groups.

In all cases there is the restriction that in a given moment only one transition of each place
construct can fire. This will be achieved by a special interpretation of the p;-elements of the
transformed Petri Net. The marking of these places can be considered as a special value of
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a marking of p in the original net. Thus the values can select the fireable transitions and in
this way solve the conflicts in the processes. In the parallel program the value of a counter
will be implemented by messages circulating between the processes. Only one process can
receive the message, and therefore only one process can do the next step corresponding to
the firing process of exactly one transition. Leaving the sector of the given place construct
the process sends a message with the new counter information and any process that needs
this information can receive it.

At last, we have to consider the interpretation of the transitions ¢, . derived from the
elements of Cy(p). Firing one of these transitions entails creating tokens on z; and processes,
respectively. The firing process of these transitions directly depends on firing #, .., if 45
derives from Cs5 and ¢ > V,,;;. This algorithm is implemented by creating a new process
which receives as its argument the data from the circulating message. The mentioned
process creates other new processes, changes the information of the message (—V,, for
each new process up to the moment when the data are less V,,;) and sends the updated
message to any process requiring it.

The choice of the implementation method depends on the properties of the given net. If
the number of places is not too high, the first approach is more effective, a lower number
of tokens favours the second method but a mixed use of both methods is possible too.
The reader should note that we have only explained the basic idea and various improvements
can still be made. For example, one can involve more subtile HLL structures as if-then-
else- constructions or loops ([6]). The latter also permits the possibility to generate a
program to control some technical systems represented by a Petri Net involving w,, w, and
w,, functions ([3]) automatically. Finally note that the described method was explained for
Place-Transition nets only but can be expanded for colored nets too.
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6 Performance Considerations and Load Balancing

6.1 Performance

For our performance considerations we have used a workstation cluster as explained in the
first part of the report. For this architecture a small but typical example is used which
contains 18 transitions. A maximum of four of them can be executed in parallel. The size
of the procedures for the following measures meets the requirements for a sucessful use of
parallel implementation of the Petri Net which can be derived from figure 12. Therefore
this figure shows the run time for 1000 cycles of the example. Because the process structure
depends on the path used for tracing the net two possibilities were considered in addition
to the serial and common parallel implementation (one process for each transition): in the
first one the shortest way from a labeled place to the same place back or to dead end was
selected building the frame of the process and in the second one longest pathes were used.

runtimeins

50

40

10 7

I I I I I I I
125 250 500 1000 2000 4000 8000

duration of actions

ol ; in microsec.
© serial implementation

U one process for each transition

I "long ways" for process generation
= "short ways" for process generation

Figure 12: Requirements to the Level of Abstraction of the Net

Because the speedup of a parallel program is the most important factor, in figure 13
an overview for several implementations on a cluster while using 1 to 9 machines is given.
Caused by the slowly working communication network, there is no speedup to be seen for
the implementation results from making processes corresponding to each (group of) transi-
tion(s). In this case the high number of processes yields a high communication expenditure
which cannot be served by the network. This is the reason for achieving better results
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using other approaches. So the method described above, using place constructs generates
in both cases only 6 processes which can work more effectively. Furthermore it can be seen
that improvements from an optimization of processes within this method only make small
changes in the results.

runtimeins

40
18 transition
rank of parallelism: 4
35 7
30 @)
25
20
15 T T T T T T T T T
1 2 3 4 5 6 7 8 9
number of
o ) processors
©  serial implementation
0 one process for each transition (18 processes)
I “long ways" for process generation (6 processes)

~  "short ways" for process generation (6processes)

Figure 13: Time Behaviour of Parallel Programs

6.2 Load Balancing

In the last section we have divided the net into fixed processes in each case. Thus a clearly
structure of processes and communication betweem them was generated.

Because input data dependencies very often influence the run time behaviour of a given
solution, general performance predictions will be impossible or only useful for strong re-
strictions concerning the range of all (!) input data. Finally it needs to be mention that the
reachabilty graph can be constructed only for small systems with respect to the necessary
expenditure.

So it is usual to use (stochastic) results from a simulation process or to look for a dy-
namic adaption. While implementing a net a lot of useful results can also be obtained from
the running program and can dynamically influence the execution of the running program.
Because of the suggested implementation methods using Petri Nets as the basis of a graph-
ical programming language there are special relations in the implemented software too and
so often only a small communication and management overhead is needed for a change into
a dynamic system. For doing so it is necessary that the whole net is present on each node
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although only a part of the net will be momently processed by this unit. In dependency
of the use of direct or indirect methods related to the above definitions -2- or -3- for the
implementation, the statistic about the firing processes will influence:

e the group of transitions which are assigned to the node (-3-)

e the path of the token flow, e.g. the structure of the actual state machine (note that
in this case the system of state machines can be changed by time)

In the first case the statistic contains information about the number of tests of each
transition on the node and the number of sucessful firing processes. So after some times
it can be seen which transitions have caused the most work for the node. Comparing this
load results with those of the other units after a longer period makes it possible to transfer
the execution of code representing special transitions and a number of adjacent places to
another node. Therefore only the marking of the places and a short name of the transitions
must be sent, because all nodes contain the whole topology of the net. Note that for all
management and communication processes time intervals can be used, in which the involved
processing nodes do not require any communication. After passing all nodes twice in such
intervals each node can decide which balancing actions it starts in order to improve the
efficiancy in the next period.

Process
p1 P2
———N
P1 pl SO Communication
trl RN

Rl |

P2 1

p2 — p3
p3
t Time

Figure 14: A System of two Processes

The second approach yields from a flexible interpretation of the elements of a special or
transformed Petri Net, e.g. from the transformation described in the section above. The
topology of the net has to be broadcast to all nodes too. The only difference is that each
node gets a special information about the token, e.g. each node or process sees only one
token and its movement. This token represents the token flow in one of the state machines
which were directly derived from the topology of the net (as described above each state
machine is a subgraph of the transformed net).

Now lets consider the situation when implementing the special structure of the element
from figure 14. It is obvious, that 2 processes P1 and P2 will be generated. After some
instruction for instance the process P2 needs some data generated by P1. When receiving
this information the execution of the process P2 will be continued and P1 will be terminated.
The same algorithm can be represented if process P1 continues the execution after receiving
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some other information from process P2 which than finished its execution. A load balancing
between the processors executing P1 and P2 could be achieved if the following part after
p3 will be processed on that machine which has less to do than the other. This requires
that

e cach machine can execute each part of the work and

e all alternatives of the execution are included in the structure of an uniform process
which can be multiple started with several entry points.

Process 1 Process 2
<M> <M> I
pl M essage ‘ p2
- 9 -
<> <M> <><M>

<> <1> <><M!=1>

<> | Nl e <1> <1>

‘ <M=LOAD>

<>

<> <stop> <> <LOAD>M <><LOAD<=M>

" EXIT

<><I> Return p3
<continue>

<> <|=continue>

<> <|=stop>

<> ¢ EXIT

Figure 15: Introducing the Laod Balancing

Now we are ready to describe our load balancing approach. In common sense the re-
quired information will not be generated in time, in most cases one process has to wait
a time (at) for the communication service. Let us consider to processes with the above-
mentioned structure. Without any restrictions to the universality lets suppose that P1
reachs the commmunication point at first. The time until P2 finished its work can be used
for calculating an optimal load balancing strategy without influencing the execution time
of the whole program 2. Figure 15 shows the Petri Net model of the needed communication
procedures, if P2 passes p2 at first all necessary structures can be symmetrically added.

3if there is a pure multiprocessing mode; in a multitasking mode the computing time can be neglacted,
if the number of processes is >> 1

20



The functionality is the following. If P1 reads Message at first it contain the initial date
< 1 >. This will be replaced by the actual load factor of the corresponding CPU. Because
P1 has to wait for P2 in each case no time will be wasted if the difference At is big enough.
Passing the communication point P2 gets the information about the load factor of P1 and
can compare this information with its own. So P2 can decide if the process will be contin-
ued on its machine or not. Furthermore P1 gets the decision via another communicaition
and can continue its execution now. This communication is not a new overhead because P2
must communicate with P1 in each case, also without the described load balancing. Only
the decision of P2 about the load balancing had to be added to all other information in the
message. After all, the initial value of Message will be restored for following requests by
the exiting process.

In this case the decision was made from temporarily available load informations but other

ones, e.g. waiting messages and so on can be used too. As it could be seen good possibilities
for an adaptive load balancing can be derived.
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7 Conclusions

In this report a software development approach is shown completely based on the efficient
use of Petri Nets in each stage of work. This is an addition to the well known use of nets
for modelling parallel and distributed architectures and software solutions. An important
progress for a performance oriented design was achieved by the consideration of soft- and
hardware structures in an uniform model. Furthermore it was exemplary shown for a basic
class of Petri Nets that a part of such a complex model can be automatically transformed into
an executable program. The generated solutions are more efficient than other comparable
ones and contain a lot of possibilities for an optimization of the run time behaviour. The
authors suggest for such an optimization the use of decentral and dynamic approaches based
on run-time statistics or the use of runtime information about the load of the processors.
Because of the special structures achieved from the transformation of nets the introduced
methods achieve good results and can adapt all requierments resulting from input data
dependencies.

In such way an evaluation of Petri Nets into a kind of graphical programming language for
parallel and distributed systems can be expected.
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