Complexity and Real

*

Computation: A Manifesto

LENORE Brumt FELIPE CUCKER?Y
Mike SuuBll STEVE SMALEYI
TR-95-042

Abstract. Finding a natural meeting ground between the highly developed complexity the-
ory of computer science —with its historical roots in logic and the discrete mathematics of the
integers— and the traditional domain of real computation, the more eclectic less foundational
field of numerical analysis —with its rich history and longstanding traditions in the continuous
mathematics of analysis— presents a compelling challenge. Here we illustrate the issues and

pose our perspective toward resolution.

This article is essentially the introduction of a book with the same title (to be published
by Springer) to appear shortly.

*Webster: A public declaration of intentions, motives, or views.

”Partially supported by NSF grants.

'International Computer Science Institute, 1947 Center St., Berkeley, CA 94704, U.S.A.,
1blum@icsi.berkeley.edu. Partially supported by the Letts-Villard Chair at Mills College.

{Universitat Pompeu Fabra, Balmes 132, Barcelona 08008, SPAIN, cucker@upf.es. Partially supported
by DGICyT PB 920498, the ESPRIT BRA Program of the EC under contracts no. 7141 and 8556, projects
ALCOM II and NeuroCOLT.

SIBM T.J. Watson Research Center, Yorktown Heights, NY 10598-0218, U.S.A., shub@watson.ibm.com.

Dept. of Mathematics, Univ. of California, Berkeley, CA 94720, U.S.A., smale@math.berkeley.edu.

1 Aim

The classical theory of computation had its origins in work of logicians —of Godel, Turing,
Church, Kleene, Post, among others— in the 1930’s. The model of computation that
developed in the following decades, the Turing machine, has been extraordinarily successful
in giving the foundations and framework for theoretical computer science.

Our point of view is that the Turing model (we will call it “classical”) with its dependence
on 0’s and 1’s is fundamentally inadequate for giving such a foundation to the theory of
modern scientific computation, where most of the algorithms —with origins in Newton,
Euler, Gauss, et al.— are real number algorithms. QOur viewpoint is not new. Already
in 1948, John von Neumann, in his Hixon Symposium lecture, articulated the need for
“a detailed, highly mathematical, and more specifically analytical theory of automata and
of information”. In this lecture, von Neumann was particularly critical of the limitations
imposed on the “theory of automata” by its foundations in formal logic:

There exists today a very elaborate system of formal logic, and specifically,
of logic as applied to mathematics. This is a discipline with many good sides,
but also serious weaknesses. ... Everybody who has worked in formal logic will
confirm that it is one of the technically most refractory parts of mathematics.
The reason for this is that it deals with rigid, all-or-none concepts, and has
very little contact with the continuous concept of the real or of the complex
number, that is, with mathematical analysis. Yet analysis is the technically
most successful and best-elaborated part of mathematics. Thus formal logic,
by the nature of its approach, is cut off from the best cultivated portions of
mathematics, and forced onto the most difficult part of the mathematical terrain
into combinatorics.

The theory of automata, of the digital, all-or-none type as discussed up to
now, is certainly a chapter in formal logic. It would, therefore, seem that it will
have to share this unattractive property of formal logic. It will have to be, from
the mathematical point of view, combinatorial rather than analytical.

We propose a formal theory of computation which integrates major themes of the clas-
sical theory and builds on the classical foundations, yet at the same time is more math-
ematical, perhaps less dependent on logic, and more directly applicable to problems in
mathematics, numerical analysis and scientific computing.

We propose a theory of real computation.

We propose to do this in a way which preserves the Turing theory as a special case of
the new theory, i.e. by an appropriate choice of the fields admitted. In this way, results
from computer science give insight to numerical analysis and the reverse holds as well.

2 Seven Examples

2.1 The Mandelbrot Set

2.2 A Julia Set

2.3 Newton’s Method

2.4 The Knapsack Problem

2.5 The Hilbert Nullstellensatz as a Decision Problem
2.6 4-Feasibility

2.7 Linear Programming, Integer Programming.

2.1 Is the Mandelbrot Set Decidable?

The British mathematical physicist, Roger Penrose, in a popular book, “The Emperor’s
New Mind”, p. 124, writes:

Now we witnessed. . . a certain extraordinarily complicated looking set, namely
the Mandelbrot set [(Figure 1]. Although the rules which provide its definition
are surprisingly simple, the set itself exhibits an endless variety of highly elab-
orate structures.

Figure 1 The Mandelbrot set

Could this be an example of a non-recursive [i.e., undecidable] set, truly exhib-
ited before our mortal eyes?

It is known that the boundary of the Mandelbrot set has a rich and complex structure.
(See for example the next figure where a part of this boundary is shown.) Hence Penrose’s
query seems reasonable.

Figure 2 On the boundary: Seahorse Valley

Penrose is motivated to ask this question to make an argument against artificial intelligence.
While we find this use of mathematics not compelling, the question of the decidability of
the Mandelbrot set has another justification. It can partly answer and give insight to the
question: Can one decide if a differential equation is chaotic?

The Mandelbrot set M is defined as the set of complex numbers ¢ such that the sequence
c,c+e, (62 + 6)2 + ¢, ... remains bounded.

More formally, for ¢ € C, the complex numbers, let p.(z) = 2% + ¢ and let p?(z) be the
nth iterate of p. applied to z. That is,

Pel(2) = pel. - pe(pe(pe(2)))), n times.
So p.(0) = ¢, p%(0) = ¢? + ¢, Then M is the complement of the set
M' ={ce C|pl(0)— o0 as n — 00}.

The set M may also be described as the set of all inputs ¢ which don’t halt for the flow
chart in Figure 3.

Input ¢

(z,9) = (0,¢)

(z,9) — (2% + y,9)

|

|z| >27

No

Yes

Halt and Qutput 1

Figure 3 A flow chart associated with the Mandelbrot set

This is because if ever the sequence c,c? + ¢, (c? 4 ¢)% + ¢ escapes the disk of radius 2,
it will go off to infinity.!
To answer Penrose’s query, one needs a “machine” or “algorithm” that, given input c,

a complex number, will decide in a finite number of steps whether or not ¢ is in M. (See
Figure 4.)

Input ¢
ceM?
st/ W
Output 1 Output 0

Figure 4 Desired decision machine for M

!This fact is utilized in designing computer algorithms for drawing “pictures” of the Mandelbrot set: Let
N be a large integer. For given point c, generate up to N elements of the sequence ¢, ¢* +c, (62 + 6)2 +c,...
along with their magnitudes. If and when some magnitude is greater than 2, color ¢ white, else color ¢ black.
Note that white points are definitelyin M’ while black points are possiblyin M with our confidence level
partly dependent on N. (For more sophisticated algorithms, see the book [Peitgen and Saupe 1988]).

After asking his question, Penrose acknowledges being somewhat inexact (p. 125). The
classical theory of computation presupposes that all the underlying sets are countable and
hence ipso facto cannot handle these questions about subsets which are uncountable.

Next, Penrose seeks ways to bypass this problem. One way is to use computable real
numbers (to describe the appropriate complex numbers). This would be the approach of
recursive analysis, an area originating with early work of Turing. Here one might imagine
a Turing machine being input a real number bit by bit.

Using its internal instructions, the machine operates on what it sees, possibly every so
often outputting a bit. The resulting sequence, if any, would be considered in the limit the
(binary expansion of the) real output.

Problems arise here when one wants to decide if two numbers are equal and so Penrose
rejects this approach. As he points out on p. 126, “One implication of this is that even
with such a simple set as the unit disc, ..., there would be no algorithm for deciding for
sure ... whether the computable number z? + y? is actually equal to 1 or not, this being
the criterion for deciding whether or not the computable complex number z 4 iy lies on the
unit circle. ... Clearly that is not what we want.”

Another tack might be to consider the rational or algebraic skeleton of the problem.
Thus, we could rephrase Penrose’s question: given a complex number ¢ whose real and
imaginary parts are rational, or algebraic, decide whether or not ¢ is in M. Indeed, this has
been a tack used by theoretical computer scientists to deal with problems whose natural
underlying spaces are the real numbers (such as the linear programming problem) or the
complex numbers. However, this approach is also problematical. For example, the curve
23 + 3> = 1 has no rational points with both z and y positive. So, the rational skeleton
provides no useful information about the given curve.

After exploring several such approaches, Penrose p. 129 concludes: “one is left with the
strong feeling that the correct viewpoint has not yet been arrived at.”

Thus Penrose’s question, “Is the Mandelbrot set decidable?” makes no sense!

Now note that the flow chart of Figure 3 could be interpreted as a machine with “halt-
ing set” which is precisely the complement M’ of M. (The set M’ might be said to be
“semi-decidable”.) This machine has the power to accept complex numbers, perform basic
arithmetic operations on complex numbers and to compare magnitudes. It is an example
of a machine (to be defined formally later) over the real numbers R not C since it uses the
real comparison |z| > 2.

What is not clear but is true, is whether there is not a similar kind of machine with
M as its halting set. The theory of real computation proposed makes precise and formal
some of the suggestions here. In this theory, Penrose’s question becomes well-defined and
we answer it: the Mandelbrot set is not decidable over IR.

2.2 Example of the Julia Set of 7'(z) = 2 + 4

We are looking at a polynomial map 7 : C — C from the point of view of iteration or as a
complex dynamical system. Thus we write 72(2) = T(T(z)) and T* for the composition of
T with itself k times. Let us specify T(z) = 2% + 4.

Observe that if |2| > 2, |T%(2)| — oo as k — oo.

Consider the flow chart in Figure 5.

Input z

No

Output z

Figure 5 A Julia set flow chart

Call this machine M. In M there are 4 nodes (the boxes) which are called as we descend
in the diagram: input node, computation node, branch node and output node. Again we
have an example of a machine over the real numbers IR since its branching depends on real
inequality comparisons.

The halting set Qar of M is the set of inputs z € C such that by following the flow of
the flow chart, we eventually halt (or output). For example €3 contains the set of all z
with |z| > 2. Moreover 0,41, +2 are all in Q7. However fixed points of T, (so T(z) = z, or
2?2 4 4 = z) are not in the halting set. In fact any periodic point of T (so T*(z) = z some
k=1,2,3,...)is not in Q.

A little thought will show that Qs is an open set of complex numbers, so that J =
C — Qjps must contain the closure of the set of periodic points of T'. J is the Julia set of T
in the terminology of complex dynamical systems and it can be proved that .J is the closure
of the set of periodic points of T" and is homeomorphic to a Cantor set.

A question again suggested by the classical theory of computation is: Is J decidable, or
equivalently, is there a real machine with halting set J?

To see the equivalence of these questions, note that a decision machine for J can be
converted into a machine with halting set J as indicated in Figure 6.

Input 2

zeJ?
No

Yes

Halt and output 1

Figure 6 J is a halting set (supposing J is decidable)

On the other hand, suppose J were the halting set of some machine Mj;. Recall, the
flow chart machine M given in Figure 6 has halting set C — J. We construct a decision
machine for J by hooking together M and Mj (see Figure 7):

Input 2
M M;
If M halts If M; halts
Output No Output Yes

Figure 7 J is decidable (supposing J is a halting set)

To decide if z € J, input z into both M and M; and run the two machines in tandem. One
and only one of these machines will halt, the one that does decides the membership of z.
(Schematically, we have indicated a parallel process. This could be turned into a sequential
process by alternating in turn between operations of M and Mj.)

With a formal development of machines over IR, one can answer the above questions
(the answer is, .J is not a halting set and hence not decidable).

2.3 Newton’s Method

The previous two examples raised questions concerning the existence of machines that would
decide Yes or No to queries of the form: Given z € C,is z € M (or J)?

On the other hand, often we want algorithms that search for solutions to problems of
the form: Given a polynomial f, find ¢ such that f(¢) = 0.

Newton’s method is the “search algorithm” sine qua non of numerical analysis and
scientific computation. Here we briefly recall Newton’s method for finding (approximate)
zeros of polynomials in one variable.

Given a one variable polynomial f(z) over the complex numbers C, define the Newton
endomorphism Ny : C — C by:

N¢(z)=2z—

(1)

This map is defined as long as f’(z)#0.
Now for Newton’s method: Pick an initial point 2o € C and generate the orbit

20,21 = Nf(20),22 = Ng(21), ..., zp41 = Ny(2i) = IV)],H_I(Z()), e

Some stopping rule such as “stop if | f(zx)| < € and output 2;” is given. In practice, if the

procedure has not stopped with an output after a certain number of iterates, or it becomes
undefined at some stage, a new initial point is chosen.

We may represent Newton’s method schematically as in Figure 8. In this simple machine,
we assume that f, Ny and ¢ are built in. An initial point z € C is “input” to the machine.
Later we will consider machines which allow f and ¢ to be input as well.

Input z

z— Ny¢(2)

f(2)l <e?

Yes

No

Output z

Figure 8 The Newton machine for f

Proposition 1 (a) f(¢) = 0 if and only if N;(¢) = ¢ and (b) Ny(¢) = ¢ implies [N}(¢)| <
1.

Part (a) of the Proposition follows directly from the formula defining N (and noting
that there are polynomials ¢ and A such that % = % and if f({) = 0, then g(¢) = 0 but
h(¢) # 0). To show (b) we observe that, for a zero of f of multiplicity m,

m—1

V()= T

To see this, note that N} = % and evaluate it using the Taylor expansion of f about (,

f(2) = am(z — ()™ + higher order terms a,, # 0.

Thus the zeros of f are the fized points of Ny and the fixed points of N are attracting.
This implies there are local neighborhoods about the zeros of f that contract under (iterates
of) Ns. Hence, any point z € C that, under the action of Ny, eventually enters one of these
contracting neighborhoods will eventually approach a zero of f. This is the basis of Newton’s
method.

If ¢ is a simple zero of f, then N}(C) = 0, i.e. (is a superattracting fixed point of Ny.
It follows that there is an open set of points whose orbits under the Newton endomorphism
eventually converge quadratically to (. That is, starting at any of the points in this open set,
Newton’s method will eventually converge to (, and moreover, at some stage, the precision
of the approximation will double with each successive iteration.

Decidability questions also arise in this context. It is well known that Newton’s method
is not generally convergent. The main obstruction to general convergence is the existence of
attracting periodic points of period at least 2. For example, consider the cubic polynomial

f(2)=2"-2242.

Here Ny(z) =z — 212225‘52 So Nf(0) =1 and Ng(1) =0, i.e. 0is a point of period 2 under
the Newton endomorphism. Also, by the chain rule we see, (N7)'(0) = 0. So there is a
neighborhood of points about 0 whose orbits under the Newton map fail to converge to a
zero of f. These points are superattracted to the periodic orbit: 0,1,0,1,.... So, given f,
it is natural to ask: Is the set of “good” starting points for Newton’s method decidable?

Here we will say that a point z € C is good if its orbit under Ny converges to a zero
of f. It can be shown that the set of good starting points coincides with the halting
set of some Newton machine M (with built in ¢ that depends on f). So as before we
can rephrase our question: Is the set of bad points a halting set? With a theory of real
machines doing exact arithmetic it can be shown that the answer is no. We include here a
picture indicating the good and bad points for Newton’s method applied to the polynomial
f(2) = (2% = 1)(2* 4 0.16). In this picture (see Figure 9), bad points are colored black and
the set of them includes the Julia set for the Newton endomorphism.

10

Figure 9 The dynamics of the Newton endomorphism for f(z) = (2% — 1)(2* + 0.16)

2.4 The Knapsack Problem

Now suppose R is a commutative ring with unit. For specificity, one may suppose R is the
ring of integers 7, the rationals @, the reals IR, or the complex numbers C. Consider the
following problem:

Given z1,...,2, € R decide if there is a non-empty subset SC{1,...,n} such
that) ;e = 1.

We shall call this problem the Knapsack Problem (KP) over R. In the classical theory, it
is also known as the Subset Sum Problem:

Given positive integers z1, ..., x,, ¢ decide if there is a subset SC{1,...,n} such
that) ;s = c.

Here we imagine ¢ to be the capacity of a knapsack, x; the weights of given items, and the
question is: Can one fill the knapsack to capacity with some subset of the items?

Note that in our formulation of the Knapsack Problem, the ring R need not be ordered.
Thus, the machines we consider here branch only on equality comparisons over R.

In many ways, the Knapsack Problem is similar to our previous decidability problems.
Let K, be the Knapsack set which we write in the following form:

K,={z€ R"|3be {0,1}" such that Zbﬂ@i =1}. (2)

Now we are seeking a machine that will decide, given z € R" if z € K,,.

But unlike our previous problems, KP is easily seen to be decidable: Given =z € R",
successively enumerate the non-zero elements of {0,1}" and evaluate the corresponding
Y biz;. If and when an evaluation is 1, halt and output 1 (yes). Otherwise, halt and output
0 (no). (See Figure 10.) Given input z € R" this algorithm (or machine) will stop with a
correct decision in at most 2" — 1 enumerations.

11

Input (n,z)

J=1

ENUMERATION SUBROUTINE
with input (n,), output &/, the jth

non-zero sequence in {0, 1}"

b— b

S b =17

Yes No
Halt and output 1 j=2"-17
Yes w\
Halt and output 0 Je=J+1

Figure 10 Exhaustive search machine for solving the Knapsack Problem

Fixing n, we can view the input space for our algorithm as the finite dimensional space R".
However, since the algorithm is “uniform” in n, we can naturally view the input space as
R*, the infinite direct sum of R (essentially, the space of finite, but unbounded sequences
over R). Thus, letting n vary, we have really sketched an algorithm to decide membership
in K =|J K,. In the finite dimensional case, the polynomial tests at the branch nodes can
be built into the machine. In the “infinite-dimensional” case, the tests at the branch nodes
are computed by subroutines.

The exhaustive search algorithm does not at all seem satisfactory. We may very well be
unlucky and have to go through an exponential number of iterations before we halt with
an answer. The big question is: can we do better? Is there an algorithm for deciding the
Knapsack Problem in a polynomial number of “steps”? By this we mean, is there a uniform
machine M and a positive integer ¢ such that for each n and z € R™, M will decide if z € K
in less than n® steps? We will be more precise in the sequel as to how to define a uniform

12

machine and how to count steps. For the moment, it is the number of nodes we traverse
(counting multiple visits) in a flow chart machine from input to output, given input z.
Notice that the exhaustive search algorithm does not use multiplication. A major un-
solved problem is: Can multiplication speed up the process?
Suppose R has no zero divisors. Let k,(z) € R[z1,...,z,] be the polynomial

kn(z) = J[Q_bizi—1) (3)

be{0,1}”

and Vi, = {z € R" | k,(z) = 0}. Then Vi, = K,. So, for each n we could construct a
machine with &, built in. (See Figure 11.)

Input (n,z)

II (Zn:bixi—l)zo?

be{0,1}7 i=1
Yey wo
Halt and output 1 Halt and output 0

Figure 11 An algebraic machine for solving the Knapsack Problem

The input space of this machine is R™. It decides if z € K immediately (in one step) by
evaluating the polynomial k,(z) and checking if the result is 0 or not. The degree of k,(z)
is 2" — 1. So we have traded an exponential search for an evaluation of a polynomial whose
degree is exponential in n. If R is ordered, a big question remains: Do order comparisons
enable significant speed-ups?

While it may be hard to decide in general if x € K we can quickly verify it is, if we are
given a good “witness” b € {0,1}". Just sum up the corresponding z;’s. We express this
property of the Knapsack Problem by saying KP is in the class “NP”. Over the integers,
KP is a universal problem with this property —it is “NP-complete over 7Z”.

2.5 The Hilbert Nullstellensatz as a Decision Problem
Newton’s method tackles the search problem:
Given a polynomial f over C, find a zero of f.

Here we consider the decision problem:

13

Given a finite set of polynomials f; in n variables over C, decide if the f; have
a common zero.

By the Fundamental Theorem of Algebra, for one polynomial in one variable, the answer is
always yes. This is not true for several polynomials in several variables.

We call this decision problem the Hilbert Nullstellensatz over C and we denote it by
HN/C. Thus, one seeks an algorithm, in fact an algebraic algorithm over C, which on input
f=Ah,-.., fu} produces yes if and only if there is a (€ C" such that f;({) = 0 for all 1.

By an algebraic algorithm we have in mind a machine whose computations, like Newton’s
method, involve the basic arithmetic operations, but whose branching now depends only on
equality comparisons and not on order, i.e. a machine now over C.

The input f to such a machine can be thought of as the vector of coefficients of the f;
in CN where N is given by the formula

k n+d;

N:Z(. ‘) di=degf;, i=1,...,k
=1

Thus, this N represents the size S(f) of the input f.

There are algorithms which accomplish this task. In the linear case, i.e. when deg f; = 1
for ¢ = 1,...,k, this is a simple linear algebra problem. In the general case, Hilbert has
shown that the answer is no if and only if there exist polynomials ¢1,..., gz in n variables
with the property

k
dgifi=1 (4)
=1

where the equality is equality as polynomials. Bounds on the degrees of the g; have been
proved and in fact we may take degg; < D™ where D = max{3,d;,...,d,}. Thus, equa-
tion 4 becomes a finite dimensional linear algebra problem; to find the coefficients of the g;.
As one can readily see, the number of Gaussian Elimination steps required is exponential
in the size S(f) of the input vector.

This suggests a problem which we formulate as a main conjecture.

Conjecture. The Hilbert Nullstellensatz over C is intractable.

By this we mean, there is no algorithm which solves HN/C with the number of arithmetic
operations A(f) satisfying the bound

A(f) < S(f)°

where ¢ is a universal constant. But a precise formulation of the conjecture awaits a formal
definition of machine over C.

With a formal theory of machines over C it can be shown that HN/C is in NP over C
by noting that given f and a test point (€ C”, we may test for a zero, i.e. whether

14

fil¢) =0fori=1,...,k, in a number of arithmetic operations that is polynomial in S(f).

Moreover HN/C can be shown to be universal with this property so that any problem in

NP over C can be quickly reduced to HN/C. That is to say HN/C is NP complete over C.
From these considerations it can be shown:

The Hilbert Nullstellensatz over C is intractable if and only if P # NP over C.

The above sketches our ideas on formulating complexity issues in an algebraic framework.
How does this relate to the P # NP problem of classical complexity theory?
By abuse of notation write HN /7 for the problem:

Given a finite set of polynomials f; in n variables over 75, decide if the f; have
a common zero in (Zz)".

By considerations similar to the above, HN /75 can be seen to be intractable if and
only if P # NP (in the classical sense). Since our algorithms in the above formulation are
defined in terms of algebra (characteristic 2 algebra), it could be said that we are placing
classical complexity into an algebraic setting in addition to extending it to new problems
such as P # NP over C. These new problems are interesting in their own right. But also,
by posing problems such as P # NP within a broader framework, we may be able to employ
new mathematical tools to study the classical case as well as gain new insights by analogy
or by direct connections.

2.6 Feasibility of Real Polynomials

Let us replace the field of the complex numbers by the real numbers in the problem above
and consider polynomials fi,..., fr € R[Xy,..., X,,]. The problem at hand now is to decide
if there exists a common root £ € IR™. Since the reals have a natural order, it is natural
here to consider algorithms that branch on order comparisons.

A particular feature of the real case, not shared by the complex one, enables us to
consider the same problem with only one polynomial at the cost of slightly increasing the
degree. We associate to the polynomials fi,..., fi the single polynomial g = Ele J?. Now
g has the property that for every £ € IR", £ is a common root of all the f; if and only if
g(&) = 0. Therefore, solving our problem for the f; turns out to be equivalent to solving
it for g. Moreover, if not all the f; are linear then the degree of g is at least 4. Let us
restrict our attention to degree 4 polynomials and consider the following problem denoted

by 4-FEAS:

Given a degree 4 polynomial in n variables with real coefficients, decide whether
it has a real zero.

15

Again, the input ¢ for this problem can be seen as a vector in RN where

n+ 4
N= (X)
is the size S(g) of this input.

An algorithm for solving this problem was first given by Tarski in the context of exhibit-
ing a decision procedure for the theory of real numbers. In the context of complexity theory,
Tarski’s algorithm is highly intractable. The number of arithmetic operations performed by
this algorithm grows in the worst case by an exponential tower of n 2’s. Later on, Collins
devised another algorithm that solved 4-FEAS within a number of arithmetic operations

bounded by /
225(9) ‘

More recent algorithms achieve single exponential bounds.These algorithms are quite elab-
orate.
Again, this suggests a problem which we formulate as another conjecture.

Conjecture. The 4-FEAS problem is intractable.

That is, we conjecture that there is no algorithm which solves 4-FEAS with the number of
arithmetic operations A(f) satisfying the bound

A(f) < S(f)°

where ¢ is a universal constant. But again, a precise formulation of the conjecture awaits a
formal definition of a machine over R.
As with the Hilbert Nullstellensatz, 4-FEAS is seen to be in NP over R. It is also
universal with this property, that is, 4-FEAS is NP complete over IR.
2.7 Linear Programming and Integer Programming
Over the reals consider the problem:
Given a set of m linear inequalities in n variables
n
Az >b; 1=1,...,m where A;z = Zaiﬂj, a;; € Rand b; € R (5)
=1

decide if there is a point z € IR” satisfying (5).

We call this problem the (real) linear programming feasibility (LPF) problem.
We now write the system of inequalities (5) as

Az > b,

16

where A is the m X » matrix whose ith row is A; and b the m-vector whose 7th entry is b;.
Then we may rewrite LPF /IR as:

Given the m X n real matrix A and b € R, decide if there is an z € IR™ such
that Az > b.

This problem is simpler than HN/IR in that the functions are linear, but more complicated
by the fact that we consider inequalities. The set of solutions of Ax > bis called a polyhedron.

The (real) linear programming optimization (LPO) problem is:

With input (A, b, ¢) minimize ¢ - x subject to Az > b where A is an m X n real
matrix, b € IR™ and ¢ € IR", or decide no minimum exists.

Replacing the reals by the integers or the rationals in LPF we have the integer program-
ming (IPF) and the rational linear programming feasibility problems:

Given an m x n matrix A with integer (respectively rational) entries a;; and
b € 7™ (respectively Q™), determine if there is an z € 7" (respectively Q")
such that Az > b.

The corresponding integer programming (IPO) and rational linear programming opti-
mization problems are:
minimize ¢ - x
subject to Az > b

or determine that no minimum exists.
Here A is an m X n integer (or rational) matrix, b € Z™ (or Q™), ¢ € 7" (or Q") and
zr€ Z™ (or QM).

Algorithms are known which solve all six of these problems, but there is a great deal of
difference in what is known about the efficiency of algorithms which solve them.

Integer programming is set apart from real or rational linear programming by the fact
that the solution of linear equations with integer coefficients are not necessarily integers,
e.g. 2z = 1. But it is also set apart from the reals by the notion of the size of the input. For
the reals, the input size S(A,b) or S(A,b,c) of the problem is the number of real variables
involved, mn 4+ m for the feasibility problem and mn + m + n for the optimization problem.
No algorithm is known for either the feasibility or the optimization problem with total
number of arithmetic operations A(A,b) or A(A,b, c) satisfying the following complexity
bounds:

A(A,b) < S(A,b) or
A(A,b,c) < S(A, b, c)"

17

for a universal constant d. Thus an outstanding problem is: Is linear programming tractable
over IR? Again, to make this precise one needs a formal definition of an algorithm, or
machine, over R.

Complexity estimates for algorithms for integer programming traditionally take the bi-
nary lengths of the integers used into account both in the input size of a problem “instance”
and the “cost” of the algorithm in that instance.

The height of an integer z, hi(z), is the first integer greater than or equal to log(|z|+1).

For the feasibility problem we take input size Sp:(A,b) to be equal to be S(A,b) times
the maximum height of all the integers a;;,7=1,...,m,7=1,...,nand b;, i =1,...,m
where a;; are the entries of the matrix A and b; the components of the vector b.

For the optimization problem we take input size Sy:(A,b,¢) to be equal to S(A,b,c)
times the maximum height of all the integers a;;, 1 =1,...,m,7=1,...,n,b;,i=1,...,m
and ¢;, 7 =1,...,n.

The cost of an algorithm for the problem instance (A, b) (respectively (A, b,¢)), Cpt(A,b)
(respectively Cri(A,b,c)),is similarly adjusted by multiplying the number of algebraic op-
erations A(A, b) (respectively A(A,b,c)) by the maximum height of any integer appearing
in the computation. The integer programming problems are NP-complete in the classical
model. The intractability of either one is equivalent to P # NP in the classical case, where
now by intractability we mean there is no algorithm and constant d > 0 for either problem
such that

Che(A,b) < Sp(A,0) or Cri(A, b, ¢) < Spi(A, b, c)%.

The situation for the rationals, rational linear programming feasibility and optimiza-
tion, is dramatically different. The height ht(z) of a rational number z = £ where p and
q are relatively prime is defined as max(ht|p|, ht|q|). Otherwise the definitions of the in-
put sizes Spi(A,b), Spe(A,b,c), and costs Cri(A,b), Cre(A,b,c) are the same as in integer
programming. There are algorithms for both problems and a constant d > 0 such that

Cri(A,b) < Spe(A,b) and Cry(A, b, ¢) < Spi(A, b, c)?

3 The Classical Theory of Computation

As we have noted, the classical theory of computation had its origins in work of logicians
in the 1930°s. Of course at that time, there were no computers as we know them. While
this work, in particular Turing’s (1937), clearly anticipated the development of the modern
digital general purpose computer, a primary motivation for the logicians was to formulate
and understand the concept of decidability, or of a decidable set. In particular, the aim was
to make sense of such questions: “Is the set of true sentences of arithmetic decidable?” or
“Is the set of diophantine equations with integer solutions decidable?” 2

2The latter question is known as Hilbert’s Tenth Problem, posed by David Hilbert (along with 22 other
seminal problems) at the second International Congress of Mathematicians in Paris on August 8, 1900. It

18

Intuitively, a set 5 is decidable if there is an “effective procedure” that given any element
u of U (some natural universe containing 5') will decide in a finite number of steps whether
or not u is in 9, i.e. if the characteristic function of S (with respect to U) is “computable.”
To put the first query in this format, U would be the set of arithmetic sentences, S the true
ones. For the second, U would be the set of polynomials with integer coefficients and 5 the
subset of those with integer solutions.

The models of computation designed by these logicians were intended to capture the
essence of this concept of effective procedure or computation. The idea was to design
theoretical machines with operations, and finitely described rules for proceeding step by
step from one operation to the next, so simple and constructive that it would be self-evident
that the resulting computations were effective.

A number of distinct formal models of computation were proposed. A primary example
is the Turing machine. (See Figure 12).

FINITE STATE
CONTROL

read-write

head
Tape & 4

| B B B] |BlBloft]1]ol1]oft] - Ji]1[B]

Figure 12 A Turing machine

Here we have a finite state control device with a read-write head and a two-way infinite
tape consisting of an infinite number of cells. The control device is regulated by a program
which is a finite set of instructions of the form (¢, s, 0,¢'). Here ¢ and ¢’ belong to a finite set
{q0,-..,qn} called the set of states of the machine, s is a symbol 0,1, or B (for blank), and
o is one of the following operations: R (move right one cell), L (move left one cell), 0 (print
0), 1 (print 1), or B (print B). The instruction is interpreted as follows: If the device is in
state ¢ with read-write head scanning a cell containing symbol s, then the device performs
operation o and goes into state ¢’. (If o is a print operation then it is implicit that the head
erases the current symbol before printing.) We assume the program is consistent, i.e. for
each ¢ and s there is at most one instruction starting with the pair (¢, s).

was originally taken for granted, by mathematicians in general, and Hilbert in particular, that the answers
to the above questions were both affirmative. The queries were actually posed as tasks: Produce decision
procedures for the given sets. The incompleteness/undecidability results of Godel in 1931 in the first place,
and of Matiyasevich in 1971 on the unsolvability of Hilbert’s Tenth Problem in the second, show such tasks
cannot be carried out.

19

The machine operates as follows: Given an input string z, a finite sequence of 0’s and
1’s written on consecutive tape cells (with B’s everywhere else), the head is placed over the
left most symbol of z. (If z is the empty string the head is placed on any cell.) The control
device is started in initial state ¢y and proceeds according to the program instructions until
it can no longer proceed (i.e. it reaches a state ¢ while scanning a symbol s for which there
is no instruction starting with the pair ¢, s). If and when this occurs the output is the string
of 0’s and 1’s starting at the current scanned cell (and going right) until the first occurrence
of a B (which may be the current cell, in which case the output is the empty string). One
might consider input and output strings as natural numbers written in binary (a convention
here could be that the empty string is interpreted as 0 and a non-empty input string always
has 1 in its left most place).

Here, and in each formalism for computation, a function f from the natural numbers IN
to IN is defined to be computable if it is the input-output map of some such machine. Thus
we can now say formally: a set of natural numbers is decidable if its characteristic function
is computable, in this case by a Turing machine.

A fundamental object of study is the halting set of a machine. This is the set of all
inputs for which the machine halts, i.e. produces an output. It is clear that the halting
sets are exactly the semi-decidable sets: a set S of natural numbers is semi-decidable if
there is a machine which outputs 1 when input an element of 5, and otherwise outputs 0
or doesn’t halt. A little “programming” shows that 5 is decidable if and only if both it and
its complement are semi-decidable. (Schematically, see Figures 6 and 7.)

This notion of computability can be naturally extended to the integers, 7, the rational
numbers, @, or any domain that can be “effectively encoded” in IN. Thus, for example, by
“gbdel” coding sentences (of a first order language) as natural numbers, one can begin to
formally ask (and answer) within the formalism questions about the decidability of the set
of true sentences of various mathematical theories.

It is quite remarkable that even though the formalisms we just described and the others
proposed were often markedly different, in each case, the resulting class of computable
functions —and hence decidable (as well as semi-decidable) sets— was exactly the same.
Thus, the class of computable functions appears to be a natural class, independent of any
specific model of computation.® And consequently, the answers to the basic questions of
decidability will be independent of formalism.

This gives one a great deal of confidence in the theoretical foundations of the theory of
computation. Indeed, what is known as Church’s thesis is an assertion of belief that the
classical formalisms completely capture our intuitive notion of computable function. Thus
for example, in the light of Church’s thesis, the negative solution to Hilbert’s Tenth Problem
can be gotten by showing there is no Turing machine to decide the solvability in integers of

*In classical terminology, these functions are often called the recursive functions, decidable sets are the
recursive sets and semi-decidable sets are the recursively enumerable sets.

20

diophantine polynomials. Compelling motivation clearly would be required to justify yet a
new model of computation.

4 Toward a Mathematical Foundation of Numerical Anal-
ysis

Our perspective is to formulate the laws of computation. Thus we write not from the point
of view of the engineer who looks for a good algorithm which solves his problem at hand, or
wishes to design a faster computer. The perspective is more like that of a physicist, trying
to understand the laws of scientific computation. Idealizations are appropriate, but such
idealizations should carry basic truths.

Scientific computation is the domain of computation which is based mainly on the equa-
tions of physics. For example, from the equations of fluid mechanics, scientific computation
helps understand better design for airplanes, or assists in weather prediction. The theory
underlying this side of computation is called numerical analysis.

There is a substantial conflict between theoretical computer science and numerical anal-
ysis. These two subjects with common goals have grown apart. For example, computer
scientists are uneasy with calculus, while numerical analysis thrives on it. On the other
hand numerical analysts see no use for the Turing machine.

The conflict has at its roots another age-old conflict, that between the continuous and the
discrete. Computer science is oriented by the digital nature of machines and by its discrete
foundations given by Turing machines. For numerical analysis, systems of equations, and
differential equations are central and this discipline depends heavily on the continuous
nature of the real numbers.

The developments described in the previous section (and next) have given a firm foun-
dation to computer science as a subject in its own right. Use of Turing machines yields a
unifying concept of algorithm, well-formalized. Thus this subject has been able to develop
a complexity theory which permits discussion of lower bounds of all algorithms without
ambiguity.

The situation in numerical analysis is quite the opposite. Algorithms are primarily a
means to solve practical problems. There is not even a formal definition of algorithm in
the subject. One is reminded of how the development of the definition of differentiable
manifold was so important in the history of differentiable topology. The history of algebraic
geometry gives us a similar lesson.

Thus we view numerical analysis as an eclectic subject with weak foundations; this
certainly in no way denies its great achievements through the centuries.

A major obstacle to reconciling scientific computation and computer science is the
present view of the machine, i.e. the digital computer. As long as the computer is seen
simply as a finite or discrete object, it will be difficult to systematize numerical analysis.

21

We believe that the Turing machine as a foundation for real number algorithms can only
obscure concepts.

Toward resolving the problem we have posed, we are led to expanding the theoretical
model of the machine to allow real numbers as inputs. There has been great hesitation to
do this because of the digital nature of the computer. Here, we might learn a lesson from
the history of science. In particular, Isaac Newton was faced with an analogous problem
in writing his Principia. At the time of Newton, scientists assumed that the world was
atomistic, as viewed by the ancient Greek, Democritus. Newton accepted that picture
according to which all matter is composed of indivisible particles, a finite number in each
bounded region. On the other hand, Newton’s mathematics was continuous as was Euclid’s.
Moreover, the differential equations Newton needed for his theory involved calculus and the
continuum, contrasting with the corpuscular view of the universe. It was a substantial
problem for Newton to reconcile the discrete world with the continuous mathematics. The
resolution was produced by analyzing the effect of replacing an object (e.g. the earth) by
a finite number of particles, then making a better approximation with a larger number of
particles.

In the limit, the mathematics becomes continuous. Thomas Kuhn in “The Copernican
Revolution” writes:

In 1685 [Newton] proved that, whatever the distance to the external corpus-
cle, all the earth corpuscles could be treated as though they were located at
the earth’s centre. That surprising discovery, which at last rooted gravity in
the individual corpuscles, was the prelude and perhaps the prerequisite to the
publication of Principia.

And Kuhn adds:

At last it could be shown that both Kepler’s Law and the motion of a pro-
jectile could be explained as the result of an innate attraction between the
fundamental corpuscles of which the world machine was constructed.

Now our suggestion is that the modern digital computer could be idealized in the same
way that Newton idealized his discrete universe. The machine numbers are rational num-
bers, finite in number, but they fill up a bounded set of real numbers (e.g. between -1000
and 1000) sufficiently densely that viewing the computer as manipulating real numbers is
a reasonable idealization, at least in a number of contexts.

Moreover, if one regards computer graphical output such as our picture of the Mandel-
brot or Julia sets with their apparently fractal boundaries and asks to describe the machine
which made these pictures one is driven to the idealization of machines which work on
real or complex numbers in order to give a coherent explanation of these pictures. For a

22

wide variety of scientific computations the continuous mathematics which the machine is
simulating is the correct vehicle for analyzing the operation of the machine itself.

These reasonings give some justification for taking as a model for scientific computation,
a machine model which accepts real numbers as inputs. Of course a great many issues such
as round-off error must be dealt with. Moreover the ultimate justification is: does the model
developed this way give new insights and understanding to the use of the big machines?

5 Classical Complexity Theory and its extension

A cornerstone of classical complexity theory is the theory of NP-completeness and the
fundamental P # NP? problem.

A main goal of this book is to extend this theory to the real and complex numbers, and in
particular, to pose and investigate the fundamental problem within a broader mathematical
framework.

The foundations for such a theory shall be developed in the next chapters. But here we
give some background and briefly and informally introduce some of the classical notions.

Since the 1930’s, much work of logicians focused on identifying and classifying decidable
and undecidable problems. A prevailing view was that once a problem was known to be
decidable (or solvable), then by and large, it was not terribly deep or interesting. In contrast,
there was a great deal of interest and activity designed to untangle and understand the rich
hierarchy amongst the undecidable problems (the “degrees of unsolvability”).

To relate the notion of solvable problem to our earlier discussion of decidability (in
Section 3), we can view a decision problem as a pair (X, Xy.s). Here X is the set of problem
instances, and Xyes the subset of yes-instances. Thus X plays the role of the universe U
and Xyes of the subset 5. The problem is decidable (or solvable) if Xyes is decidable (by a
machine that on input z € X will output 1 if z is in Xyes and 0 if not). So, for example,
for Hilbert’s Tenth Problem, X would be the set of diophantine equations (polynomial
equations with integer coefficients) and Xyes the subset of those with integer solutions.

With the advent of the digital computer, and its promise of solving hither-to intractable
problems, interest perked in the realm of the solvable with the quest for efficient algorithms.
Although there were many successes, it soon became apparent that a number of problems
(such as the famous Traveling Salesman Problem) while solvable in principle, defied efficient
solution. These problems seemed in essence intractable. Thus, amongst the solvable, there
appeared to be yet another rich and natural hierarchy, with the dichotomy of tractabil-
ity /intractability mirroring the earlier dichotomy of decidability /undecidability. And so,
the theory and field of computational complezity was born.*

* Again in his Hixon Symposium lecture, von Neumann voiced the need for such a theory:

Throughout all modern logic, the only thing that is important is whether a result can be
achieved in a finite number of elementary steps or not. The size of the number of steps which

23

The foundation of this theory was developed in the 1960’s, primarily by researchers
originally trained in mathematics and logic but who found more hospitable environments for
these interests in the newly emerging computer science departments. The theory began in an
abstract setting with the formulation of axiomatic complexity measures yielding surprising
speed-up theorems, and then became more concrete with the NP-completeness results in the
early 1970’s. It is primarily this latter work, showing the equivalence of literally thousands of
often seemingly unrelated difficult problems, that has captured the attention of researchers
from many fields. These problems have the property that an efficient solution to any one
can be easily converted to an efficient solution to any other.

The formalisms of classical complexity theory are founded on the models and formalisms
of classical computation theory. Formal measures of complexity are intended to indicate
various degrees of difficulty inherent in problems. These difficulties could be measured by
the amount of information necessary to describe a problem (descriptional or informational
complezxity), the power of the language needed (descriptive complexity), or the amount of
resources, such as time or space, required to solve the problem. In this book we will primarily
follow the tradition of computational complexity which studies the cost of computation with
regard to time, or number of steps, for solution. The complexity of a problem is then
measured in terms of the complexity of machines for solving it. Paramount here is that
complexity is given as a function of input word size L, classically measured in bits.

A machine M is said to be in class P if there are positive integers ¢ and ¢ such that for
all inputs =z,

costar(z) < e(size(x)).

Here costas(z) denotes the number of basic operations performed by machine M from input
z to output. A decision problem (X, Xyes) is in class P, or solvable in polynomial time, if it
is decidable by a machine in class P.
Polynomial-time is an attempt to capture a notion of tractability and is what is meant
in this discussion when we use qualifiers such as “quick”, “efficient”, “short” and “fast”.
Note that to give upper bounds on complexity or to show a problem is tractable it is
sufficient to demonstrate one appropriate machine. On the other hand, to claim a lower

are required, on the other hand, is hardly ever a concern of formal logic. Any finite sequence of
correct steps is, as a matter of principle, as good as any other. It is a matter of no consequence
whether the number is small or large, or even so large that it couldn’t possibly be carried out in
a lifetime, or in the presumptive lifetime of the stellar universe as we know it.... [On the other
hand] in the case of an automaton the thing which matters is not only whether it can reach a
certain result in a finite number of steps at all but also how many such steps are needed.

A primary concern here for von Neumann was his conviction that the cumulative effect of the small but
non-zero probability of component failure “may (if unchecked) reach the order of magnitude of unity— at
which point it produces, in effect, complete unreliability.” In fact, to the contrary, the phenomenon of
error build-up due to computer failure has not posed difficulties anywhere near the magnitude posed by the
(apparent) intractability phenomenon.

24

bound g for complexity or that a problem is not in class P (and hence intractable) is more
problematic. For now we must demonstrate that every machine for solving it has complexity
function that grows faster than g or, in the latter case, faster than any polynomial.

The more subtle concept of class NP is meant to capture the notion that some problems
have the property that for each yes-instance there exists a quick verification, or short proof,
of this fact.

Since a quick decision also serves as a quick verification, we see that class P is contained
in class NP. It is natural to ask the converse: If a yes-instance has a short proof, can we
find some such proof quickly? This is the essence of the fundamental P=NP? problem.

Again, as in the case of decidability and computability, for all this to be reasonable
and natural, we must have some degree of assurance that these notions and classes are
independent of most “reasonable” formalisms.

To illustrate some of these ideas, we consider probably the most well known problem of
classical complexity theory, the Traveling Salesman Problem (TSP):

Given n cities, the distances (a;;) between them and a positive number k, does
there exist a tour through all the cities with total distance less than or equal to

k?
and the related Shortest Path Problem (SPP):

Given n cities, the distances (a;;) between them, two specified cities [and m,
and a positive number £, does there exist a path from [to m with total distance
less than or equal to k7

The SPP is solvable in order n? operations.® On the other hand, the TSP appears not
at all to be tractable. All known solutions essentially require us to enumerate the (n — 1)!
possible tours. By Sterling’s formula, n! is asymptotically equal to (n/2)"v/27n which is
exponential in n.

Let’s look at these problems a bit more formally. First, we can easily pose them as
decision problems in the above form. For example, for the TSP let

X ={(A,k)| A= (a;;)is an n X n matrix of distances, k > 0} and
Xyes = {(A, k) € X | there is a tour 7 with Dist(A, 1) < k}

Here 7 is a cyclic permutation of {1,2,...,n} and Dist(A,7) = S tririyy + tryry-

5We indicate a solution to the special case when the distances between distinct cities are either 1 or k4 1:
At stage 0, label city ! with the number 0. At stage s+ 1, label all unlabeled cities that are distance 1 from
the cities labeled s by the number s + 1. If no such cities exist, terminate process and answer “yes” if city
m is labeled by a number < k, otherwise answer “no.”

25

Notice that X is the set of all problem instances, for all n. This reflects the fact that
we are interested in solving problems uniformly.

Notice also that, in stating these particular problems, we have made no assumption
that the distances are integers; it makes perfectly good sense to talk about these particular
problems over the reals or any ring with order.

Over IR, a natural measure of the size of a TSP or SPP instance would be n? (the
number of entries in the matrix A of distances). Over 7, a more natural measure would be
n?b where b is the maximum of the heights (or binary lengths) of the distances (a;;) and .
This size roughly reflects the number of symbols needed to describe the instance (or its bit
length) and is essentially the classical measure.

The classical measure of cost, the bit cost, is the number of Turing machine operations
for solution. Thus the bit costs of the above solutions for SPP and TSP are of order n2b
and (n — 1)!b respectively. Over the reals, a natural measure of cost could be the number of
arithmetic computations and comparisons, and so for the above solutions to SPP and TSP,
of order n? and (n — 1)! respectively. Thus, over IR or over 7, the cost of these solutions
(as a function of size of instance) is linear in the case of SPP and exponential in the case of
the TSP.

Now the TSP, while not known to be in class P over any ordered ring, is seen to be
in class NP in any reasonable sense. Although we may not be able to easily tell if a TSP
instance has a “good” tour (i.e. one of total distance bounded by k), if we are handed a
good one we can quickly check it out: First check that it is indeed a tour and then sum up
the n distances along the tour and compare with k.

The TSP is NP-complete over 7Z, i.e. it is universal for NP problems over Z: If (X, Xy.s)
is a problem in NP over 7Z, then problem instances © € X can be efficiently encoded as
Travelling Salesman instances 7, such that * € Xy if and only if 7, has a good tour. Thus
an efficient solution to the TSP will yield an efficient solution to any other NP problem.
Hence the importance of the TSP in classical complexity theory —not only because it is one
of the ubiquitous problems of discrete optimization, but also because of its NP-completeness!

The Knapsack Problem (KP) introduced in Section 2.4 can also be posed as a decision
problem in the above form. Let

X=Rr"=JR"
50 (6)
Xyes = {2 € X | 3b € {0,1}" such that) bz; = 1}

Over any ring R, KP is in class NP in any reasonable sense. Moreover, the Knapsack
Problem is also NP-complete over 7Z and hence equivalent to the TSP with respect to
complexity.

We propose a theory of NP and NP-completeness over an arbitrary ring. In such a
framework one can obtain both old and new NP-completeness results. The classical sat-
isfiability problem is NP-complete over the field Zy. The integer programming problem

26

is naturally NP-complete over 7Z. In non-classical domains the Hilbert Nullstellensatz is
NP-complete over C or IR. Hierarchies of complexity classes can be developed over the real
numbers.

6 Complexity Theory in Numerical Analysis

It is natural to be skeptical about machines using exact arithmetic in numerical analysis.
Most numerical problems can only be solved to within an accuracy of . Round-off error is
an important fact in the use of actual machines for solving scientific problems. Does it make
sense to try to extend the complexity theory of computer science to numerical analysis?
We recall that computer scientists say that an algorithm defined by a machine M is
tractable (or polynomial time, or in P) if the computation time T'(z) associated to input z
satisfies the bound
T(z) < e(size (z))? all inputs z (7)

where the constants ¢ and ¢ depend only on M. Here time is the number of Turing machine
operations and size is the number of bits. A problem is tractable if there is a tractable
algorithm solving it.

Some of the algorithms of numerical analysis are quite immediately tractable in a natural
extension of this definition. Consider the problem of solving a linear system of equations
Az = b. The input of the problem is a non-singular n X n matrix A and a vector b € IR".
Gaussian elimination produces an output z, solving this problem in less than c¢n? arithmetic
operations. Therefore one can speak of the “tractability” of Gaussian elimination where
Turing operators are replaced by arithmetic operations (and comparisons). Also the size of
the input now becomes naturally the number of input variables. Thus

T(A,b) < c(size(A, B))*/?

for Gaussian elimination.

More generally in numerical analysis it is important to take into account the desired
accuracy ¢ of an approximate solution. This is because most problems cannot be solved
exactly, even using exact arithmetic. Thus one must modify the concept of tractable and
one way to do this is consider ¢ < 1 as an additional (special) input to the problem. Then
one demands that the time T of computation satisfy

T(e,z) < (|log e| + size(z))?, ¢ < 1. (8)

Much recent work on solving non-linear equations fits into this framework, where even
sometimes |log | is replaced by log|log €| in (8).

Frequently among the set of inputs to a problem, there is a subset of “ill-posed” problems

where the main algorithms fail and may even fail in principle. In general as an input gets
closer to this ill-posed set the time of computation becomes larger.

27

A “condition number”, a function on the input, has been defined traditionally to deal
with this phenomenon. If the condition number of a certain input is large, then the time of
computation can be expected to become large and the effects of round off error to become
substantial. It has often been shown that there is a relation between the condition number of
an input and the reciprocal of the distance to the ill-posed set. Then the desired complexity
results have the form

T(e,z) < (| loge| + log p(z) + size(z))?

where p is the condition number of z.

7 Summary

As we have said, our proposal is to develop a theory of machines which will take real numbers
as inputs.

Generally speaking, mathematical theories are built on plausible abstractions and sim-
plifications intended to capture the essence of, rather than precisely describe, phenomena
they are attempting to model. We hope that the basic assumptions reflect fundamen-
tal underlying principles, and that the results inferred from these assumptions reveal new
truths. Justification for our proposal will ultimately depend on how well this last task is
accomplished.

The basic arithmetic operations (4,—,X,/) are to be taken as primary in the structures
of computation. This point of view bestows an algebraic emphasis so that it becomes natural
to suppose that the inputs and states of the machines are numbers (or finite sequences of
numbers) in a field (mathematical sense of the word). In the main case this is the field of
real numbers. But certainly the field of complex numbers is also important.

There are natural situations where division can’t be done as within the integers 7. So
to cover those cases we propose a model of computation of machines over a ring.

Now formulating a theory of computation in this manner, i.e., over a field K, one can
include and extend the classical theory by taking K = 7 (the field of 2 elements). In this
way, the classical theory takes on an algebraic setting. By choosing K to be the real numbers
IR, we are able to obtain a setting which provides a foundation of numerical analysis. The
notion of an algorithm over IR, becomes well-defined as a mathematical object in its own
right. So we will have developed an extension of the classical theory to a new theory which
can be specialized to the study of real number algorithms. This theory by the nature of
our development is primarily algebraic. More precisely, when the field K is an ordered field
as is the case of IR, the comparisons include <, and the geometry becomes what is called
semi-algebraic. The classical algorithms of mathematics and of computer science naturally
fit into this framework.

It is important to remark that a fundamental property of classical computation is that
the machines are finite objects, even though they operate on inputs which have no a priori

28

bound on size. This property is satisfied by the machines suggested here.

8 Brief History

The ideas we have presented are at the confluence of different traditions in mathematics
and computer science.

On the one hand, there is the work of classical computability and complexity. The
initial motivating force here was —as we have already remarked— the question of the
decidability of the arithmetic, and also the tenth problem posed by Hilbert at the sec-
ond International Congress of Mathematicians in 1900. A common characteristic of these
problems is the possibility of expressing their underlying objects (arithmetic sentences and
diophantine equations) in a language over a finite alphabet. Not surprisingly, the host of
theoretical computational models that were subsequently proposed to formalize the notion
of decidability were designed to act on finite strings over a finite alphabet.®

This was the case with the general recursive functions of Kleene [1936], the A-computable
functions of Church [1936], the computable functions of Turing [1936] and the canonical
systems of Post [1943], to mention just the most influential models. Perhaps less expectedly,
all models were equivalent in the sense that they defined the same class of computable
functions. This gave rise to Church’s thesis discussed in Section 3.

On the other hand, there is a long standing tradition of decidability results in algebra
and analysis that we refer to as the numerical tradition. This theory lead to algorithms
—Tlike Newton’s method discussed in Section 2 and Gaussian elimination for solving linear
systems of equations— as well as to several undecidability results. A paradigm here is
Galois’ result on the non solvability by radicals of polynomial equations of degree 5 or
more. It is important to notice that these algorithms manipulate real numbers in much the
way proposed here.

With the arrival of the digital computer, attention shifted from decidability to complex-
ity issues, and the first of the traditions described above produced a sophisticated theory of
complexity of which the P vs. NP question described in Section 5 became central. We owe
to this research concepts and tools that enable us to classify computational problems into
complexity classes reflecting different resource requirements, and then to discover structural
relations among these classes.

During the 1960’s, Rabin [1960b], Hartmanis and Stearn [1965] and Blum [1967] devel-
oped the notion of measuring the complexity of a problem in terms of the number of steps
required to solve it with an algorithm. This lead in a natural way to the association by

SFurthermore, at the turn of the century, with recent discoveries of paradoxes in the foundation of
mathematics well in mind, there was an understandable preoccupation with questions of consistency. This
surely was a factor in stipulating, in the early computational models, that the simplest operations were to
be performed on the simplest objects.

29

Cobham [1964], Edmonds [1965] and Rabin [1966] of the concept of “feasible” or “tractable”
problems to the class P. Simultaneously, it was observed that a large class of search problems
seemed to defy the existence of algorithms significantly better than brute force. Indepen-
dently Cook [1971] and Levin [1973] characterized this class (Cook named it NP) and proved
the existence of complete problems for it. Cook exhibited the first NP-complete problem,
the Satisfiability Problem of propositional logic. Shortly afterwards, Karp [1972] showed
that a series of familiar problems from different areas of discrete mathematics were also
NP-complete. This gave strong impetus to the subject that was reflected, on the one hand,
in work exhibiting hundreds of NP-complete problems and, on the other hand, in attempts
to prove the inequality P # NP leading to results on the structure of the class NP.

A lively exposition on the P vs. NP question (containing a large list of NP-complete
problems) can be found in the already classic book by Garey and Johnson [1979]. A survey
of the state of the art of this question is given in [Sipser 1992]. In this latter article, a
recently discovered letter of Godel to von Neumann dated 1956 is reproduced in which
Godel stated the P vs. NP question in the form of the time required by a Turing machine
to test whether a formula of the predicate calculus has a proof of a given length.

The rise of complexity issues in the numerical tradition is less attached to the advent of
the digital computer. Early in 1937, in a short note of Scholz [1937], complexity questions
arose under the form of the number of additions needed to produce a given integer starting
from 1. Seventeen years later Ostrowski [1954] conjectured the optimality of Horner’s rule
for evaluating univariate polynomials. In order to do so, he defined a formal model of
computation and associated to it an idea of cost. This was followed by a flow of results
concerning lower bounds (including the proof of Ostrowski’s conjecture by Pan [1966]) for
computational models with the following two characteristics:

(i) they take their inputs from R"™ where R is a ring, and

(ii) their basic operations are arithmetic and complexity is measured by how many such
operations are performed.

In most cases, the ring R was chosen to be the field of real numbers IR and this choice,
together with the second characteristic above, reflected the kind of computations done in
numerical analysis. However, these models were essentially non uniform. This fact, useful
for the search of lower bounds, becomes an obstruction to developing a theory of complexity
for general purpose algorithms. Two very influential papers at the end of the 1960’s were
those of Winograd [1967] and Strafien [1969]. They helped to make this search for lower
bounds in algebraic problems an independent subject of study, now known as algebraic
complexity. Some central examples of algebraic computational models along with lower
bounds for them are given by Steele and Yao [1982], Ben-Or [1983] and Smale [1987]. Two
early books on algebraic complexity are the ones by Borodin and Munro [1975] and by
Winograd [1980]. A recent survey of the subject can be found in [Strafien 1990].

30

Complexity issues are at the forefront of current research related to designing algorithms
for finding zeros of polynomials and determining the solvability of polynomial systems.
Amongst the major references here are: Collins [1975] Shub and Smale [1993a, 1993b,
1993c, 1993d, 1994], Schénhage [1982], Ben-Or, Kozen and Reif [1986], Renegar [1987,
1992], Pan [1987, 1995], Grigor’ev and Vorobjov [1988], Canny [1988], and Heintz, Roy
and Solerno [1990]. This work may be considered the modern counterpart to algorithmic
investigations begun earlier in the century by Hermann [1926], Van der Waerden [1949], and
Tarski [1951], in particular related to elimination theory for real closed fields. While the
history of numerical analysis provides us with a great motivating force towards our efforts
here, we will only give thje reference [Goldstine 1977].

The computational model proposed in this article has a candidate in [Blum, Shub, and
Smale 1989]. This candidate lies on the traditions of both computer science and numerical
analysis since it incorporates the universality of universal machines and of NP-complete
problems, while keeping the assumptions of the numerical one (real numbers given as an
entity and unit cost of arithmetical operations) that make it suitable for modelling con-
tinuous algorithms. There is a growing body of work —by Cucker [1993, 1992b, 1992a],
Koiran [1993], Meer [1990, 1992, 1993, 1994], Michaux [1989, 1991], and Poizat [1995] among
others— giving a broad development to this point of view.

In addition to the work already described, there are many more contributions by math-
ematicians and computer scientists which predate the aforementioned model. We proceed
now to review some of them.

Close to the classical approach, Rabin [1960a] developed a theory of computable algebra
and fields in which the underlying domains can be effectively coded by natural numbers and
are thus, necessarily countable.

On the other hand, the theories of computation over abstract structures, are quite gen-
eral. See e.g., Friedman [1971] (or as discussed by Shepherdson in Harrington et al. [1985]),
Tiuryn [1979], and Moschovakis [1986]. These general approaches both exploit and explore
the logical properties of procedures. But, when applied to specific structures such as the
reals, they do not yield the concrete mathematical results (such as the undecidability of the
Mandelbrot set, NP-completeness of the Hilbert Nullstellensatz) that will quite naturally
follow from the model we propose here.

There is yet another possible approach to the complexity of real valued problems known
as recursive analysis, originating with Turing’s seminal paper [Turing 1936]. Indeed, in this
paper Turing introduced the notion of computable real numbers before, and as a means to,
defining computation over the integers.” Here the machine model is the classical Turing

"This fact seems not well known, so it is of considerable historical interest to examine the very first
paragraph of Turing’s paper:

The “computable” numbers may be described briefly as the real numbers whose expressions
as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the
computable numbers, it is almost equally easy to define and investigate computable functions

31

machine and one deals with real numbers that, roughly speaking, are fed to the machine bit
by bit. This contrasts with the numerical tradition where real numbers are viewed not as
their decimal (or binary) expansion, but rather as mathematical entities. Text references
for recursive analysis are [Ko 1991] for complexity matters and [Weihrauch 1987] for com-
putability issues. Other references are Iriedman and Ko [1982], Pour-El and Richards [1983],
Hoover [1987] and Kreitz and Weihrauch [1982].

More closely related to our perspective are the register machines of Shepherdson and
Sturgis [1963] and the RAM’s or random access machines. This were originally defined over
the integers (see [Aho, Hopcroft, and Ullman 1974] for a definition) but with an algebraic
character in their ground operations. An extension of the RAM to the real numbers is
suggested in the book of Preparata and Shamos [1985]. The goal of the model is primarily
to describe algorithms in computational geometry and the formal development of a theory of
computability or complexity is not pursued. Also, in the book mentioned above by Borodin
and Munro [1975], the authors state that their underlying model of computation will be
the RAM. However, immediately afterwards they say that this “code can be ‘unwound’
and separate programs can be written for each ‘degree’ of the desired class of functions”,
justifying therefore the subsequent use of models of fixed dimension. Again, the formal
development of a theory of computability and complexity over fields is not pursued.

Perhaps closest to our approach is the work of Herman and Isard [1970] on computability
over arbitrary fields. Here, some finite dimensional problems over the reals are shown to
be undecidable in a manner similar to our proof of the undecidability of the Mandelbrot
set. Also close is the work of Tucker [1980] and Tucker and Zucker [1992] who employ the
theory of computing over abstract structures to obtain computability and non-computability
results in line with ours. Friedman and Mansfield [1992] have also specialized the abstract
theory to specific structures to good avail.

Another model, again close in spirit, is a theory of real Turing machines outlined by
Abramson [1971]. The machine model developed here can operate on arbitrarily long vectors
of real numbers. The main thrust of the article is to develop a hierarchy of non-computable
functions according to their use of a greater-lower-bound operation.

Yet another approach is information-based complexity, developed in Traub et al. [1988].
A paradigm problem whose complexity is analyzed here is: given a function f of class C? in
[0,1]", compute f[o,l]n f. As one notes, inputs for this problem can not be given in general

of an integral variable or a real or computable variable, computable predicates, and so forth.
The fundamental problems involved are, however, the same in each case, and I have chosen
the computable numbers for explicit treatment as involving the least cumbrous technique. 1
hope shortly to give an account of the relations of the computable numbers, functions, and
so forth to one another. This will include a development of the theory of functions of a real
variable expressed in terms of computable numbers. According to my definition, a number is
computable if its decimal can be written down by a machine.

32

by a finite vector of real numbers. So one must assume the existence of a routine that given
z € [0,1]" returns f(z). The complexity is evaluated in terms of the operations done as
well as in terms of the number of times this routine is used. Again we are in the realm
of the numerical tradition since the arithmetic is performed on real numbers at a constant
cost and the main issue is the search for lower and upper bounds.

We close this section with some general references to the topics introduced in this chap-
ter.

A good reference for the Mandelbrot and Julia sets is Devaney [1989]. For the undecid-
ability of the Mandelbrot set see Blum and Smale [1993]. A major reference for Hilbert’s
Tenth Problem is Matiyasevich [1993].

For the Nullstellensatz, see Lang [1993] or Kendig [1977]. More advanced books in al-
gebraic geometry are those of Hartshorne [1977] or Shafarevich [1977]. These references
however, only deal with the qualitative aspect of the Nullstellensatz. Exponential bounds
for the degrees in the Nullstellensatz were proved by Bronawell [1987] and refined by Kol-
lar [1988] and Caniglia, Galligo and Heintz [1988]. Real polynomials, real algebraic sets
and semi-algebraic sets are exposed in the monographs of Benedetti and Risler [1990] and
by Bochnak, Coste and Roy [1987].

For Newton’s method see Smale’s survey article [Smale 1985]. A classical reference for
linear and integer programming is the book of Schrijver [1986].

For the classical theory of computability and Turing machines see the books by Davis [1965],
Rogers [1967] and Cutland [1980]. Classical complexity theory is a younger subject. The
books by Balcazar, Diaz and Gabarré [1988] and [1990] or by Papadimitriou [1994] offer
very good introductions to its achievements. Other references for this chapter are [Blum
1991; Blum 1990], [Smale 1988; Smale 1990] and [Hirsch, Marsden, and Shub 1993].

The quotations from von Neumann, Penrose and Kuhn are taken from [von Neumann
1963; Penrose 1991; Kuhn 1957].

The reference list, while extensive, is not meant to be exhaustive.

References

Abramson, F. (1971). Effective computation over the real numbers. In 12th annual IEEE Symp. on
Switching and Automata Theory, pp. 33-37.

Aho, A., J. Hopcroft, and J. Ullman (1974). The design and analysis of computer algorithms. Addison-
Wesley.

Balcdzar, J., J. Diaz, and J. Gabarré (1988). Structural Complexity I. EATCS Monographs on Theoretical
Computer Science, 11. Springer-Verlag.

Balcdzar, J., I. Diaz, and J. Gabarré (1990). Structural Complezity II. EATCS Monographs on Theoretical
Computer Science, 22. Springer-Verlag.

Ben-Or, M. (1983). Lower bounds for algebraic computation trees. In 15th annual ACM Symp. on the
Theory of Computing, pp. 80—86.

33

Ben-Or, M., D. Kozen, and J. Reif (1986). The complexity of elementary algebra and geometry. J. of
Computer and Systems Sciences 18, 251-264.

Benedetti, R. and J.-J. Risler (1990). Real algebraic and semi-algebraic sets. Hermann.

Blum, L. (1990). Lectures on a theory of computation and complexity over the reals (or an arbitrary
ring). In E. Jen (Ed.), Lectures in the Sciences of Complexity II, pp. 1-47. Addison-Wesley.

Blum, L. (1991). A theory of computation and complexity over the real numbers. In Proceedings of the
International Congress of Mathematicians, pp. 1491-1507. Springer-Verlag.

Blum, L., M. Shub, and S. Smale (1989). On a theory of computation and complexity over the real
numbers: NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math.
Soc. 21, 1-46.

Blum, L. and S. Smale (1993). The Godel incompleteness theorem and decidability over a ring. In
M. Hirsch, J. Marsden, and M. Shub (Eds.), From Topology to Computation: Proceedings of the
Smalefest, pp. 321-339. Springer-Verlag.

Blum, M. (1967). A machine-independent theory of the complexity of recursive functions. Journal of the
ACM 14, 322-336.

Bochnak, J., M. Coste, and M.-F. Roy (1987). Géomélrie algébrique réelle. Springer-Verlag.

Borodin, A. and I. Munro (1975). The Computational Complexity of Algebraic and Numeric Problems.
American Elsevier.

Brownawell, W. (1987). Bounds for the degrees in the Nullstellensatz. Annals of Math. 126, 577-591.

Caniglia, L., A. Galligo, and J. Heintz (1988). Borne simple exponentielle pour les degrés dans les
théorémes de zéros sur un corps de caractéristique quelconque. C. R. Acad. Sci. Paris 307, 255—
258.

Canny, J. (1988). Some algebraic and geometric computations in PSPACE. In 20th annual ACM Symp.
on the Theory of Computing, pp. 460—-467.

Church, A. (1936). An unsolvable problem of elementary number theory. Amer. J. of Math. 58, 354-363.

Cobham, A. (1964). The intrinsic computational difficulty of problems. In International Congress for
Logic, Methodology, and the Philosophy of Science, edited by Y. Bar-Hillel, North-Holland, pp. 24—
30.

Collins, G. (1975). Quantifier elimination for real closed fields by cylindrical algebraic deccomposition,
Volume 33 of Lect. Notes in Comp. Sci., pp. 134-183. Springer-Verlag.

Cook, S. (1971). The complexity of theorem proving procedures. In 8rd annual ACM Symp. on the Theory
of Computing, pp. 151-158.

Cucker, F. (1992a). The arithmetical hierarchy over the reals. Journal of Logic and Computation 2, 375—
395.

Cucker, F. (1992b). Pr # NCr. Journal of Complezity 8, 230-238.

Cucker, F. (1993). On the complexity of quantifier elimination: the structural approach. The Computer
Journal 36, 400-408.

Cutland, N. (1980). Computability. Cambridge University Press.
Davis, M. (1965). The Undecidable. Raven Press.
Devaney, R. (1989). Chaotic Dynamical Systems. Addison-Wesley.

34

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449-467.

Friedman, H. (1971). Algorithmic procedures, generalized turing algorithms, and elementary recursion
theory. In R. Gandy and Yates (Eds.), Logic Colloquium 1969, C.M.E., pp. 361-390. North-Holland.

Friedman, H. and K. Ko (1982). Computational complexity of real functions. Theoretical Computer Sci-
ence 20, 323-352.

Friedman, H. and R. Mansfield (1992). Algorithmic procedures. Transactions of the Amer. Math. Soc. 332,
297-312.

Garey, M. and D. Johnson (1979). Computers and Intractability: a guide to the theory of NP-completeness.
Freeman.

Goldstine, H. (1977). A History of Numerical Analysis from the 16th through the 19th Century. Springer-
Verlag.

Grigoriev, D. and N. Vorobjov (1988). Solving systems of polynomial inequalities in subexponential time.
Journal of Symbolic Computation 5, 37-64.

Harrington, L., M. Morley, A. Seedrov, and S. Simpson (Eds.) (1985). Harvey Friedman’s Research on the
Foundations of Mathematics. North-Holland.

Hartmanis, J. and R. Stearns (1965). On the computational complexity of algorithms. Transactions of
the Amer. Math. Soc. 117, 285-306.

Hartshorne, R. (1977). Algebraic Geometry. Springer-Verlag.

Heintz, J., M.-F. Roy, and P. Solerno (1990). Sur la complexité du principe de Tarski-Seidenberg. Bulletin
de la Société Mathématique de France 118, 101-126.

Herman, G. and S. Isard (1970). Computability over arbitrary fields. J. London Math. Soc. 2, 73-79.

Hermann, G. (1926). Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math.
Ann. 95, 736-788.

Hirsch, M., J. Marsden, and M. Shub (Eds.) (1993). From Topology to Computation: Proceedings of the
Smalefest. Springer-Verlag.

Hoover, H. (1987). Feasibly constructive analysis. Ph. D. Thesis, Dept. of Comp. Sci., Univ. of Toronto.

Karp, R. (1972). Reducibility among combinatorial problems. In R. Miller and J. Thatcher (Eds.), Com-
plexity of Computer Computations, pp. 85-103. Plenum Press.

Kendig, K. (1977). Elementary Algebraic Geometry. Springer-Verlag.
Kleene, S. (1936). General recursive functions of natural numbers. Math. Annalen 112, 727-742.
Ko, K. (1991). Complexity theory of real functions. Birkhiuser.

Koiran, P. (1993). A weak version of the Blum, Shub & Smale model. In 34th annual IEEE Symp. on
Foundations of Computer Science, pp. 486-495.

Kollar, J. (1988). Sharp effective Nullstellensatz. Journal of Amer. Math. Soc. 1, 963-975.

Kreitz, C. and K. Weihrauch (1982). Complexity theory of real numbers and functions. In A. Cremers
and H. Kreigel (Eds.), Theoretical Computer Science, Volume 145 of Lect. Notes in Comp. Sci., pp.
165-174. Springer-Verlag.

Kuhn, T. (1957). The Copernican revolution: planetary astronomy in the development of the Western
thought. Harvard University Press.

Lang, S. (1993). Algebra, 3rd edition. Addison-Wesley.

35

Levin, L. (1973). Universal sequential search problems. Probl. Pered. Inform. IX 3, 265-266. (In Russian,
English translation in Problems of Information Trans. 9,3; corrected translation in [Trakhtenbrot
1984]).

Matiyasevich, Y. (1993). Hilbert’s Tenth Problem. The MIT Press.
Meer, K. (1990). Computations over 7ZZ and R: a comparison. Journal of Complexity 6, 256—-263.

Meer, K. (1992). A note on a P # NP result for a restricted class of real machines. Journal of Complezity 8,
451-453.

Meer, K. (1993). Real number models under various sets of operations. Journal of Complezity 9, 366-372.

Meer, K. (1994). On the complexity of quadratic programming in real number models of computation.
Theoretical Computer Science 133, 85-94.

Michaux, C. (1989). Une remarque a propos des machines sur IR introduites par Blum, Shub et Smale.
C. R. Acad. Sci. Paris 309, Série I, 435-437.

Michaux, C. (1991). Ordered rings over which output sets are recursively enumerable. Proceedings of the
Amer. Math. Soc. 112, 569-575.

Moschovakis, Y. (1986). Foundations of the theory of algorithms. Draft.

Ostrowski, A. (1954). On two problems in abstract algebra connected with Horner’s rule. In Studies in
Mathematics and Mechanics presented to Richard von Mises, pp. 40-48. Academic Press.

Pan, V. (1966). Methods of computing values of polynomials. Russian Math. Surveys 21, 105-136.

Pan, V. (1987). Sequential and parallel complexity of approximate evaluation of polynomial zeros. Comput.
Math. Appl. 14, 591-622.

Pan, V. (1995). Optimal (up to polylog factors) sequential and parallel algorithms for approximating
complex polynomial zeros. In 27th annual ACM Symp. on the Theory of Computing, pp. 741-750.

Papadimitriou, C. (1994). Computational Complezity. Addison-Wesley.

Peitgen, H.-O. and D. Saupe (Eds.) (1988). The Science of Fractal Images. Springer-Verlag.
Penrose, R. (1991). The Emperor’s New Mind. Penguin Books.

Poizat, B. (1995). Les Petits Caillouz. Aléa.

Post, E. (1943). Formal reductions of the general combinatorial decision problem. Amer. Journal of
Math. 65, 197-268.

Pour-El, M. and I. Richards (1983). Computability and noncomputability in classical analysis. Transac-
tions of the Amer. Math. Soc. 275, 539-560.

Preparata, F. and M. Shamos (1985). Computational Geometry: an introduction. Texts and Monographs
in Computer Science, Springer-Verlag.

Rabin, M. (1960a). Computable algebra, general theory and theory of computable fields. Transactions of
the Amer. Math. Soc. 95, 341-360.

Rabin, M. (1960b). Degree of difficulty of computing a function and a partial ordering of recursive sets.
Technical Report 2, Hebrew University of Jerusalem.

Rabin, M. (1966). Mathematical theory of automata. In 19th ACM Symp. in Applied Mathematics, pp.
153-175.

Renegar, I. (1987). On the efficiency of Newton’s method in approximating all zeros of systems of complex
polynomials. Math. of Oper. Research 12, 121-148.

36

Renegar, J. (1992). On the computational complexity and geometry of the first-order theory of the reals.
Part 1. Journal of Symbolic Computation 13, 255-299.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability. McGraw-Hill.
Scholz, A. (1937). Aufgabe 253. Jahresber. Deutsch. Math.- Verein. 47, 41-42.

Schénhage, A. (1982). The fundamental theorem of algebra in terms of computational complexity. Tech-
nical report, Math. Institut der. Univ. Tibingen.

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons.
Shafarevich, 1. (1977). Basic Algebraic Geometry. Springer-Verlag.

Shepherdson, J. and H. Sturgis (1963). Computability of recursive functions. Journal of the ACM 10,
217-255.

Shub, M. and S. Smale (1993a). Complexity of Bezout’s theorem I: geometric aspects. Journal of the
Amer. Math. Soc. 6, 459-501.

Shub, M. and S. Smale (1993b). Complexity of Bezout’s theorem II: volumes and probabilities. In F. Eys-
sette and A. Galligo (Eds.), Computational Algebraic Geometry, Volume 109 of Progress in Mathe-
maltics, pp. 267-285. Birkhauser.

Shub, M. and S. Smale (1993c). Complexity of Bezout’s theorem III: condition number and packing.
Journal of Complexity 9, 4-14.

Shub, M. and S. Smale (1993d). Complexity of Bezout’s theorem IV: probability of success, extensions.
To appear at SIAM J. of Numer. Anal.

Shub, M. and S. Smale (1994). Complexity of Bezout’s theorem V: polynomial time. Theoretical Computer
Science 133, 141-164.

Sipser, M. (1992). The History and Status of the P versus NP Question. In 24th annual ACM Symp. on
the Theory of Computing, pp. 603—-618.

Smale, S. (1985). On the efficiency of algorithms of analysis. Bulletin of the Amer. Math. Soc. 13, 87-121.
Smale, S. (1987). On the topology of algorithms 1. Journal of Complexity 3, 81-89.

Smale, S. (1988). The Newtonian contribution to our understanding of the computer. In M. Stayer (Ed.),
Newton’s Dream. McGill-Queens University Press.

Smale, S. (1990). Some remarks on the foundations of numerical analysis. STAM Review 32, 211-220.
Steele, J. and A. Yao (1982). Lower bounds for algebraic decision trees. Journal of Algorithms 3, 1-8.
StraBen, V. (1969). Gaussian elimination is not optimal. Numer. Math. 13, 354-356.

StraBen, V. (1990). Algebraic complexity theory. In J. van Leeuwen (Ed.), Handbook of Theoretical Com-
puter Science, Volume A, pp. 633-672. The MIT Press/Elsevier.

Tarski, A. (1951). A Decision Method for Elementary Algebra and Geometry. University of California
Press.

Trakhtenbrot, B. (1984). A survey of russian approaches to perebor (brute-force search) algorithms. Annals
of the History of Computing 6, 384-400.

Traub, I., G. Wasilkowski, and H. Wozniakowski (1988). Information-Based Complezity. Academic Press.

Tucker, J. (1980). Computing in algebraic systems. In F. Drake and S. Wainer (Eds.), Recursion Theory,
its Generalizations and Applications, London Math. Soc. Cambridge University Press.

37

Tucker, J. and J. Zucker (1992). Examples of semicomputable sets of real and complex numbers. In
M. O’Donnell and J. Myers Jr. (Eds.), Constructivity in Computer Science, Volume 613 of Lect.
Notes in Comp. Sci., pp. 179-198. Springer-Verlag.

Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proc.
London Math. Soc., Ser.2 42, 230-265.

Tyurin, J. (1979). A survey of the logic of effective definitions. In E. Engeler (Ed.), Logic of Programs,
Volume 125 of Lect. Notes in Comp. Sci., pp. 198-245. Springer-Verlag.

Van der Waerden, B. (1949). Modern Algebra. F. Ungar Publishing Co.
von Neumann, J. (1963). Collected Works, V, A. Taub, editor. MacMillan.

Weihrauch, K. (1987). Computability. EATCS Monographs on Theoretical Computer Science, 9. Springer-
Verlag.

Winograd, S. (1967). On the number of multiplications required to compute certain functions. Proc.
National Acad. Sci. 58, 1840-1842.

Winograd, S. (1980). Arithmetic complezity of computations. SIAM Regional Conf. Ser. Appl. Math. 33.

38

