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Abstract

Recently, SHRUTI has been proposed as a connectionist model of rapid reasoning.
It demonstrates how a network of simple neuron-like elements can encode a large
number of specific facts as well as systematic knowledge (rules) involving n-ary rela-
tions, quantification and concept hierarchies, and perform a class of reasoning with
extreme efficiency. The model, however, does not deal with negated facts and rules
involving negated antecedents and consequents. We describe an extension of SHRUTI
that can encode positive as well as negated knowledge and use such knowledge during
reflexive reasoning. The extended model explains how an agent can hold inconsis-
tent knowledge in its long-term memory without being “aware” that its beliefs are
inconsistent, but detect a contradiction whenever inconsistent beliefs that are within
a certain inferential distance of each other become co-active during an episode of
reasoning. Thus the model is not logically omniscient, but detects contradictions
whenever it tries to use inconsistent knowledge. The extended model also explains
how limited attentional focus or action under time pressure can lead an agent to
produce an erroneous response. A biologically significant feature of the model is that
it uses only local inhibition to encode negated knowledge. Like the basic model, the
extended model encodes and propagates dynamic bindings using temporal synchrony.
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Thanks to David Bailey, Jerry Feldman, Jerry Hobbs, Dan Jurafsky, George Lakoff, D.R. Mani
and Srini Narayanan for providing intellectual stimulation. E-mail: shastri@icsi.berkeley.edu



i



1 Introduction

Understanding language involves among other things, performing inferences to estab-
lish referential and causal coherence, generate expectations, and make predictions.!
Nevertheless we can understand language at the rate of several hundred words per
minute. This suggests that we can perform a wide range of inferences rapidly, auto-
matically and without conscious effort — as though they were a reflex response of our
cognitive apparatus. In view of this, we have described such reasoning as reflexive
(Shastri 1991).2 Our ability to perform reflexive reasoning poses a challenge for cog-
nitive and neurosciences: How can a system of simple and slow neuron-like elements
represent a large body of specific facts as well as context-sensitive rules and perform
a broad class of inferences within hundreds of milliseconds?

Over the past few years we have been engaged in developing SHRUTI — a connec-
tionist model of reflexive reasoning which attempts to address the above challenge
(Ajjanagadde & Shastri 1991; Shastri & Ajjanagadde 1993; Mani & Shastri 1993).
SHRUTI suggests a partial solution to the problem and demonstrates how a system
of neuron-like elements could encode over a million facts and rules involving n-place
relations, and concept hierarchies, and yet perform multi-step inferences within a few
hundred milliseconds. For example, using biologically motivated values for system
parameters, it takes SHRUTI 320 milliseconds to infer “Susan owns a car” after its
internal state is initialized to represent “Susan bought a Rolls-Royce”. Similarly, if
SHRUTI's long-term memory contains the fact “John bought a Jaguar”, it takes 420
milliseconds to answer “yes” to the query “Does John own a car?” 3

A key feature of SHRUTI is that it uses synchronous firing of cells to establish
dynamic bindings and represent dynamic relational structures. The view of infor-
mation processing implied by SHRUTI is one where (i) reasoning is the transient but
systematic propagation of a rhythmic pattern of activity over a memory network (ii)
each active entity is a phase in this rhythmic activity, (iii) dynamic bindings are rep-
resented by the synchronous firing of appropriate role and filler nodes, (iv) rules are
interconnection patterns that cause the propagation and transformation of rhythmic
patterns of activity, and (v) long-term facts are subnetworks that act as temporal
pattern matchers.

In essence, SHRUTI demonstrates how connectionist networks can represent re-
lational structures and perform certain types of computations over such structures
in an efficient manner. This involves the representation of both static and dynamic

!Empirical data suggests that inferences required to establish referential and causal coherence
occur rapidly and automatically during text understanding (see e.g., McKoon & Ratcliff 1980; McK-
oon & Ratcliff 1981; Keenan, Baillet, and Brown 1984). The evidence for the automatic occurrence
of elaborative or predictive inferences however, is mixed (see e.g., Kintsch 1988; Potts, Keenan, and
Golding 1988).

2A formal characterization of reflexive reasoning appears in (Shastri 1993).

3This assumes that SHRUTI’s long-term memory (LTM) includes the rule “if 2 buys y then =
owns y” and the relations: “Rolls-Royce is a car” and “Jaguar is a car”.



bindings, interactions between these two types of bindings, and the systematic but
context sensitive propagation of dynamic bindings from one relational structure to
another. Since schemas and frames are essentially relational structures, and since
mappings between schemas and frames may be viewed as the propagation of bind-
ings across these structures, the significance of the representational and inferential
mechanisms developed in SHRUTI extends beyond reasoning to other cognitive tasks
that involve computations over relational structures. Henderson (1994) has shown

that the SHRUTI architecture is also appropriate for supporting real-time parsing of
English.

SHRUTI however, only dealt with “positive knowledge”. Thus while it could en-
code positive facts such as “John loves Mary”, it could not encode negated facts such
as “John does not love Susan”. Similarly, while SHRUTI could encode rules involving
positive predicates, it could not encode rules involving negated predicates. For exam-
ple, it could not encode a rule such as “One cannot vote if one is not a citizen” (i.e.,
z:person, y:country —cilizen(x,y) = —wole-in-elections(z,y)). * Finally, since SHRUTI
did not have any explicit representation of negation, it could only respond “yes” and
“don’t know” to queries. It had no firm basis for answering “no” to a question.

Due to the complexity it adds to the inference process, knowledge representation
and reasoning systems often do not deal explicitly with negation. Some models deal
partially with negation by adopting what is known as the closed world assumption
in Al. The intuition behind this assumption is as follows: If an agent knows all the
relevant facts about some domain, then it may assume that any fact it does not know
is false! In view of this assumption, the agent may treat “don’t know” answers as
“no” answers.” As pointed out in (Shastri & Ajjanagadde 1993), we had also adopted
the closed world assumption in SHRUTI. The use of the closed world assumption,
however, has limited applicability and cannot be a substitute for the ability to deal
explicitly with negated information.

A second way in which negation can be treated partially is by making use of mutual
exclusivity of concepts. Since the membership of an entity in a certain category
can rule out its membership in other non-overlapping categories, the knowledge of
category membership can be used as a source of negated information. For example,
given “Fido i1s a dog” one can conclude “Fido is not a cat” since dogs and cats are
mutually exclusive classes of mammals. Although mutual exclusivity of categories
can be a powerful means for capturing certain types of negated knowledge, it does
not obviate the need for the explicit representation and use of negated predicates in
facts and rules.

4We use the notation of first-order logic for notational convenience and its use does not mean
that we view deduction to be the sole basis of reflexive reasoning.

5The closed world assumption states that any fact F that is neither in the knowledge base nor
deducible from the knowledge base, may be assumed to be false.



1.1 The importance of explicit negated information

Certain types of explicit negated information play an obvious role in common sense
reasoning. Clearly, we are capable of remembering negated facts and making use of
such facts during reflexive reasoning. For example, if we are told “John has been to
Canada” and “John has not been to Furope”, we can readily answer “yes”, “no”,
and “I don’t know” to the questions (i) “Has John been to Canada?” (ii) “Has John
been to France?” and (iii) “Has John been to Australia?,” respectively. It also seems
apparent that we can reason reflexively with rules involving certain types of negated
conditions. So given “John is a bachelor”, we can readily answer “no” to questions
such as “Is John married? and “Is John married to Susan?”. Note that answering
these questions involves using knowledge that may be approximated as “A bachelor

is not married to anyone” (i.e., bachelor(x) = —married(z,y)).

1.2 Treatment of inconsistent knowledge

The encoding of negated knowledge raises the possibility of inconsistencies in an
agent’s long-term memory (LTM). We can, and often do, hold inconsistent beliefs in
our LTM without being explicitly aware of such inconsistencies. At the same time,
we are capable of detecting contradictions when we are faced with beliefs that are
immediately contradictory — say, if we are presented with P(a,b) and = P(a,b).

In view of the above, a cognitively plausible model of memory and reasoning
should allow inconsistent facts and rules to co-exist in its LTM. But at the same time,
the model should be capable of detecting contradictions whenever two contradictory
beliefs that are within a certain inferential distance of each other become co-active
during an episode of reasoning. As an example, consider the case wherein an agent’s
LTM contains rules that lead from P(z,y) to R(x,y) via a chain of inference, and
from Q(z,y) to = R(x,y) via another chain of inference. It should be possible for the
agent’s LTM to contain the facts P(a,b) and Q(a,b) without the agent being aware
that these facts render the LLTM inconsistent. However, the agent should become
aware of this inconsistency under suitable conditions. One situation in which this
might happen is when the agent tries to answer the query R{a,b)? If the inferential
distance between P and R and that between () and — R is not too great, the process
of answering the query R(a,b)? would lead to the activation of both P(a,b) and
@(a,b), and hence, to the co-activation of R(a,b) and =R(a,b). When this happens,
the system should detect that it has contradictory beliefs.

The treatment of inconsistency pursued in this work has two desirable proper-
ties. First, the model does not strive for logical omniscience; it allows inconsistent
knowledge to exist in the agent’s LTM without requiring that all occurrences of incon-
sistencies be recognized by the agent. This is highly desirable given that an agent has
only limited resources and must interact with a rich and complex environment with
myriad sources of information. Consequently, the agent simply cannot afford to spend
unbounded resources trying to detect all possible inconsistencies in its knowledge! Sec-



ond, the proposed treatment of inconsistency ensures that any inconsistencies in the
agent’s knowledge become apparent when the agent tries to bring such inconsistent
knowledge to bear on a particular task.

Finally, any agent with limited resources must sometimes act with only limited
attentional focus and often under time pressure. This means that an agent may some-
times overlook relevant information and act in an erroneous manner. More focused
evaluation or an appropriate cue, however, might make the necessary information
available and lead to a correct response. Several interesting aspects of such a situa-
tion are captured in the following scenario:

Post Office Example: John runs into Mary on the street. “Where are
you going?” asks John. “To the post office,” replies Mary. “But isn’t
today Presidents’ Day?” remarks John. “Oops! T didn’t realize that
today was a federal holiday,” says Mary after a momentary pause and

heads back.

Clearly, the knowledge in Mary’s LTM was sufficient to infer that “today” was
Presidents” Day — a federal holiday — and therefore, a postal holiday. But the
fact that she was going to the post office means that she had supposed that the
post office was open (so in a sense, Mary held inconsistent beliefs). John’s rhetorical
question served as a trigger that brought the relevant information to the surface and
made Mary realize her mistake. A cognitively plausible model should be capable of
modeling such situations.

In this report we describe an extension of SHRUTI that can deal with negated
facts as well as negated antecedents and consequents in rules. The extended system
deals with inconsistent knowledge in the manner characterized above and also ex-
plains situations such as the “Post Office Example”. The related problem of dealing
with negation in the type hierarchy and exploiting the mutual exclusivity of certain
subtypes is not discussed here and will be described in a subsequent report.

Section 2 discusses several aspects of SHRUTI that are relevant for explaining the
encoding of negated knowledge. Section 3 describes the extension of SHRUTI while
Section 4 presents a few illustrative examples.

2 Overview of SHRUTI

2.1 Some representational problems associated with reflexive reasoning

Assume that an agent’s LTM embodies the following systematic knowledge: ‘If some-
one gives a recipient an object then the recipient comes to own that object’. Given
the above knowledge an agent would be capable of inferring “Mary owns a book” on
being told “John gave Mary a book”. A network must solve several representational
problems in order to incorporate the above behavior. Before discussing these problems
let us introduce some notation. A specific event such as “John gave Mary a book”
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can be viewed as an instance of the three place relation (or predicate) give with roles:
giver, recipient, and give-object and expressed as the fact give(John,Mary,a-Book). In
what follows, we will use “fact” and “instance” interchangeably to refer to a relational
instance. The systematic rule-like knowledge given above about giving and owning
may be succinctly expressed as:

give(z,y,z) = own(y,z) — (1)
wherein own is a two place relation with roles: owner and own-object and “=" infor-
mally means “leads to”.
Dynamic representation of facts requires dynamic bindings: The reason-
ing system must be capable of rapidly representing facts such as give(John, Mary,a-
Book) when they are “communicated” to it by perceptual or linguistic processes, or
when they arise internally as a result of the reasoning process. Note that the fact
give(John, Mary,a-Book) cannot be represented by simply activating the representa-
tions of the roles giver, recipient, and give-object, and the constituents ‘John’; ‘Mary’,
and ‘a-Book’, since such a representation would be indistinguishable from that of
give(a-Book,Mary,John). This fact, like any other instantiation of an n-ary relation,
is a composite structure wherein each constituent fills a distinct role in a relation.
Consequently, the representation of such a fact requires the representation of bind-
ings between the roles of the relation and its fillers. Thus the dynamic representation
of give(John,Mary,a-Book) requires the creation of dynamic bindings (giver=John,
recipient=Mary, give-object=a-Book).
Reasoning involves systematic propagation of dynamic bindings: Starting
with a dynamic representation of give(John,Mary,a-Book) the state of a network
encoding rule (1) should evolve rapidly to include the dynamic representation of the
inferred fact: own(Mary,a-Book). Generating inferred facts involves the systematic
propagation of dynamic bindings in accordance with various rules embodied in the
system. The rule give(x,y, z) = own(y, z) specifies that a give event leads to an own
event wherein the recipient of the give event corresponds to the owner of the own event
and the give-object of the give event corresponds to the own-object of the own event.
Thus the application of this rule in conjunction with the instance give(John, Mary,a-
Book) should create an instance of own with bindings (owner=Mary, own-object=a-
Book).
Long-term facts as temporal-pattern matchers: In addition to encoding domain
rules, the reasoning system must also be capable of encoding facts in its LTM and
using them during recall, recognition, query answering, and reasoning. For example,
a reasoning system should be capable of encoding the fact “John bought a Rolls-
Royce” in its LTM and using it to rapidly answer queries such as “Did John buy
a Rolls-Royce?” and “Did John buy something?” Observe that the encoding of a
long-term fact must store the bindings associated with a fact in the form of static
bindings within a long-term structure. Once formed, this structure should be capable
of detecting the occurrence of dynamic bindings that match its static bindings.

The multiple-instantiation problem: Reasoning often requires the simultaneous



activation of more than one fact pertaining to the same relation. For example, the
system may have to encode give(John,Mary,a-Book) and give(Mary, Tom,a-Car) at
the same time. A reasoning system must be capable of keeping multiple instantiations
of the same relation active without cross-talk between instantiations.

2.2 Solutions incorporated in SHRUTI
2.2.1 General representation

Refer to the representation of some predicates and entities shown in Figure 1. Observe
that predicates, their roles, and entities are represented using distinct nodes. In
particular, there is a distinct cluster of nodes corresponding to each predicate. Rules
are encoded by connections between the role nodes of appropriate predicates.

Nodes such as John and Mary correspond to focal nodes of more elaborate repre-
sentations of the entities ‘John” and ‘Mary’. Information about the attribute values
(features) of ‘John’ and his relationship to other concepts is encoded by linking the
focal node John to appropriate nodes. Observe that information about the various
perceptual and semantic features and aspects of ‘John’ may be distributed over vari-
ous parts the memory network. This information, however, eventually converges to,
and diverges from, the focal node for ‘John’. Details of such an encoding may be
found in (Shastri & Feldman 1986; Feldman 1989; Shastri 1991). As explained below,
the cluster of nodes associated with each predicate also serves as a focal area to which
all information pertaining to the relation converges, and from where all information
pertaining to the relation may be accessed by fanning out along appropriate links.

For simplicity we assume that each node in the figure corresponds to an individual
neuron-like (connectionist) node. This is an idealization. In actuality, each node
corresponds to an ensemble of cells (Shastri & Ajjanagadde 1993).

2.2.2 Encoding of predicates: predicate clusters as convergence zones

The core component of the encoding of a predicate is illustrated in Figure 1. Consider
the encoding of the ternary predicate give with three roles: giver, recipient, and
give-object. This predicate is encoded by a bank of three role nodes (depicted as
circular nodes) labeled giver, recip, and g-o0bj, an enabler node (depicted as a pentagon
pointing upwards), and a collector node (depicted as a pentagon pointing downwards).
In general, the cluster for an n-ary predicate contains n role nodes, one collector node,
and one enabler node. For notational convenience we refer to the enabler and collector
nodes of a predicate P as e:P and c¢:P respectively. The circular nodes are p-btu nodes
while the pentagon shaped nodes are 7-and nodes.

We refer to the bank of n + 2 nodes associated with a predicate as the “core
component” of a predicate’s encoding since it provides a skeleton for attaching and
accessing the complete encoding of a predicate. The latter includes all the intercon-
nections that this structure makes with the rest of the memory network in order to
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encode rules and facts involving this predicate. Thus this cluster of nodes can be
viewed as a focal area in that all information about the predicate converges to this
area, and all information about the predicate can be accessed by fanning out from
this area. Observe that the proposed representation of a predicate is consistent with
the notion of “convergence zones” (Damasio 1989).

Before specifying the computational behavior of the nodes in a predicate cluster,
let us examine their semantic import. The significance of role nodes is as expected
— each role node represents a role of the predicate. The representational significance
of the enabler and collector nodes is as follows. Assume that roles of a predicate P
are dynamically bound to some fillers thereby representing a dynamic instance of P
(we will see, shortly, how such dynamic bindings are represented). The activation
of e:P, the enabler of P, means that the system is in a state wherein it is trying
to explain whether the currently active dynamic instance of P is supported by the
knowledge encoded in the memory. In other words, the system is “querying” itself
about the currently active instance of P — Does this instance follow from what is
known? Such a “query” might be generated internally by the reasoning model, or be
communicated to it by some other system (e.g., the parsing or planning module) that
might be interested in determining whether a particular instance of P follows from
the knowledge encoded in the LTM. The semantic import of ¢:P is the complement
of that of e:P. By activating c:P the system is “asserting” that the currently active
instance of P— as composed of the dynamic bindings of the roles of P— is supported
by the knowledge encoded in the system.

Let us consider an example to make this concrete. Assume that some process
establishes dynamic bindings for the roles of give, say, (giver=John, recipient=Mary,
give-object=a-Book), and activates e:give. By doing so, the process is essentially
“asking” whether the system believes that John gave Mary a book. Subsequently,
if the node c:give becomes active as a result of spreading activation in the system,
it means that the system is “asserting” that yes, it believes that John gave Mary a

book.

The collector ¢:P can also be used by an external process to communicate in-
formation to the memory system. Thus some external process may establish some
dynamic bindings over the roles of P and activate the node ¢:P in order to communi-
cate an instance of P to the system. For example, the language understanding process
might activate c:give and establish the bindings (giver=John, recipient=Mary, give-
object=a-Book) upon hearing the utterance “John gave Mary a book”.

Note that we are using intentional terms such as “query”, “assert”, “believe”, and
“know” to describe the significance of various nodes. This should not be construed to
mean that individual nodes have such intensionality. Nodes simply serve a particular
role in the overall behavior of the system by virtue of having certain computational
properties and by having certain interconnections to other nodes.



2.2.3 Computational behavior of nodes

p-btu nodes have the following idealized behavior: When active, a p-btu node pro-
duces a train of spikes. If a p-btu node A is connected to another p-btu node B
then the activity of B synchronizes with the activity of A. In particular, a periodic
firing of A leads to a periodic and in-phase firing of B. It is assumed that p-btu
nodes can respond in this manner as long as the period of firing, 7, lies in the interval
[Fmin, Tmaz)- LThis interval can be interpreted as defining the frequency range over
which p-btu nodes can sustain a synchronized response. A threshold, n, associated
with a node indicates that the node will fire only if it receives n or more synchronous
inputs. If unspecified, a node’s threshold is assumed to be 1.

7-and nodes have the following idealized behavior: A 7-and node becomes active
on receiving a pulse of duration > 7,,,,. We assume that this condition is satisfied by
a periodic pulse train as long as the gap between successive pulses is less than some
interval € (where € is comparable to a spike width). Thus a 7-and node behaves like a
temporal and node. On becoming active, such a node produces an output pulse train
similar to the input pulse. A threshold, n, associated with a 7-and node indicates
that the node will fire only if it receives n or more synchronous pulses of duration
> Tmae- If unspecified, n is assumed to be 1.

The system also makes use of 7-or nodes which behave as temporal-OR nodes.
The behavior of these nodes, however, is not relevant for our present purpose and is
not discussed.

2.2.4 Encoding dynamic bindings

Dynamic bindings are represented in the system by the synchronous firing of appro-
priate role and filler nodes. With reference to the nodes in Figure 1, the rhythmic
pattern of activity shown in Figure 2 represents the dynamic bindings (giver=John,
recipient=Mary, give-object=a-Book), and hence, the dynamic fact give(John, Mary,a-
Book). Observe that (i) the concepts John, Mary, and a-Book are firing in distinct
phases but (ii) John and giver are firing in synchrony, Mary and recipient are firing
in synchrony, and a-Book and give-object are firing in synchrony. The absolute phase
of firing of filler and role nodes is not significant — what matters is the coincidence
(or the lack thereof) in the firing of nodes.

2.2.5 Encoding of rules and the propagation of bindings

As discussed above, a step of inference may be viewed as taking an instance of the
antecedent predicate and dynamically creating an instance of the consequent predi-
cate, with the role bindings of the latter being determined by (i) the role bindings
of the former and (ii) the role correspondence specified by the rule. Hence, a rule
is encoded by linking the roles of the antecedent and consequent predicates so as
to reflect the correspondence between roles specified by the rule. For example, the
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Figure 2: Rhythmic pattern of activation representing the dynamic bindings
give(John,Mary,a-Book). The binding between a role and a filler is represented by
the in-phase firing of associated nodes.

rule give(z,y,z) = own(y,z) can be encoded by establishing links between the roles
recipient and give-object of give and the roles owner and own-object of own, respec-
tively. If we also wish to encode the rule: buy(z,y) = own(z,y), we can do so by
connecting the roles buyer and buy-object of buy to the roles owner and own-object of
own, respectively (see Figure 1).°

Given the above interconnection pattern and node behavior, the initial state of
activation shown in Figure 2 representing give(John,Mary,a-Book) will lead to the
state of activation shown in Figure 3, and subsequently, to the state of activation
shown in Figure 4. The state of activity in Figure 3 represents the additional bindings
(owner=Mary, own-object=a-Book) because owner is firing in synchrony with Mary
and own-object is firing in synchrony with a-Book. Thus the state of activity in Figure
3 represents not only give(John, Mary,a-Book), but also the inferred fact own(Mary,a-
Book). In addition to these two facts, the state of activity in Figure 4 also represents
the fact can-sell(Mary,a-Book).

The above example illustrates some significant aspects of SHRUTI:

e An episode of reasoning is a transient propagation of a rhythmic pattern of

In the idealized model we are assuming that each role is represented as a single node and each
role correspondence 1s encoded by a one to one connection between the appropriate role nodes.
As discussed in (Shastri & Ajjanagadde 1993), each role is encoded as an ensemble of nodes and
each role correspondence is encoded by many to many connections between the appropriate role
ensembles.
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Figure 3: This state of activation represents two dynamic facts: give(John, Mary,a-
Book) and own(Mary,a-Book). The system has inferred own(Mary,a-Book).
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Figure 4: This state represents three dynamic facts:  give(John,Mary,a-
Book), own(Mary,a-Book), and can-sell(Mary,a-Book). The system has inferred
own(Mary,a-Book) and can-sell(Mary,a-Book).
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activity.

e The transient (short-term) representation of each entity filling a role in an
episode is simply a distinct phase within a rhythmic pattern of activity

e The number of distinct phases within the rhythmic activation pattern only
equals the number of distinct entities participating as role-fillers in dynamic
bindings. This number does not depend on the total number of dynamic bind-
ings being represented by the activation pattern.

e The number of distinct entities that can participate in dynamic bindings at the
same time is limited by the ratio of (i) the period of the rhythmic activity and
(i) the width of individual spikes.”

Observe that reasoning is the spontaneous and natural outcome of the network’s
behavior. The network does not apply syntactic rules of inference such as modus-
ponens. There is no separate interpreter that manipulates and rewrites symbols. The
network encoding is best viewed as a vivid internal model of the agent’s environment,
where the interconnections between (internal) representations directly encode the
dependencies between the associated (external) entities. When the nodes in this
model are activated to reflect a given state of affairs in the environment, the model
spontaneously simulates the behavior of the external world and in doing so makes
predictions and draws inferences.

As discussed at length in (Shastri & Ajjanagadde 1993), there exists substantial
neurophysiological evidence to suggest that the propagation of synchronous activ-
ity is neurally plausible. A detailed review of synchronous cortical activity appears
in (Singer 1993). The idea that synchronous activity can encode feature bindings
during visual processing had been suggested by von der Malsburg (1986) (also see
Bienenstock & Geman 1995), but SHRUTT is the first detailed model that shows how
synchronous activation can be harnessed to solve non-trivial problems in the repre-
sentation of conceptual knowledge and reasoning.

2.2.6 Parallelism and the significance of structure

The encoding of rules by the explicit encoding of the inferential dependency between
predicates and predicate roles, in conjunction with the use of temporal synchrony
provides an efficient mechanism for propagating dynamic bindings and performing
systematic reasoning. Conceptually, the proposed encoding of rules creates a directed
inferential dependency graph: Each predicate role is represented by a node in this
graph and each rule is represented by links between nodes denoting the roles of the

“For simplicity we have been assuming that nodes firing in synchrony fire precisely in-phase. This
is an idealization. In general, we expect a coarser form of synchrony where nodes firing with a lag
or lead of less than w/2 of one another are considered to be firing in synchrony. This corresponds
to treating the width of the “window of synchrony” to be w.
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antecedent and consequent predicates. In terms of this conceptualization, it should be
easy to see that the evolution of the system’s state of activity corresponds to a parallel
breadth-first traversal of the directed inferential dependency graph. This means that
(i) a large number of rules can fire in parallel and (ii) the time taken to generate a
chain of inference is independent of the total number of rules and just proportional
to the length of the chain of inference.

The representational and inferential power of SHRUTI and its ability to draw in-
ferences in parallel is directly attributable to its use of structured representations
(Feldman et al. 1988; Shastri 1995). A system that uses fully distributed representa-
tions will be incapable of representing multiple dynamic facts and applying multiple
rules simultaneously. Attempts to develop distributed systems to handle relations
invariably end up positing several distinct banks — one for each role — thereby step-
ping away from a fully distributed mode, or fall back on serial processing. It is not
surprising that distributed systems such as DCPs (Touretzky & Hinton 1988) have
extremely limited capacity for encoding dynamic structures and are serial at the level
of rule-application.

2.2.7 Multiple instantiation and type hierarchy

The complete SHRUTI encoding allows a bounded number of instantiations of the same
predicates to be active at the same time (Mani & Shastri 93). This allows SHRUTI
to represent multiple dynamic facts about the same predicate, and hence, compute
inferences involving bounded recursion. Predicate representations are augmented so
that each predicate consists of k£ banks instead of one, and thus can hold up to &
dynamic instances (here k is a parameter). Fach predicate also has an associated
“switching” network which prevents cross-talk between different instantiations.

SHRUTI also supports the representation of a type (category) hierarchy and this
allows types as well as instances to occur in rules, facts, and queries. Thus the
reasoning system can combine rule-based reasoning with inheritance and classifica-
tion. For example, SHRUTI can infer “Tweety is scared of Sylvester”, based on the
generic fact “Cats prey on birds”, the rule “if z preys on y then y is scared of z”
and the is-a relations “Sylvester is a cat” and “Tweety is a bird”. SHRUTI can also
use types/categories to encode semantic restrictions on rules. An example of a rule
with semantic restrictions is: z:animate, y:solid-obj walk-into(x,y) = hurt(z). This
rule specifies that the agent in a walk-into event gets hurt, if the agent and patient
in that event are of the type ‘animate’ and ‘solid-object’, respectively.

2.2.8 Encoding long-term facts: Memory as a temporal pattern matcher

Long-term facts are essentially a permanent record of a set of bindings describing
a particular situation. The representation of a long-term fact should encode the
bindings pertaining to the fact in a manner that allows the system to rapidly recognize
dynamic bindings that match the encoded fact. Given that dynamic bindings are
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Figure 5: Encoding of a long-term fact. The interconnections shown here encode the
static bindings corresponding to the fact give(John, Mary,a-Book).
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————— from John
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John
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give a-Book
Susan
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Figure 6: Encoding of the partially instantiated long-term fact give(John,Mary,z),
i.e., “John gave Mary something.”

represented as temporal patterns, it follows that the encoding of a long-term fact
should behave like a temporal pattern matcher that becomes active whenever the
static bindings it encodes match the dynamic bindings represented in the system’s
state of activation.

The design of such a temporal pattern matcher is shown in Figures 5 and 6
which illustrate the encoding of the long-term facts give(John,Mary,a-Book) and
give(John,Susan,z), respectively (the latter means “John gave Susan something”).
A long-term fact is encoded using a 7-and node which receives an input from the en-
abler node of the associated predicate. This input is modified by inhibitory links from
role nodes of the associated predicate. If a role is bound to an entity, the modifier
input from the role node is in turn modified by an inhibitory link from the appropriate
entity node. The output of the 7-and node encoding a long-term fact is connected
to the collector of the associated predicate. We refer to 7-and nodes associated with
long-term facts as fact nodes. Note that there is only one enabler node, one collector
node, and one set of role nodes for each predicate. These nodes are shared by all the
long-term facts pertaining to that predicate.

The encoding of the long-term fact give(John,Mary,a-Book) will recognize states of
activity that represent dynamic facts such as: give(John, Mary,a-Book), give(John, Mary,z),
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give(x,Mary,y), or give(z,y,z). However it will not recognize those states of activity
that represent dynamic facts such as give(Mary, John,a-Book) or give(John,Susan,z).
Similarly, the encoding of the long-term fact give(John,Susan,z) will recognize states
of activity that encode: give(John,Susan,z), give(x,Susan,y), or give(z,y,z), but not
give(Susan,John,z) or give(John,Susan,a-Car).

2.3 Backward reasoning system and an example of inference

We briefly describe backward reasoning with SHRUTI which involves the use of system-
atic rules as well as long-term facts. The network in Figure 7 encodes the following
domain knowledge.

give(x,y,z) = own(y,z),
buy(z,y) = own(z,y),
own(z,y) = can-sell(z,y),
give(John, Mary,a-Book),
buy(John,z), and
own(Mary,a-ball).

In the backward reasoning system, a rule is encoded by connecting the collector of
the antecedent predicate to the collector of the consequent predicate, the enabler of the
consequent predicate to the enabler of the antecedent predicate, and by connecting the
roles of the consequent predicate to the roles of the antecedent predicate in accordance
with the correspondence between these roles specified in the rule. Long-term facts
are encoded as explained above.

A query is posed to the system by specifying the query predicate and its role
bindings. The query predicate is specified by activating its enabler with a pulse train
of width and periodicity 7. Role bindings are specified by activating each entity, and
the role nodes bound to that entity, in a distinct phase.

We illustrate the reasoning process with the help of an example (refer to Figure
8). Consider the query can-sell(Mary,a-Book)? (i.e., Can Mary sell a-Book?) The
query is posed by (i) activating the enabler e:can-sell, (ii) activating Mary and p-
seller in the same phase, say, p1, and (iii) activating a-Book and ¢s-0bj in the same
phase, say, ps (p1 and ps being distinct). As a result of these inputs, Mary and
p-seller fire synchronously in phase p;, while a-Book and c¢s-0bj fire synchronously
in phase py. The activation from the can-sell predicate propagates to the own, give
and buy predicates via links connecting these predicates. As a result of this propaga-
tion the enablers of give, own, and buy become active. Furthermore, Mary, p-seller,
owner, buyer and recip become active in phase p;, while a-Book, ¢s-0bj, 0-0bj, g-obj
and b-0bj become active in phase py. In effect, the system asks itself three more
queries—own(Mary,a-Book)?, give(z,Mary,a-Book)? (i.e., Did someone give Mary
a-Book?), and buy(Mary,a-Book)?. The 7-and node F1, associated with the fact
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Figure 7: An example encoding of rules and facts for backward reasoning.

16



c:can-sell / v v

c:own / v v v
c:give J v v v v
Ll VIV VIV

e:give JV—V—V—\/—\/
g-obj E I S )
recip ‘ ‘ ‘ ‘ ‘ ‘

ebyl [NV VOV VOV
b-obj N S R ) B
buyer ‘ ‘ ‘ ‘ ‘ ‘

e:own / v v v v v v v
o-ob [ L 1]

owner [ 1]
e:can-sell / v v v v v v v v
a-Book ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
cs-obj N N O O N B
Mary I O O DO |
p-seller ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
input to e:can-sell v v v v v v v v v

input to cs-obj ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

input to p-seller ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

input to a-Book ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

input to Mary ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 1 2 3 4 5 6 7 8 9 time

Figure 8: Activation trace for the query can-sell(Mary,a-Book)? The query is posed
by activating the enabler and role nodes of can-sell and the nodes Mary and a-Book
as shown.
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give(John,Mary,a-Book) matches the query give(x, Mary,a-Book)? and becomes ac-
tive. Observe that the role giver is not firing and the inhibitory inputs from the
roles recip and g-obj are blocked by the synchronous inputs from the fillers Mary
and a-Book, respectively. Therefore, F1 receives uninterrupted activation from e:give
and becomes active. F1 activates c:give and this in turn activates c:own and c:can-
sell. The activation of c:can-sell signals an affirmative answer to the initial query

can-sell(Mary,a-Book)?.

2.4 Constraints and predictions

SHRUTI identifies a number of representational and processing constraints on reflexive
processing. These relate to (i) the capacity of the “working memory” underlying
reflexive processing, (ii) bounds on the depth of reasoning and differences in the time
course of associative priming versus systematic reasoning and (iii) the form of rules
that may participate in reflexive processing. These constraints are specific to SHRUTI
and differentiate if from other connectionist models of memory and reasoning such as
CONPOSIT (Barnden & Srinivas 1991), ROBIN (Lange & Dyer 1989), and CONSYDERR
(Sun 1992).

Working memory underlying reflexive processing: Dynamic bindings, and
hence, dynamic (active) facts are represented in SHRUTI as a rhythmic pattern of
activity over nodes in the LTM network. In functional terms, this transient state of
activation holds information temporarily during an episode of reflexive reasoning and
corresponds to the working memory underlying reflexive reasoning (WMRR). Note
that WMRR 1is just the state of activity of the LTM network and not a separate buffer.
Also note that the dynamic facts represented in the WMRR during an episode of
reflexive reasoning should not be confused with the small number of short-term facts
an agent may overtly keep track of during reflective processing and problem solving.
WMRR should not be confused with the short-term memory implicated in various
memory span tasks (Baddeley 1986). In our view, in addition to the overt working
memory, there exist as many “working memories” as there are major processes in the
brain since a “working memory” is nothing but the state of activity of a network.

SHRUTI predicts that the capacity of WMRR is very large but at the same time it
is constrained in critical ways (see below). Modulo these constraints, the number of
dynamic facts that can be co-active in the working memory equals &k * R, where k is
the multiple instantiation constant and R is the number of relations known to the
agent.

Most proposals characterizing the capacity of the working memory underlying
cognitive processing have not paid adequate attention to the structure of items in the
working memory and their role in processing. Even the recent proposal of Just &
Carpenter (1992) characterizes working memory capacity in terms of “total activa-
tion”. In contrast, the constraints on working memory capacity predicted by SHRUTI
depend not on total activation but rather on the maximum number of distinct entities
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that can participate in dynamic bindings simultaneously, and the maximum number
of (multiple) instantiations of a predicate that can be active simultaneously.

Bound on the number of distinct entities referenced in WMRR During an
episode of reflexive reasoning, each entity involved in dynamic bindings occupies a
distinct phase in the rhythmic pattern of activity. Hence the number of distinct en-
tities that can occur as role-fillers in the dynamic facts represented in the working
memory cannot exceed 7,4, /w where 7,,,, is the maximum delay between two con-
secutive firings of cell-clusters involved in synchronous firing and w equals the width
of the window of synchrony — i.e., the maximum allowable lead /lag between the fir-
ing of synchronous cell-clusters. If we assume that a neurally plausible value of 7,4,
is about 30 milliseconds and a conservative estimate of w is around 6 milliseconds, we
are led to the following prediction: As long as the number of distinct entities refer-
enced by the dynamic facts in the working memory is five or less, there will essentially
be no cross-talk among the dynamic facts. If more entities occur as role-fillers in dy-
namic facts, the window of synchrony w would have to shrink appropriately in order
to accommodate all the entities. As w shrinks, the possibility of cross-talk between
dynamic bindings would increase until eventually, the cross-talk would become ex-
cessive and disrupt the system’s ability to perform systematic reasoning. The exact
bound on the number of distinct entities that may fill roles in dynamic facts would
depend on the largest and smallest feasible values of 7,,,, and w, respectively. How-
ever we can safely predict that the upper bound on the maximum number of entities
participating in dynamic bindings can be no more than 10 (perhaps less).

Bound on the multiple instantiation of relations: The capacity of WMRR is
also limited by the constraint that at most k& dynamic facts pertaining to each relation
may be active at any given time (recall that the total number of active dynamic facts
can be very high). In general, the value of k need not be the same for all relations;
some critical relations may have a higher value of k£ while some other relations may
have a smaller value. The cost of maintaining multiple instantiations turns out to be
significant in terms of space and time. For example, the number of nodes required
to encode a rule for backward reasoning is proportional to the square of k. Thus a
system that can represent three dynamic instantiations of each relation may have up
to nine times as many nodes as a system that can only represent one instantiation
per relation. Furthermore, the worst case time required for propagating multiple
instantiations of a relation also increases by a factor of k. In view of the additional
space and time costs associated with multiple instantiation, and given the necessity
of keeping these resources within bounds in the context of reflexive processing, we
predict that the value of k is quite small, perhaps no more than 3.

Bound on the depth of the chain of reasoning: Consider the propagation of
synchronous activity along a chain of role ensembles during an episode of reflexive
reasoning. Two things might happen as activity propagates along the chain of role en-
sembles. First, the lag in the firing times of successive ensembles may gradually build
up due to the propagation delay introduced at each level in the chain. Second, the
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dispersion within each ensemble may gradually increase due to the variations in the
propagation delay of links and the noise inherent in synaptic and neuronal processes.
While the increased lag along successive ensembles will lead to a “phase shift”, and
hence, binding confusions, the increased dispersion of activity within successive en-
sembles will lead to a gradual loss of binding information. Increased dispersion would
mean less phase specificity, and hence, more uncertainty about the role’s filler. Due
to the increase in dispersion along the chain of reasoning, the propagation of activity
will correspond less and less to a propagation of role bindings and more and more to
an associative spread of activation. For example, the propagation of activity along a
chain of rules such as: Pi(z,y,z) = Py(z,y,2) = ...P.(z,y, z) due to a dynamic fact
Pi(a,b,c) may lead to a state of activation where all one can say about P, is this:
there is an instance of P, which involves the entities a, b, and ¢, but it is not clear
which entity fills which role of P,. In view of the above, it follows that the depth to
which an agent may reason during reflexive reasoning is bounded. In other words,
an agent may be unable to make a prediction (or answer a query) — even when the
prediction (or answer) logically follows from the knowledge encoded in the LTM —
if the length of the derivation leading to the prediction (or the answer) exceeds this
bound.

Form of rules that may participate in reflexive reasoning: Using complexity
theory it can be shown that during backward reasoning (i.e., query answering) it is
not possible to make use of rules containing equality constraints among antecedent
roles unless (i) such roles map to a consequent role in the rule and (ii) the consequent
role gets bound during the query answering process. A similar constraint applies to
forward (predictive) reasoning. These constraints predict that certain queries cannot
be answered in a reflexive manner even though the corresponding predictions can be
made reflexively. For example, consider an agent whose LTM includes the rule “if
x loves y and y loves z then z is jealous of z”, and the long-term facts “John loves
Mary” and “Mary loves Tom”. We predict that if this agent is asked “Is John jealous
of Tom?”, she will be unable to answer the query in a reflezive manner. Note that the
antecedent of the rule includes the equality condition: the second role of one instance
of ‘loves’ should equal the first role of the other instance of ‘loves’. Hence, answering
this question will require deliberate and conscious processing unless the relevant long-
term facts are active in the WMRR for some reason at the time the query is posed.
However, an agent who has the above rule about love and jealousy in its LTM would
be able to infer “John is jealous of Tom” in a reflexive manner, on being told “John
loves Mary” and “Mary loves Tom”.
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giver recip g-obj

Figure 9: The structure of a predicate cluster augmented to deal with negated infor-
mation

3 Extending SHRUTI to deal with negation

3.1 Modifications in the core predicate component

The treatment of negation involves a systematic but simple augmentation of the basic
SHRUTI model (refer to Figure 9). The primary change is in the representation of the
core component of a predicate. Instead of a single collector, the extended encoding of
a predicate P now consists of two collectors: one associated with positive assertions
about P and the other with negated assertions about P. We label these collectors
+c:P and —c:P respectively. The enabler node and role nodes remain unchanged. A
second change is that both the collectors +¢:P and —¢:P connect to the enabler e:P
via a weighted link.

As before: (i) each role node of P encodes one of the roles of P, and its synchronous
activation with a filler encodes the dynamic binding of the role with that filler, (ii)
the activation of the enabler e:P indicates that the system (or an external process ) is
asking whether the currently active instance of P (composed of the dynamic bindings
of the roles of P) is supported by the system’s knowledge, and (iii) each collector
node of P represents the system’s response to the currently active instance of P —
but with an important distinction. The system activates the positive collector +c:P
if the currently active instance of P is supported by the system’s knowledge, but it
activates the negative collector —c:P if the negation of the currently active instance
of P is supported by the system’s knowledge. Thus if the system knows that John
bought a car, it activates +c:P when presented with the bindings buyer=John, buy-
obj=car. But it activates —c:P when presented with the same bindings if it knows that
John did not buy a car. If the system does not know anything about John buying a
car it activates neither +c:P nor —c:P thereby indicating “don’t know”.

3.1.1 Significance of collector to enabler connections

The links between the collectors and the enabler of a predicate serve an important
role during reasoning. These links essentially convert any dynamic assertion into a
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query about the assertion! This means that the system is always seeking support (or
an explanation) for incoming facts. It is as though the system constantly “evaluates”
incoming knowledge in the context of existing knowledge and seeks to affirm or reject
it based on what it knows. The weights on links from collectors to enablers can be
viewed as a measure of the system’s propensity for seeking such evaluations. A system
with a high weight on these links can be viewed as a highly critical and skeptical
system, while one with very low weights can be viewed as a credulous system —
one which accepts incoming information without actively seeking an explanation or
determining how well it coheres with prior knowledge.

As we shall see, the ability of a system to evaluate incoming information gives it the
ability to detect inconsistencies between incoming information and prior knowledge.
The scope of inconsistency detection is however, local. In other words, inconsistencies
are detected only between two facts that are within a limited inferential distance from
each other. This bound on inferential distance is governed by the constraint on the
depth of a chain of inference mentioned in Section 2.5. Observe that we are referring
to a reflexive process of evaluation and not a deliberate search for explanations. Thus
while this process would be very fast and automatic, it would be subject to the
constraints on reflexive reasoning which include bounds on the depth of inference.

Finally, the links from the collectors of a predicate to its enabler serve to create
positive feedback loops of spreading activation and thereby create stable coalitions
of active nodes under appropriate circumstances. Assume that the system is seeking
an explanation about the currently active instance of P, and therefore, the enabler
of Pis active. If the memory supports this instance of P it will activate the positive
collector of P. This will create a feedback loop — or a stable coalition — consisting
of e:P, the enablers of other predicates participating in the explanation of P, the
appropriate collectors of these predicates, +c¢:P, and e:P.

3.1.2 Encoding of facts

The encoding of facts remains virtually unchanged. The only difference between
positive facts and negated ones is that while a fact node associated with a positive
fact about P feeds into +c¢:P, a fact node associated with a negated fact about P feeds
into —c:P. Figure 10 shows the encoding of loves(John,Mary), and =loves(Susan, Tom,).
Observe that both the positive and negated facts make use of the same enabler and
role nodes. The only difference lies in the collector that these fact nodes feed back
into. Given queries such as loves(John,Mary)?, loves(z,Mary)?, or loves(John,z)?,
the fact node F2 will become active and activate the collector +c:love indicating a
“yes” answer. Similarly, given queries such as loves(Susan, Tom)?, loves(z, Tom)?, or
loves(Susan,z)?, the fact node F3 will activate the —c:P collector indicating a “no”
answer. Finally, given a query such as loves(John,Susan)?, neither +c:love nor —c:love
would become active, indicating that the system has no knowledge to affirm or deny
whether John loves Susan.

22



O

( S,

love

Figure 10: Example encoding of facts. The network encodes the fact love(John, Mary)
and the negated fact =love(Tom,Susan).

3.1.3 Encoding of rules

Rules in the extended system are also encoded as before except that the links from
the collectors of antecedent predicates to the collector of the consequent predicate
originate from +e¢:P if P appears in its positive form in the antecedent and —c:P if P
appears in a negated form. Similarly, such links terminate at +c¢:Q) if @ appears in
a positive form in the consequent of the rule, and at —c:Q) if ) appears in a negated
form. Figure 11 shows the encoding of the rule —citizen(z,y) = —vote(z,y) (“x cannot
vote in y’s election if = is not a citizen of y”) while Figure 12 shows the encoding of
the rule bachelor(x) = —married(z,y) (“x is not married to any y if z is a bachelor”).

Observe that the system does not encode the contrapositive of a rule by fiat. In
our model, a rule and its contrapositive are two distinct rules. Given a rule in the
LTM, its contrapositive form may, or may not, be present in the LTM.

The encoding of a rule in the augmented system supports the use of weighted
links from the enabler of the consequent predicate to the enabler(s) of the antecedent
predicate(s), and from the collector(s) of the antecedent predicate(s) to the collector
of the consequent predicate. These weights lead to a gradual weakening of activation
along a chain of inference during reflexive reasoning. Thus the activation level of en-
abler nodes get progressively lower as inference propagates along a chain of predicate
banks until eventually it falls below threshold and terminates the chain of inference.
The value of the weight and the threshold determine the bound on the depth of
inference during reflexive reasoning. The weight on the collector to collector links
have a similar effect. These weights can also be given an evidential or probabilistic
interpretation and used to model the strength of a rule.

The encoding of rules with special conditions (e.g., the handling of constant role
fillers, repeated variables, and existentially quantified variables), multiple antecedent
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Figure 11: Example encoding of rules involving negated predicates. The network
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Figure 12: Encoding of the rule: bachelor(x) = —married(z,y)
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rules, and multiple instantiation of predicates remains otherwise unchanged. In par-
ticular, the structure of the multiple instantiation banks and the multiple instantia-
tion switch remains unchanged except that, analogous to the change in the predicate
representation, single collector nodes are replaced by a pair of positive and negative
collector nodes in the arbitrator of each switch (see (Mani & Shastri 1993) for details
of the encoding of a switch).

The solution to the problem of negation and the treatment of inconsistency pro-
posed above is considerably simpler than the one suggested in (Cottrell 1993). The
latter had suggested that the entire predicate bank be duplicated for each predicate.
In this scheme, each predicate P would have two separate banks of role, enabler and
collector nodes: one for positive knowledge about P (+F), and another for negative
knowledge about P (—P). In addition to requiring duplicate banks, this scheme would
also require a mechanism for comparing bindings across the +FP and —P banks in
order to determine that a dynamic instance in the +P bank contradicts a dynamic
instance in the —P bank. As explained below, the detection of inconsistency in our
proposal is extremely simple since it only requires a comparison of the positive and
negative collector activations within a single bank.

3.2 Detecting contradictions and inconsistencies

The system can evaluate answers and detect contradictions using an extremely simple
(four node) circuit within each predicate cluster. Such a circuit receives three inputs:
one from each of the two collectors and another from the enabler, and produces four
outputs. The outputs are: “don’t know”, “yes”, “no”,

know” is produced if the enabler is active but neither of the collectors is active. A

and “contradiction”. A “don’t

“yes” is produced if the positive collector is active but the negative collector is inactive.
A “no” is produced if the negative collector is active and the positive collector is
inactive. Finally, a “contradiction” is indicated if both the positive and the negative
collectors are active.

The information available at the positive and negative collectors of a predicate,
however, can be treated in a more flexible manner by viewing their activity not as
a discrete on and off state, but rather as a graded level of activation. In particular,
the activity of the positive and negative collectors of a predicate can be combined
using a suitable evidence combination rule in order to evaluate the effective degree of
support offered by the system to the currently active predicate instance. The result
of this combination yields a graded belief ranging from “no” on the one extreme to
“yes” on the other, with “don’t know” in between. Such an evidential combination
can be realized very simply via mutual inhibition between the positive and negative
collectors of a predicate, and this is the approach we have adopted in the current
implementation. Note that this only requires local inhibition within a predicate bank,
and not across predicates.

If both the collectors receive comparable and strong activation then both collectors
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Figure 13: Encoding of a predicate structure augmented to combine evidence and
detect contradictions.

can be in a high state of activity, in spite of the mutual inhibition between them.
When this happens, a contradiction is detected. In the current implementation,
a contradiction occurs whenever the combined activity level of the two collectors
exceeds 1.5. This is realized by having one additional node within each predicate
cluster. This node has a threshold of 1.5 and receives excitatory inputs from both the
collectors. If this node becomes active, it means that a contradiction has occurred at
the predicate.

To summarize, graded combination of positive and negative evidence and the
detection of contradiction at each predicate can be realized by a simple modification
of the core component of a predicate. This involves two additions: (i) the positive
and negative collectors of a predicate mutually inhibit each other and (ii) the two
collectors are connected to a “contradiction” node having a threshold of 1.5. Figure
13 shows the augmented predicate structure.

4 Two examples

In this section we present two examples that illustrate the treatment of negated
information, detection of inconsistency, and the interaction of positive and negative
evidence. The examples have been simplified as much as possible in order to focus
on the key properties of the model.

4.1 Detecting inconsistency

Assume that the system has the following rule and fact in its LTM:

e “if you are not a citizen of a country, you cannot vote in the elections of that
country”
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e “John is not a citizen of USA”

i.e., ncitizen(x,y) = —wote(x,y), and —citizen(John,USA).® Please refer to Figure 11.

The system is told “John voted in the elections in USA.” This is communicated
by activating the positive collector +c:vote and establishing the dynamic bindings
(voter=John, country=USA) so as to assert vote(John,USA). Activation now propa-
gates from +c:vote to the enabler e:vote via the collector to enabler link. Because of
the rule —citizen(x,y) = —wote(x,y), the activation propagates from e:vote to e:citizen
and at the same time from the role nodes of wvote to the role nodes of citizen. This
establishes the query citizen(John,USA)? At this time, the fact —citizen(John, USA)
matches the query and activates the negative collector —c:citizen. In turn, the acti-
vation from —c:citizen propagates down to —c:vote-in-election and activates it. Thus
both the positive and negative collectors of citizen become active and signal a con-
tradiction. This example illustrates how the system can not only represent negated
knowledge, but also use such knowledge to detect contradictions in new and existing
knowledge.

Inconsistencies in existing knowledge are also detected in an analogous manner
when inconsistent knowledge is activated. This can happen during the processing of
a query or during the assimilation of new information. For example, assume that the
following (inconsistent) knowledge resides in the LTM:

1. P(x,y) = R(zy)
2. Q(ry) = ~R(xy)

3. P(ab)
4. Qa,b)

Now assume that the execution of some cognitive task results in the query R(a,b)? to
the memory and reasoning system. As a result of rules (1) and (2), this query leads to
the queries P(a,b)? and Q(a,b)? (seesection 2.3). The facts (3) and (4) match the two
queries, respectively, and activate +c¢:P and +c¢:(). These collectors in turn activate
+c:R and —c:R respectively. The activation of the positive and negative collectors
of R leads to the detection of a contradiction. Thus the proposed encoding allows
inconsistent knowledge to reside in the agent’s memory, but detects an inconsistency
whenever the agent tries to bring some inconsistent knowledge to bear on a particular
task.

8We are simplifying matters in order to focus on the point at hand. A more realistic version
of the rule would be person(z) A country(y) A —citizen(z,y) = —wole(z,y) together with the is-a
assertions: is-a(John,Person) and is-a(USA, Country). The use of this more complex rule does not
change the system behavior illustrated in the example.
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4.2 The Post Office example

We describe a simulation of the Post Office Example introduced in Section 1.2. The
simulation illustrates how an agent may sometimes overlook relevant information
and act in an erroneous manner. More focused evaluation — or an appropriate
cue, however, can make the relevant information accessible and lead to the correct
response. The example also illustrates the interaction of default information with
categorical information.

Let us model the agent’s domain knowledge as follows (also refer to Figure 14):

1. presidents-day(day) = federal-holiday(day)

2. 3rd-Mon-Feb(day) = presidents-day(day)

3. 3rd-Mon-Feb(20-Feb-95)

A. —3rd-Mon-Feb(21-Feb-95)

5. weekday(day) A post-office(z) = open(x,day) — [medium weight]
6. weekend(day) A post-office(x) = —open(x,day)

7. federal-holiday(day) A post-office(z) = —open(z,day)

8. post-office(PO)

9. federal-holiday(4th-of-July)

The first item encoded in the LTM states that Presidents’ Days are federal holi-
days. The next item specifies that third Mondays in February are Presidents’ Days.
Ideally 3rd-Mon-Feb would be realized as a mental process which can determine
whether a given day is the third Monday in February. We indirectly simulate such
a procedure by assuming that there is a mental process that can be accessed by the
predicate 3rd-Mon-Feb in order to determine whether the day bound to its role is a
third Monday in February. For the purposes of this example, this mental “calendar”
consists of two facts (items 3 and 4) which indicate that 20th February 1995 is a third
Monday in February while 21st February 1995 is not. The next item states that post
offices generally remain open on weekdays. Items 6 and 7 state that post offices are
not open on weekends and federal holidays, respectively. Item 8 states that PO is a
particular post office (supposedly the local post office visited by the agent). The last
item captures the knowledge that the 4th of July is a federal holiday. Notice that
4th-of-July has a special status since it is deemed to be a salient federal holiday. It
has been encoded as an explicit type and individual fourths of July (such as 4th July
1995) can be viewed as its instances. Items 1, 2, 6, and 7 are categorical rules about
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21-Feb-95

20-Feb-95

4th-of-July

weekday federal-holiday

"post offices
are not open
on weekends"

Figure 14: A graphical representation of some of the knowledge encoded in the Post
Office Example. Links between role nodes are not shown to reduce clutter. For the
same reason, the relation weekend and the encoding of the rule about post offices not
being open on weekends has not been elaborated. The detailed encoding of facts is also
not shown — the latter are shown simply as rectangles. The fact about weekday shown
in the foreground is meant to indicate the binding between “Today” and the attribute
“weekday”. Facts such as 3rd-Mon-Feb(20-Feb-95) and —3rd-Mon-Feb(21-Feb-95) are
intended to simulate the effect of a mental process that can determine whether a
given day is a third Monday of February or not. The fact federal-holiday({th-of-July)
is stored explicitly since 4th of July is a salient federal holiday.
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the domain and have a high weight, but item 5 corresponds to default and defeasible
information and hence, has a medium weight.?

We assume that “Today” is a concept which is bound each day to a different
“date” and to “weekday” or “weekend” depending on the day. These bindings are
assumed to be available as facts in the agent’s memory.

Imagine that today is 20th February 1995 which is Presidents’” Day. Our agent
Mary works for an organization that does not observe Presidents’ Day as a holiday
and so she is not explicitly aware that today is Presidents’ Day. Mary is out of postage
stamps and is contemplating a quick trip to the nearby post office (PO).

Let us assume that her “go-to-post-office” schema has the precondition that the
post office must be open. So before deciding to head to the post office, the schema
poses the query open(PO, Today)? to the memory and reasoning system. Assume that
after posing the query the schema monitors the activity of the collectors +c:open and
—c:open and accepts an answer based on the criterion described below. Once it accepts
an answer, the schema terminates the query and proceeds with its execution.

The schema accepts a “yes” (“no”) answer if the positive (negative) collec-
tor stays ahead of the competing collector and exceeds a threshold, ,.ccpr,
for some minimum length of time, A;.

Since today is 20th February 1995, “Today” is bound to 20-Feb-95 and the
fact weekday(20-Feb-95) is present in Mary’s memory. When the “go-to-post-office”
schema asks the query open (PO, Today)?, the default rule about post offices remaining
open on weekdays becomes active first and activates the positive collector +c:open
(refer to Figures 14 and 15). If we assume 0,...,+ to be 0.5, the activation of +c:open
exceeds the threshold after 12 cycles and stays above threshold for about 20 cycles
(note that the vertical activation axis in Figure 15, and in subsequent figures, has
been scaled by a factor of 1000). During this time, the negative collector does not
receive any activation and stays at 0. If the schema uses a A; of say, 10 cycles, it
will accept +c:open as an answer and withdraw the query. So Mary will set off to the
post office. The parameter values chosen in the simulation are only illustrative and
meant to convey some of the qualitative aspects of the situation.

Had the query remained active, the inference process would have eventually in-
ferred that the post office is not open today since it is the third Monday of February
which is Presidents’ Day, which is a federal holiday, and post offices are not open on
federal holidays. The result of the inferential process, if the query open(PO, Today)?
had not been terminated by the schema, is shown in Figure 16. The top panel shows
the activation of the two collectors of open while the bottom panel shows the activa-
tions of the collectors of some other relevant predicates. The propagation of inference
can be traced by noting the time delay in the activation of the various collectors.

9In the current implementation, default rules have a weight of 0.70 while categorical rules have
a weight of 1.
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Figure 15: The activation trace for the query open(PO,today)?; today being 20th
February 1995. The vertical axis denotes activation level and has a scale factor of
1000. The horizontal axis denotes number of simulation steps.

So first it is inferred that Today (20th February 1995) is a weekday. After a sig-
nificant delay it is also inferred that today is the third Monday in February. This
delay occurs because of the inferential distance between open and 3rd-Mon-Feb (refer
to Figure 14). Once it is inferred that today is the third Monday in February, the
inference about today being Presidents’” Day and a federal holiday follow and in turn
lead to the inference that the post office, PO, is not open.

Imagine that subsequently, John asks Mary the question “Isn’t today Presidents’
Day?”. This means that e:Presidents-day is activated directly and the role of Pres-
idents’ Day is bound to “Today” (i.e., 20-Feb-95). This causes the immediate acti-
vation of e:3rd-Mon-Feb and subsequently of +c:3rd-Mon-Feb via the fact 3rd-Mon-
Feb(20-Feb-95). The activation from +c:3rd-Mon-Feb works its way back and acti-
vates —c:open. Since this activation is due to categorical rules (rules 2, 1, and 7), it is
stronger than that arriving at +c:open from the default rule (item 5). Thus, although
the activation at +c:open arrives before it does at —c:open, the mutual inhibition be-
tween the more highly activated —c:open and the moderately activated +c:open results
in the suppression of +c:open, making Mary realize that the post office is not open
today (see Figure 17).

Now consider two other situations in which the query “Is the post office open
today?” is posed. The first situation occurs on 4th July 1995 and the second on
21st February 1995. Both these days are also weekdays, and hence, the appropriate
weekday(Today) fact would be asserted on these days.

The activation trace of the two collectors for open in the first situation (4th July
1995) is shown in Figure 18. In this situation, the information that 4th of July is
a federal holiday is stored explicitly as a fact and becomes available earlier. Thus
its effect reaches —c:open before the default rule about post offices being open on
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Figure 16: The activation trace for the query open(PO,today)? — today being 20th
February 1995 — allowed to run its full course.
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Figure 17: The activation trace for the query “Isn’t today Presidents’ Day?” posed
to the agent going to the post office on 20th February 1995.)
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Figure 18: The activation trace for the query open(PO,today)?; today being 4th July
1995.

weekdays gets a chance to establish +c:open as the answer. Thus the activating
schema would accept “no” as the answer to the question “Is the post office open
today?”.

The trace for the second situation (21st February 1995) is shown in Figure 19.
Here the default rules causes +c:open to become active, and this activation is never
countered by any activation arriving at —c:open. Thus the activating schema would
accept “yes” as the answer to the question “Is the post office open today?”.

5 Conclusion

This report describes an extension to SHRUTI that allows it to deal with positive
knowledge as well as negated facts and systematic knowledge (rules) involving negated
antecedents and consequents. The extension only requires local inhibitory connec-
tions. The extended model explains how an agent can hold inconsistent knowledge
in its long-term memory without being “aware” that its beliefs are inconsistent, but
detect a contradiction when two contradictory beliefs that are within a small infer-
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Figure 19: The activation trace for the query open(PO,today)?; today being 21st
February 1995.
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ential distance of each other become co-active during an episode of reasoning. Thus
the model is not logically omniscient, but detects contradictions whenever it tries
to make use of inconsistent knowledge in particular situations. The extended model
also explains how limited attentional focus or action under time pressure can lead
an agent to produce an erroneous response. The extended SHRUTI model is therefore
capable of modeling a wider range of reflexive reasoning phenomena. A more detailed
treatment of default information, especially the interaction between multiple default
rules and categorical rules is under investigation.
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