Pairwise Independence
and
Derandomization

Michael Luby and Avi Wigderson

July, 1995

International Computer Science Institute

TR-95-035

Abstract

This set of notes gives several applications of the following paradigm.
The paradigm consists of two complementary parts. The first part is
to design a probabilistic algorithm described by a sequence of random
variables so that the analysis is valid assuming limited independence
between the random variables. The second part is the design of a small
probability space for the random variables such that they are somewhat
independent of each other. Thus, the analysis of the algorithm holds
even when the random variables used by the algorithm are generated
according to the small space.

Acknowledgments

Avi Wigderson was invited as a Visiting McKay Professor to UC Berke-
ley for the month of February, 1995. Michael Luby was invited as a
Visiting Professor to Ecole Normale Supérieure in Paris for the month
of June, 1995. Based on the series of lectures given during these two
respective visits, Michael Luby compiled these notes into their current
form,

We would like to thank the following people for their help in producing
these notes. Preliminary drafts of notes based on Avi’s lectures (Sec-
tions 1-15) were prepared by Sanjoy Dasgupta, Sean Hallgren, Elizabeth
Sweedyk, and Eric Vigoda from UC Berkeley, and by Johannes Blomer
and Ralph Werchner from the International Computer Science Institute.
Eric Vigoda from UC Berkeley and Dana Randall from the Institute
for Advanced Studies visited Ecole Normale Supérieure during parts of
the month of June, 1995, supported by a grant from the International
Branch of the NSF. As part of their activities, Eric helped substantially
in compiling these notes during this time, and Dana proofread the entire
set of notes, made many good suggestions and found a number of glaring
mistakes. Avy Sharell from Orsay prepared a preliminary draft of the
notes for Section 23.

i

Section 1:
Section 2:
Section 3:
Section 4:
Section 5:
Section 6:
Section T:
Section 8:

Section 9:

Section 10:
Section 11:
Section 12:
Section 13:
Section 14:
Section 15:

Section 16:

Section 17:
Section 18:
Section 19:
Section 20:
Section 21:
Section 22:
Section 23:

References

Table of Contents

Pairwise Independence 1
Constructing Hash Functions 2
Derandomization Applications 3
Hashing 4
RP and BPP 6
Complexity of Unique Solutions 8
BPP C Yo 10
AM =TP 12
Deterministic Amplification 14
Chor-Goldreich Generator 16
Nisan’s Generator 17
Impagliazzo-Zuckerman Generator 19
The Expander Mixing Lemma 22
Karp-Pippenger-Sipser Generator 25
Ajtai-Komlés-Szemerédi Generator 26
Limited Independence Probability Spaces 28
One-Way Functions 31
Hidden Bit Theorem 34
Pseudo-Random Generators 40
#P and Approximate Counting 42
DNF Countingcoviiiiiiiniaiini .. 45
GF[2] Polynomial Counting 47
Bounded Depth Circuit Counting 51
.. 56

1l

Section 1: Pairwise Independence

Consider a set of random variables indexed by a set U, i.e., {Z; : i € U},
where Z; € T'. For finite t = |T'|, a uniform distribution assigns Pr[Z, =
a] = 1/t, for all z € U, @ € T. If this distribution were furthermore
pairwise independent, we would have: for all 2 £y € U, for all o, 5 € T,

Pr[Z, = o, Z, = 3] = Pr[Z, = o] - Pr[Z, = 3] = 1/t*.

This is not the same as complete independence, as evidenced by the
following set of three pairwise-independent variables (U = {1,2,3}, T =
{0,1},¢=2):

S | Z1 Zg Z3
00 0 0 0
01 0 1 1
10 1 0 1
11 1 1 0

Each row s can be thought of as a function h; : U — T. Let § be the
index set for these functions, where in this case S = {0,1}?. For all

z#yelU,forall a,f €T,

seP}fS[hs(m) =aAh(y)=p]=1/4=1/t

(Notice in particular that Prse,s[hs(2) = hs(y)] = 1/2 = 1/t.) Any set
of functions satisfying this condition is a 2-universal family of hash func-
tions. Definitions and explicit constructions of 2-universal hash functions
were first given by [36, Carter-Wegman] . The original applications de-
scribed in [36, Carter-Wegman] were straightforward, similar to those
described in the later section on hashing. As these notes indicate, sub-
sequently 2-universal hashing has been applied in surprising ways to a
rich variety of problems.

Section 2: Constructing Hash Functions

One simple way to construct a family of hash functions mapping {0, 1} —
{0,1}" is to let S = {0,1}" x {0,1}", and then for all s = (a,b) € S,
for all z € {0,1}" define hs;(z) = az + b, where the arithmetic opera-
tions are with respect to the finite field GF[2"”]. Thus, each h; maps
{0,1}" — {0,1}™ and & is the index set of the hash functions. For each
s =(a,b) € S, we can write:

(ki)=) (8)

hs(y)) Ny 1 b

When z # y, the matrix is non-singular, so that for any z,y € {0,1}",
the pair (hs(z), hs(y)) takes on all 22" possible values (as s varies over all
8). Thus if s is chosen uniformly at random from S, then (hs(z), hs(y))

is also uniformly distributed. This property of hash functions is called
2-universal.

We can view § as the set of points in a sample space on the set of random
variables {7, : € {0,1}"} where Z;(s) = hs(z) for all s € S. With
respect to the uniform distribution on &, these random variables are
pairwise independent, i.e., for all z # y € {0,1}", for all a, 3 € {0,1}"

SEFES[ZI(S) =aNZy(s)=p] = seP}fS[Zx(S) = a]~s£’}£5[Zy(s) =gl =1/2"".

To obtain a hash function that maps to k& < n bits, we can still use § as
the function index family: The value of of the hash function indexed by
s on input z is obtained by computing hs(z) and using the first £ bits.

The imporant properties of these hash functions are:

e Pairwise independence.

e Succinctness — each function can be described as a 2n-bit string.
Therefore, randomly picking a function index requires only 2n ran-
dom bits.

e The function hs(z) can easily be computed (in LOGSPACE, for
instance) given the function index s and the input z.

In the sequel, unless otherwise specified we are referring to this set of
pairwise independent hash functions and § denotes the set of indices for
the hash family.

Section 3: Derandomization Applications

Consider, for example, the MAXCUT problem: given a graph G =
(V, E), find a two-coloring of the vertices x : V. — {0, 1} so as to max-
imize ¢(x) = {(z,y) € E : x(¢) # x(y)}|. We describe a solution to
this problem that is guaranteed to produce a cut where at least half the
edges cross the cut.

If the vertices are colored randomly (0 or 1 with probability 1/2) by
choosing x uniformly from the set of all possible 2/VI colorings, then:

Bl = 3 Pl@#x) = 2

2
(z,y)eE

Thus, there must always be a cut of size at least @ Let S be the
index set for the hash family mapping V' — {0, 1}. Since the summation
above only requires the coloring of vertices to be pairwise-independent,
it follows that E[e(hs)] = % when s€rS. Since |S| = |V|?, we can
deterministically try h; for all s € & in polynomial time (even in the

parallel complexity class NC), and for at least one s € S, h; defines a
|

partition of the nodes where at least % edges cross the partition.

This derandomization approach was developed and discussed in general
terms in the series of papers [9, Chor-Goldreich], [26, Luby], [5, Alon-
Babai-Ttai]. There, the approach was applied to derandomize algorithms
such as witness sampling, a fast parallel algorithm for finding a maximal
independent set, and other graph algorithms.

Section 4: Hashing

Say we are mapping elements N C U into a table T, with t = |T|,n =
|N|. For our hash family mapping U — T, if we choose s€rS, what is
the expected number of colliding pairs C'?7

EC] = > Prfha(e) = ho()] = <Z)%

zA£yEN

For instance, if t = n?, then E[C] < % (and so the probability that & is
I-to-1is > 1). If t = n, then E[C] < 2.

One application that uses hashing and this observation i1s a particular
implementation of a dictionary. Consider a model where we first insert
a subset of entries N from some universe of possible words U into a
dictionary, and then subsequently we want to be able to look-up possible
words & € U to see if they are in N. Deterministic schemes based on
balanced tree data structures do the insertion in time O(nlogn) and
subsequent look-ups in time O(logn) each.

Random hashing can speed this up considerably. A straightforward im-
plementation of a dictionary using hashing is to hash U to a table with
O(n?) cells, where each cell can store an element of U, in such a way that
no two entries in N map to the same cell. This scheme takes time O(n)
to store N (assuming the table space does not have to be initialized,
which is unrealistic) and constant time for each look-up.

The following two-level hashing scheme, due to [11, Fredman-Komlds-
Szemerédi], also takes time O(n) to construct the dictionary and con-
stant time for each look-up, but the advantage is that it uses only O(n)
cells in total. Let T'= {1,...,n}.

(1) Pick s€gpS and map N into T'. For each i € T, let N; be the subset
of N mapped to i by hy, and let n; = [N;|. Let C =3, 1 (”2’) be
the number of colliding pairs. If C' > n then start over at step (1),
else go on to step (2).

(2) Foreach i € T, if n; > 1 then we allocate a table T; of n? cells, and
let S; denote the index set for the hash family mapping U — T;.
Pick s;€rS;, and use h;, to map N; to T;. If h;, maps N; 1-to-1into
T; then this is a good choice for s;, else rechoose s; independently
and try again until A, does describe a 1-to-1 mapping.

Because E[C] < n/2instep (1), Pr[C' < n] > 1/2, and thus the expected
number of times step (1) is repeated is at most 2. Similarly, in step (2),
for each 7 € T, the expected number of times till the mapping of N; into
T; is 1-to-1 is at most 2. Thus, the overall expected time to construct
the dictionary is O(n). The total number of cells used to store N is
D=3 icr n?. Noting that D — 2C = |N| = n, and that C' < n, it
follows that at most 3n cells are used to store N. Note that we need
to also store s and all s; for all i € {1,...,n}, but this takes at most
2(n+1) additional cells, since the description of each hash function takes
two cells.

Each find operation takes constant time.

Section 5: RP and BPP

Recall that a language £ € NP if there is a polynomial time TM M
(where TM denotes a Turing machine) with the following properties. M
has two inputs z and y, where z is the string for which membershipin £ is
trying to be decided, and y is a potential witness for membership of z in
L. Mz €{0,1}" then y € {0,1}", where r is polynomialin n. The output
of M(z,y) is a single bit. The running time of M(z,y) is polynomial
in ||z||. For z € {0,1}", let W, = {y € {0,1}" : M(z,y) = 1}. The
machine has the property that for all z € {0,1}",

g L = |Wy|=0.

RP is the class of languages £ where membership can be checked with
one-sided error by a randomized, polynomial-time TM. Keeping the
same notation as above, £ € RP if there is TM M with the following
properties. There is a constant cyes > 0 associated with M. For z €
{0,1}", let W, = {y € {0,1}" : M(z,y) = 1}. For any A C {0,1}", let
Hu(A) =]A|/2" be the fraction of r-bit strings which are in A. M has the
property that for all z € {0, 1},

rel = p(Ws)> cyes,
rg L = p(W,)=0.

The way we can decide membership of z € {0, 1}" is to choose yeg {0, 1}"
and decide z € L if M(z,y) = 1, i.e, if y € W, and decide z ¢ L if
M(z,y) = 0, i.e., if y ¢ W,. Notice that the decision is always correct
if 2 ¢ £, but the decision is only correct with probability cyes if 2 € L.
On the other hand, when z € L, if y € W, then y is a witness to
the fact that z really 1s in £, i.e., we can have full confidence in our
decision. The standard way to boost confidence in the decision is to
choose y1,...,yx€r{0,1}" and decide z € L if, for any i € {1,... k},
y; € Wy. Then, the probability of making an incorrect decision when
z € L is reduced to (1 — cyes)k.

BPP is the class of languages £ where membership can be checked with
two-sided error by a randomized, polynomial-time TM. Keeping the
same notation as above, £ € BPP if there are constants cyes and cno
with cyes > cno, such that for all € {0,1}",

rel = pu(Wy)> cyes,
¢ L = pu(W;) < cno.

We can decide membership in £ exactly the same as for RP, but then
there i1s a chance of making an incorrect decision both in the case when
z € L and when z ¢ £. The way to boost confidence in the decision is
similar to that for RP: choose y1,...,yx€r{0,1}" and decide z € L if
y; € W, for more than k(cno + cyes)/2 of the i € {1,...,k}, and decide
z ¢ L otherwise.

Section 6: Complexity of Unique Solutions

NP-hard problems often have many possible solutions. Would it make
it easier if we were assured of a unique solution? Specifically, we say
an algorithm A € RP unique-solves an NP language £ if, for all z, the
output of A is guaranteed to be “no” with high probability if |I¥;| = 0
and the output of A is guaranteed to be “yes” with high probability if
|Wy| = 1. Notice there is no requirement on the output of A if |Wy|
is neither 0 nor 1, i.e., A can output anything in this case. Because of
this, A cannot be used directly to decide membership in £. [35, Valiant-
Vazirani] nevertheless show that A can be used indirectly to efficiently
decide membership in £. More specifically, [35, Valiant-Vazirani] show
that if there is an A € RP that unique-solves some NP-complete lan-
guage £ then RP = NP. The idea behind [35, Valiant-Vazirani] follows.

Consider the following language CIRCUIT SAT: Given a circuit C' with
an r-bit input, is there a y € {0,1}" such that C(y) = 17 A slightly
more general NP-complete problem, II, is the following: Given a circuit
C with an r-bit input, a function A mapping {0, 1}" to some set of values
T, and a value o € T, is there an input y to C' such that C(y) = 1 and
h(y) = a?

Theorem : If there is an algorithm A € RP which unique-solves 11
then RP = NP.

PROOF: We design an algorithm B € RP that decides membership in
CIRCUIT SAT based on A. On input a circuit C' with an r-bit input,
B works as follows:

e Choose kegr{l,...,r}.

e Choose s€rS, where § is the index set of the hash family that
maps U = {0,1}" to T = {0, 1}*+1.

e Choose a€r{0, 1}F+1.

e Call A(C, hs,«). Give the same answer as A.

Note that ||s|| = O(r), and so this reduction can be performed in random
polynomial time. If C' is not satisfiable, then clearly B will respond
“no”. If C is satisfiable, then for some k € {1,...,r}, 2= < N < 2%,
where N is the number of satisfying assignments (witnesses) to C. With
probability 1/r we guessed this k correctly.

Assume we have the correct k. Previously, we saw that for a table T,
with |T| = aN, the expected number of colliding pairs E[C] < N/(2a).
In our case, 2 < a < 4. Thus, E[C] < N/4. Hence, with probability
at least 1/2, at most N/2 elements are paired and so at least N/2 table
entries are singletons. Assume this is the case. Since |T'| < 4N, Pr[there
is a unique element that maps to o] > 1/8.

Overall, the probability that we pick (hs,) so that (C,hs, @) has a
unique witness is at least 1/(167). This can be boosted in the usual way.

We thus have an RP algorithm for an NP-complete problem, implying
RP = NP.

Section 7: BPP C ¥,

3 corresponds to languages £ which can be written in the form:
z €L < Tz, Yw, qelz,z,w)=1

where q. is a polynomial time predicate, and ||z|| and [|w]|| are polynomial
in ||z||.

The following proofs are due to [33, Sipser]. Consider the following class
BPP’, which is a very strong form BPP: For all L € BPP’, when
x € L then |W,| > 2"=! and when = ¢ £ then |W,| < 20=1/2. We
can determine if z € £ for £ € BPP’ as follows. Pick a s€gS where
our hash family maps {0,1}" — {0,1}"=1). For the case of = ¢ L, the
table T' which hs maps to has |T'| > |W,|?. We know from our previous
analysis that in such a situation, Pr[h, is 1-to-1] > % When z € L,
Pr[h; is 1-to-1] = 0 (since the table is too small). Thus, we have a way
of distinguishing the two situations. We can decide if z € £ by the
following:

ds € S, Vy,y € W, such that y # ¢/,
r¢g L <—

7 ho(w) # holy)
This is a Xy form of the complement of £ (note that membership in

W, takes only polynomial time to check). Therefore, BPP' C X5 and
BPP’ C II,. We now present the result of [33, Sipser].

Theorem : BPP C 3.

PROOF: Consider the following version BPP” of BPP: For all £ €
BPP", when z € £ then |W,| > 12" and when & ¢ £ then [W,| < 5552
Using the usual amplification method, a language £ € BPP can be
easily reduced to a language £’ € BPP”, and thus BPP" is equivalent
to BPP.

We now show how to determine if 2 € £, where £ € BPP”. We use
a table of size ¢t = T%ZT. Pick si1,s9,...,5,€rS where our hash family
maps {0,1}" — [£27]). Since we can’t get a 1-to-1 mapping for one
particular table, we consider for every witness in W, whether there is
at least one mapping which isolates the witness. We notice h isolates

y € W, iff for all ¥ € W, such that y' # y, we have h(y) # h(y).

10

Define an event A: for all y € Wy, there is an ¢ € {1,...,r} such that
for all ¥ € W, such that ' # y, hs,(y) # hs,(y'). We show that

rel = Pr[A]=0,
r¢ L = Pr[A]>0.

Each h;, can isolate at most ¢ elements. Hence, if z € £, the number
of witnesses that can be isolated is < tr = %27 < |Wy|, and thus there
must be some witnesses in W, that are not isolated by any of the r hash
functions, and thus Pr[A] = 0.

What if 2 ¢ L7
o Fix i,y,y. Prlhs,(y) = hs,(v)] = %
Fix i,y. Pr3y € Wa,y' # v, ho(y) = ho,(y)] < Bl < L

7
Fix y. Pr[Vi, 3y € Wa, v # v, hs,(y) = hs,(¥)] < .

o PriA]=1-Pr[Ey e W, Vie {l,...,r}, 3y e Wo, ¥ # vy, hs,(y) =
ho () > 1= 15 > 1- 5L

or

e Thus, Pr[A4] > 0.
Membership in language £ can thus be summarized as:

Fhsy, .y hs,, YyeW,, Jie{l,...,r},

gL = VY € Wo, ' £y, hy,(y) # by, (¥)

We’ve shown BPP = BPP” C X,. Notice that the third quantifier

3i € {1,...,r} is of polynomial size. It is possible to eliminate this
quantifier, and then the surrounding pair of “for all” quantifiers collapse
together, giving BPP C X,.

11

Section 8: AM = 1P

[16, Goldwasser-Sipser] show that AM = IP, that is, public coins are as
powerful as private coins in interactive protocols. To illustrate this we
look at the graph non-isomorphism problem: GNI = {(Gg, G1) : graphs
Gg and G are not isomorphic }. To show that GNI € IP, we must
exhibit a prover P and verifier V such that, for some pair of constants
cyes and cpo with cyes > cno:

(1) For all (Go,G1) € GNI, P causes V to accept with probability at
least cyes.

(2) For all (Gg,G1) ¢ GNI, every prover causes V to accept with
probability at most cpo.

The coins of V' are kept private.

Let Gy and G1 both be graphs on m nodes. The IP protocol proceeds
as follows. V picks a random permutation of m nodes ¢€rS,, and
a random graph index b€r{0,1} and sends o(G3) to P, where o(Gj)
is the graph indexed by b with the nodes in the order specified by o.
P then computes a bit ¢ € {0, 1}, which is supposed to be the index
of the graph sent by V', and sends ¢ to V. V accepts iff b = ¢. If
(Go,G1) € GNI, i.e., the graphs are not isomorphic, then P can tell
which graph is sent by V and thus can compute ¢ correctly, so that
Pr[V accepts] = 1 = cyes. If the two graphs are isomorphic then, since
the verifier sends a random permutation of the graph, the distribution
on graphs received by the prover is the same whether 6 = 0 or b = 1,
and since b is chosen randomly the prover can answer correctly with
probability 1/2, and thus Pr[V accepts] = 1/2 = cpo.

Clearly, this protocol does not work if the coins used by the verifier to
choose b and o are public.

Now we look at an AM protocol for the same problem. Define U to be
the set of all m vertex graphs. Define W C U to be the set of all graphs
that V' could have sent in the previous protocol, so W = {¢(Gp) : ¢ €
Sm, b€ {0,1}}. Now,

Go~G) = |W|:m',
Gy 7(' Gy = |W| = Q(m')

(This isn’t always true, but something with a similar effect can be ar-
ranged), so the prover has to try to convince the verifier that the set W
is big. This is done by mapping the elements of W into a table T' of

12

size 4(m!) and looking at the probability that a random entry in T is
filled. The AM protocol proceeds as follows. V randomly chooses s€EgS
and a€gr{l,...,T}, and send h; and a to P. P computes o € S, and
¢ € {0,1} and sends to V the graph o(G.). V accepts iff hs(c(G,)) = .

Note that unlike in the TP protocol described above, all the random bits
used by V, i.e., hy and «, are sent to P and are thus public. We want
to show that if Gy is not isomorphic to GG1, then there is a fairly decent
chance that the prover P will be able to find a graph in W (equivalently,
a permutation o € Sy, and b € {0, 1}) which is mapped to « by the hash
function h. The following calculations apply to mapping a subset W C U
of size N into a table T of size 2N (we are interested in N = 2(ml!)).
Below we show that given an index « € {1,...,2N}, Pr[at least one
element in the size N set is mapped to a] > 3/8 = cyes. Define Ej; to be
the event that element ¢ is mapped to the given a. Then by inclusion-
exclusion and using the fact that the hash family is 2-universal, the above
probability 1s:

ol N [N\ 1 _3
Pr[Elu...UEN]Z E PI‘[EZ']— E PI’[EZ'ﬂE]']: ﬁ_ 9 mz g
i=1 i<j

Thus, if z € £ then Pr[V accepts] > 3/8. If z ¢ L, then the subset
W is 1/4 the size of the table, so Pr[V accepts] < 1/4 = cno. The gap
between these probabilities can be boosted in the usual way.

13

Section 9: Deterministic Amplification

Let £ be a RP language. A randomized TM can decide membership of
z € {0,1}" in £ by choosing y€r{0,1}" and then checking if y € W,. As
mentioned before, we can reduce the error probability of misclassification
by choosing y1,...,yx€r{0,1}", counting the number of these strings
that fall in W, and basing the decision on the value of this number. If
the y;’s are chosen independently, we need kr random bits to achieve an
error probability of 27C(*) We’d like to use fewer random bits and still
achieve a reduced error probability.

In this application, a pseudo-random generator is a deterministic TM,
G, that takes a random seed s and produces “pseudo-random” bits
G(s) = w1,..., Yk, where each string is of length r. The algorithm is
simply to test all k of these strings and to conclude that z € £ if for any
ie{l,....k} yi € W, and = ¢ L otherwise. Notice there is misclas-
sification only when z € £ and {y1,...,yx} C W,. We'll give several
constructions.

Generator Random bits | Error

Chor-Goldreich o(r) O(1/k)
Impagliazzo-Zuckerman | O(r + k?) 2-0*)
Nisan O(rlgk) 2-0*)
AKS r+ O(k) 2-0(k)

For the Chor-Goldreich generator we show the result for £ € BPP. For
all the other generators, we show the result for £ € RP. For these re-
sults, we assume cyes > 1/2. Thus, the probability of a misclassification
when z € £ is < 1/2. All of these proofs can be extended to show an
analogous result for £ € BPP using exactly the same generator.

The results of the following exercise are due to [1, Adleman] and [6,
Bennett-Gill]. These results show there is a polynomial size sample space
that can be used to classify all € {0,1}" as either being in £ or not,
where £ € RP or £ € BPP. The crucial property lacking from these
results is that the sample space is not efficiently constructible. This prop-
erty 1s the main point of the deterministic amplification constructions
given in the following sections that reduce the number of random bits
needed to find a witness with high probability.

Definition (P /poly): Wesay that £ € P /poly if there is a polynomial

14

time TM M (z,y) such that when ||z|| = n then ||y|| = r, where r is
polynomial in n, with the following property: For each positive integer
n, there is an “advice string” y € {0, 1}" with the property that, for all
z e {0,1}",

el = M(zy) =1,

¢ L = M(z,y)=0.

We use the term “advice string” because, given the value of the advice
string y € {0, 1}", it is easy to decide membership in £ for all z € {0, 1}".
Note that if it is possible to compute the value of the advice string
y € {0,1}" in n°M time, then £ € P. However, in general it may
not be possible to compute the advice string in n®(") time. One way
of thinking about a language £ € P /poly is that membership in £ can
be decided in n®") time with the aid of a polynomial amount of extra
advice for each input length.

Exercise 1 : Prove that RP C P/poly and BPP C P/poly.

15

Section 10: The Chor-Goldreich Generator

We first describe the generator due to [9, Chor-Goldreich]. We show how
this generator works for £ € BPP. We assume that cyes > 3/4 and that
cno < 1/4. Let 8 be the index set for the hash family mapping {0, 1}" —
{0,1}", and let s€gS. We let G(s) = hs(1),..., hs(k); i.e., y; = hs(d).
Then the y;’s are uniformly distributed and pairwise independent. The
algorithm concludes that z € £ if at least k/2 of the strings y1, ...,y
are in Wy and z ¢ £ otherwise.

Theorem : The probability of misclassifying € {0, 1}" with respect
to membership in £ is at most 4/k.

PROOF: Define

0 otherwise

The 7Z;’s are also identically distributed and pairwise independent with
mean p = pu(W,) and variance o2 = p(1 — pu) < 1/4. Since the variance
of Zle Z; is ko?, it follows (using the Chebyshev inequality) that

16ko?
k2

Pr

|

>k< <
1| = =

k
Z Zz' — ,ulc
i=1

16

Section 11: Nisan’s Generator

We now describe the generator of [28, Nisan]. Let £ = logk. Let S be
the index set for the hash family mapping {0,1}" — {0,1}", and let
$1,...,5€RS. Let Go(y) = y and define inductively for ¢ > 1,

Gi+1(511 .. ~75i+17?/) = <Gi(511 . ~1Siay)1Gi(511 . -15i1h81+1(y))>1

where (a, b) denotes the concatenation of strings a and b. For example,
Ga(s1,82,y) = (Y, hs, (¥), hs, (¥), hs, (hs,(y))). A more obvious way to
visualize this generator is with a complete binary tree as shown in the
following figure. A hash function is assigned to each level of this tree.
The root of the tree is assigned the seed value y, and for any node w on
level 7 > 1 is assigned value v,,, where

Uparent(w) 1f w 1s the left child of parent(w)
Vy = .
hs,_ivi(Vparent(w)) Otherwise
y
y h,¥)

y h® hhhM)

Notice G¢(s1, ..., s¢, y) is simply the concatenation of the strings on level
£ of this tree.

Before proving this generator works we need the following technical
lemma, which is also of independent interest.

Hash Mixing Lemma : Let ¢ = 277/ for some fixed parameter r.
Then for all A, B C {0,1}", and for all but an ¢ fraction of s € S,

| Pryepio1)-[y € A hs(y) € Bl = Pry .epo1yrly€E Az € B]| < e

PROOF: We want to bound the number of s € S such that

Pr [y€ A hs(y) € Bl — p(A)u(B)| > ¢
y€R{0,1}7

This is exactly the number of s € § such that
| Pr [hs(y) € Bl — u(B)| = ¢/u(A)
yERA

17

Define the indicator random variable

w1 ifhy(y)€B
7 _{

0 otherwise

A hash function h; 1s “bad” if
e|A|

130 28— Au(B) | > AL = e
yez% ! p(A)
By Chebyshev,
B or | o H(B)IA]
sgfs |Z Zys = |Alw(B)| =2 2" | < g <€

y€A

Theorem : If z € £ then Pr[Gy(s1,...,50,y) C W,] < /l(Wx)2l +(¢+
2)e where ¢ = 9-r/3,

PROOF: The ¢f in the error term handles the hash functions that are
“bad” for the Hash Mixing Lemma. Assume, for the moment, that h;
for all s € § satisfy the Hash Mixing Lemma. We show that

Pr [G(s1,...,50,y) C W, < /J(Wx)zjZ + 2¢
yEr{0,1}"

Inductively assume it is true for £ — 1.

Let A= B={y:G(s1,...,50-1,y) C Ws}. These are the “bad” y, i.e.,
those y for which we decide that ¢ £ when in fact z € £. Now using
the Hash Mixing Lemma,

Pr[G(s1,...,50,y) C W] Pr[G(s1,...,80-1,y) C Wa?+e
(W)™ 420 + ¢

u(W2)? + 2,

(AN VAR VAN

where the first inequality holds by the Hash Mixing Lemma, and the
second inequality holds by the induction hypothesis.

Each s;, ¢ € {1,...,£}, had an ¢ chance of being bad for the Hash Mixing
Lemma, and so

Pryepi01}-[G(s1,...,80,2) C W, < /L(Wx)2£ + fe + 2e.

Section 12: The Impagliazzo-Zuckerman Generator

Let £ and k be integer parameters. (A good setting is to make k =~ £ ~
/7). The generator described in [19, Impagliazzo-Zuckerman] produces
k + 1 potential witnesses, each of length r, from only 37 + k¢ random
bits. Let S be the index set for the hash family mapping {0,1}" —
{0,1}"~*. The generator is defined by a function G : {0, 1}?" x {0, 1}" x
{0,115 — {{0,1)7)5+1.

G(S,Yl,Zl, .. ,Zk) — (Yl,YQ, .. .,Yk+1)

where s€gS, Y1€r{0,1}", and Z;€r{0,1}*, for 1 <i < k. The Y;’s are
defined by:

Yi+1 = (hs(Yl)aZZ>a = 11 ok

Theorem : If z € £ then,

Pr[G(s, Y1, 71, ..., Zk) C Wa] < p(W,)kH! 4 217472

Several definitions and lemmas are needed to prove the theorem. Let P
and @ be two probability distributions on a set A. The L;-distance || |1
and the Ly-distance || - ||2 between P and @ are defined as

1P —Ql: = Z |Pi — Qi
i€A

and
1

1P =@l = (Z(Pz' - Qz’)z) :
i€A

If IT denotes the uniform distribution on a set A then a distribution P

on the set A is called e-uniform or e-quasi-random if |P —T||; < e.

The collision probability ¢(P) of a probability distribution on a set A is
defined as

e(P)= Pr [i=j]=3 P?

1, jEPA
jEp icA

The next lemma states a simple condition for when a probability distri-
bution is e-uniform.

19

Lemma 1 : If ¢(P) < (1+ €?)/|A| then P is e-uniform.

PROOF: By the Cauchy-Schwartz inequality, if v € R™ then ||v]|; <
V/a||v||a. Applying this to P — 1T yields

It < A - R =) (S0 -2 Y s)
i€EA I€EA iI€EA I€EA
Since II is the uniform distribution °;. , ; P, = 1/|A] and), , 7 =
1/|A]. By assumption). , P = ¢(P) < (1+¢)/|Al.
Lemma 2 : Let S be the index set of the hash family that maps U to

T. Let P be the distribution (s, hs(z)), where s€rS and z€gW C U
and let A =8 x T. Then,

o(P) = Prl(s hs(z)) = (s, ho(2"))]
= Pr[s = §'] Pr[hy(2) = hy/(a')]s = &']
= Pr[s =] Pr[hy(z) = hy(z")]
= Prls = &'} (Pr[z = 2'] + Prlhy(2) = hy () |z # 2'])

The following lemma is from [20, Impagliazzo-Levin-Luby].

Leftover-Hash-Lemma : Let S be the index set of the hash family
that maps U to T'. For s€pS and z€pW C U, the distribution (s, hs(z))

is e-uniform, where € = /|T|/|W|.

PROOF: Apply Lemma 2 and Lemma 1 in sequence.

Proof of Theorem : The proof is by induction on k for a fixed value
of £. Let errory = Pr[G(s, Y1, 71,..., Zr) C W] be the error probability

20

with respect to k. It is clear that errorg < u(W,). For k > 1,

error, = Pr[V; € W,] Pr[G(s,Ya, Za, ..., Z%) C We|V1 € W]

= pu(Wy)Pr[G(s, Yo, Za, ..., Z1) C Wa|Y1 € W,],

where Yo = (hs(Y1), Z1). Let e = 1/ QZp(Wx). Then, it follows that

Pr[G(s,Ya, Za, ..., Z1) C W,|Y1 € W]
< Pr[G(s,Ys, Zo, ..., Z1) C Wil + ¢,

where Y3 €r{0,1}". This is because the distribution (s, hs;(¥1)) is e-
uniform by the Leftover-Hash-Lemma, where s€gS and Y1€gW,, and
thus i

||<S, (hs(Yl), Z1>, ZQ, ey Zk>, (S, Yz, ZQ, ey Zk>||1 S €,

and this implies that the behavior of G on these two distributions can
differ by at most e.

The induction hypothesis implies that
Pr[G(s,Ya, Za, ..., Zk) C Wa] < p(W,)k + 21742,
This implies
errory < p(Wy) </¢(Wx)k 42142 4 1/ 2Z/¢(Wx))

H(IV) 4 21002

INA

where the last inequality uses p(W,) < 1/2 and /pu(W,) < 1.

21

Section 13: The Expander Mixing Lemma

Let G = (U, E) be a d-regular undirected graph with n nodes (|U| = n).
The adjacency matrix of G is a symmetric n X n-matrix M with

- 0 (,j)¢E
M(”J):{ 1 Ez;ngj '

Every such matrix has an orthonormal basis of eigenvectors. Let these

eigenvectors for M be the vectors rg,...,r,—1 € R” with the corre-
sponding eigenvalues Ag,...,A,—1 € R. Define §;; = 1if ¢« = j and
6; =01if i # j. We let - denote multiplication of matrices over the

reals. Whenever a vector is involved in a multiplication, we use the con-
vention that it is a row vector if it is to the left of - and a column vector
if it 1s to the right of .. Thus, if a and b are equal length vectors then
a - b denotes the inner product of a and b over the reals. We have for all
0<,j<n-—1

rior; = b
M~1‘Z' =)\iri

Every row of M consists of d ones and n — d zeros. Hence the vector
of ones in all components (denoted 1 € R") is an eigenvector of M
corresponding to the eigenvalue d. Furthermore all eigenvalues are real-
valued and no larger than d. Without loss of generality, we assume

ro=1/y/n and Ao = d. Let

A= max [|\]
1<i<n—1

denote the second largest eigenvalue, that is the maximum factor by
which a vector orthogonal to rg is stretched when multiplied by M.

Multiplication of a vector z € R” with M can easily be expressed using
the eigenvectors and eigenvalues: Setting 7; = z - r; we have

7z = E YiXs
0<i<n—1
and M-z = E AiYirs .
0<i<n—1

For two sets A, B C U denote the set of (directed) edges from A to B
in G by E(A,B) = {(v,w) € U? : (v,w) € E}. Fixing A and an integer
b, and picking a set B of size b uniformly at random, the expected size

22

of E(A, B) is w. The following lemma states that for any set B the
size of F(A, B) is close to its expectation, where “close” depends on the
value of A.

Expander Mixing Lemma : For all A, B C U it holds that

d|A||B
54, By — BAUBL o\ /TATTE] < A,
n

PROOF: Let x4 € R” denote the indicator vector of A, i.e. a “one” 1s
at the position corresponding to a vertex v € A and a “zero” for v ¢ A.
x B 1s the corresponding vector for B. Set

a = XA-T
fi = XB T
Then ag = |A|/+/n and By = |B|/+/n, and we have
|E(A,B)] = > M(i,j)
i€A,j€B
= xa-M-xs

= Z (679 ¥y . Z /\j ﬂj rj

0<i<n—1 0<j<n—1

= Z Ai o B

0<i<n—1

d|A||B
= w"‘ E Ai i 3

n :
1<i<n—-1
d|A||B
0<i<n—-1
< a2 [18]]2
= XAxallz sl
= VAT

Another way to state the Expander Mixing Lemmais that for all A, B C
U,

A
|Prlz € A,es(z) € Bl—Prlz € A,y € B]| < 7
z,s @,y

23

where in the first random experiment z is a uniformly chosen node,
s€r{l,...,d}, and es(z) is the neighbor of z indexed by s, whereas in
the second experiment z and y are two independently and uniformly
chosen nodes. Note the resemblance with the Hash Mixing Lemma,
where e, (z) is substituted by h,(z).

There are explicit constructions of symmetric matrices with a small sec-
ond largest eigenvalue A, corresponding to graphs with good expansion
properties. For all integers n’ and d’ there is an explicit construction
of an n node d-regular graph G with n’ < n < 2n’, d’ < d < 2d' and
A < d°/1° (For example, see either [25, Lubotzky-Phillips-Sarnak] or
[27, Margulis].) For every node z € U and integer s € {1,...,d} the
s-th neighbor e; of z in G can be computed in logarithmic space. (To
simplify the presentation we assume in the sequel that we can construct
expanders for all values of n and d.)

24

Section 14: The Karp-Pippenger-Sipser Generator

The [23, Karp-Pippenger-Sipser] generator uses the explicit construction
of expanders: The set {0, 1}" is identified with the nodes of a 2" node k-
regular expander with A < k%/1°. The seed to the generator G is a string
z€r{0,1}", and G(z) produces y1,...,yr, which are the k neighbors of
z 1n the expander graph. Thus, this scheme uses exactly r random bits.

Theorem : If z € £ then

Prl{yi,...,ys} C W] < 2k~1/10
PROOF: Let A C {0, 1}" be the set of nodes z with the property that
all neighbors of z are in W,. Thus

Pr[{y1,...,un} C W.] = |A|/2".

From E(A, W) = 0 and the Expander Mixing Lemma it follows that

k
2r -
| Al A27
P 22
2 T k| Wy
< 2k~Y/10 (since [W,| > 2"71)

25

Section 15: The Ajtai-Komlés-Szemerédi Generator

[3, Ajtai-Komlds-Szemerédi] show how to simulate a randomized log-

space computation using O (%glorgl) random bits by a deterministic log-
space computation. [10, Cohen-Wigderson] and [31, Nisan-Zuckerman)
observe that the AKS generator can also be used for amplification: Let
n = 2" and identify the set {0,1}" with the nodes of a d-regular n-node
expander graph G. Set d to some constant value so that A < d/4 can be
achieved. Choose the nodes #1, ..., yr as the nodes visited on a random
walk of length k starting at a random node z€r{0,1}". The random
walk is determined by the starting point z and integers 7; € {1,...,d}
for j € {1,...,k} describing which edge to use in j-th step of the walk.
Thus, y; is the #;-th neighbor of z and, for j > 2, y; is the #;-th neighbor
of yj_1. The number of random bits used is r + klogd = r + O(k).

Theorem : If z € £ then
Pr[{yr, ..., yn} C W] =27°0)

PROOF: To bound the error probability we describe the probability dis-
tribution after subsequent steps of the random walk by an n-dimensional
vector. Let pg be the vector describing the initial distribution, i.e., the
distribution of z, which is po(v) = 1/n for all v € {0,1}". Let M be
the adjacency matrix of G and set M = M/d. Thus, the distribution
after the first step, i.e., the distribution of y;, is p1 = M - pg. We are
interested in the probability that all nodes y1,...,yx are contained in
W .. The probability of y; € W, is obtained by cancelling out the com-
ponents of p; corresponding to nodes in W, and summing up the other
components. Let P be the diagonal matrix with ones in the positions

corresponding to elements of W, and zeros elsewhere. Then
Prlyy e W,] = ||PWI M - Poll1
Continuing this process yields
— — \E
Prly €Wo Ao Ay €Wal = || (P, - M) poli. (1)
For any vector z = > g c;<,_1 7 Ii We have

P, - M -zlls < [Py, - M-yoroll2

+ ||PWI~M- Z i Ti|2
1<i<n—1

26

Using M -rg = rg and replacing Pz by I, we continue the inequalities
as follows:

< NP orolla+ 1M >0 il
1<i<n—1
— i
< Vro) lovollz +11 Y. Sviwills
1<i<n—1
— A
< Vr) lovollz+ 511 Y0 il
1<i<n—1
— A
< (V) + 5] Il

(The last inequality is based on the fact that both v rg and El<i<n—1 Vi Ty
are both projections of z.) Applying this inequality to (1) and using
Cauchy-Schwarz we are able to bound the error probability:

Prlys EWoA...Ayp €EW,] < \/E||(PWI~M)k~p0||2
< v (V@ +3) ool
< va (VIz+1/4) 1/vm

9-0k),

27

Section 16: Limited Independence Probability Spaces

We describe constructions of probability spaces that induce limited in-
dependence on a sequence of random variables. These are extensions of
constructions described in Section 2.

Modulo Prime Space : Let p be a prime number. The sample space
is the set of all pairs § = {(a,b) : a,b € Z,}, where Z, = {0,...,p—1}.
The distribution on the sample points is uniform, i.e., (a,b)€rS. Let
be an indeterminate and consider the polynomial

Pa,p(¢) = (a¢ + b) mod p,
where (a,b) € S. For all i € Z,, define random variable
Xi(a,b) = pas(t).
For brevity, we sometimes use X; in place of X;(a,b).

Claim : Xg,...,X,_; are uniformly distributed in Z, and pairwise
independent.

PROOF: For any pair i,j € Z,, ¢ # j, and for any pair of values
a, 3 € Z,, there is a unique solution a, b € Z, to the pair of equations:

o pa (i) = a.
L4 pa,b(j) = /))
Thus, Pra g[X:(A, B) = a A X;(A, B) = 3] = 1/p*.

Recall the definition in Section 1 of pairwise independence. The following
is a generalization of this definition.

Definition (k-wise independence): Let X3, ..., X, be a sequence of
random variables with values in a set N. We say the random variables
are k-wise independent if, for all 1 < 3 < .-+ < 7 < m and for all
ai,...,ap €N,

PriX;, = a1 A - ANX;, = ag] =Pr[X;, = a1] - Pr[X;, = ag].

iy

28

Exercise 2 : Let p be a prime number and let m < p. Generalize the
Modulo Prime Space to a probability space where Xg,..., X 1€RZ,
are k-wise independent, where the size of the probability space is p*.

The Modulo Prime Space can be generalized as follows. The following
construction is a more detailed description of the one presented in Section

2.

Linear Polynomial Space : Let F be any finite field and consider
the polynomial

pa,b(C) = aC + b
over F, where a,b € F. Identify the integers {0,...,|F|— 1} with the
elements of F. The sample space is § = {(a,b) : a,b € F} and the
distribution on S is (a,b)€RS. For all i € F, define random variable

Xi(a,b) = pap(i),

where i on the left side of the equality is treated as an index and on the
right side of the equality it is the corresponding element of F.

The random variables Xo, ..., X|7/—1 are uniformly distributed in F and
pairwise independent. A field with nice properties is GF[2"], the Galois
field with 2™ elements.

Mapping between {0,1}" and GF[2"] : There is a natural mapping
between {0, 1}" and polynomials in one variable { of degree n — 1 over
GF[2]. Namely, if @ € {0,1}" and (ag,...,a,—1) are the bits of a then
the corresponding polynomial is

n—1
a(Q) =Y ad’.

=0
These polynomials are the field elements of GF[2"]. Let a € {0,1}"
and b € {0,1}" and let a(¢) and b({) be the corresponding polynomials.
Computing a+b over GF[2"] consists of computing a®b, where @ is vec-
tor addition over GF[2]. Equivalently, computing a + b over GF[2"] con-
sists of computing a({) + b(¢) over GF[2], i.e., for all i € {0,...,n — 1},
the i'" coefficient of a(¢) + b(¢) is a; @ b;. Computing a - b over GF[2"]
consists of computing a(¢)-b6(¢) mod r({), where a({)-b(¢) is polynomial
multiplication over GF[2] that results in a polynomial of degree 2n — 2,
and r({) is a fixed irreducible polynomial of degree n. The zero element
of GF[2"] is the identically zero polynomial with coefficients a; = 0 for
all i € {0,...,n— 1}, and the identity element is the polynomial with
coefficients ag = 1 and a; =0 forall i € {1,...,n — 1}.

29

In the Modulo Prime Space, Xy, ..., X,_1 are pairwise independent and
the size of the space is p?. We describe a way to construct a pairwise
independent probability space for {0, 1}-valued random variables that
has size linear in the number of random variables.

Inner Product Space : Let £ be a positive integer. The sample space
is S = {0,1}* and the distribution on sample points is a€gS. For all
i € {0,1}%\ {0%}, define random variable

¢
Xi(a)=a@i= Zaj -1; | mod 2.

ji=1

(We use ® to denote multiplication of matrices over GF[2], where we are
using the convention that a vector to the left of @ is considered a row
vector and a vector to the right of @ is viewed as a column vector.)

Claim : Xq,..., X5:_; are uniformly distributed and pairwise indepen-
dent.

Exercise 3 : Prove the pairwise independence property for the Inner
Product Space.

Exercise 4 : Let p be a positive integer and let Xy,..., X,€rZ, be
a sequence of four-wise independent random variables. Define random
variable

Y =min{(X; — X;)modp:1<i<j<n}.

Prove there is a constant ¢ > 0 such that for any a <'1

Pr[Y < ap/n?] > ca.

Hint : Let N be the set of n(n — 1)/2 unordered pairs {(7,j) : 1 <
i < j < n}. For fixed a, consider the sequence of {0, 1}-valued random
variables {Z, : e € N}, where if e = (4,j) then Z, = 1 if | X; — X;| <
ap/n? and Z, = 0 otherwise. Using the first two terms of the inclusion-
exclusion formula, show that for any «,

Pr3ee N:Z.=1]>> Pr[Z.=1]- > PriZ.=1AZ.=1].
eeEN e,e’€ N ete’

30

Section 17: One-Way Functions

In the next couple of sections we introduce one-way functions and pseudo-
random generators, and show how to construct a pseudo-random gen-
erator from a one-way function. The reason for interest in these cryp-
tographic functions and for the reduction from a one-way function to a
pseudo-random generator is that there are a lot of natural examples of
functions that seem to be one-way, and pseudo-random generators are
extremely useful in the design of cryptographic protocols and in deran-
domization of algorithms.

Intuitively, a one-way function is a function that is easy to compute but
hard for any time-bounded adversary to invert on a random input. To
gauge the success of an adversary in breaking a cryptographic function,
we use the following measure.

Definition (time/success ratio): The time/success ratio of an ad-
versary for breaking a cryptographic function is 7'(n)/é(n), where T(n)
is the run time of the adversary and é(n) is the success probability of
the adversary with respect to inputs parameterized by n. The definition
of the success probability depends on the cryptographic function.

Definition (one-way function): Let f(z) be a function computable in
time polynomial in ||z||. The success probability (inverting probability)
of adversary A for f is

8(n)=__ Pr [f(A(f(2))) = f(z)].

I‘ER{O,I}n

Then, f is a S(n)-secure one-way function if every A has time/success
ratio at least S(n).

Definition (one-way permutation): Exactly the same as the defini-
tion of a one-way function, except that || f(z)|| = [|z|| and f as a function
of z € {0,1}" is a permutation.

Examples of Conjectured one-way functions

Here are some natural examples that may eventually be proven to be
one-way functions. Plenty of others can be found in the literature. In
the following, p and ¢ are primes of length n.

Factoring problem : Define f(p,¢q) = pg. Tt is possible to compute pq
given p and ¢ in n™) time. However, there is no known polynomial-time

31

function that on input pg can produce p and ¢ on average for randomly
chosen pairs of primes (p, q)

Discrete log problem : Let g be a generator of Z7, i.e., for all

Z;k, there is a unique z € Z,_; such that ¢ = y mod p. Given
p, g and z € Z,_1, define f(p,g,2) = (p,g,9" mod p). It is possible
to compute g” mod p given p, ¢ and z in n®() time. The discrete log
function is a permutation as a function of z, i.e., the unique inverse of
f(p,g,z) is (p,g,z). The values of p and g are not necessarily chosen
randomly. The prime p is selected to have special properties which seem
in practice to make the discrete log function hard to invert. An example
of such a property is that p is selected so that that p — 1 has some fairly
large prime divisors. For a large class of primes p and generators g there
is no known polynomial-time function that on input p, ¢ and ¢” mod p
can produce x on average for x€rZ,_;.

Root extraction problem : Given p, ¢, ¢ € Z,_1 and y € Z,, define
f(p,q,e,y) = (pq,e,y° mod pg). Tt is possible to compute y* mod pq
given pq, e and y in n°() time. To make the inversion problem hard,
it 1s important that the factorization of the modulus is not part of the
output, because given the factorization an inverse can be found in n@)
time. The value of the exponent e is not necessarily chosen randomly.
For example, if e = 2 then the problem is to extract square roots, and
this still seems to be a hard problem on average. There is no known
polynomial-time function that on input pq, e and y* mod pq can produce
an y € Z, such that y'° = y° mod pq when p and ¢ are randomly chosen
according to a distribution for which factoring is hard and y€rZ,. There
is a strong connection between this problem when e = 2 and the factoring
problem.

Subset sum problem : Let a € {0,1}" and b € {0,1}"*". Given a
and b, define f(a,b) = (ZZ 1@ - b;, b), where a; € {0,1} and b; is an
n-bit integer in this expression and where the sum is over the integers. It
is possible to compute Y ;" a; -b; given a and b in n9™) time. However,
there is no known polynomial-time function that on input 2?21 a; - b;
and b can produce a’ € {0,1}" such that 2?21 al b = 2?21 a; - b; on
average when a€pr{0, 1}" and ber{0, 1}"*".

Exercise 5 : Let A€p{0,1}" and let BER{0,1}?*(**+1). Prove that
the probability

f(A,B) = ZA - B;, B)

32

has a unique inverse is lower bounded by a constant strictly greater than
zero independent of n. Note that in contrast to the previous definition
where || B;|| = n, here ||B;|]| = n + 1.

33

Section 18: Hidden Bit Theorem

The main result of these sections is the construction of a pseudo-random
generator from any one-way permutation. In this section, we present
the main technical content of this reduction, the Hidden Bit Theorem,
which is due to [14, Goldreich-Levin].

There are several technical parts in the reduction from any one-way per-
mutation f to a pseudo-random generator g. Intuitively, the Hidden Bit
Theorem is the part that transforms the one-wayness of f into a bit b
such that: (1) bis completely determined by information that is available
to any adversary; (2) nevertheless b looks random to any appropriately
time-restricted adversary. It is from this bit b that the generator g even-
tually derives its pseudo-randomness. The guarantee from the reduction
is that any successful adversary for distinguishing the output of g from
a truly random string can be converted into an adversary for predicting
b, which in turn can be converted into an adversary for inverting f.

The definition of a computationally hidden but statistically meaningful
bit and the realization of its importance as a basic building block for
cryptographic constructions is from [7, Blum-Micali].

The construction of a hidden bit using the inner product bit, the Hidden
Bit Theorem and the Hidden Bit Technical Theorem are all from [14,
Goldreich-Levin]. The simpler proof given here of Hidden Bit Technical
Theorem is due to C. Rackoff, R. Venkatesan and L. Levin, inspired by
[4, Alexi-Chor-Goldreich-Schnorr].

Definition (inner product bit is hidden): Let f(z) be a polynomial-
time computable function. Let z € {0,1}" and z € {0,1}". Then, the
inner product bit of f(x) is * ©® z. The success probability (prediction
probability) of adversary A for the inner product bit of f is

smy= Pr (@) =wrod= Pr [A(f@).2) £

Then, the inner product bit of f is a S(n)-secure if every A has time/success
ratio at least S(n).

Hidden Bit Theorem : If f is a one-way function then the inner
product bit of f i1s hidden. In particular, there is a TM M such that if
A is an adversary with time/success ratio S(n) for predicting the inner
product bit then M4 is an adversary with time/success ratio S(n)® for
inverting f for some constant ¢ > 0. (M# denotes M making calls to
the adversary A.)

34

PROOF: Suppose there is an adversary A for the inner product bit of
f with success probability 6(n) and run time T'(n). We describe a TM
M such that M4 is an adversary for f as a one-way function.

For z € {0,1}" define

A= Pr [A(f(2)2) =2 @] — PHLA(f(2),2) £ (¢ ©)]
zer{0,1}"

Let X€gR{0,1}". Because, for any = € {0,1}", |62] < 1 and because
Ex[64] = é(n), it follows that Prx[65 > 8(n)/2] > 6(n)/2. The TM M
we describe below has the property that if 624 > §(n)/2 then M# on input
f(z) succeeds in producing an z’ such that f(z') = f(z) with probability
at least 1/2. From this it follows that the inverting probability of M4
for f is at least 6(n)/4.

Suppose the input to M4 is f(z), where 64 > §(n)/2. Let S be the
TM described below in the Hidden Bit Technical Theorem (page 36)
and let B(z) = A(f(z),z). The first step of M4 is to run SP with
input § = é(n)/2. When S makes an oracle query to B with input z,
M runs A on input (f(z), z) and returns the answer B(z) = A(f(z), z)
to S. Because 62 > §(n)/2, by the Hidden Bit Technical Theorem, =z
is in the list £ produced by S? with probability at least 1/2. The final
step of M4 to do the following for all ' € £: Compute f(z') and if
f(z') = f(z) then output z’.

The success probability of M4 for inverting f(X) is at least §(n)/4.
From the Hidden Bit Technical Theorem, it is not hard to see that the
running time of M“ is dominated by the running time of S making
queries to A to produce the list £, which is O(n®T(n)/8(n)*), where
T(n) is the running time of A. Thus, the time/success ratio of M4 is

O(n*T(n)/8(n)?).

Generalized Inner Product Space

For the proof of the Hidden Bit Technical Theorem we use the following
generalization of the Inner Product Space (page 30).

Generalized Inner Product Space : Let £ = [log(m + 1)]. The
sample space is S = {0,1}"** and the distribution on sample points is
vERS. For all j € {0,1}%, define random variable

T(W=voj
Tt can be verified that T1(v),...,Tn(v) are uniformly distributed on

{0, 1}" and pairwise independent.

35

Hidden Bit Technical Theorem : Let B(z) be a TM which runs in
time polynomial in n. and for each z € {0, 1}" define

8= Pr [B(z)=zo®z—- Pr [B(z)#z0z.
- zER{Or’l}n[(2) =20 7] ZGR{Oryl}n[(2) £z 02]

There is a TM S such that for any B, S® on input § > 0 produces a list
£ C {0,1}" with the following property: For all z € {0,1}", if 62 > ¢
then z € £ with probability at least 1/2, where this probability is with

respect to the random bits used by TM SZ. The running time of S? is
O(n®T/6*), where T is the running time of B.

PROOF: For the proof, we find it convenient to consider bits as be-
ing {1, —1}-valued instead of {0, 1}-valued. For b € {0,1}, we let b =

(-1t e {1,-1}.

Fix = € {0, 1}" such that 68 > 6. We can write
68 = E.er{o1}~ [B(z) ¥ ¥0) z] .

For alli=1,...,n, let ¢; € {0,1}" be the bit string (0°~%,1,0"~%) and
let

It follows that

E.enfonyn [B(2) 20 (e @ 2)| = pi.
This is because @ distributive over & implies that
W —r@erx>®z

and because x ® e; = Z;, and thus

B(z) 20 (e;®2)=B(2) 20 z - T;.

Setting z/ = e; @ z it is easy to see that 2’€r{0,1}" when z€g{0,1}"
and z = e¢; @ z’. Thus,

E.repfoy [B(ez' ©) 20| =

The idea is to compute, simultaneously for all i € {1,...,n}, a good
approximation Y; of u;. We say that Y; is a good approximation if
[Y; — pi| < 6. Define

. 0 ifY;>0
blt(yi):{1 ifY; < 0

36

Because |u;| > 8, if Y; is a good approximation then bit(Y;) = z;. Let
m = [2n/6?] and let T1,...,T,»€R{0,1}" be pairwise independent ran-
dom variables. Let

Yi=1/m-> BleoTj) 20T

ji=1

Then, using the pairwise independence of the random variables and the
fact that, for all j,

E [(B(ei@Tj)'l‘@Tj —m)z] <1,

1t follows that
BI(Y — pe)?] < 1/m.

From Chebychev’s inequality it then follows that
PrlIY; — il > 6] < B[V — a5)?)/8% < 1/(ms?) < 1/(2n).
From this it follows that
Pri3ie {1, ..n}:[Yi— |8 < 1/2,

and so

Privie {l,...,n}:|V; — ;| < 8] > 1/2. (2)

The only remaining difficulty is how to compute Y; given T3, ..., Tp,.
Everything is relatively easy to compute, except for the values of z ® T}
for all j € {1,...,m}. f Ty, ..., T, are chosen in the obvious way, i.e.,
each is chosen independently of all the others, then we need to be able
to compute ® T; correctly for all j € {1, ..., m} and there is probably
no feasible way to do this. (Recall that we don’t know the value of z.)
Instead, the approach is to take advantage of the fact that the analysis
only requires 77, ...,T,, to be pairwise independent.

Let £ = [log(m + 1)] and let v € {0, 1}"*¢. Let Ty (v), ..., Tin(v) be as
described in the Generalized Inner Product Space (page 35), i.e., for all
v € {0,1}"*¢ and for all j € {0,1}* — 0%, T;(v) = v ®j. As we describe,
this particular construction allows feasible enumeration of all possible
values of ¢ ® Tj(v) for all j € {1, ..., m} without knowing x. Because of
the properties stated above,

2o T() =20 (o)) =(20v)0].

37

Thus, it is easy to compute, for all j € {1,...,m}, the value of z ©® Tj (v)

given z ® v. From this we can compute, for all i € {1,...,n},
Vi) = 1ym- Y Be o B) - @00 o3,
ji=1

The key point is that there are only 2 = ((m) possible settings for
z ® v, and we try them all. For any # and v there is some 3 € {0,1}*
such that § =2 © v. Let

Yi(B,v) = 1/771'23(62' ©Ti(v)-BOJ,

ji=1

i.e., Y;(3,v) is the value obtained when 8 is substituted for z ® v in
the computation of Y;(v). Consider choosing v€r{0, 1}**¢. Since from
equation (2) above, the probability that Y;(z ® v,v) is a good approx-
imation for all ¢ € {1,...,n} is at least one-half, it follows that with
probability at least one-half there is at least one 8 € {0, 1}* such that
Yi(B,v) is simultaneously a good approximation for all i € {1,...,n}.
For this value of # and for such a v, (bit(Y1(5,v),...,bit(Y, (5, v))) is

equal to x.

Adversary S® on input § > 0 :
m — [2n/6?].
£ — [log(m + 1)].
L—0.
Choose vE€R{0, 1}7%~.
For all g € {0, 1}¢ do:
Forall j=1,...,m do:
Compute Tj(v) = v ® j.

Foralli=1,...,n do:

Compute Y;(8,v) = 1/m- 3772, B(e; ® T;(v)) - B © J.
L — LU{bit(Y1(8,v)),...,bit(Ya (8, v)))}.

38

From the above analysis, it follows that z € £ with probability at least
1/2, where this probability is over the random choice of v.

As long as the running time 7' for computing B is large compared to n
(which it is in our use of the Hidden Bit Technical Theorem to prove the
Hidden Bit Theorem), the running time of S is O (n37/6*).

The following exercise shows that the inner product bit is special, 1.e., 1t
is certainly not the case that any bit of the input to f is hidden if f is
a one-way function.

Exercise 6 : Describe a one-way permutation f(z) where the first bit of
z is not hidden given f(z). Let f(z) be any polynomial-time computable
function. Show that if z; can be predicted with probability greater than
1—1/(2n) given (f(z),7) when 2€r{0,1}" and i€g{l,...,n} then fis

not a one-way function.

The converse of the Hidden Bit Theorem is not true, i.e., there is a
function f where the inner product bit is hidden but f is not a one-way
function. This is the point of the following exercise.

Exercise 7 : Describe a polynomial-time computable function f(z)
which is certainly not a one-way function but for which the inner product
bit is provably 2™-secure.

39

Section 19: Pseudo-random Generators

[7, Blum-Micali] introduce the concept of a pseudo-random generator
that is useful for cryptographic (and other) applications, and gave it the
significance it has today by providing the first provable construction of
a pseudo-random generator based on the conjectured difficulty of a well-
known and well-studied computational problem. In particular, both the
definition of pseudo-random generator based on the next bit test and the
construction of a pseudo-random generator based on the difficulty of the
discrete log problem (page 32) can be found in [7, Blum-Micali].

[37, Yao] introduces the now standard definition of a pseudo-random
generator, and shows an equivalence between this definition and the
next bit test introduced in [7, Blum-Micali]. The standard definition
of a pseudo-random generator introduced by [37, Yao] is based on the

concept of computational indistinguishability introduced previously in
[15, Goldwasser-Micali].

Definition (pseudo-random generator): Let g(z) be a polynomial-
time computable function where £(n) = ||g(z)||, n = ||z||, and £(n) > n.
The stretching parameter of g(z) is £(n) — n. The success probability
(distinguishing probability) of adversary A for g is

6(n)= _ Pr [A(g(z)) =1] -

A(z) =1].
z€er{0,1}" zeR{O,Ii}f(n)[(Z)]

Then, g is a S(n)-secure pseudo-random generator if every A has time/success
ratio at least S(n).

The following exercise shows that an immediate application of the Hid-
den Bit Theorem is the construction of a pseudo-random generator from
a one-way permutation.

Exercise 8 : From the Hidden Bit Theorem, show that if f(z) is a
one-way permutation then g(z,z) = (f(z),z,z ® z) is a pseudo-random
generator that stretches by 1 bit. The reduction should describe a TM
M with the property that if A is an adversary for distinguishing g with
time/success ratio S(n) then M# is an adversary for inverting f with
time/success ratio S(n)° for some constant ¢ > 0.

The simple construction of a pseudo-random generator given in the pre-
vious exercise was one of the motivating forces behind the work of [14,
Goldreich-Levin]. The reduction from an arbitrary one-way function to

40

a pseudo-random generator can be found in [18, Hastad-Impagliazzo-
Levin-Luby].

We can construct a pseudo-random generator that stretches by an arbi-
trary polynomial amount based on any one-way permutation. Let f(z)
be a one-way permutation . Define g(z, z), where [|z|| = ||z|| = n, as

g(z,2) =(z,2 0z, f(x) © z, f(z)(a?) ®z,..., f(z(")_”_l)(x) ® z),
where f(1) is the function f composed with itself i times.

Theorem : If f is a one-way permutation then ¢ is a pseudo-random
generator. In particular, there is a TM M with the property that if A is
an adversary for distinguishing g with time/success ratio S(n) then M4
is an adversary for inverting f with time/success ratio S(n)° for some
constant ¢ > 0.

This theorem is a combination of a theorem due to [13, Goldreich-
Goldwasser-Micali] and the Hidden Bit Theorem (page 34) of [14, Goldreich-
Levin].

Exercise 9 : Prove the above theorem.

41

Section 20: #P and Approximate Counting

Recall that a language £ € NP if there is an associated TM M such
that, for all z € {0,1}", z € L iff |W,| > 1, where W, = |{y € {0,1}" :
M(z,y) = 1}|. A function f € #P if there is an NP language £ with
an associated TM M such that, for all z € {0,1}", f(z) = |[W|. In
words, f(z) is the number of witnesses that show z € £. In particular,
note that f(z) = 0iff z ¢ £, and thus it is clear that a polynomial time
algorithm for computing f immediately implies P = NP. The definition
of the complexity class #P, and the realization of its importance, are
due to [34, Valiant]. Examples of f € #P are the following:

e If 2 is the description of a graph then f(z) is the number of perfect
matchings in the graph, else f(z) = 0.

e If z is the description of a graph then f(z) is the number of Hamil-
tonian tours in the graph, else f(z) = 0.

e If z is the description of a DNF boolean formula then f(z) is the
number of truth assignments that satisfy the formula, else f(z) =

0.

e If z is the description of a CNF boolean formula then f(z) is the
number of truth assignments that satisfy the formula, else f(z) =

0.

As there is a notion of completeness for NP, there is an analogous notion
of completeness for #P. Intuitively, if a function f is #P-complete and
if there is a polynomial time algorithm for computing f then there is a
polynomial time algorithm for computing every g € #P.

As shown in [34, Valiant], all four examples described above are #P-
complete functions. Most often it is the case that if the language £
is NP-complete then it takes little effort to show that the associated
counting problem f is #P-complete, and this is the case for second and
fourth examples. The first and third examples are more interesting be-
cause the associated NP-language can be decided in polynomial time.
The proof that the third example is #P-complete is rather straightfor-
ward from the #P-completeness of the fourth example. However, the
#P-completeness of the first example 1s not at all straightforward.

It turns out that many important counting problems are #P-complete,
and unless P = NP there is no hope of finding polynomial time algo-
rithms for these problems. On the other hand, in practice it is often

42

useful to provide a good approximation of the number of solutions. As
before, let p1(Wy) = |W|/2" be the fraction of witnesses for among all
possible witnesses. There are two potential definitions of what a good
estimate means:

(1) Y is an e-good absolute approximation of u(W,) if

uWe) —e <Y < u(Wy) +e.

(2) Y is an e-good relative approximation of u(Wy) if
p(We)(L—¢) <Y < p(Wy) (L + ¢).

An estimate Y is more useful and meaningful if it is an e-good relative
approximation, especially in the typical case when p(1;) is small.

In recent years, a body of work has been devoted to finding fast algo-
rithms to approximate #P-complete functions. Let f be a #P function.
Following [21, Karp-Luby], we say a randomized algorithm A provides
a fully polynomial randomized approximation scheme (abbreviated to
fpras) for f if, for every pair of positive input parameters (¢, §), and for
every input z € {0,1}",

(1) A(z,€,6) is an e-good relative approximation of f(z) with proba-
bility at least 1 — 6. The probability is with respect to the source
of randomness used by A.

(2) The run time A(z,¢,§) is bounded by a polynomial in ||z||, 1/¢ and
log(1/6).

Let us say that A is a weak fprasif requirement (1) in the above definition
is changed to say that A(z) is an e-good absolute approximation instead
of an e-good relative approximation. Based on the standard sampling
algorithm described below, it is easy to see there is a weak fpras for every
f € #P. On the other hand, a fpras for the CNF counting problem
immediately implies RP = NP.

In the following sections, we develop a fpras for the DNF counting prob-
lem and for a related problem. The following simple and standard sam-
pling algorithm at a very high level provides the general outline for the
algorithms for both problems. Suppose we have a finite (but large) uni-
verse U of known size |U], and our goal is to estimate the size of some
set G C U of unknown size. A trial of the algorithm for estimating |G|
consists of the following two steps:

43

(1) Choose serU.
(2) Seeif s € G.

Let b be an easily computable upper bound on |U|/|G|. The algorithm
performs N = 4b1n(2/6)/e? independent trials, and the output Y is the
fraction of these N trials where an element of GG is chosen, multiplied
by |U|. A standard analysis using an inequality due to Bernstein [32,
Renyi] shows that for ¢ < 1,

PG~) <Y < |G+] > 16 3)
(See for example [22, Karp-Luby-Madras] for a proof.)

The key points about the sampling algorithm are the following:

(a) The universe U should be defined in such a way that |U| is easy to
compute.

(b) Steps (1) and (2) of the trial can be performed efficiently.

(¢) |G| is known a priori to be a significant fraction of |U], i.e. b is
polynomially bounded.

44

Section 21: DNF Counting

Let y = (y1,...,y,) be a collection of r-boolean variables and let F
be a boolean formula in disjunctive normal form (DNF formula); i.e,
F=c1VeaV---Ven, where ¢; = 2, A+ - A Ziy, for some set of literals

{Ziu"'azill} g {yla"'yragla"'ayf“}'

For a truth assignment a € {0,1}" to y, let M(F,a) = 1 if a satisfies F,
and let M(F,a) = 0 otherwise. Let f(F) = |[{a € {0,1}" : M(F,a) =
1}]. Tt is clear that f € #P, and, as mentioned before, f is #P-complete.
We describe below a fpras algorithm for f due to [21, Karp-Luby], [22,
Karp-Luby-Madras].

A naive approach to approximate f(F') is the following. Let the sample
space be the set {0, 1}" of all possible truth assignments. Choose several
random truth assignments, and estimate f(F') by the fraction of these
truth assignments that satisfy F'. The problem with this approach is that
if F1s satisfied by an exponentially small percentage of truth assignments
then this approach requires an exponential number of samples.

Instead, we design the following sample space. Let C; be the set of truth

assignments that satisfy clause ¢;. Let
U={(@a):ie{l,....m}Aa€C;}

and let G C U be defined by

G = {(i,a) € U : there is no j < i such that (j,a) € U}.

Notice that [U| = }";cqy |G, and [Ci] = 274 and thus |U]| is
easy to compute. Note also that |G| = f(F'), because for each truth
assignment @ that satisfies F' there is a unique smallest index i such that
a € C;. Furthermore,

|U| Zz’e{1,...,m} |Cz|

— < < m.
|G| — maxjeqa,. my [Ci] —

Therefore, from Equation 3 of the previous section, we can approximate
F) with N = 22 log(1) trials. In each trial we will
€ g &

1. Choose index i € {1,...,m} with probability |C;|/|U|. This requires
time O(log m) time (with some preprocessing, we leave as an easy
exercise what preprocessing to do to achieve this time bound.)

45

2. Choose a€rC;. This step takes O(r) time.
3. Seeif (i,a) € G. This can be done in the obvious way in time O(rm).

4. The value produced by the trial is |U]| if (i,a) € G, and 0 otherwise.

The overall estimate is the average of the values produced by the N trials.
By Equation 3, this is guaranteed to be an e-good relative estimate
of f(F) with probability at least 1 — 8. The overall running time is

O(™2" log(})).

46

Section 22: GF[2] Polynomial Counting

Let ¥y = (y1,...,yr) be a collection of r variables over GF[2] and let
F be a polynomial over GF[2] with respect to the variables y, i.e., i.e,
F=t1®t,®---Pty, where term t; = y;, © - O Yis, for some subset
{Wir, -+ i, } of y. For an assignment a € {0, 1}" to y, let M(F,a) =1
if @ is a zero of F, i.e., a satisfies an even number of the m terms of F',
and M(F,a) = 0 otherwise. Let f(F) = [{a € {0,1}" : M(F,a) = 1}|.
It is #P-complete to compute f. The following fpras for approximating
[is due to [24, Karpinski-Luby]

We design two different fpras algorithms Ay and Aj; Ap is used in the
case when F' does not contain the constant term 1 and A; is used in the
case when F' contains the term 1. Note that the term 1 corresponds to
the product of the empty set of variables, and is satisfied by all assign-
ments to y. The analyses of the two algorithms are very similar. The
running time of Ag is O(rm?1In(1/6)/e?) and the running time of A; is
O(rm31n(1/68)/€?).

We first describe algorithm Ag. Let U be the set {0,1}" of all assign-
ments to y, and let Heven be the set of all assignments that satisfy an
even number of terms. A trial of the algorithm consists of choosing an
assignment a€r{0,1}" and testing if @ € Heven. The outcome of a trial
is [U] = 2" if @ € Heyen and the outcome is 0 otherwise. The output of
the algorithm is the average of the outcomes of all the trials.

The most time consuming part of the trial is to test if @ € Heven, and this
takes time O(rm). The corollary on page 49 shows that |U|/|Heven| <
m + 1, and thus N = 4(m + 1)In(2/68)/e? trials suffice. Thus, the total
running time of Ag is O(rm?1n(2/8)/e?).

We now describe algorithm A;. The outline of the algorithm is bor-
rowed from the DNF approximation algorithm described in the previous
section. We provide a self-contained description of the algorithm. Let
F' be the input polynomial with the constant term 1 discarded. Thus,
the problem is to approximate the number of assignments that satisfy
an odd number of terms of F'. For all « = 1,...,m, let T; be the set
of assignments that make term ¢; evaluate to 1. Analogous to the DNF
algorithm, let

U={@,a):ie{l,....m}Aa€T;}
and let G C U be defined by

G = {(i,a) € U : there is no j < i such that (j,a) € U}.

47

Let Gyqq C G be defined by
Goga ={i,a) e G |{je{l,...,m}:j€T;}mod2 =1},

i.e., (4,a) is in Gyqq if it is in G and if @ makes an odd number of terms
evaluate to 1. The key point is that |G 44| is the quantity we want to
approximate. One trial of the algorithm consists of choosing (i, a)€rU
and then testing if (i, a) € G qq: if yes then the value produced by the
trial is |U|, else the value is 0.

We now verify that the criteria (a), (b) and (¢) described on page 44 are
satisfied. The computation of |U| and the method for choosing (i, a)€ErU
is analogous to the method for the DNF approximation algorithm de-
scribed 1n the previous section. The most time consuming part of the
trial is to test if (i, a) € Gyqq, and this takes O(rm) time.

The final portion of the analysis is to show that |[U]/|G 44| is not too
large. As described in the previous section, |U|/|G| < m. The theorem
given below shows that |G|/|Gyqq] < m. It follows that |U|/|Gyq4] <
m?, and thus from Equation 3 it follows that N = 4m?1n(2/6)/¢? trials
suffice. Thus, the total running time of A; is O(rm?31n(2/68)/€?).

Theorem : Let F' be a multivariate polynomial over GF[2] with no
duplicate terms and m terms in total. Let H be the set of assignments
to the variables that satisfy at least one term, and let H 34 be the set
of assignments that satisfy an odd number of terms. Then,

|H[/|Hpgql < m.

PROOF: The basic idea of the proof is to define a function h : H —
H,qq in such a way that the mapping is at most m-to-1, i.e. for each
a € Hoqq, |h~'(a)| < m. From this the theorem follows.

The mapping h is defined as follows. For each a € H, choose any term t;
that is satisfied by a such that there is no term ¢; which is satisfied and
which contains all the variables in #;. It is always possible to choose such
a term because F' does not contain two identical terms. Without loss of
generality, let this be term ¢; and let S = {y1,...,yr} be the variables
in 1 (all of these variables are equal to 1 in a). For any S’ C S, let
a(S’) be the assignment obtained from a by changing the values of all
variables in S — S’ from 1 to 0.

Claim : There is at least one S’ C S such that a(S’) satisfies an odd
number of terms of F.

Proof of of Claim : For each S’ C S, let p(S’) be the parity of the
number of terms that are satisfied by assignment a(S’) and let ¢(S’) be

48

0 {1y {2} {3} {12} {13} {23} {123}

{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

e e e e
_— O == OO = O
= — O = O = OO
— == O = OO O
—_ 0 O = OO OO
el i e B e R e R e R e
_—0 O O OO OO
—_0 OO OO OO

Figure 1: The matrix R for k =3

the parity of the number of terms #; such that t; N.S = S’. By the way
term t1 1s chosen, #; is the only term #; that satisfies {; NS = S, and
thus ¢(S) = 1. We can view p(-) and ¢(-) as column vectors of length 2*
with entries from GF[2], where the first entry corresponds to S’ = (} and
the last entry corresponds to S’ = S. Then, it can be verified that there
is a 2% x 2% lower triangular matrix R over GF[2] with main diagonal 1
such that R ® ¢(-) = p(-). In particular, row S’ in R has a 1 in column
S’ if and only if S C S’. (See Figure 1.)

Because R is invertible over GF[2] and because ¢(-) Z 0, it follows that
for at least one S” C S, p(S’') = 1. For this S, a(S’) satisfies an odd
number of terms. This complete the proof of the claim.

We now complete the proof of the theorem. To define h(a), we arbitrarily
choose any S’ such that a(S") satisfies an odd number of terms and let
h(a) = a(S’). Finally, we argue that for each b € H,gq there are at
most m distinct assignments a € H such that h(a) = b. This is because
each such a is either equal to b, or is obtained by taking one of the terms
not satisfied by b (there are at most m — 1, since b must satisfy an odd
number and thus at least one term) and setting the values of all variables
in this term to 1.

Note that the theorem holds even in the case when F' contains the con-
stant term 1. This fact is used in the proof of the following corollary.

Corollary : Let F' be a multivariate polynomial over GF[2] with no
duplicate terms, no occurence of the constant term 1 and m terms in
total. Let U be the set of all assignments to the variables, and let Heyen
be the set of assignments that satisfy an even number of terms. Then,
|U|/|Heven| < m + 1.

49

PROOF: Let F = F @ 1. Then, Hodd = Heven. Because F' does not
contain the term 1, ' contains m + 1 terms in total, no duplicate terms,
and every assignment satisfies the constant 1 term, and thus H = U. By
the above theorem, |U|/|Heven| = |H|/|Hogq| < m + 1.

The bound given in the theorem is optimal. To see this, let m be a
power of two and let F' = Hi:l,...,lo (1@ yi)szlogm’m’r y;. When
F' is viewed as a polynomial over GF|[2] and expanded out the number
of terms is m. When viewed over GF[2], F = 1 has a unique solution,
whereas when viewed as a DNF formula, F' has m satisfying assignments.

The bound given in the above corollary is also optimal. To see this,
consider F' = 1691_[2':1’“.77,(1@3/2'). When F'is viewed as a polynomial over
GF[2] and expanded out the 1 term is cancelled and the total number
of terms is m = 2" — 1. When viewed over GF[2], F = 0 has a unique
solution, and thus |U|/|Heven| = 2" = m + 1.

50

Section 23: Bounded Depth Circuit Counting

Recall that in Sections 9-15 we introduced ways to reduce the amount of
randomness when amplifying the probability of correctly deciding mem-
bership of z with respect to an RP or BPP language £. However, the
number of random bits needed was still at least the number to choose a
single potential witness at random, i.e., at least r bits. In this section, we
show how to deterministically decide membership for a BPP language
L where the NP TM M associated with £ is restricted to be expressible
as a constant depth unbounded fan-in circuit. While this restriction on
M may seem to be severe at first glance (and it is), such a machine M
is nevertheless powerful enough to express a rich class of #P-complete
problems. For example, for the DNF counting problem described in Sec-
tion 21, the associated TM M can be expressed as a depth 2 unbounded
fan-in circuit.

Definition (C4): Let CZ be the set of all circuits with n boolean input
variables z = (z1,...,2,) of depth d. A circuit C € C¢ consists of
A-gates and V-gates, where each gate is allowed unbounded fan-in. C
consists of d levels of gates, where all gates at a given level are the same
type. All the gates at level 1 have as inputs any mixture of variables and
their negations. For all i € {2,...,d}, all gates at level i receive their
inputs from the gates at level i — 1. There is a single gate at level d,
and either its value or the negation of its value is considered to be the

output C(z) € {0,1} of C.

For z € {0,1}"”, 2 ©® = ®jcq1,... n} & is the parity of the number of ones
n zx.

Definition (predicting the parity of its inputs): For any circuit
C € €4, let pc be the prediction probability of C for the parity of its
input, i.e.,

= Pr [C(z)=z0z]—1/2.

pe=_ P [CC)=:0:-1

Let T¢ be the total number of gates in C'. The time/success ratio of C
for predicting the parity of its inputs is S¢ = T¢/pc.
The following lower bound theorem is a culmination of a number of
papers, i.e., [12, Furst-Saxe-Sipser|, [2, Ajtai], [38, Yaol], [8, Cai], [17,
Hastad)].
Parity Theorem : There is a constant x > 0 such that for any C' € CZ,

the time/success ratio S¢ of C satisfies S¢ > gn"/?

51

Let £ € BPP and let M be the TM associated with £ with associated
constants cyes and cpo. Suppose that the computation of M(z,y) for a
fixed value of z € {0,1}" as a function of y € {0,1}" can be expressed
as a circuit C' € €. Let g : {0,1}* — {0, 1}" be a function.

Definition (distinguishing probability of C for g): For a circuit
C € €4, we let 6c be the distinguishing probability of C for g (analogous
to the definition of a pseudo-random generator (page 40)), i.e.,

c IsER{gJ}E[(g() =1 Pr [Cly)=1]|

Let T¢ be the total number of gates in C'. The time/success ratio of C
for distinguishing g is S¢ = T /éc .

The key to the constructions of [29, Nisan], [30, Nisan-Wigderson] is to
design ¢ in such a way that the following properties hold:

e The length £ of the input to g is much shorter than the length r of
its output.

e The time to compute g(s) € {0,1}" given s € {0, 1}* is polynomial
in 7.

e The distinguishing probability éc of C' for ¢ satisfies

(SC < (Cyes - Cno)/?.

Given these properties, to decide membership of z € £ is easy: Simply
run C(g(s)) for all s € {0,1}%, and then decide = € £ iff the fraction
of these inputs on which C produces the value 1 is at least (cyes +
¢no)/2. It is not hard to verify that membership of z in £ is always
decided correctly. The run time for this procedure is 2¢ times the time
for computing g on inputs of length ¢ (in the construction below, this
takes time that is almost linear in the length r of the output of g) plus
the time for computing C' on inputs of length r.

Note that we can view g as generating a distribution on the r-bit input
to C consisting of only 2¢ sample points that appears pseudo-random to
C'. If it were possible to set £ = clog(r) for some constant ¢ > 0 then
membership of z in £ could be decided in polynomial time. If this value
of £ were achievable for C' € C; then this would imply that BPP = P.
(Contrast this with the results of Exercise 1 on page 15).

We now describe the generator g of [29, Nisan], [30, Nisan-Wigderson].
Set
€ = log(r)“(4+1),

52

where ¢ > 0 is a parameter that can be thought of as constant. Let
t1,...,t. C{l,..., £} be sets that satisfy the following two properties:

(1) Forallie {1,...,7}, |t;] = VL.

(2) Foralld,j € {1,...,r}, i # 4, |t: Nt;| < log(r).

We leave as Exercise 10 the efficient construction of the sets ¢1,...,¢,
with these two properties. For all s € {0,1}¢, for each i € {1,...,r},

define function b;(s) = Pjes,8;, 1.€., bi(s) is the parity of the number of
ones in the bits of s indexed by ;. Finally, let

g(s) = (b1(s),...,br(5)).
The following theorem is due to [28, Nisan], [30, Nisan-Wigderson].

Theorem : Let ¢(r) = 21°g(’”)m/2/r3. For all C € CZ, the time/success
ratio S¢ of C for distinguishing g satisfies S¢ > q(r).

PROOF: Suppose that C' € CZ has size T and distinguishing proba-
bility é¢ that satisfies Te /8¢ < q(r). We show this implies there is a
circuit C' € Cf/‘gl such that the size T of C' is at most r? + T and

such that the prediction probability pc: of C for the parity of its inputs
is at least éc/r. From this it follows that the time/success ratio

Ter[per < 1P TeJée < 2(\/Z)m’

and by the Parity Theorem, such a circuit ¢’ with v/ inputs of depth
d + 1 cannot exist. Thus, it must be the case that S¢ > ¢(r).

The circuit C” will be derived from C and g based on the properties of
the generator g. We first use a hybrid argument first used by [37, Yao]
that has become standard. Let s€{0, 1}* and y€r{0, 1}". Consider the
following sequence of r 4+ 1 distributions on r-bit strings:

0" distribution: (bi(s),...,b.(s)).
ith distribution: (yi,...,yi, biz1(s), ..., b-(5)).
rih distribution: (yi,...,).

Let R; € {0,1}" be the random variable distributed according to the i*"
distribution, and let p; = Prg,[C(R;) = 1]. Note that Ry = g(s) and
R, = y, and thus

bc = | Pr[C(Ro) = 1] = r[C(R) = 1)| = Ipo ~ p .

53

Assume without loss of generality that pg— p, is positive. It follows from
the triangle inequality that there is some i € {1,..., 7} such that

b = pi1 —pi > bc/r.

Fix such an ¢. Note that R;_; and R; both depend only on s and on
Y1, -- -, Y, and that the only difference between R;_; and R; is that the
it bit of R;_; is b;(s) and the " bit of R; is y;.

Without loss of generality, let t; = {1,...,v/¢}, i.e., b;(s) depends on
the first v/ bits of 5. Let s’ = (s1, ..., s./7)- By an averaging argument,
there is a setting of values for yi,...,y; and s 7,,,...,s¢ such that
the distinguishing probability of C' for R;_; and R; remains at least 6;
conditional on these fixed values for yi,...,y; and s s,,,...,s,. Note
that in the conditional distributions both R;_; and R; both depend only
on s’

Let F'(s',a) be the function of s’ which can be thought of as computing
C where the first ¢ — 1 inputs bits are set to the values for y1,...,y;—1
fixed above, the i’® input is set to a € {0,1}, and the remaining r — i
input bits are computed as b, ,(s’),...,b.(s"), where b;-(s’) is the value
of b; (s, S\ /ip1r s s¢) when S /i41s- - -+ Se are fixed as described above.
The above analysis shows that

6; = Pr F'(s',sos)=1]— Pr F'(s' ;) = 1].
s’ER{O,l}‘/Z[()] S’ER{OJ}\/Z[()]

There are two cases to consider, i.e., when y; = 1 or y; = 0. We assume
that y; = 1, as the case when y; = 0 1s similar. We leave it as an exercise
to prove that in this case the prediction probability pp: of F'(s', 1) for the
parity of its inputs is at least 6; > 8¢ /r. The intuition is that F'(s’, a)
is more biased towards producing a 1 when a = s’ ® s’ then when a = 1,
and thus if F'(s’, 1) produces a 1 it is more likely that s’ ©® s’ = 1 then
0, whereas if F'(s’,1) = 0 then it is more likely that s ® s’ = 0 then 1.

We now show that F'(s’, y;) can be computed by a small circuit C’(s") of
depth d+ 1. Note that since for all j € {i +1,..., 7}, [t; Nt;| < log(r), it
follows that b} (s") depends on at most log(r) bits of s’. Furthermore, any
function of k-bits can be expressed as either a DNF or CNF circuit with
at most 2F gates at the first level. Suppose without loss of generality
that the first level of gates of C' are A-gates. Then, we can express b}(s')
as a DNF circuit C; with at most r V-gates at the first level and a single
A-gate at the second level. We can then merge C; into the circuit C' by
feeding all the values of the V-gates of C; directly into the A-gates at
the first level of C' that the j** input of C originally fed into. In the end,
we get a circuit C’'(s') with V¢ inputs which computes F'(s',y;), where

94

the depth of C” is d + 1 and the number of gates T¢: in C’ is at most
Te +r(r—i) < Te +r?.

Corollary : Let £ be a language in BPP. Suppose for all z € {0,1}"
the associated TM M (z, y) as a function of y € {0, 1}" can be expressed
as a circuit C' € C? for some fixed positive integer d, where the number
of gates T¢ in C is at most r° for some fixed positive value ¢. Then,
membership of z in £ can be decided by a deterministic computation in
time 218"

Note that the above corollary applies to derandomize at least partially
the randomized approximation algorithm for DNF counting described in
Section 21. However, the Parity Theorem does not help at all directly
in derandomizing the randomized approximation algorithm for GF[2]
Polynomial Counting described in Section 23, because such a polynomial
can easily compute the parity of the number of ones in its input.

Exercise 10 : Describe an algorithm that on input positive integers 7,
£ and s with s < £, produces r sets t1,...,t, C {1,...,£} such that

e Forallie {l,...,r}, [t;| = s.

e Foralli,je{l,...;r},j#1,
142y
lt; Nt;] < log (W)

The run time of the algorithm should be polynomial in r and ¢. Note
that when s = +/¢ and ¢ > 8 then |t; N#;] < log(r).

Exercise 11 : Finish the proof of the above theorem by showing how
the distinguishing probability can be converted into prediction probabil-

ity.

95

References

Ab

breviations :

e STOC: Proceedings of the ACM Symposium on Theory of Com-
puting

e FOCS: Proceedings of the IEEE Foundations of Computer Science

References

(1]

2]

L. Adleman, “Two Theorems on Random Polynomial Time”,

FOCS, 1978, pp. 75-83.

M. Ajtai, “Zi—Formulae on Finite Structures”, Annals of Pure and
Applied Logic, Vol. 24, 1983, pp. 1-48.

M. Ajtai, J. Komlos, E. Szemeredi. “Deterministic simulation in

LOGSPACE,” STOC, 1987, p. 132.

W. Alexi, B. Chor, O. Goldreich, C. Schnorr, “RSA/Rabin Func-
tions: Certain Parts are as Hard as the Whole”, SIAM J. on Com-
puting, Vol. 17, No. 2, April 1988, pp. 194-209.

N. Alon, L. Babai, A. Itai, “A Fast and Simple Randomized Parallel
Algorithm for the Maximal Independent Set Problem”, Journal of
Algorithms, Vol. 7, 1986, pp. 567-583.

C. Bennett, J. Gill, “Relative to a random oracle A, P4 #* NP4 #
co — NP4 with probability one”, Siam J. on Computing, Vol. 10,
1981, pp. 96-113.

M. Blum, S. Micali, “How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits”, STAM J. on Computing, Vol.
13, 1984, pp. 850-864 A preliminary version appears in FOCS,
1982, pp. 112-117.

J. Cai, “With probability one, a random oracle separates PSPACE
from the polynomial-time hierarchy”, J. of Computer and System

Sci., Vol. 38, 1989, pp. 68-85. A preliminary version appears in
STOC, 1986, pp. 21-29.

B. Chor, O. Goldreich. “On the power of two-point sampling,” Jour-
nal of Complexity, Vol. 5, 1989, pp. 96-106.

96

[10] A. Cohen, A. Wigderson. “Dispersers, Deterministic Amplification,
and Weak Random Sources,” FOCS, 1989, pp. 14-19.

[11] M. Fredman, J. Komlos, E. Szemeredi. “Storing a sparse table in
O(1) worst case access time,” Journal of the ACM, Vol. 31, 1984,
pp- 538-544.

[12] M. Furst, J. Saxe, M. Sipser, “Parity, Circuits and the Polynomial
Time Hierarchy”, FOCS, 1981, pp. 260-270.

[13] O. Goldreich, S. Goldwasser, S. Micali, “How to Construct Ran-
dom Functions”, J. of ACM, Vol. 33, No. 4, 1986, pp. 792-807. A
preliminary version appears in FOCS, 1984.

[14] O. Goldreich, L. Levin, “A Hard-Core Predicate for any One-way
Function”, STOC, 1989, pp. 25-32.

[15] S. Goldwasser, S. Micali, “Probabilistic Encryption”, J. of Com-
puter and System Sci., Vol. 28, 1984, pp. 270-299. A preliminary
version appears in STOC, 1982, pp. 365-377.

[16] S. Goldwasser, M. Sipser. “Private coins vs. public coins in interac-
tive proof systems,” STOC, 1986, pp. 59-68.

[17] J. Hastad, “Computational limitations for small depth circuits”,
Ph.D. thesis, MIT press, 1986.

18] J. Hastad, R. Impagliazzo, L. Levin, M. Luby, “Construction of a
g
pseudo-random generator from any one-way function”, ICSI Tech-

nical Report, 1991, No. 91-068.

[19] R. Impagliazzo, D. Zuckerman. “How to recycle random bits,”

FOCS, 1990, pp. 248-253.

[20] R. Impagliazzo, L. Levin, M. Luby, “A Pseudo-random generator
from any one-way function,” STOC, 1989, pp. 12-24.

[21] R.Karp, M. Luby, “Monte-Carlo Algorithms for the Planar Multi-
terminal Network Reliability Problem,” J. of Complexity, Vol. 1,
1985, pp. 45-64.

[22] R. Karp, M. Luby, N. Madras, “Monte-Carlo Approximation Algo-
rithms for Enumeration Problems,” J. of Algorithms, Vol. 10, No.
3, 1989, pp. 429-448.

[23] R. Karp, N. Pippenger, M. Sipser, appears in: M. Sipser, “Ex-
panders, Randomness, or Time versus Space”, First Annual Con-
ference on Structure in Complexity Theory, 1986, pp 325-329.

57

[24] M. Karpinski, M. Luby, “Approximating the Number of Solutions
to a GF[2] Formula,” Journal of Algorithms, Vol. 14, No. 2, March
1993, pp. 280-287.

[25] A. Lubotzky, R. Phillips, P. Sarnak, “Explicit expanders and the
Ramanujan conjectures”, STOC, 1986, pp. 240-246; (See also: A.
Lubotzky, R. Phillips, P. Sarnak, “Ramanujan graphs”, Combina-
torica, Vol. 8, 1988, pp. 261-277).

[26] M. Luby, “A Simple Parallel Algorithm for the Maximal Indepen-
dent Set Problem,” SIAM J. on Computing, Vol. 15, No. 4, Novem-
ber 1986, pp. 1036-1053

[27] G. Margulis, “Explicit group-theoretical constructions of combina-
torial schemes and their application to the design of expanders and
superconcentrators” Problemy Peredachi Informatsii, Vol. 24, 1988,
pp. 51-60 (in Russian). (English translation in Problems of Infor-
mation Transmission, Vol. 24, 1988, pp. 39-46).

[28] N. Nisan, “RL C SC,” STOC, 1992, pp. 619-623.

[29] N. Nisan, “Pseudorandom bits for constant depth circuits”, Com-

binatorica, Vol. 1, 1991, pp. 63-70.

[30] N. Nisan, A. Wigderson. “Hardness vs. Randomness”, J. of Comp.
Sci. and Sys, Vol. 49, No. 2, 1994, pp. 149-167.

[31] N. Nisan, D. Zuckerman. “More deterministic simulation in
Logspace,” STOC, 1993, pp. 235-244.

[32] A. Renyi, Probability Theory, 1970, North-Holland, Amsterdam.

[33] M. Sipser. “A complexity theoretic approach to randomness,”

STOC, 1983, pp. 330-335.

[34] L. Valiant, “The complexity of computing the permanent”, Theo-
retical Computer Science, 1979, No. 8, 1979, pp. 189-201.

[35] L. Valiant, V. Vazirani. “NP is as easy as detecting unique solu-
tions,” Theoretical Computer Science, Vol. 47, 1986, pp. 85-93.

[36] M. Wegman, J. Carter. “New hash functions and their use in au-
thentication and set equality,” Journal of Computer and System

Sciences, Vol. 22, No. 3, 1981, pp. 265-279.

[37] A. Yao, “Theory and Applications of Trapdoor Functions”, FOCS,
1982, pp. 80-91.

58

[38] A. Yao, “Separating the Polynomial-Time Hierarchy by Oracles”,
FOCS, 1985, pp. 1-10.

59

