Smoothing and Multiplexing
Tradeoffs for Deterministic

Performance Guarantees to VBR

Video

Edward W. Knightly' and Paola Rossaro

fAlso with EECS Department, U.C. Berkeley
TR-95-033

Abstract

The burstiness of variable bit rate traffic makes it difficult to both efficiently utilize net-
work resources and provide end-to-end network performance guarantees to the traffic sources.
Generally, smoothing or shaping traffic sources at the entrance of the network reduces their
burstiness to allow higher utilization within the network. However, this buffering introduces
an additional delay so that, in effect, lossless smoothing trades queueing delay inside the
network for smoothing delay at the network edge. In this paper, we consider the net effect
of smoothing on end-to-end performance guarantees where a no-loss, no-delay-violation de-
terministic guarantee is provided with the D-BIND traffic model. We analytically quantify
these tradeoffs and provide a set of general rules for determining under which conditions

smoothing provides a net gain. We also empirically investigate these tradeoffs using traces

of MPEG compressed video.



1 Introduction

Future packet-switching integrated services networks must support applications with diverse traffic charac-
teristics and performance requirements. Of the many traffic classes in integrated services networks, delay-
and loss-sensitive Variable Bit Rate (VBR) video traffic poses a unique challenge. Indeed, providing good
Quality of Service (QoS) to such bursty traffic sources is at odds with achieving high network utilization.

An important issue in providing end-to-end performance guarantees is the effect of smoothing traffic
sources on network utilization and QoS. In this paper, we use analysis and traces of MPEG compressed
video to explore the effects of smoothing VBR video sources on end-to-end performance guarantees. We
consider the case of deterministic QoS in which the network provides a no-loss no-delay-violation guarantee
so that all packets of a connection will meet their promised QoS. Deterministic performance guarantees
are especially important given recent studies that indicate that even a single cell loss for an MPEG video
stream can have easily detectable and persistent effects on perceptual quality [10]. Moreover, recent studies
in deterministic service indicate that, in many cases, reasonable network utilizations can be achieved even
while providing worst-case guarantees [6, 8].

Within this context, we analyze smoothing via a FIFO (a first-in first-out queue) so that before the packets
of a VBR video source are transmitted to the network, they are sent through a FIFO that shapes the traffic.
This source-FIFO services packets at a smoothing rate Rg, where Rg is less than the unsmoothed source’s
peak rate and greater than its long term average rate. The FIFO’s buffer is sized so that no cells are dropped,
thus keeping the deterministic end-to-end performance guarantee. We use the Deterministic Bounding
Interval Dependent (D-BIND) traffic model to characterize traffic using bounding rates over multiple interval
lengths. This model allows for a higher network utilization by providing a more accurate traffic specification
than previous models [8].

The traffic shaping implemented by the FIFO results in a traffic stream that is “less bursty” than the
original traffic stream, where “less bursty” is defined in terms of the D-BIND model in a manner similar
to [9]. When the smoothed, less bursty traffic sources are multiplexed at queues inside the network, the
resulting bound on queueing delay will be reduced. Equivalently, with less bursty traffic, more admissible
connections or higher utilization is achievable inside the network for a given queueing delay bound. However,
the smoothing FIFO at the source has increased the end-to-end delay bound by adding a smoothing delay.
Thus, a bound on the smoothing delay must also be accounted for when considering the total end-to-end
delay bound.

With the D-BIND model and associated admission control techniques [8] used to bound queueing delay,
and the techniques described in this paper to bound smoothing delay, we analyze the effect of smoothing
VBR video sources on the total end-to-end delay bound considering both smoothing and queueing delays at

all hops along the path. Since smoothing decreases the bound on queueing delay, but increases the bound on



smoothing delay, or the time that packets spend in the traffic shaper before entering the network, smoothing
can be considered a tradeoff between buffering at the source and buffering inside the network.

In this paper, we show analytically and demonstrate empirically that for homogeneous sources traversing
a single hop, smoothing at the source is an ineffective means for achieving higher network utilization. That
is, the savings in queueing delay achieved by transmitting smoother traffic are outweighed by the smoothing
delay incurred at the source. The same result can be expected to hold in networks where the total queueing
delay is dominated by a single “bottleneck node.”

We then consider the case of multi-hop networks and present a set of general rules to determine if smoothing
will result in a net reduction in end-to-end delay bound. Analysis and experimentation indicate that in many
cases of multi-hop networks with multiple congested hops, smoothing may be an effective means of reducing
total end-to-end delay. Intuitively, the reason for this is that the smoothing delay is incurred only once at
the source, whereas the queueing delay may be incurred at each hop along the path. Thus, a higher network
utilization or lower end-to-end delay can often be achieved by smoothing. Moreover, the analysis indicates
that the advantages of smoothing increase with the number of congested hops traversed by the connection.

The remainder of this paper is organized as follows. In Section 2, we review the D-BIND model and
its application to providing deterministic performance guarantees. In Section 3, we provide a definition of
smoothing. Next, in Sections 4 and 5 we use analysis to provide a set of rules for when a source should
smooth in the single-hop and multi-hop case respectively. We also use traces of MPEG-compressed video to

evaluate the rules in a realistic scenario. Finally, in Sections 6 and 7 we discuss related work and conclude.

2 A Deterministic Approach

Compared to statistical service, deterministic service provides better QoS in that it provides a no-loss no-
delay-violation service. While this does preclude statistical multiplexing, as shown below, it does not require
a peak-rate-allocation scheme. For the network to deliver such a service, it needs a deterministic upper
bound on all sources receiving the service. This approach has the added advantage that a source’s traffic
specification can be enforced. For example, if a source promises that its minimum packet inter-arrival time
is Xmin, this may be easily verified and enforced by the network. Alternatively, statistical models of the

source are inherently much more difficult to enforce.

2.1 D-BIND Model

As shown in [8], previous deterministic traffic models such as the (o, p) model [1] and the (Xmin, Xave, I, Smaz)
model cannot capture the property that sources exhibit burstiness over a wide variety of interval lengths.

The Deterministic Bounding Interval Dependent (D-BIND) traffic model was introduced to address this



issue. The key components of the D-BIND model are that it is bounding, required to provide deterministic
QoS guarantees, and nterval-dependent, needed to capture important burstiness properties of sources which
in turn allows for a higher network utilization (see [8]).

Each deterministic traffic model defines a traffic constraint function b(¢) which constrains or bounds the
source over every interval of length ¢. Denoting A[t1,t3] a connection’s arrivals in the interval [tq, 2], the
traffic constraint function b(¢) requires that A[s,s +t] < b(t), Vs,t > 0. Note that b(t) is a time-invariant
deterministic bound since it constrains the traffic source over every interval of length .

The D-BIND model is defined via rate-interval pairs {( Ry, Ix)|k = 1,2, -, P}. The constraint function
is then defined as a piece-wise linear function

_ Rply — Ry 1l
Iy — Iy

b(t) (t = 1Ix) + Rply, Iy-1 <t <1y (1)

with 5(0) = 0. Thus the rates Ry can be viewed as an upper bound on the rate over every interval of length
I;, so that
Alt,t + It]/Iy <Ry, Yt>0,k=1,2,--- P. (2)

Figure 1 shows a plot of the D-BIND rate-interval pairs for a 28 minute trace of an MPEG-compressed
action movie. Plotting the bounding rate Ry vs. interval length Iy, the figure shows that the model captures
the source’s burstiness over multiple interval lengths. For example, for small interval lengths, Rj approaches
the source’s peak rate while for longer interval lengths it approaches the long term average rate (the total

number of bits in the MPEG sequence divided by the length of the sequence).
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Figure 1: D-BIND Curve for Action Movie

Figure 2 shows the D-BIND constraint function b(¢) (described by Equation (1)) for the movie. The figure
shows maximum bits (in kbits) that the source transmits over any interval of length ¢ (shown in seconds).
The figure indicates that the D-BIND model is capturing the temporal properties of the MPEG video. For
example, the peak rate shown in Figure 1 is caused by transmission of the largest I frame of the sequence.

This can be seen in the constraint function with the large slope (slopes indicating rates) between ¢ = 0 and



t = 42 msec (the frame rate is 24 frames per second). Importantly, even in the worst case, a large T frame is
followed by two typically smaller B frames, which is captured by the constraint curve’s slope decreasing in
the interval ¢+ = 42 msec to t = 125 msec. Next, a P frame is transmitted (even in the worst case) and these
tend to be smaller than I frames but larger than B frames. In [8] it was shown that the D-BIND model’s
ability to capture both micro- and macro-level burstiness of the video sequence, lead to considerably higher

utilization than that achieved with previous models.
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Figure 2: D-BIND Constraint Function for News Sequence

2.2 Connection Admission Control

Deterministic admission control conditions rely on the delay analysis techniques of [1, 14] which are illustrated
in Figure 3. The horizontal axis is time and the vertical axis is bits. The upper curve represents the total
number of cumulative bits that have arrived from all sources into the queue by time ¢; the lower curve
represents the total number of bits transmitted by time ¢. The difference between the two curves is the
number of bits currently in the queue, or the backlog function. When the backlog function returns to zero
(the two curves meet) there are no bits in the queue and thus a busy period has ended. The key to this
analysis is that if the upper curve is a deterministic bounding curve (the sum of the b(t) constraint curves),
then the maximum delay can be expressed as a function of the two curves. For example, the maximum
backlog divided by the link speed provides an upper bound on delay for a FCFS server. Delay bounds for
priority service disciplines that are more suitable for providing integrated services may be expressed in a
similar manner [6].

The constraint function provides the required bound on arrivals in any interval of length ¢, so that with
the aggregate of individual source’s respective b(¢) constraint functions forming the upper curve of Figure 3,
admission control conditions for deterministic delay and throughput bounds may be derived. For example,
for a FCFS scheduler with 57 = 1,...,n multiplexed connections constrained by their respective constraints

b;(t), and with a link speed [/, and a maximum packet size 5, a deterministic upper bound on delay for all
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Figure 3: Admission Control Algorithm

connections is given by

1 N
d= 7 rinzaox{; b;(t) — It +5}. (3)

The proof is given in Theorem 1 of [14]. In the homogeneous case, the maximum number of connections

that can be multiplexed for a delay bound d is therefore given by

N(d) = maz{n | %I?Zag({nb(t) —lt+35} <d}. 4)

2.3 Achievable Network Utilization

Figure 4 shows the achievable network utilization for the case of multiplexing a number of these action
movies. That is, for a 155 Mbps link and the FCFS admission control test of Equation (4), the figure shows
the average utilization that corresponds to the maximum number of homogeneous connections that can be
multiplexed so that all connections obtain the given deterministic delay bound shown on the horizontal
axis. For example, for a delay bound of 40 msec, 51 connections can be multiplexed so that no packets are
dropped and none violate their delay bounds. This situation corresponds to an average network utilization
of 19%. Alternatively, for a peak-rate-allocation scheme, 26 connections can be multiplexed which results
in an average network utilization of 9%. Thus network utilizations well above those achieved with peak-
rate-allocation are possible even though there is a fundamental limitation to the achievable utilization that
a deterministic service can provide in that both the source characterization and multiplexing behavior are
calculated in a worst-case manner.

In the next section, we investigate the impact of smoothing on achievable utilization, still considering the

case of deterministic bounds on delay and loss.
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Figure 4: Achievable Utilization for Action Movie

3 Definition of Smoothing

Smoothing traffic in the case of the D-BIND model may be viewed from either of two equivalent view-
points: the (R, I1,) rate-interval pairs or the b(¢) constraint function. As shown in Figure 1, a source may be
described by bounding rates over multiple interval lengths. Equation (1) indicates that a lower rate for a given
interval length will result in a lower constraint curve and thus, from Equation (3) possibly more admissible
connections in the network. Thus, smoothing can be viewed as transforming a source with upper bounds
{(Rg, Iy) | k=1,2,---,P} to {(f{k,fk) | k=1,2,---, P}, with Ry < Ry if I, = I,. This transformation is
realized with the smoothing or buffering at the traffic shaper. The mechanisms for achieving this are similar
to those used for policing such as multiple leaky buckets or multiple non-concave buckets as described in
[8]. The primary difference is that we are considering smoothing policies that only buffer, and do not drop,
incoming packets.

An alternative view of traffic shaping may be seen from the smoothed source’s new D-BIND constraint

function ?)(t):

. Rply — Rp_1Ip . A )

b(t) = =2 VR g L)+ Ry, Teoy <t < I (5)
Iy — I

With Ry < Ry, and Equations (1) and (5), we have that B(t) < b(t) Vt. More formally, we define smoother

traffic in the following manner (similar to the definition in [9] for “burstiness curves”):

Definition 1 If lim;_.ob(t)/t = limt_,oo?)(t)/t, then A(t) can be considered smoother or less bursty than
A(t) if b(t) < b(t) V.

In this paper, we consider smoothing over S video frames to be defined in the following manner: a source
smoothed over S frames is shaped by a FIFO queue with rate Rg (a bound on the source’s rate over an
interval of length 7g) and maximum buffer size B. B can be chosen with Equation (3) so that no packets are

dropped by the traffic shaper. A description of the network and the FIFO traffic shaper is given in Figure 5.
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Figure 5: Description of the FIFO traffic shaper

The buffer occupancy of the smoothing FIFO is then given by

a(t) = sup {Als, 1] — R(Is) - (t - )} (6)

The smoothed arrival process A is therefore

Alt,t+ 6] = min(R(Is) - 6, Alt, t + 6] + q(t)). (7)

Note that while the smoothed process will be less bursty than the original process (as in Definition 1), it

will not in general be constant bit rate.

6 T T T T 900 T T T T T T T
Original rate-interval pairs — 800 .
5 Smoothed rate-interval pairs --- | %
_ Long term average - - - - 700 7 -
a ? worst case -
§ 4 é 600 |- smoothing delay /// 7
o 2 L _
g . 2 500 -
2 S5 400 |- -
? 2 % 3 frametimes
_§ g o 7 7]
1k _ 200 |- /// unsmoothed —— |
¥ smoothed over 3 frames ——-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 100 |-/ - m
0 | | | | 0 s I I I I I I
0 0.2 04 0.6 0.8 1 0 50 100 150 200 250 300 350 400
interval length (seconds) interval length (msec)

(a) (b)

Figure 6: Smoothed D-BIND rate-interval and constraint curves

The transformation of smoothing on a source’s rate-interval pairs is shown in Figure 6(a) which shows the
original and smoothed D-BIND rate-interval curve using empirical data from the MPEG trace of an action
movie. In this example, the source’s original peak rate is Ry = 5.87Mbps. From I; = 1 frame time, the
bounding rate decreases towards the long-term average rate. After smoothing over S = 3 frame times (via a

FIFO with rate Rz = 2.55Mbps), for a given interval length, the bounding rate of the smoothed source Rj



is less than or equal to the bounding rate of the unsmoothed source R;. As well, for interval lengths of up
to S frame times, Rj tends to reach the smoothing rate Rg.

Figure 6(b) shows the effect of smoothing on a source’s constraint function. As shown, g, the worst
case smoothing delay when smoothing over S frames (using a FIFO with rate Rg) may be calculated as the

maximum horizontal time distance between the two curves b and b [1]. That is,

TS = max{t2 — t1|b(t2) = b(tl)} (8)
t2>1
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Figure 7: Upper bound on smoothing delay for S = 4 frames

From the definition of smoothing, Rk < Rg, and in most cases, f{jzlyzy...ys_l = Rg. If this is not the
case (i.e., f{jzlz,m,S—l # Rg), then l;(t) can be upper bounded by Rgt for 0 < ¢ < Ig. Figure 7 shows
an example of the smoothed curve Rgt, for S = 4 frames. We can then define 7' as the distance between
the b(t) and Rg t so that 7/ represents a lower bound on the smoothing delay g, since it is the minimum
distance between the two curves.

We note that other smoothing functions are possible. That is, any desired piece-wise linear constraint
curve i)(t) can be constructed with the D-BIND model. The traffic could be shaped to conform to the new
b(t) with the policing or traffic shaping mechanism of the D-BIND model as described in [8]. In this work,
we are considering transformations from b to b that are caused by smoothing with FIFO’s, where b and b

are derived from the D-BIND model.

4 The Single Hop Case

In this section, we evaluate the smoothing and multiplexing tradeoffs for the single hop case via analysis and

experiments with traces of MPEG compressed video.



4.1 General Rules
Intuitively, a less bursty sources can better utilize network resources. This is stated in the following Lemma.

Lemma 1 If source j is smoothed so that arrival process A(t) is less bursty than A(t), then the queueing
delay bound for a FCFS scheduler s reduced. FEquivalently, smoother or less bursty sources require fewer

network resources.

Proof: The FCFS queueing delay bound is given by Equation (3) as d = %maxtzo{zyzl bi(t) —lt+5}. If
source j is smoothed, then the j' term of the summation b;(t) is replaced with i)j (t). Since b(t) < b(t) for
all ¢, 1t can only reduce the delay bound to d <d. O

Since network utilization is related to the number of admissible connections under the delay bound con-
straint, the above Lemma equivalently states that for the same delay bound d, potentially more sources
could be multiplexed (i.e., N could be increased to N) resulting in higher network utilization.

Thus, for a given set of connections, smoothing over S frames may decrease the queueing delay d to d. On
the other hand, smoothing introduces a delay g, due to buffering at the FIFO queue. This delay contributes
to the total end-to-end delay perceived by the source. Therefore, from the perspective of delay bound, a
source should smooth if the delay it incurs by smoothing is less than the reduction in the queueing delay
bound, i.e., if the total delay bound, smoothing plus queueing, is decreased. The following Theorem shows
that for a single-hop network and homogeneous sources, smoothing does not result in a net decrease in delay

bound.

Theorem 1 In the single-hop case for homogeneous sources and deterministic delay bounds, the reduction
in queueing delay bound introduced by smoothing is outweighed by the additional smoothing delay. That is,

smoothing will not cause the total delay bound (smoothing plus queueing) to decrease, or ¢ > d — d.

Proof: Consider a source described by the D-BIND model parameters (R, Ik)f::l. Let Rst be the upper
bound on the smoothed constraint function as described in section 3 with the maximum distance between
these two curves defined as 7/. If the proof is valid for 7/ it will be valid for all the 75 > 7. Thus, in the rest
of the proof, we assume that i)(t) and 75 correspond to their upper and lower bound Rgt (for 0 < ¢ < Ig)
and 7’ respectively.

Because of subadditivity of the constraint function b(¢) (see [8]), the worst case smoothing delay 75 (defined
in Equation (8)) occurs between t = 0 and ¢ = Is. From Equation (8), the maximum time difference between
b and b is given by:

T¢ = max {L — b7 (1)} (9)

L - 1;} (10)



R;
= 1r§nja§XS{Ij(R_5 -1} (11)

From the perspective of a source’s total delay bound, the source should smooth if the delay it incurs
by smoothing, 7g, is less than the reduction in the queueing delay bound d — d. For this reason, we next
investigate the savings in queueing delay, d — d, achieved by transmitting the smoother traffic.

When multiplexing N homogeneous sources, each with D-BIND parameters (Rk,fk)f::l, for a FCFS
scheduler with link speed [, the queueing delay bound for all unsmoothed sources can be obtained by
Equation (3) as:

1

= max {Nb(I;)—11;} (12)

d=
l1<i<p

If this delay bound occurs at the interval length I, (i.e., Equation (12) is maximized at j = &), then Equation

(12) can be rewritten as

d= (N Ry I, —11,)/l (13)
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Figure 8: Effect of Smoothing on Delay Bound

Since the worst case smoothing delay will also occur at this point [1], Equation (11) becomes:

TSIIQ(}R;—:—l) (14)

As in the case of Figure 8, with smoothing, the worst case queueing delay is reduced and shifted from the
interval I, to Ig. If this were not the case, there will be a j such that Jj > CZS. Since we want to prove that
T >d— d it is sufficient to show that T >d— CZS >d— ch. The new delay bound for the smoothed source

1s therefore

d=(NRsIs—1Is)/l. (15)
The savings in queueing delay due to smoothing is thus

5 N R,

d—d=I.( : N Rs

— 1) = Is( -1 (16)

10



since Rg = Rs.

A source should smooth if the smoothing delay is less than the savings in queueing delay, i.e., if

79 <d—d (17)

Substituting with Equations (14) and (16), the source should smooth if:

N R,
l

_1)—IS(N1RS —1)

(=2 —-1) < I
IsRs < I R,

b(Is) < b(la)

The latter inequality is never true since b(-) is strictly increasing by definition and Is > I, O.

Theorem 1 therefore states that from a delay bound perspective, smoothing should never be performed
in the single hop case since it will result in a net increase in total delay bound. However, other factors may
influence the decision to smooth such as the respective prices of buffers on an end system and inside the

network.

4.2 Experiments with MPEG Traces

The experiments below use 28 minute trace of the MPEG-compressed action movie together with the analysis

developed above.
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Figure 9: Average Utilization vs. Queueing Delay Bound for Various Smoothing Rates

Figure 9 demonstrates Lemma 1. For the MPEG trace data and a 155 Mbps link, the figure shows the
average network utilization versus queueing delay. This utilization is determined by calculating the maximum
number of admissible connections using the admission control condition of Equation (3) and computing the
resulting average network utilization for deterministic service as the sum of the sources’ long-term average

rates divided by the link speed. As stated in the lemma, as the smoothing interval increases from 0 to 4,

11



8, and 12 frames (or equivalently as the FIFO smoothing rate decreases to R4, Rs, and Rj2), the traffic
becomes smoother so that for a given queueing delay, higher utilizations are achievable inside the network.

Figure 10 shows the other side of the tradeoff — that smoothing has introduced an additional delay in the
smoothing FIFO. Figure 10 depicts smoothing delay versus S, or the number of frames smoothed over. As
expected, the general trend is that smoothing over more frames introduces a larger smoothing delay. This
curve is not monotonic though since the rate-interval curve shown in Figure 1 is not monotonic and the

FIFO rates are determined by these D-BIND bounding rates.
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Figure 10: Smoothing Delay vs. Number of Frames

A source is ultimately interested in the combined effects of Figures 9 and 10. Thus, Figure 11 shows
the net effect of smoothing on a source’s total delay bound depicting average utilization versus total delay
bound (smoothing plus queueing) for various smoothing rates. As predicted by Theorem 1, smoothing
never results in a decrease in total delay for a given number of admissible connections (or utilization).
Equivalently, smoothing never results in an increased network utilization for a given delay bound in the

single-hop homogeneous case.
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Figure 11: Average Utilization vs. Total Delay Bound for Various Smoothing Rates
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5 The Multi-hop Case

The previous section showed that over a single hop, smoothing is an ineffective means for achieving higher
network utilization. However, over multiple hops, the analysis has an important additional component: while
the smoothing delay is incurred only once at the source’s traffic shaper, in a congested network, queueing

delays may be incurred at multiple nodes.

5.1 General Rules

As described in Section 4, smoothing can be considered advantageous to the source if the incurred smoothing
delay 75 is less than the reduction in queueing delay. The analysis of [7] shows that per-hop rate control
is required to achieve reasonable network utilization in multi-hop networks. That is, if rate control, such
as the multi-level leaky bucket, is not used at each hop of the network (as opposed to only at the network
edges), there will be a severe utilization penalty. For this reason, we consider the case in which rate control is
performed at each hop as in the RCSP scheduler. With per-hop rate control, the original constraint function
b(t) (or b if the source is smoothed) is reconstructed at each node via the same policing mechanism that
enforces the original curve.

The following proposition provides a rule for determining if smoothing provides a net advantage in terms

of end-to-end delay bound.

Proposition 1 Consider a network where each node i has a rate controlled service discipline that can provide
an upper bound on queueing delay. If(iZ 1s the queueing delay bound at hop i for the smoothed source and d;
s the original queueing delay bound at hop i, a source will obtain a net reduction in end-to-end delay bound

due to smoothing if the following condition holds:

H
s < Y _(di — d;) (18)
i=1
where H is the number of hops between the source and destination.

Proof: The proposition states that if the bound on smoothing delay 7g is less than the total reduction
in queueing delay across multiple hops, then smoothing is advantageous to the source. Because of the
decoupling effect of per-hop rate control, the end-to-end delay bound D may then be calculated by summing
delay bounds d; at individual nodes [3] (while this gives a sufficient condition for end-to-end delay bound,
tighter bounds may be possible by extending techniques such as those in [5]). Thus, for a smoothed source,

we can bound the end-to-end delay as:

H ) H
E:Ts—I-Zdi‘FZﬂ'i (19)
=1 i=1

(3
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where 7; 1s the propagation delay of the 2’th hop. Without smoothing, the end-to-end delay is given by

H H
D= "di+) m (20)
i=1 i=1

A source will have a reduction in end-to-end delay if D < D which is the inequality stated in the proposition.
O

Equation 18 indicates that as the number of congested hops increases, smoothing becomes more important.
The reason for this is that the summands in the right hand side of the inequality are always positive (see
Lemma 1) and therefore the additional benefit of smoothing can only increase with H. If only a single hop
is congested, then for all but one of the hops, d; =~ czi, and the situation will be similar to the single hop
result of Theorem 1.

Because rate controlled service disciplines decouple the network nodes, Proposition 1 applies to heteroge-
neous networks consisting of a wide range of service disciplines at the nodes [15]. The local delay bounds that
constitute the sum in Equation (18) may then be calculated by the admission control tests that correspond
to the local service discipline (see [6] for several examples).

In practice, the smoothing decision could be made if the source specifies both its original and smoothed
D-BIND parameters to the network. During the connection establishment, the admission control algorithms
can test both traffic specifications so that both d and d can be calculated at each hop. The source can then
make its choice on whether or not to smooth based on Equation (18). Additional criteria are also possible.
For example, a source could choose Ig based on information about the state of the network including both
current load and a pricing policy. Ideally, a source would specify its D-BIND parameters, an end-to-end delay
bound, and a desired price, and the network would return the appropriate smoothing rate Rg to meet those
constraints. An appropriate pricing policy could then encourage more optimal use of network resources.

The following subsection uses a trace of MPEG-compressed video to evaluate Proposition 1 under a

realistic workload.

5.2 Experiments with MPEG Traces

The experiments below use a network topology as shown in Figure 12 to evaluate the smoothing criteria
of Proposition 1. The network consists of nodes with 155 Mbps (OC-3) and 1 Gbps (OC-24) link speeds.
All sources are assumed to have the same D-BIND rate-interval pairs as obtained from the MPEG trace.
As shown in the figure, the sources are shaped at the entrance to the network with a FIFO as described in
Section 3. After being smoothed, the sources traverse five hops as shown with the dashed line in the figure:
the first and last hop have a 155 Mbps link speed and the intermediate hops have a 1 Gbps link speed. In the
experiment, connections are established across the network until further connections can not be admitted

without violating the admission control conditions of Section 2.
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Figure 12: Network Topology for Multi-hop Experiment

For the above network, Figure 13 shows average utilization versus total end-to-end delay bound for various
smoothing rates of Rs, Rog, R30, and Rag as well as for no smoothing. The end-to-end delay bound includes
the bounds on smoothing delay as well as queueing delay at each hop (propagation delay could be included
by shifting all curves to the right by the total propagation delay). As shown in the figure, smoothing can
result in a significant increase in utilization in many cases. This increase depends on both the smoothing rate
and the sources’ desired end-to-end delay bound. For example, if the source requires an end-to-end delay
bound of 125 milliseconds, it cannot smooth with rate R4y = 1.64 Mbps since this rate is too low and would
cause end-to-end delays beyond 125 msec (the maximum smoothing delay for R4q is 224 msec). Thus, for a
125 msec end-to-end delay bound a smaller smoothing interval or equivalently, a higher smoothing rate must
be used. In the figure, a smoothing rate of R3o = 1.87M bps will result in a smoothing delay bound of 103
msec. Together with a 22 msec bound in total queueing delay, the resulting end-to-end delay bound of 125
msec results in an average network utilization of 31.1%. Comparatively, without smoothing, the resulting
utilization is 15.6% for the same delay bound. Thus, smoothing has resulted in a 99% increase in utilization

in this case.
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Figure 13: Average Utilization vs. Total End-to-end Delay Bound for the Five Hop Network
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6 Related Work

In the recent literature, traffic shaping or smoothing has received much attention in different contexts. For
example, in [4], the authors use similar techniques to those used here to show that with smoothing at the
source, end-to-end delays with rate controlled service disciplines are strictly less than with Rate Proportional
Processor Sharing (RPPS).

In a related work on deterministic guarantees, the authors of [13] consider a traffic shaper for a peak-rate,
bounded-burst-length deterministic traffic model. The shaping they consider affects only the peak rate or
cell spacing. For a single hop they argued that with minimal delay (less than 1 msec), significant utilization
gains are possible. However, this gain is overstated since a peak-rate-allocation is assumed which was shown
in [1, 14] to be an unnecessary condition for providing deterministic service.

Several other works consider the case of traffic shaping in terms of statistical performance guarantees.
For example, [2] considers smoothing via periodic averaging of a sources rate (PARing). Large deviations
techniques are then used to determine buffering requirements at the source and loss probabilities inside the
network. The bounds on smoothing delay considered here are considerably less than for PARing in which a
source’s arrivals are buffered for a fixed interval and released smoothly into the network.

In [11], the authors consider “deterministic smoothing” of MPEG traffic sources in which the cells of a
video frame are transmitted in equally spaced intervals over the frame time. They then consider end-to-end
statistical guarantees using the histogram techniques introduced in [12]. In this work, we have considered a
deterministic approach that does not allow either the shaper or the network to discard packets. Thus, we
are considering the case of end-to-end deterministic performance guarantees and we quantify the tradeoffs

involved in smoothing in terms of both the user’s QoS and the network’s utilization.

7 Conclusions

Smoothing via lossless buffering at the source introduces a tradeoff between smoothing delay at the entrance
of the network and queueing delay inside the network. We have considered the effects of smoothing for the
case of end-to-end deterministic performance guarantees using the D-BIND traffic model to characterize the
sources.

For the case of a network with a single congested hop, we showed that with homogeneous sources, smooth-
ing never results in a net reduction in total delay bound. That is, while smoothing does reduce the bound
in queueing delay, this reduction in delay is outweighed by the added smoothing delay. We confirmed this
result and provided insights into typical delays incurred by a realistic workload with experiments involving
a 28 minute trace of MPEG-compressed video.

Over multiple congested hops, the situation changes to favor smoothing primarily because while the
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smoothing delay is incurred only once, the queueing delay may be incurred at each congested hop. We
provided a set of general rules that can be used to determine if smoothing will result in a net decrease
in a source’s total end-to-end delay bound. Using the MPEG trace, we demonstrated that in many cases
smoothing indeed resulted in a net reduction in end-to-end delay bound. For example, for a 5 hop network
and an end-to-end delay bound of 125 milliseconds, smoothing by an appropriate rate resulted in a 99%
increase in average network utilization.

As a final note, we caution that since the end-to-end delay bound calculations are not tight (i.e., necessary
and sufficient), the analysis presented here may excessively favor smoothing. Thus, with more efficient
calculations of end-to-end delay bounds, the rules presented in Section 5 can be improved. As well, the issue
of the relative prices of buffers at the end system and inside the network (and other charging policies) will

also affect a source’s decision whether or not to smooth.
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