Scheduling Parallel Communication: The h-relation

Problem

Micah Adler * John W. Byers **
Computer Science Division Computer Science Division
UC' Berkeley JC' Berkeley
Berkeley, CA 94720 Berkeley, CA 94720

Richard M. Karp *™*
International Computer Science Institute
and
Computer Science Division
UC' Berkeley
Berkeley, CA 94720

Abstract. This paper is concerned with the efficient scheduling and
routing of point-to-point messages in a distributed computing system
with n processors. We examine the h-relation problem, a routing prob-
lem where each processor has at most h messages to send and at most
h messages to receive. Communication is carried out in rounds. Direct
communication is possible from any processor to any other, and in each
round a processor can send one message and receive one message. The
off-line version of the problem arises when every processor knows the
source and destination of every message. In this case the messages can
be routed in at most h rounds. More interesting, and more typical, is
the on-line version, in which each processor has knowledge only of A and
of the destinations of those messages which it must send. The on-line
version of the problem is the focus of this paper.

The difficulty of the Ah-relation problem stems from message conflicts, in
which two or more messages are sent to the same processor in a given
round, but at most one can be received. The problem has been well stud-
ied in the OCPC optical network model, but not for other contemporary
network architectures which resolve message conflicts using other tech-
niques. In this paper, we study the h-relation problem under alternative
models of conflict resolution, most notably a FIFO queue discipline mo-
tivated by wormhole routing and an arbitrary write discipline motivated
by packet-switching networks. In each model the problem can be solved
by a randomized algorithm in an expected number of rounds of the form

* Supported by a Schlumberger Foundation Graduate Fellowship.
** Supported by a GAANN Graduate Fellowship.
*** Supported by NSF grant number CCR-9005448

ch—l—o(h) + log@(l) n, and we focus on obtaining the smallest possible
asymptotic constant factor ¢. We first present a lower bound, proving
that a constant factor of 1 is not achievable in general. We then present
a randomized algorithm for each discipline and show that they achieve
small constant factors.

1 Introduction

We assume that a communication task to be performed by a parallel computer
with n processors is specified by an n x n matrix K = (k;;), where k;; gives the
number of messages originating at processor ¢ and destined for processor j. If we
let A be the maximum sum of any row or column of this matrix; then the matrix
specifies an h-relation [Val 90]. The problem of solving this communication task
is called the h-relation problem. An h-relation can be thought of as a generic
model of irregular communication. Routing an h-relation is the fundamental
communication step in Valiant’s BSP model of parallel computation. The on-
line version of the problem is also central to the simulation of a PRAM with many
processors on a PRAM with fewer processors, and, in general, to the scheduling
of concurrent memory accesses in distributed memory machines.

To define the problem further, we must model the performance character-
istics of the communication medium, or network, through which the messages
are transmitted. Much of the existing work on the h-relation problem [AM 88],
[Vall 90], [GIL+ 93] has been under the Optically Connected Parallel Computer
(OCPC) model. In this model of computation, processors communicate by point-
to-point messages in synchronous rounds, with the restriction that whenever two
or more messages are sent concurrently to the same processor, the messages are
destroyed and must be retransmitted. We provide a survey of the theoretical
literature on routing h-relations under the OCPC discipline in Section 3.

In this paper, we consider the problem of routing h-relations in other com-
munication media. It is assumed that any processor can communicate directly
with any other processor. Communication occurs in synchronous rounds, dur-
ing which each processor may send and receive one point-to-point message. The
models are differentiated by the manner in which they handle contention, which
occurs when several messages are sent concurrently to the same processor. We
consider several disciplines for the handling of contention:

— The FIFO discipline, in which incoming messages destined for a given re-
ceiver are placed in a first-in first-out queue from which they are extracted
by the receiving processor at the rate of one message per round. A sender is
temporarily blocked after a transmission, unable to transmit more messages
until the original message is extracted from the target processor’s queue.

— The arbitrary write discipline, in which a receiving processor receives exactly
one of its incoming messages at random at each time step; all other incoming
messages must be retransmitted. Immediately after each round, every sender
is informed as to whether its message has been received.

— The priority queue discipline in which incoming messages carry priorities,
and are placed in a priority queue. As in the FIFO model, no two messages
from the same processor may reside in queues at the same time.

In existing network architectures, message contention is primarily due to lim-
ited buffering at internal switches. The arbitrary write discipline is motivated by
packet-switched architectures such as the BBN butterfly and the ATM network,
where messages traverse the network as a single unit, with their final destina-
tion prepended to the message. When packet-switched messages simultaneously
arrive at a switch with insufficient buffering, the switch may drop messages
it cannot handle. The sender’s ability to detect the successful or unsuccessful
transmission of a message is often left to higher-level software, rather than the
hardware itself. Modeling a packet-switched network is made more challenging
by the wide variety of network topologies and internal switches used in practice.
However, our arbitrary write discipline captures the essence of the conflict res-
olution strategy used in packet-switched networks. The contention rule in the
arbitrary write discipline is similar to the contention rule of an arbitrary write
CRCW PRAM.

The queued models are based on another approach used for routing messages
in tightly coupled networks. These use the closely related techniques of wormhole
routing and virtual cut-through routing, used for example in the J Machine [ND
90] and the CM-5 [Lei+ 94]. In wormhole routing, messages are divided into
very small flow control units (flits) which are then transmitted along a fixed
path through the network to the destination. A message can thereby occupy
buffer space in several adjacent switches simultaneously. If the first flit of a
message arrives at a switch with insufficient buffer space, the entire chain of flits
stalls, often stalling the sending processor as well. This style of message-passing
motivates the FIFO discipline, which stalls the sending processor until the target
processor receives each transmission. Contention in the FIFO model is similar to
the capacity constraint of the LogP model [CKP+ 93] and to the asynchronous
version of the QRQW PRAM [GMR2 94].

To provide a preliminary comparison of the disciplines, we note that OCPC
algorithms can be simulated with no slowdown in the arbitrary write model and
FIFO algorithms can be simulated with no slowdown in the priority queue model.
The disciplines using queues seem to be incomparable to the disciplines without
queues because of the effect of stalling; in the queued disciplines, sending pro-
cessors must wait until their transmission is successfully sent before proceeding.

We here concentrate our efforts on achieving the best possible leading con-
stant for direct algorithms, that is algorithms where each message is routed
directly from its source to its destination, without passing through any interme-
diate processors. Aside from their simplicity, direct algorithms require a smaller
total number of successfully transmitted messages than indirect algorithms. Also,
when the destinations of the messages are memory modules, messages cannot be
forwarded, and direct algorithms are required.

When introducing the OCPC model, Anderson and Miller showed that in the
off-line case, an arbitrary h-relation could be routed in time A [AM 88]. Recent

efforts have tried to achieve I-optimalrandomized on-line algorithms [RSTG 95];
i.e., on-line algorithms that route an h-relation in expected time h + o(h). We
here provide evidence that no 1-optimal algorithm exists in the FIFO discipline,
the arbitrary write discipline, or the OCPC discipline. More specifically, we show
that for a natural class of algorithms, there exists an h-relation input for every
h < n'/3 such that every randomized on-line algorithm for these disciplines
requires time at least 1.1h to route that input. The class of algorithms can be
informally described as those algorithms such that, if k;; = k;» > 0, then the
first transmission from 7 to 7 i1s as likely to precede as it is to follow the first
transmission from ¢ to r.

We can, however, achieve within a small constant factor of optimal for all
three disciplines. We present the following.

— In the FIFO discipline, a direct randomized algorithm that runs in time
3.41h + o(h) + O(log® nloglogn) with high probability. The analysis of this
algorithm is based on introducing martingales associated with the progress of
the algorithm, showing that the martingales have bounded differences with
high probability, and then applying Azuma’s tail inequality for martingales
with bounded differences.

— In the arbitrary write discipline, a direct randomized algorithm that runs in
time 1.62h 4+ o(h) 4+ O(log n loglogn) with high probability.

— In the priority queue discipline, a simple and direct randomized algorithm
that runs in time (2e — 1)h 4 o(h) + O(log n) with high probability, where e
denotes the base of the natural logarithm. The analysis of this algorithm is
based on a delay sequence argument.

We also report on simulations in which the following constant factors are
observed: 2.08h for the FIFO algorithm, 1.57h for the arbitrary write algorithm,
and 1.85h for the priority queue algorithm.

Throughout the paper, we say that an event holds with high probability if|
for some ¢ > 1, the event holds with probability > 1 — 1/n°.

2 Previous Work

In this section, we survey the body of work on routing h-relations, most of
which has been done in the Optically Connected Parallel Computer (OCPC).
In the OCPC, each of n processors can transmit a message to any of the other
processors at each time step. If a processor receives two or more messages at
a given time step, the data in those messages is lost and the messages must
be retransmitted. Successful transmissions are acknowledged by the receiving
processor, and failure to acknowledge implies that the data in the message was
lost. This model was introduced by Anderson and Miller [AM 88].

Anderson and Miller were also the first to observe that if all processors have
complete information about a given h-relation, there exists a schedule which
routes the relation using exactly A communication steps. This observation follows
by viewing the relation as a bipartite multigraph of maximum degree h, which

is edge-colorable using h colors. Drawing a correspondence between colors and
communication steps gives the communication pattern that can be routed in
time exactly h, which is also an immediate lower bound.

2.1 Asymptotically Efficient Protocols

A primary theme in the literature on routing h-relations has been to provide
routing protocols which are asymptotically efficient, especially for small values
of h. Two types of algorithms are considered, direct algorithms, in which mes-
sages are always transmitted from the sender directly to the final receiver and
indirect algorithms, in which senders may forward messages through intermedi-
ate locations en route to the final destination. The simplicity of direct algorithms
makes them appealing from a practical standpoint, but they have theoretical lim-
itations, which will be described momentarily. In all the algorithms we describe,
the use of randomness is fundamental; to our knowledge, the best upper bound
for deterministically routing an arbitrary h-relation on an OCPC is O(hlogn).

The direct algorithm with the best asymptotic running time for the OCPC
is the simple randomized algorithm of Gereb-Graus and Tsantilas [GT 92]. For
any fixed € > 0, their algorithm with high probability transmits an arbitrary
h-relation in time

° hy O(y/hlogn +lognloglogn).

1—¢
This is done with 10%1/(1—5) h = Té(;%lhfe) phases, where the problem remaining

at the start of phase i is w.h.p. a k; = (1 — ¢)*h-relation, and at the end of phase
iisakipr = (1— e)i“h—relation. Each phase transmits some ek;-relation w.h.p.
as follows. At each step, every processor uniformly at random picks one of its
r < k; packets to send, and attempts to transmit that packet with probability
kLl' With probability k’k_lr, the processor does nothing. Using the fact that each
processor successfully transmits a packet that has been sent with probability at

least 1=¢, they show that the number of steps round i requires is no more than

‘ (ek; + O(\/¢€k;logn + logn).

1—c¢

The bound on the total amount of time follows.

In [GILR 92], Goldberg, Jerrum, Leighton and Rao prove a lower bound of
2(logn) for direct algorithms for the h-relation problem on the OCPC. The
lower bound motivates study of indirect algorithms as a means to achieve sub-
logarithmic time for routing h-relations for small values of A. The bound is a
formalization of the following intuition. Consider a 2-relation in which 2n senders
each transmit a single message to n receivers and where the senders do not know
the whereabouts or the sending strategy of their partner. Random direct sending
strategies are likely to lead to a pair which conflicts for £2(log n) rounds, thereby
acheiving the lower bound. The same authors then present an indirect protocol
for routing h-relations on the OCPC which we sketch below that runs in time

O(h + loglog n).

In the first phase of their protocol, the h-relation is thinned by a direct al-
gorithm which routes many of the messages to their final destinations, using a
procedure somewhat similar to that of [AM 88]. With high probability, the proce-
dure transmits all but O(n/hloglogn) messages in time O(h+log h log loglog n).
The protocol runs for O(log h) rounds, round i of which reduces an 2—1@—1 relation
to an % relation across all but a small fraction of the processors who drop out
of the remainder of this phase of the protocol if they are left with too many un-
delivered messages. During round i, for each of O(h/2'~! 4 logh + logloglogn)
steps, each sender which has survived transmits each of 1ts messages with prob-
ability % The analysis uses the method of bounded differences to derive the

bound on the number of undelivered messages.

Next, in the second phase of the protocol, the undelivered messages are
smoothly redistributed across all the processors, so that each processor has at
most one undelivered message. The final two phases employ the concept of target
groups, 2 disjoint sets of processors of size k = log®® n. In phase three, all mes-
sages are delivered to the target groups of the destination processor, but perhaps
not to the destination processor itself. The technique employed is dart-throwing,
where those messages which cannot be routed directly to the target group with
high probability are copied to many processors, each of which then attempts to
transmit the message to the target group. Messages for which more than one
copy arrive at the target group select a leader and eliminate duplicates. With
high probability, each of the messages has now been delivered at its target group,
and furthermore, every processor has at most two messages. In the final phase,
running a deterministic procedure such as Valiant’s algorithm [Val2 90] (a simple
indirect protocol outlined below) within each target group sorts and routes each
of the messages to their final destinations in time O(log k) = O(loglogn).

Prior to the [GILRI3] result, the algorithm that achieved optimality for the
smallest value of h was that of Valiant, an indirect algorithm which routes an
h-relation in time O(h + logn), for any h = £2(logn). The algorithm consists of
two steps, the first of which is a thinning step, which insures that within O(h)
rounds, the total number of unsent messages is O(hn) w.h.p. The remaining

logn
messages are sent by a deterministic subroutine requirigng time O(h+logn). This
subroutine proceeds by first performing a parallel prefix with all the processors
that informs the processors of the total number of messages, along with the
rank of the processor’s messages within that total. This allows the processors to
redistribute the messages so that every processor has exactly the same number
of messages. Once this has been accomplished, the messages can be sorted by
various means, such as Cole’s parallel merge sort [Col 88], in time O(h + log n).
The keys to be sorted consist of the identifier of the destination processor con-
catenated with the message itself, and thus all messages destined for the same
processor will end up in consecutive processors. Thus, the remaining messages
can be deterministically routed to their final destinations in time O(h).
Finally, it is worth remarking that even for indirect algorithms, time bounds

of the form O(h) are not possible for small values of h. Goldberg, Jerrum and
MacKenzie [GIM 94] prove a lower bound of £2(h + v/loglogn) for realizing an

h-relation on the OCPC.

2.2 1-Optimal Protocols

For much larger values of h, recent research has focused not on asymptotic be-
havior, but on leading constant factors of asymptotically optimal algorithms.
Gerbessiotis and Valiant [GV 94] define a 1-optimal protocol for the OCPC as a
protocol which can route a random h-relation in time at most (1 + o(1))h with
high probability. To derive 1-optimal algorithms, they employ the total-exchange
communication primitive (also known as all-to-all personalized communication),
in which every processor has a distinct message to transmit to every other pro-
cessor. Extremely simple and contention-free strategies solve this communication
problem in time n on the OCPC. Using these tools, the same authors present
a protocol to route random h-relations using at most 2(1 + o(1) + O(loglogn))
total-exchange rounds with high probability, and so this algorithm is 1-optimal.
Recent work [RSTG 95] has improved this bound to 2(1+0(1)+O(log" n)) total-
exchange rounds and has provided experimental results which confirm that the
algorithm is very fast in practice. A drawback of this approach is that A must
be extremely large for the algorithms to achieve 1-optimality, i.e. at least w(n).

3 Direct 1-Optimal Algorithms Are Not Possible

In this section, we prove a lower bound for direct, on-line algorithms that are
uniform, or, informally, algorithms where, at a given sender, a target destination
is treated identically to other target destination receiving the same number of
messages until the first attempt to send. To be more formal, let an untried
destination for a processor be a destination to which that processor has not yet
attempted to transmit a message. Then, we say that an algorithm is uniform
if, at every time step, the probability that a processor sends to a given untried
destination is the same for all untried destinations receiving the same number of
messages. Restricting our attention to the class of uniform algorithms is justified
by the fact that all untried destinations receiving the same number of messages
look equivalent to a sending processor routing an arbitrary h-relation.

In addition, we assume that each processor is using the same program, and if
sender A attempts the first transmission of a message to receiver X at the same
time ¢ as at least one other sender, then the probability that the message from A
is successfully received at ¢ is < 1. If it is not successfully received, it will take at
least one more time step for A to successfully send that message. We note that
the last assumption holds for the concurrent write, FIFO and OCPC disciplines,
but not the priority queue discipline. We prove a lower bound of 1.1h for any
uniform, direct, on-line algorithm for any model meeting these assumptions,
provided that A < n!/?. Thus, no 1-optimal algorithms exist which meet these
criteria.

Theorem 1. When h < n'/3, there does not exist a uniform and direct on-line
algorithm that routes every h-relation in time less than 1.1h with probability
1

greater than 3.

We assume such an algorithm exists, and work towards a contradiction. Any
such algorithm must successfully route h-relations of the form diagrammed be-
low, which we will refer to as difficult h-relations. In such an h-relation, Processor
1 has h messages to send to distinct destination processors ji, ... j,. Each of these
destinations receives an additional h — 1 conflicting messages from distinct pro-
cessors. The h(h—1) processors which transmit conflicting messages are referred
to as blocking processors. Each blocking processor transmits h messages in all,
and all non-conflicting messages which they transmit have distinct destinations.

1 1 1 1 1
11111
1 1111
1 1111
1 1111
11111
1 1111
1 1111
1 1111
11111
1 1111
1 1111
1 1111
11111
1 1111
1 1111
1 1111
11111
1 1111
1 1111
1 1111

Fig. 1. A difficult matrix

We call a time slot crowded if all blocking processors attempt the first trans-
mission of a conflicting message during that time slot with probability at least
1 1
2h ~ hZ°
Lemma 2. In any uniform algorithm that routes an h-relation in time 1.1h
with probability at least %, there are at least 0.9h crowded time slots in the 1.1h
possible time slots.

Proof: Since the algorithm is uniform and all processors execute the same
code, it suffices to show that the lemma holds for any given blocking processor.
To see that this is the case, consider the behavior of an isolated processor, i.e. a

processor that sends A messages to distinct destinations, none of which conflict
with any other messages. Until the time of the first attempted transmission of
a conflicting message, the behavior of each blocking processor is identical to
that of the isolated processor. For all of n/h isolated processors to succeed with
probability 1/2, each of the isolated processors must succeed with probability
(1/2)*/7 which is at least 1 — hl—g for h sufficiently large. To complete in time
1.1h an isolated processor must choose h time slots to send its messages. If more
than 0.2h slots are selected with probability < %, the number of slots utilized
is strictly less than .2h % .5+ .8h * 1 = h. Thus, to complete in time 1.1A, there
must exist at least 0.9h slots that the isolated processor chooses with probability
at least % Furthermore, each of the 0.9Ah slots has a % chance of being the slot
chosen for a blocking processor’s conflicting message, so the probability that a
given conflicting message is scheduled in a crowded time slot is > % — h%
Lemma 3. The probability that processor 1 successfully sends a message on the
first attempt, given that the attempt is during a crowded time slot, is no more
than %‘

Proof: There are h — 1 blocking processors sending conflicting messages coin-
ciding with each message from processor 1. Thus, the probability that processor
1 sends during a time slot where no blocking processor attempts its first trans-

mission 1s \
<f(1-L + L - < h=3
= 9h " h2 =P AT

During the other time slots, the probability that processor 1 sends successfully is
no more than % Thus, the total probability that processor 1 sends successfully

18
- h=3),1(, h=3_L(,, h—3
= eXp 2h 2 xp 2h D) xp 2h '

Proof of Theorem 1 : To complete in time 1.1A, processor 1 must attempt at
least once to send each of its h messages during the first 1.1~ time slots. But,
by Lemma 1, at most 0.2h of these slots are not crowded, so processor 1 would
have to attempt to send during at least 0.8h crowded time slots. Using lemma

2, 1t is a simple exercise in Chernoff bounds to show that with high probability,
at least 0.11h of the messages from processor 1 are not transmitted successfully
on the first try. Thus, processor 1 needs total time at least 1.11A, and we have
reached a contradiction.

4 Scheduling h-relations under the FIFO discipline

We now turn our attention to the FIFO discipline. In this discipline, transmission
of the h-relation is divided into synchronous rounds, where each processor is
allowed to send and receive one message during each round. Messages in transit
to a given target processor are viewed as residing in a First-In First-Out queue.

In each round a processor receives the message, if any, at the head of its queue,
and that message is deleted from the queue. Network capacity constraints are
enforced by ensuring that at most one message is in transit from any given
processor at any time. Thus, as long as a message from a sending processor
resides in the input queue of some processor, the sending processor is stalled
and cannot send further messages, but it can receive messages. As described in
the introduction, the FIFO discipline models contemporary machines that use
wormhole routing or virtual cut-through routing to transmit messages.

Theorem4. There exists a direct randomuzed algorithm which routes an arbi-
trary h-relation in the FIFO discipline within time 3.41h + o(h) +
O(log®nloglogn) w.h.p.

We begin by describing a generic parameterized algorithm for the FIFO dis-
cipline with parameters £ and u. The algorithm runs in m = logih stages,
where with high probability, the following invariant is maintained: at the end of
each stage i,1 < i < m, the undelivered messages form an h; relation, where
h; = h,ui. Stage ¢ consists of kh;_; rounds of communication scheduled in a
manner described below.

Before stage ¢ begins, each processor schedules the sending times of all of
its undelivered messages. These sending times are chosen by sampling with-
out replacement from the uniform distribution over the integers between 1 and
kh;_1. Thus the sending time of any given message is uniformly distributed over
[1..khi — 1], and no two messages from the same processor have the same sending
time. During stage ¢, each processor sends its messages according to their sched-
uled sending times. However, if a processor is stalled at the scheduled sending
time of one of its messages, then the message is not sent, but is deferred to the
next stage. Thus, if a message sent at time #; by a processor p resides in the
input queue of its target processor until time 5, then all messages scheduled to
be sent by p in the interval [t; + 1..t5] are deferred to the next stage, and p re-
sumes 1ts transmissions at time ¢+ 1. The algorithm halts at a stage ¢ such that
h; < h%/5 at which time all remaining messages can be transmitted determin-
istically in time o(h). The algorithm described in Theorem 4 is an instantiation
of the parameterized algorithm with & = 2.5 and g = 0.267. In the following
discussion € is a positive constant which may be chosen as small as desired.

Theorem 4 is a consequence of the following lemma, which we will prove
momentarily.

Lemma 5. In stage i, with probability 1 — 2n - exp(—@(hl-%)):

— All processors with at least 0.26Th; unsent messages transmit at least a
(0.733 — €) fraction of those messages.

— All processors with at least 0.26Th; unreceived messages receive at least a
(0.733 — €) fraction of those messages.

Proof of Theorem 4 : From Lemma 5, we see that during stage i, which runs
in 2.5h; rounds, we have reduced the problem size by a factor of 0.733 —e w.h.p.

We recurse until the resulting problem forms an h2/5_relation, which takes time
2.5.2?1:0 (0.267+¢€)" h = ﬁh. Then, all messages are sent in any order, and

since no message can be delayed by more than h2/ time slots, and no processor
needs to send more than h%/5 messages, the algorithm finishes in time o(h). Since
the failure probability during stage i is at most 2n-exp(—O(h?-257)), the m stages
succeed with high probability when for all 7, h; = Q(log?’ n), or equivalently, h =
Q(log15/2 n). When h € [log’n .. Jlog!®/? n], we can run until h; = O(log” n),
and then complete in time O(loganlog logn). Thus, the algorithm completes
w.h.p. in time 3.41h + o(h) 4+ O(log® nloglogn). O

In the proof of Lemma 5, we use the following terminology. We say that
a schedule chosen for stage 1 of our protocol is well-distributed if no processor

receives more than 0. 9h3 messages in any h3 consecutive rounds. We say that a
receiving processor j is idle at time ¢ if its input queue 1s empty during the ¢th
round. Otherwise, we say that the processor is active at time ¢. If the schedule
for stage ¢ is well-distributed, no receiving processor is active for more than hl/3
consecutive rounds in stage ¢.

The proof also uses the following Martingale Tail Inequality due to Azuma.
Recall that a Martingale is a sequence of random variables Y;, 2 = 0,1, -+, n,
such that, for all 7, E[Y;|Yy, Y1,...,Yi1] = Yioq.

Theorem 6 Azuma. Let {Y;} be a Martingale, and let ay,as, ... ,a, be such
that, fori = 1,2,--- n, |Y; — Yi_1| < a;. Then the probability that Y, — Yy >

MJa? + a2 is less than or equal to e ¥

The application of this theorem is often called the method of bounded dif-
ferences.

Proof of Lemma 5: We begin by deriving an upper bound of % on the a priori
expected time a processor stalls during the transmission of any message. We then
apply the method of bounded differences to show that the schedules chosen in
stage i (which are well-behaved w.h.p.) cause a processor which schedules z
messages to experience a delay of at most %x rounds with high probability. A
final application of the method of bounded differences reveals that with high
probability in stage i, each sender which begins with more than h; undelivered
messages successfully transmits at least 0.733h; of these messages with high
probability. A similar statement holds for the receivers and the lemma then
follows.

Let # messages to be sent to processor j be partitioned into m sets, where
set r contains n, messages, and y -, n, = z. The arrival time of a message
is defined as the number of the round in which it is sent to processor j, or,
equivalently, the number of the round in which it arrives at the input queue of
processor j. The arrival times of the messages within set r are n, slots chosen
uniformly at random without replacement from the range [1..S]. The arrival
times of the messages in each set are independent of the arrival times in the
other sets. We call the distribution of arrival times associated with any partition
an arrival distribution. We sometimes use the same notation to refer to both a
partition and its arrival distribution.

A message is said to be stalled in a given round if, at the end of the round,
it resides in the input queue of processor j. For any message p among the z
messages, let D(p), the delay of p, be the number of rounds in which message p
is stalled.

Lemma 7. For any message p and any arrival distribution for x messages in-
cluding p, onto the range [1...5], the expected value of D(p) is less than or equal

T
to -

Proof: We first consider the partition consisting of z singleton sets. In this
case the arrival times are independent identically distributed random variables,
each with the uniform distribution over [1..S]. We call this the uniform and
independent arrival distribution. We say that message p is in the system for
D(p) + 1 rounds. Let S(j) be the time spent in the system of message j. Let
Y (i) be the number of messages in the system at time i. By counting the number
of message-time pairs, we have that Zle S(7) > Zle Y (7). For p to be in the
system for z rounds, it must be stalled for z — 1 rounds, and so there must be
at least z — 1 other messages that are either already in the system at the time
p arrives, or that have the same arrival time as p. Since the arrival time of p is
uniform and independent of the other arrivals,

S il
BISG) < 1+ Bz SV (] < 1+Elg Y 80))
By symmetry, E[S(p)] < 1+ %Z‘E[S(p)] This gives us E[S(p)] < SSTx’ or that
E[D(p)] < 5%

To complete the proof we show that of all possible arrival distributions, the
expected delay of each message is greatest in the case of the uniform and in-
dependent arrival distribution. We compare two partitions: M, which contains
a singleton set {s}, and My, which is the same as M, except that s has been
merged with some other set U. We show that the expected delay of every mes-
sage in M is at least as large as the corresponding message in My. This shows
that the expected delay of any message in any arrival partition is no greater than
the expected delay of a message in the uniform and independent partition, since
any arrival partition can be made by a series of such transformations, starting
with the uniform and independent partition.

To see that the expected delay of any message in M is no greater than that
of the corresponding message in My, we compare My with M,, where M, is the
same as M with the additional constraint that the message s must be scheduled
at the same time as a message in U. Since the arrival distribution M is just a
weighted sum of M, and My, showing that each message has smaller expected
delay in Mg than in M, shows that each message has smaller expected delay in
My than in M.

We first assign a number to each of the messages in M, and in My, with
the constraint that a message in M, has the same number as its corresponding
message in My. Also, s is assigned z in M,, and the message in U that overlaps

with s is assigned z — 1. In My, z and z — 1 are any two elements of U. We
henceforth refer to messages by their assigned numbers.

Let E,[i] and E4[i] be the expected delay of message i when the schedule is
defined by arrival distributions M, and M, respectively. We shall show that Vz,
E,[i] > E4[i]. This is proved in two parts.

Claim 1: E,[z] > E4[z] and E,[z — 1] > E4z — 1].

Proof: Fix the location of messages 1...z — 2. Let Z be the expected delay
of a single additional message arriving with these fixed messages. Then, E,[z] =
Eolz —1]=2+ %, since the messages have an expected delay of Z due to the
other messages, and 1 due to each other. E4[z] = Eg[z — 1] < Z + 3, since
message z is scheduled after x — 1 with probability %

To analyze the delay of the other messages, we introduce a method of cal-
culating the delay of a given message ¢, given a fixed schedule. Set a counter to
0. Start at the beginning of the scheduling period. Scan from left to right, one
time slot at a time. For every time slot, increment the counter by the number of
arrivals, and then decrement it by 1, never letting the counter decrease below 0.
The value of this counter when we reach the time slot that ¢ arrives in (before
accounting for that time slot), plus % times the number of other arrivals during
time slot 7, 1s the expected delay of ¢, with the given schedule.

We can do the same thing by maintaining a delay list, where at every time
step, each arrival for that time step is placed on the list, after which the smallest
numbered message is removed from the list. The number of messages in the
delay list when we reach ¢ will be the delay of the first message serviced of those
arriving at the same time slot as 7. Note that the messages in the delay list are
not necessarily the messages that are waiting for service at the time. But, from
this we see that if, for a schedule chosen from arrival distribution M , we define
indicator variables I;;, where I;; = 1 if message ¢ is in the delay list when it
reaches message 7, % if message ¢ arrives at the same time as j, and 0 otherwise,
then we see that Eq[j] = >"7_,E[L;;]. We can define the same indicator variable
Jij for arrival distribution M,, which gives us E,[j] = >°7_, E[J;;], from which
we see that lemma 7 follows from the following claim.

Claim 2: Vi,1 < i< 2,Vjl <i<z -2, E[I;;] < E[J;]

Proof: When i < z — 1, then E[I;;] = E[J;;] follows from the fact that the
location of messages numbered higher than ¢ have no effect on either I;; or J;;,
and thus neither does the distribution of those messages. To see that E[I;;] <
E[Js;], fix the location of all messages but « — 1. This schedule of messages
1...2 =2,z is as likely in My as it is in M,. The only effect on I,; or J;; that
adding — 1 to the other messages can have is changing I;; or J;; from a 0 to
a 1. But, if it changes I;; from a 0 to a 1, then J;; will also be changed to a 1,
and thus E[I;;] < E[Jg;].

O

Given a bound on the expected delay incurred by a given message, we now
let D; denote the total delay incurred by sending processor j during stage :.
Setting x = h and S = 2.5h in Lemma 2, we find that the expected delay of
each message transmitted by processor j is at most 2/3, and thus E[D;] < 23&

We now show that w.h.p. the actual delay D; is unlikely to deviate significantly
from its expectation. The following lemma assumes that the schedule for stage
1 is well-distributed; using a Chernoff bound, this can be verified to hold for all
processors with high probability, assuming that A = £2(log® n).

Lemma 8. Given that the schedule for stage i is well-distributed, Pr{|D; —
E[Dj]| > Bhi] < exp(=Fh7).

Proof: We define the Martingale A;, where A(t) = E[D;|S1...S:] and S;
represents the scheduled actions of all processors at time ¢. To apply Azuma’s
inequality, we must provide a bound on |A;y; — Ay|, the increase in expected
delay at processor j after seeing a single additional round of the algorithm. Since
we are given that the schedule is well-distributed, every receiving processor is
guaranteed to be idle some time before time ¢+ 1 —1—h3/3
as a bound on |A¢11 — A¢|. The lemma follows immediately by an application of

Azuma’s inequality. a

1/3
, and therefore hi/ serves

Lemma9. Gwen that D; < %hi, the a priori probability that a given message
from processor j is successfully sent during stage i is at least %

Proof: When D; < %hi, at most 14—1 of the scheduled sending slots for pro-
cessor j are invalidated due to processor j being stalled while sending other
messages. Therefore, each message has probability of at least 0.733 of being sent
in stage 2. a

We can now sketch the proof of Lemma 5 for a sending processor; the proof
for a receiving processor is similar. Let j denote an arbitrary processor with
h' > (0.267 4 €)h; messages left to send at the start of stage 7, and let R; be the
random variable that denotes how many of j’s messages are actually sent during
stage 7. From Lemma 8, we see that when h = .Q(log3 n), then for each processor
5, D; < %hz with high probability, and so we may restrict attention to the case
where this inequality holds. Thus, from the previous lemma, before we choose
the schedule for stage i, E[R;] > 0.733h'. We then define the Martingale B; =
E[R;|S1 ...S;:], where S; again represents the actions which all processors take at
time ¢. Since the schedule is well distributed with high probability, we have that
|Bi41 — Bi| < h'/3) so Azuma’s inequality shows that with high probability, R;
does not deviate substantially from E[R;]. Therefore, processor j transmits at
least (0.733 — ¢) h’ of its messages with probability exp(_452 h;/?’) and the lemma
follows. a

5 Scheduling h-relations under the Arbitrary Write
discipline

In this section we analyze algorithms employing the arbitrary write discipline,
which is analogous to the concurrent-write PRAM discipline of the same name.

Each processor 1s able to send and receive up to one message during each syn-
chronous round. If more than one processor sends a message to the same destina-
tion processor in a single round, then that destination processor receives one of
the messages chosen at random, while the other messages are lost. The arbitrary
write discipline can be contrasted with the somewhat more pessimistic OCPC
model, in which all conflicting messages are lost. As in the OCPC discipline,
successful receipt of a message can be acknowledged in unit time; those proces-
sors which do not receive an acknowledgment can assume their messages were
not transmitted successfully.

The algorithm we employ is similar to the direct algorithm for routing h-
relations on the OCPC due to Geréb-Graus and Tsantilas [GT 92]. By continu-
ously updating weighted transmission probabilities for messages from sender 7 to
receiver j, we obtain an algorithm which routes h-relations in the arbitrary write
model with a small leading constant. We work toward the proof of the following
theorem, which gives us a bound on routing h-relations in the arbitrary write
model of 1.62h + o(h) + O(log n log logn) as compared with the OCPC protocol
which runs in time eh+ o(h) + O(lognloglogn) achieved by [GT 92] in a less
favorable model.

Theorem 10. There exists a protocol which solves any instance of the h-relation
problem under the arbitrary write discipline within time 1.62h + o(h) + O
(lognloglogn) rounds, with high probability.

The first phase of the protocol is a thinning procedure which runs in a se-
quence of m stages, where in stage ¢, the problem is reduced from an h;_-
relation to an h;-relation with high probability, where h; = (1 — [J’)Zh fori <m
and hg = h. The parameter § is a positive real parameter chosen arbitrarily
close to zero and the parameter m is chosen as the smallest integer such that
A(1=8)" < h2/5. After each of the stages, the transmission probabilities at each
of the senders are recomputed in a method that will be described momentarily.
After m such stages, the second phase of the algorithm routes the remaining
messages (of which there are at most A%®) in time O(h*/®) using an obvious
direct deterministic algorithm which processes any t-relation in time ¢? under
the arbitrary write discipline.

Stage k of the first phase of the protocol consists of ¢ = %:gm(hk +logn)

rounds where « is the reciprocal of the quantity 4(1— 6_1/2)2), or approximately
1.62. With high probability, the following invariant assertion holds: no processor
has more than hj_; messages left to send or receive at the beginning of stage k.
If we let d;; denote the number of undelivered messages originating at processor
¢ and destined for processor j at some instant during stage k, we have by the
invariant that the row and column sums of the matrix (d;;) are less than or equal
to hx_1. At each round of stage k, processor ¢ chooses at most one message to

send; the probability that 1t sends to processor j is 1 — exp (— (1—5%) It is
easily verified that these probabilities sum to at most 1. The following sequence
of lemmas culminate in the main theorem.

Lemma 11. The following holds at each round of stage k: if processor 1 sends
to processor j, then the probability that its message gets delivered successfully is

at least 1_f\jj, where Xj = (1/hg_1) > p_y dj-

Proof: Let the random variable X be the number of sources other than 1
that send to j. Then the probability that the message from source 1 is selected
for transmission, given that source 1 sends to destination j, is E[H_;X], where F
denotes expectation. It is easily seen that the distribution of X is stochastically
larger than the Poisson distribution with rate A;. This follows from the fact
that the random variable X becomes stochastically larger whenever a source i is
split into two sources whose demand vectors sum to the original demand vector
of source 7. If we split each source until each remaining source has exactly one
message to send, and then recursively split each of these, then as the number of
times the sources are split approaches infinity, the distribution of X; approaches
a Poisson distribution. The lemma then follows from the fact that, when X has
the Poisson distribution with mean A;, E[HLX] = % O
Lemma 12. Consider some fized processor p for which at some round during

stage k, 2?21 dpj =V and Y.7_, d;j, = W. Then during this round:

— Processor p successfully transmits a message with probability at least ﬁ

— Processor p successfully receives a message with probability at least 1 —
—W/hy
e .

Proof: The second claim in the lemma is immediate. To prove the first claim,

let F'(z) be defined as 1=¢"" Then, by Lemma 5, the probability of processor p

T

successfully transmitting a message is at least 2;21 w1 F(p)F(A;) where p; =

hi”_jl and J; is as defined in the above lemma. Since F' is a log-convex function,
the product F'(y;)F(};) is minimized, subject to g > 0, A; > 0 and p;+X; < 1,

when p; = A; = % The value of the product at the minimum is %, and the
result follows from the fact that Z]' Hj = % a

Lemma 13. Given that the invariant assertion holds at the beginning of stage
k, the probability that it fails to hold at the beginning of stage k + 1 is at most

2n exp (—MZL’“)

Proof: (Sketch) By Lemma 2 we see that at each round within stage k at
which a processor has at least hy messages left to send, its probability of send-
ing successfully is at least % Now by transmitting with this probability for

ty = %l(hk + logn) rounds, by a Chernoff bound, each of the n processors
achieves the goal of transmitting at least Shj of these messages with failure
probability only exp (—w) for hy = w(logn). Likewise, since a pro-
cessor with at least hp unreceived messages in stage k receives a message at each

round with probability at least 1 — exp(—ﬁ) > =8 the goal of receiving at

(a4

least Bhy of these messages is also realized with even smaller failure probability
in the same time bound, and the lemma follows from a union bound. O
Proof of Theorem:

By Lemma 8, the invariant assertion holds throughout the O(logh) stages
of the first phase of the protocol with high probability. To compute the amount
of time that the protocol requires, we first bound the total time measured in
rounds used through stage j, where j is the largest integer such that h; > logn
by

af(1+0) e, <1+ﬁ>
=5 §h< =5 ah.

The remaining O(loglogn) stages, hjt1, ..., hm, each take O(logn) rounds, so
the first phase of the protocol completes in %ah—kO(log nloglogn) rounds. In

the second and final phase of the protocol, we route the remaining h%/5-relation
in time o(h). To accomplish this, note that a single undelivered message will be
transmitted unsuccessfully at most h2/5 times. Therefore, each processor simply
transmits each of its at most h2/® messages until they all arrive successfully, in
total time h*/5. a

6 Scheduling h-relations under the Priority Queue
discipline

The priority queue discipline is similar to the FIFO discipline in that messages
wait in a queue until they are transmitted to their respective destinations, and
the sending processor stalls until the message has been sent. The distinction
between the two disciplines is that in the priority queue discipline, a sending
processor assigns a priority to each sent message, and the message with the
highest priority is the first to leave each queue, with any ties being broken arbi-
trarily. It is easy to see that a protocol for the FIFO discipline can be simulated
in the priority queue discipline by assigning each message a priority equal to
the time at which i1t was transmitted. Therefore, the FIFO protocol presented in
section 4 can be easily modified to run in this discipline. However, the analysis
of the following algorithm is very simple, and the additive term dependent on
the number of processors is much smaller.

Under this discipline, we present an algorithm for scheduling an h-relation
that yields a running time of (2¢ — 1)h + o(h) + logn. Each of the P processors
assigns each message a priority 7, chosen independently and uniformly from
[1...R], R sufficiently large to guarantee that all priorities selected are distinct
with high probability. Each processor then sends its messages in order of the
chosen priorities, from highest to lowest.

Theorem 14. An h-relation can be routed under the priority queue discipline
in time (2e — 1)h + o(h) + logn w.h.p.

Proof: We begin by providing a simple proof for a bound of (2e + ¢)h which
uses the delay sequence argument of [Ran 88]. We focus attention on the last
message to arrive at its destination, and retrace the sequence of delays which
resulted in this message’s delayed arrival. In the context of this problem, a delay
sequence for a message pg with priority rg consists of a sequence of messages
with increasing priorities all greater than rg in which the messages either have
the same source as pg or the same destination as pg.

We derive a bound on the probability that there exists a delay sequence of
length ¢ for any message. For any fixed message pg, there are fewer than 2hA
messages with either the same source or the same destination, so each successive
message in the delay sequence could be one of at most 2h. Therefore, there are at
most (2h)* possible delay sequences for each message, and at most h P messages,
for a total of at most hP(2h)! possible delay sequences. Now since each possible
delay sequence is actually a delay sequence only when the priorities are strictly
increasing, this happens with probability t—l, Using Stirling’s approximation, we
approximate the probability of any delay sequence actually occurring by

hP(2h) < hP(2h)

S (e
Thus, when ¢ > (2e + €)h = 5.44h, we see that a delay sequence of length ¢ does
not exist w.h.p. By refining the technique used to count the number of delay

sequences of a given length to give an improved bound, the leading constant can
be improved to 2e — 1, as stated in Theorem 14. a

7 Simulation Results and Conclusion

We have obtained some preliminary simulation results on the algorithms de-
scribed and analyzed in the previous sections. Qur empirical results focus on the
1-relation also known as all-to-all personalized communication, a special case
of the h-relation in which each processor pair must exchange a single distinct
message. Our analysis of the parameterized algorithm for the FIFO discipline
predicted a minimum running time of 3.4h by setting K = 1.9. Our empirical re-
sults show that for this setting of K, the theoretical analysis closely predicts the
observed running time. However, as K decreases below 1.9, our analysis does not
model the empirical performance of the algorithm, whose running time continues
to improve, reaching a minimum of 2.08h at K = 1. A comparison of theoret-
ically predicted performance vs. empirically observed performance appears in
Figure 2.

For the arbitrary write discipline, we discovered that the theoretical bound
of 1.62h closely predicts the empirically observed running time. Furthermore,
we found that the probabilistic weighting scheme was not merely an artifact of
the proof; we were not able to achieve running times better than 1.7h for any
algorithm in the arbitrary write discipline which transmitted all unsent messages
with equal probability. Finally, we found that the algorithm used in the priority
queue discipline with priorities chosen uniformly at random worked extremely

3.8 +77

running time
w w w
w N > o
T T T T
+
n
+
T
T
+
I
L
T
i
i
4
L L L L

N
e
T
L

2.6 1

2.2F b

2 L L L L
1 15 2 25 3 35

K — observed + predicted

Fig.2. The dependence of running time on K.

well in practice. Observed running times were approximately 1.85h, a marked
improvement over the running time of the algorithm for the FIFO discipline.

It remains an open problem to reduce the gap between the upper and lower
bounds for all the disciplines, most notably the sizable gap remaining for the
FIFO discipline. A related problem of interest would be to improve the analysis
to reduce the additive polylogarithmic factors associated with the running times
of algorithms in the FIFO discipline.

8 Acknowledgments

We would like to thank David Culler for a fruitful discussion of contemporary
parallel architectures and network routing techniques.

References

[AM 88] R. A. Anderson and G. L. Miller. ”Optical Communication for Pointer-
Based Algorithms,” Technical Report CRI 88-14, Computer Science De-
partment, University of Southern California, Los Angeles, CA, 1988.

[BHK+ 94] J. Bruck, C. Ho, S. Kipnis, D. Weathersby. ”Efficient Algorithms for All-
to-All Communications in Multi-Port Message-Passing Systems,” Proc.
6th ACM Symp. on Parallel Algorithms and Architectures, pp. 298-309,
June 1994.

[Col 88] R. Cole. ”Parallel Merge Sort,” SIAM Journal of Computing 17(4), pp.
770-785, 1988.

[CKP+ 93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. ”LogP: Towards a Realistic Model
of Parallel Computation,” Proc. 4th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming, pp. 1-12, January 1993.

[GV 94] A. Gerbessiotis and L. Valiant. ”Direct Bulk-Synchronous Parallel Algo-
rithms,” Journal of Parallel and Distributed Computing 22, pp. 251-267,
1994.

[GT 92] M. Geréb-Graus and T. Tsantilas. ” Efficient Optical Communication in
Parallel Computers,” Proc. 4th ACM Symp. on Parallel Algorithms and
Architectures, pp. 41-48, June 1992.

[GMR1 94] P. Gibbons, Y. Matias and V. Ramachandran. ?The QRQW PRAM: Ac-
counting for contention in parallel algorithms,” Proc. 5th ACM Symp. on
Discrete Algorithms, pp. 638-648, January 1994.

[GMR2 94] P. Gibbons, Y. Matias and V. Ramachandran. ”Efficient Low-Contention
Parallel Algorithms,” Proc. 6th ACM Symp. on Parallel Algorithms and
Architectures, pp. 236-247, June 1994.

[GIL+ 93] L. A. Goldberg, M. Jerrum, T. Leighton, and S. Rao. ”A Doubly Loga-
rithmic Communication Algorithm for the Completely Connected Optical
Communication Parallel Computer,” Proc. 5th ACM Symp. on Parallel
Algorithms and Architectures, pp. 300-309, June-July 1993.

[GIM 94] L. A. Goldberg, M. Jerrum and P. MacKenzie. ” An §2(/loglog n) Lower
Bound for Routing on Optical Networks,” Proc. 6th ACM Symp. on Par-
allel Algorithms and Architectures, pp. 147-156, June 1994.

[Lei 92] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays - Trees - Hypercubes Morgan Kaufmann Publishers, San Mateo, CA,
1992.

[Lei+ 94] C. E. Leiserson, et al. ”The Network Architecture of the Connection Ma-
chine CM-5,” Proc. 4th ACM Symp. on Parallel Algorithms and Architec-
tures, June 1992. Revised March 21, 1994.

[ND 90] M. Noakes and W. J. Dally. ”System Design of the J] Machine,” Sizth MIT
Conference on Advanced Research in VLSI, pp. 179-194. MIT Press, 1990.

[Ran 88] A. Ranade. Fluent Parallel Computation. PhD thesis, Yale University,
New Haven, CT, 1988.

[RSTG 95] S. Rao, T. Suel, T. Tsantilas and M. Goudreau. ” Efficient Communication
Using Total-Exchange,” Proc. 9th IEEFE International Parallel Processing
Symposium, pp. 544-555, April 1995.

[Vall 90] L. G. Valiant. ”General Purpose Parallel Architectures.” In J. van
Leeuwen, ed., Handbook of Theoretical Computer Science, Volume A, pp.
943-972. Elsevier Science Publishers B.V., Amsterdam, The Netherlands,
1990.

[Val2 90] L. G. Valiant. ” A Bridging Model for Parallel Computation,” Communi-
cations of the ACM 33, pp. 103-111, 1990.

[Wol 89] R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1989.

This article was processed using the IATpX macro package with LLNCS style

