
Tenet Suite 1 and
the Continuous Media Toolkit

Peter Staunton
staunton@tenet.CS.Berkeley.EDU

Tenet Group
University of California at Berkeley &

International Computer Science Institute

TR-95-028
June 1995

Abstract
The Continuous Media Toolkit (CMT) [1][2] is a flexible toolkit which facilitates development of
local and distributed continuous media applications. Data transfer across a computer network is
provided on a connectionless, best-effort basis using a network protocol called “Cyclic-UDP” [3].
A second set of network protocols, called “Tenet Suite 1” [4][5], has been designed to provide a
simplex, unicast, connection-oriented service to realtime traffic in a packet-switched internetwork,
with guaranteed performance in terms of data throughput, end-to-end delay, delay jitter, and loss
rate. This report describes an extension to CMT which allows an application developer to employ
the guaranteed network services of Tenet Suite 1.

Keywords: multimedia, continuous media toolkit, Tenet protocols, real-time communication,
continuous media player.

1

1. Introduction
This report is organized as follows. In order to appreciate the issues involved in using Tenet Suite
1 and in extending CMT, it is important that the reader be familiar with both. To set the scene for
the remainder of the report, section 2 presents both systems. The addition to the toolkit of support
for JPEG decompression using the DEC J-Video hardware is described in Section 3. Motivation
for this work is also given in that section. Section 4 describes the development of new toolkit
objects which give the application developer access to the guaranteed network services of Tenet
Suite 1. Section 5 describes the extension of a distributed network playback application, the
Continuous Media Player, to make use of these new network toolkit objects. Section 6 offers
suggestions for future work, and finally, Section 7 concludes the report.

2. Background
This section presents a brief description of CMT and of the Tenet Suite 1 network protocols.
Familiarity with both will help greatly in understanding the work described in the later sections.

2.1 Overview of the Continuous Media Toolkit
CMT was developed by the Berkeley Plateau Multimedia Research Group at the University of
California at Berkeley, led by Professor Lawrence A. Rowe. This is a freely distributed software
package which facilitates the development of multimedia applications. It is a collection of object
types which can serve as audio or video sources, audio or video devices, or intermediate objects
which transfer or filter continuous media data. Support is provided for a wide variety of media
formats, hardware platforms, and operating systems. The toolkit is based on Tcl/Tk [6].
Applications can be easily developed by writing short, simple scripts without any familiarity with
compiled programming languages such as C or C++. This API empowers the developer to create,
connect, control, and destroy objects with relative ease. This project used the first alpha release of
version 3.0 of CMT (CMT3.0a1 released March 1995).

Figure 1: CM Player user interface.

Information is transferred from source object to destination object by means of a continuous flow

2

of data called a stream. An application that plays movies, for example, may use parallel audio and
video streams. In this case, each stream consists of a sequence of clips where each clip is a segment
of data from an audio or video file. Clearly, objects need to be linked in some way to ensure that
they operate in a synchronized fashion. This synchronization is achieved by means of clock objects
(called logical time system “LTS” objects) to which all time-critical objects refer. The logical time
of these clocks can progress at a rate faster or slower than real time to allow the user to “fast-
forward” or “slow-forward” through a movie. Logical time can also advance at a negative rate to
allow movie playback in reverse.

A number of sample applications accompany the toolkit. The most extensive of these is the
Continuous Media Player (CM Player) [7]. This allows a user to select and view a movie stored on
either a local or remote file server, or a combination of both. The graphical user interface is shown
in Figure 1.

The interface controls are similar to those provided by a conventional video player, with support
for playback either in forward or reverse at a speed of the user’s choice. The user chooses a movie
script by clicking on the “File” button and selecting from a file display box. A movie script
comprises a list of audio or video clips. Each clip entry specifies media format and data location
information. The “Options” button provides access to a set of menus which allows the user to
select among alternative audio and video devices (e.g. hardware Motion JPEG, software-only
Motion JPEG etc.).

2.2 Overview of Tenet Suite 1
Tenet Suite 1 is a set of network protocols developed by the Tenet Group at the University of
California at Berkeley and at the International Computer Science Institute, led by Professor
Domenico Ferrari. This protocol suite guarantees end-to-end network performance over a shared,
packet-switched, data network to an application which has realtime requirements. This service is
achieved through resource management, connection admission control, and appropriate packet
service disciplines within the network routers. During connection establishment, the application
describes its traffic in terms of parameters such as minimum inter-message time and maximum
message size. It also specifies performance requirements in terms of end-to-end delay, delay-jitter,
and loss rate. If the connection request is accepted, the protocol guarantees service and data
transfer can take place. If, on the other hand, the requested performance cannot be guaranteed, the
connection request is rejected and no data transfer can take place. This action is analogous to
receiving a busy signal during an attempt to make a telephone call.

RCAP

Real-time

Channel

Administration

Protocol

RMTP

Real-time Message
Transport Protocol

RTIP

Real-Time
Internet Protocol

UDP

User Datagram
Protocol

TCP

Transport
Ctrl. Protocol

IP

Internet Protocol

Applications

Common datalink layer

Figure 2: Network architecture of Tenet Suite 1.

3

The architecture of Tenet Suite 1, shown in Figure 2, consists of the network protocols RTIP,
RMTP, and RCAP. Real-Time Internet Protocol (RTIP) [8] exists at the network layer and
guarantees end-to-end packet delivery. Real-time Message Transport Protocol (RMTP) is a
transport layer protocol that sits above RTIP, fragmenting and reassembling messages as required.
Real-time Channel Administration Protocol (RCAP) [9][10] is responsible for channel
establishment, status reporting, and channel teardown. As the figure shows, this protocol suite
coexists with the Internet protocols TCP/IP and UDP/IP. Applications have simultaneous access to
services from both.

3. CMT support for J-Video hardware
This section describes work done to allow CMT to exploit the image decompression services of the
DEC J-Video hardware.

3.1 Motivation
Two types of compressed video are currently supported within CMT, namely Motion JPEG and
MPEG.

Motion JPEG is simply a sequence of still images, each image having been compressed using the
JPEG (Joint Photographic Experts Group) [11] standard for still image compression. Each frame
can be viewed as being independent of all others since only intra-frame compression is performed.

MPEG (Motion Picture Experts Group), on the other hand, is a standard designed specifically for
compression of video. Both intra-frame and inter-frame compression are performed, leading to a
dependency between frames not found in Motion JPEG.

Compressed images are stored in files, and transferred, frame by frame, to the user’s location
where they are decompressed and displayed using a local X server.

CMT provides image decompression in both hardware and software [12]. On a DEC 5000
workstation running ULTRIX 4.2A, typical display rates of 1 frame every second and 1 frame
every 2-3 seconds, were observed for software decoding of S/F sized (320x240) video using
MPEG and Motion JPEG respectively. Image decompression requires intensive processing which,
when implemented in software, introduces a large latency. This gives rise to a bottleneck in the
decompression process, with frames being displayed at a rate bounded by the rate of image
decompression. Hence, the low frame display rate observed above. All frames which cannot be
decompressed in time are dropped. This effect is disturbing to the user, since jerky movement is
displayed, rather than smooth video. Real-time software decompression can generate smooth
motion if smaller images (e.g. 160x120) or faster processors (e.g. current generation RISC
processors that operate at 100 SpecInt92s) are used.

In order to construct an impressive demonstration of the use of Tenet Suite 1 with CMT, it is
necessary to provide the user with smooth video in whatever environment this suite of network
protocols is supported. For the purpose of this project, this environment is a cluster of DEC 5000
workstations. The available video hardware is the DEC J-Video board, which will facilitate a
higher frame display rate since decompression is done in hardware as opposed to software.

4

The J-Video board was an engineering prototype for the DEC J300 product. It has a C-Cubed
processor chip which can decode 60 fields per second. The task at hand here, therefore, is to
provide support within CMT for JPEG decompression performed by the J-Video board.

3.2 Solution
Figure 3 shows the architecture of the J-Video CMT object. “jvdriver” is the driver for the J-Video
board. It serves as the interface to the underlying hardware which reads a compressed image from
memory and writes the decompressed image back into memory. This driver must run as a separate
process. Commands are communicated to the driver via a library of function calls called
“JvDriverInt”. In an effort to prevent future confusion, it should be noted that there are two drivers
with the same name (jvdriver) available, one of which is compatible with this library, a second
which is not. The program “jvdriver” must be executed before one starts an application that relies
on its services.

“MjpegPlay” is the CMT object to which compressed JPEG images are passed. This object is
responsible for decompression and subsequent display of the image. One or more devices would
usually be available to provide JPEG decompression services to this object. For example, such a
device implemented in software is provided with the toolkit. For our purposes, we require that the
J-Video hardware provide these services. We shall refer to the corresponding device as
“MjpegJvideoDevice” following the naming convention of the toolkit.

MjpegPlay

MjpegJvideoDevice

JvDriverInt Xlib

X Server

J
V
I
D
E
O

jvdriver

Shared memory segments

Figure 3: JPEG Decompression with J-Video board.

A pair of shared memory segments is indicated in Figure 3. A shared memory segment is an area of
memory which is shared by two or more processes. This shared property obviates the need to
involve the CPU in copying data from the address space of one process to that of another since
they both have direct access to this memory, leading to reduced latency. For a shared memory
segment to be created, one process must first reserve this area of memory. Other processes that
require access must perform an “attach” operation to map the memory into their logical address
spaces.

The X server shown is a standard server with the addition of the MIT shared memory extension.
This extension allows the X server to display images stored in shared memory segments.
Communication with the X server is by function calls from the library “Xlib”.

5

Before image decompression can occur, “jvdriver” must reserve these two shared memory
segments, one from which it can read compressed JPEG data, the other to which it can write
decompressed image data. The former is shared with the object “MjpegPlay”; the latter is shared
with the X server. Unfortunately, “jvdriver” insists on reserving these segments itself rather than
being able to attach to previously reserved segments. This inflexibility proves to be inconvenient
since it requires that the compressed image data be copied into the shared memory segment each
time a frame needs to be decompressed. Previous work has shown, however, that the time taken for
this copy is small relative to the time taken by the J-Video hardware to decompress an image. The
impact on the image display rate is therefore not significant.

“jvdriver” also requires that parameters such as image dimensions and JPEG quantization factor be
defined as part of an initialization process. Subsequent change of these parameters requires the
device to be re-initialized.

The course of events is as follows for each individual frame. Object “MjpegPlay” receives a
pointer to the location of the compressed image data. This data may come from a file object or
from a network destination object. “MjpegPlay” copies the data from this location to the memory
segment shared with “jvdriver”. Using a call from the “JvDriverInt” library, a command is passed
to “jvdriver” to commence JPEG decompression. “jvdriver” reads the compressed data from this
segment, decompresses it, and writes the resultant image data to the memory segment it shares with
the X server. Meanwhile, “MjpegJvideoDevice” blocks awaiting completion of the decompression
operation. When the driver signals completion of decompression, “MjpegJvideoDevice” commands
the X server to update the display with the image from the shared memory segment.

Finally, when the “MjpegPlay” object is destroyed, commands are passed to “jvdriver” to
relinquish the shared memory segments and to the other processes to detach from it.

4. New CMT objects for Tenet Suite 1
This section takes a closer look at “Cyclic-UDP” [3], the set of network protocols already
supported by CMT. The functional requirements of the toolkit’s network objects are discussed, and
consideration given to those of new objects that use the protocols of Tenet Suite 1. The
implementation of these new objects is described. Details are given on how these can be used by
the application developer.

4.1 Cyclic-UDP
CMT is based on Tcl/Tk [6], a scripting language and interface toolkit developed by Professor
John Ousterhout at the University of California at Berkeley. A number of commands have been
added to the basic Tcl/Tk interpreter which allow creation and manipulation of media objects, and
facilitate distributed programming. When we execute this extended interpreter, we create what is
called a “CM process”.

CMT is a collection of objects or building blocks which can be used to construct an application. If
the source of the data (e.g. a file object) is local to the data destination (e.g. a play object), a single
CM process is sufficient. If, on the other hand, the source is not on the same host as the
destination, then a CM process is required on both hosts. An example of this is shown in Figure 4.

6

Here, we have a user at host B playing a Motion JPEG movie located at host A. Image data is
passed from source (Motion JPEG file object) to destination (Motion JPEG play object) via the
intermediate network objects “Packet Source” and “Packet Dest”. We omit to show LTS clock
objects on hosts A and B that synchronize the file and play objects. A control object on host B
allows the CM process on B to pass Tcl commands to a control object on A over a TCP/IP
connection. These commands would typically be of the type “object create”, “object configure”,
“start play”, “stop play”, “object destroy”, and so forth.

Let us now focus on the network objects “Packet Source” and “Packet Dest”. These communicate
using a protocol called “Cyclic-UDP”. This is a best-effort, no-guarantee protocol based on the
Internet transport layer and network layer protocols UDP/IP.

CM process on host A CM process on host B

Mjpeg
Clipfile

Packet
Source

Packet
Dest

Mjpeg
Play

Control
Object

data data

data and
network control

UDP/IP

TCP/IP

control

Figure 4: Distributed CM application with Cyclic-UDP.

Cyclic-UDP performs the following functions:
• Data transfer: payloads of continuous media data with prepended packet headers are sent in

packets from “Packet Source” to “Packet Dest”.
• Fragmentation: frames of continuous media data are fragmented into packets of a fixed

maximum size, typically 8000 bytes. “Packet Source” fragments each frame into a number of
packets and “Packet Dest” performs reassembly to the original frames.

• Detection of packet loss: “Packet Dest” monitors which packets have and have not been
received and detects if a packet has been lost. It may then request the “Packet Source” to
resend the packet. This request is communicated by means of a UDP datagram sent in the
direction opposite to the flow of data which explains the two-ended arrow between the two
network objects in the diagram of Figure 4 above.

• Flow control: measurements and calculations are made which estimate available bandwidth,
end-to-end delay, delay jitter, and packet loss rate between the network objects. These
estimates are communicated by “Packet Dest” to “Packet Source”, again by UDP datagrams,
so that it can adaptively regulate packet transmission.

• Prioritization: it is possible to place greater importance in a media-specific way on some
frames relative to others, so that any effect of increased network load will have the least impact
on the quality of the user’s display. An example is to place I frames at a higher priority level
than P and B frames for transmission of an MPEG data stream.

4.2 Design of the Tenet objects
In order to add the capability of transferring data using Tenet Suite 1 to CMT, we must design new
network objects which can substitute for “Packet Source” and “Packet Dest” above. We call these
new objects “Tenet Source” and “Tenet Dest”. The application of Figure 4 now appears as shown

7

in Figure 5.

CM process on host A CM process on host B

Mjpeg
Clipfile

Tenet
Source

Tenet
Dest

Mjpeg
Play

Control
Object

data data

data

RMTP/RTIP

TCP/IP

control

Figure 5: Distributed CM application with Tenet Suite 1.

Let us examine each of the functions provided by Cyclic-UDP, and consider whether these are
required in our new Tenet objects.
• Data transfer: obviously, we still need to transfer continuous media data from “Tenet Source”

to “Tenet Dest”.
• Fragmentation: RMTP, the transport layer of Tenet Suite 1, performs any necessary

fragmentation and reassembly of messages into packets and of packets into messages
respectively. Prior fragmentation at the user level of the application is unnecessary, so this
function is not required when using the Tenet objects.

• Detection of packet loss: during connection establishment, a statistical or deterministic
guarantee of message loss rate is made by RCAP. If we request a loss rate of zero with
probability of one, detection of packet loss is not an issue since none should occur. This is,
therefore, another function which will not be needed in the Tenet objects.

• Flow control: during connection establishment, we specify to RCAP a number of parameters
that describe the traffic to be carried. Xave is the minimum average inter-message time. It is
the inverse of the maximum message rate. I is the interval over which this average is to be
calculated. Xmin is the minimum inter-message time. Smax is the maximum message size. If
RCAP accepts the channel request, we are guaranteed sufficient throughput provided our
traffic does not step outside the bounds of this traffic description. Flow control, then, is no
longer an issue since we do not need to regulate the transmission rate at the “Tenet Source”.
Estimates of bandwidth, end-to-end delay, and delay jitter are no longer required. In fact, we
need not feed back any network control information from “Tenet Dest” to “Tenet Source”. We
can represent the unidirectional information flow between these by a single-ended arrow as in
Figure 5.

• Prioritization: since RCAP guarantees us sufficient bandwidth for our continuous media
traffic, prioritization of frames is of no benefit since we expect that all frames will be delivered
and be delivered on time.

4.3 Use of the Tenet objects
The Tenet objects have been implemented using the C programming language [13][14]. New Tcl
commands have been added to the toolkit to allow the application developer to create, configure,
control, and destroy these objects. The developer should require no knowledge or familiarity with
the underlying C code.

8

4.3.1 Object creation
Tenet objects are created using the following lines of Tcl in a script:

1. set td [tenetDest “”];
2. set ts [$cm create tenetSrc];

The first line creates a “Tenet Dest” object on the local host and stores the name in variable $td. A
port is registered with RCAP using the function RcapRegister and the port number is stored as
an instance variable of the object. A child process is spawned which blocks on the function call
RcapReceiveRequest while it waits for an establish channel request on that port. It is because
this call blocks that we require an extra process. A pipe is also created so that information can be
passed back to the parent from the child when this request arrives. The parent process is free to
return to the Tcl script where it should later send a command to the “Tenet Source” to attempt
channel establishment to this host and port number.

Line two creates a “Tenet Source” object on the remote host and stores the name in variable $ts.
$cm refers to a control object which passes commands to the remote CM process as shown in
Figure 5.

4.3.2 Channel establishment
Since Tenet Suite 1 provides connection-oriented services and guarantees on a per-connection
basis, a channel must be established before data transfer can take place. The following lines of Tcl
code will establish such a realtime channel. Lines 3-9 can be implemented using a single
configuration command. They have been shown separately here for ease of reference.

3. $ts config -xave 40;
4. $ts config -xmin 20;
5. $ts config -I 1000;
6. $ts config -smax 10000;
7. $ts config -delay 50;
8. $ts config -jitter 5;
9. $ts config -dest [$td address];
10. $td connect;

The second half of line nine returns the address at which the “Tenet Dest” expects to receive an
establish channel request. This address consists of an IP address, followed by a RCAP port
number. The rest of this line commands the “Tenet Source” to make a connection to this
destination. It does this by calling the function RcapEstablishRequest which, if successful,
returns the logical channel number. It then associates a socket with this logical channel by means
of the setsockopt function call. If unsuccessful, an error is returned to the application.

The traffic description parameters are specified in lines three through six. The values of Xave,
Xmin and interval I should be specified in milliseconds. RCAP accepts these parameters in a
different format where the integer 65536 signifies 1 second but the C code for the “Tenet Source”
object will do the necessary conversion. Smax is the maximum message size in bytes. If values are
not specified in advance of the channel request, default values of 50, 25, 1000, and 10000 are
assumed for Xave, Xmin, I, and Smax respectively.

Channel performance parameters are set in lines seven and eight. These are the end-to-end delay

9

bound and the delay jitter bound, both in milliseconds. If not specified, these default to 100 and 5
respectively. Other performance parameters passed to RCAP are the end-to-end statistical delay
probability, end-to-end statistical “no-drop” probability, and end-to-end statistical jitter
probability. In this implementation, values of one have been used for each of these to give a fully
deterministic channel. These values are unalterable by, and invisible to, the application developer.
It would be straightforward, however, to add C code to the “Tenet Source” object to provide the
developer with access to these.

If the RcapReceiveRequest call above is successful, the child process approves the request by
calling the function RcapEstablishReturn. The success status of the RcapReceiveRequest
call and the logical channel number of the established channel are written to the pipe before the
child process dies.

Finally, line ten tidies up at the destination in the following way after the attempt to establish a
channel. Information from the child process is retrieved from the pipe. If a channel has been
established, we associate a socket with this logical channel using a setsockopt call as we did at
the source. A Tcl/Tk file handler is created to provide a callback when data arrives at this socket.
If a channel has not been established, an error message is returned to the application.

4.3.3 Transfer of continuous media data
An object in CMT sends data to a local object by passing it a scatter buffer list which is a list of
pointers to buffers where the actual data is stored. There exists a scatter buffer list for each frame
of data.

When a “Tenet Source” object has frames to send, it prepends a small header to each frame and
sends them, individually, to the socket which is associated with the realtime channel. This header
contains a frame number, the frame size, and a timestamp of the time of transmission. The size of
this header, 16 bytes, is much smaller than the 68-byte header prepended to each packet in Cyclic-
UDP. This size reduction is an indication of the greater functionality of the network objects in
Cyclic-UDP.

At the destination, a “Tenet Dest” object will receive a callback from a Tcl/Tk file handler
whenever there is incoming data to be read from the logical channel. The header is removed and the
remaining data is written to a buffer. A scatter buffer list is constructed and passed to the next
object which is then free to manipulate the data however it wishes.

Once we have specified traffic characteristics to RCAP during channel establishment, it is
important that we do not violate these parameters so that the guarantees can be fulfilled. Recall
that Xmin is the minimum inter-message arrival time. We must ensure that the application waits for
at least this length of time before sending another frame. This constraint is achieved using a Tcl/Tk
timer handler as follows. If the “Tenet Source” object sends a frame, it checks to see if any further
frames are queued up to be sent. If there are, a Tcl/Tk timer handler is created. This handler will
wait the period of time given by Xmin (during which time other operations can be performed), after
which a callback will be made to the function to send another frame. This function will check for
other waiting frames as before, schedule a callback if necessary, and so on until all the frames have
been sent or the queue has been cleared for some other reason.

Once the objects have been created and linked both to themselves and to clock objects, the

10

application developer does not need to be aware of the intricacies of how frames are stored in
buffers, sent to sockets, passed to objects in scatter buffer lists and so forth. This is all
implemented in C code, to which the developer should be oblivious.

4.3.4 Channel teardown
Tenet objects are destroyed by the following lines of Tcl code:

11. $td destroy; ## $td is a Tenet Dest object.
12. $ts destroy; ## $ts is a Tenet Source object.

When the “Tenet Dest” object is destroyed, the channel is closed using the RcapCloseRequest
function call. The RCAP port is also released using the RcapUnregister call. Data sockets used
in “Tenet Dest” and “Tenet Source” objects are closed when these objects are destroyed.

4.3.5 Interaction of Tenet objects with other objects
It has already been described how one Tenet object transfers data to the other but not how these
interact with other objects in the toolkit. This is achieved in the standard CMT fashion. Take for
example the application of Figure 5. To arrange that a Motion JPEG file object $file sends data to
a “Tenet Source”, and that a Motion JPEG play object $play receives data from the corresponding
“Tenet Dest”, the following lines of Tcl code can be used:

13. $file config -outCmd “$ts accept”; ## $ts is a Tenet Source object
14. $td config -outCmd “$play accept”; ## $td is a Tenet Dest object

These commands define the output command of objects. When an object has data to pass on to
another object, it calls this command.

Please note that the lines of code above have been numbered for reference purposes only and do not
together form a complete application in any shape or form.

4.4 Simpler implementation
The network objects of Cyclic-UDP have much greater functional responsibility than the Tenet
objects. This is reflected in the number of lines of code used to implement them, 3716 for those of
Cyclic-UDP, as opposed to 2271 for the Tenet objects. One could claim, therefore, that an
advantage of the Tenet approach is that the distributed application need not be as complex since
there is greater knowledge of, and certainty in, the network services available.

5. Tenet objects in the Continuous Media Player
The previous section described the addition of Tenet objects to CMT which allows the developer to
build an application that uses the Tenet Suite 1 of network protocols for data transfer. To test and
demonstrate the use of these objects, the application CM Player has been extended as described in
this section.

5.1 Configuration of network
Before applications which use the Tenet Suite 1 can be executed, the network must first be
prepared. The transport layer and network layer protocols, RMTP and RTIP, must be installed in

11

the kernel at each node of the proposed route. An RCAP daemon must be running on each node,
using a configuration file that is appropriate to the architecture of the node and the intended route.

5.2 Traffic and performance parameters
Section 4.3 described the RCAP traffic and performance parameters of the “Tenet Source” object
which the developer can set using Tcl commands. The question remains, what values should the
developer use for these parameters?

5.2.1 RCAP traffic parameters
Recall that Xave is the minimum average inter-message time. Since each message passed to RMTP
holds a single frame of data, Xave should be the minimum average inter-frame time. This value is
the inverse of the maximum frame rate.

In CM Player, Xave is set using the following lines of Tcl code in the case of a MPEG or Motion
JPEG video stream:

15. $file config -maxFrameRate 30;
16. $ts config -xave [expr 1000/30];

The variable $file refers to a file object whose output frame rate is set in line 15. Xave is then
configured to be the inverse of this frame rate. The factor of 1000 is used to convert Xave to
milliseconds. The variable $ts refers to a “Tenet Source” object as before.

With MPEG and Motion JPEG, each frame holds a single image or video sample. The situation is
different for an audio stream where a sample is only one or two bytes of data. In this case, many
samples of data are collected together to form a frame. Frames are passed to the next object with a
frequency given by the “cycle time”. Xave can, therefore, be set equal to this cycle time. In CM
Player, Xave for an audio stream can be set to one second using the following lines of Tcl code:

17. $afile config -cycleTime 1.0;
18. $ts config -xave 1000;

The variable $afile of line 17 refers to an audio file object whose cycle time is set to one second.
Line 18 sets Xave to the same value. Again a factor of 1000 is used to express Xave in
milliseconds.

Recall that traffic parameter I is the interval over which Xave is calculated. In CM Player, we do
not set this value, so it assumes its default value of 1000 milliseconds.

Recall also that the parameter Xmin is the minimum inter-message time. When the “Tenet Source”
object sends a frame, if it has further frames waiting, it creates a Tcl/Tk timer handler to call itself
back after Xmin milliseconds. Since the application may be performing an atomic task at the
scheduled time, the callback may not always be made exactly on time. It is therefore not
recommended that Xmin be set equal to Xave since these slightly late callbacks could give rise to
frame loss in the “Tenet Source” object. Measurements for a message rate of 30 frames per second
have shown that if Xmin is set to 80% of Xave or lower, all frames are transmitted. In the script for
CM Player, Xmin is set equal to 80% of Xave for this reason. An alternative solution would be to
allow the developer to specify any Xmin value up to Xave. The “Tenet Source” object would then

12

reduce this value before giving it to RCAP.

Finally, Smax is the maximum message size. Since each message is one frame of data, this value is
the maximum frame size. Before passing this value to RCAP during connection establishment, the
“Tenet Source” object will add the size of the frame header which was discussed in section 4.3.3.

In the case of Motion JPEG and MPEG video streams, the following lines of Tcl code show how
we set the value of Smax:

19. $file addSegment 2 3 -start 5 -end 6;
20. $ts config -smax [$file maxSize];

The maximum frame size is stored as part of the Motion JPEG or MPEG file object for each
segment which makes up the movie. These objects have been extended so that, by passing it the
single parameter “maxSize” as in the second part of line 20, the maximum frame size over all
segments of the movie is determined and this value is returned. The remainder of this line sets the
Smax parameter of the “Tenet Source” object to be equal to this value. Line 19 has been included
to point out that data segments which make up the movie must be added to the file object before it
can return an accurate value for the maximum frame size.

In the case of an audio stream, the data rate and cycle time are stored for each audio file object.
The data rate is a function of the audio sampling rate of the encoded audio, and the number of
bytes per sample. The frame size can be calculated by taking the product of the data rate and the
cycle time. For example, if the sampling rate were 8000 samples per second, each sample being a
single byte, the data rate would be 8000 bytes per second when audio is played back at normal
speed. Furthermore, if the cycle time is 0.5 seconds, then the maximum frame size should be 4000
bytes.

21. $ts config -smax [$afile maxSize];

This line of Tcl code shows how the Smax parameter is set for an audio stream. The audio file
object has been extended to return this maximum frame size when passed the single parameter
“maxSize”. The Smax parameter of the “Tenet Source” is then set equal to this value.

5.2.2 RCAP performance parameters
As described in section 4.3.2, the developer may configure the “Tenet Source” object with desired
values for end-to-end delay and delay jitter bounds. In CM Player, these values have not been
specified and will, therefore, assume their default values of 100 and 5 milliseconds respectively.

5.3 Environment variable CM_HOSTNAME
The situation can arise where the user’s host has more than one network interface and it is
preferred that RCAP channels use one of these instead of the others.

For example, we have used faith.CS.Berkeley.EDU and truth.CS.Berkeley.EDU during
development. These two hosts are connected to both an FDDI ring and an Ethernet. The user’s host
can be called faith or faith-fddi by truth to indicate which route should be used. These two
host names (faith and faith-fddi) also have different IP addresses to distinguish the two
network interfaces on faith.

13

By default, a source network object will send data to the IP address which corresponds to the
user’s host name as returned by the function gethostname. In our example, this address is the IP
address of faith.CS.Berkeley.EDU which is 128.32.33.105. We prefer, however, that RCAP
channels be established over the FDDI route instead. So that this can be achieved, an environment
variable CM_HOSTNAME has been introduced. This variable is set to faith-
fddi.CS.Berkeley.EDU on the user’s host before CM Player is executed. The “Tenet Dest”
object will use the name given by this environment variable if it exists and return the corresponding
IP address which in this case is 192.107.102.70. If the environment variable does not exist, the
host name returned by gethostname is used instead.

5.4 Choice of network protocols
As previously discussed, Tenet Suite 1 provides a number of guarantees to realtime traffic on a
per-connection basis. Up until now, however, we have assumed that the available network
resources have always been ample to provide us with whatever level of service is requested. If such
resources are not available, no guarantees are made and the request for channel establishment is
denied.

The question then arises, what is the application to do if the request is rejected? A few different
options are possible. One such option is to reduce the requested quality of service. For example,
one could specify a lower frame rate by increasing the Xave and Xmin traffic parameters. The
source file object would be configured to output a lower frame rate to reflect this change. Also, one
could request less stringent end-to-end delay and delay jitter bounds. In CM Player, delay jitter is
not normally an important factor since frames, when received by a play object, are usually not
played immediately. They are typically received in advance of their correct play time and stored
until that time arrives.

In fact, here lies another advantage of the Tenet protocols. Memory is normally used within the
application to smooth out delay jitter. One could reduce the amount of memory used by the
application for this purpose by relying on the delay and delay-jitter bounds guaranteed by the
network. Knowledge of the end-to-end delay and the corresponding jitter allows a reduction in the
“send-ahead time” i.e. the amount of time in advance of the play time that the source sends a
frame. In this way, a guaranteed network service can reduce the startup latency of an application
compared with a best-effort network service. In this case, the guaranteed jitter bound becomes
important. If one increases it to improve the chances of channel acceptance, one must also modify
the send-ahead time appropriately.

A second option is to revert to an alternative set of network protocols. Since the network cannot
provide us with the guarantees we wish for, why not switch to a set of network protocols which
function on a best-effort, no-guarantee basis such as Cyclic-UDP? Without guarantees, Cyclic-
UDP will estimate values for available bandwidth, end-to-end delay, and delay jitter. It will use this
information to adaptively tune itself for optimal fidelity to the user, given the current condition of
the network.

The power to change to a different network protocol suite could be given to a user in the form of a
switch or a menu as part of the user interface. Applications of the future may incur different billing
charges dependent on whether there is guaranteed or best-effort service. The user may therefore be
required to make a conscious decision between them. In CM Player, we have added an extra option

14

“Network Protocols” to the “Options” menu which allows the user to select between the default
selection “Tenet Suite 1” and an alternative “Cyclic UDP” as illustrated in Figure 6. By default,
CM Player uses Tenet objects for data communication across a network. At the user’s request, the
application can shift to the packet objects of Cyclic-UDP. The addition of this option required only
8 extra lines of Tcl code and was therefore an inexpensive modification.

Figure 6: Choice of network protocols in CM Player.

Perhaps the protocol suite is of no concern to the users and should be invisible to them. One might
argue that the user interface should be kept as simple as possible and that this option is one
complication with which the user should not have to deal. If so, the decision is then the
responsibility of the application. It should, by negotiation with the network, be able to decide if a
guaranteed or a best-effort network paradigm is most suitable at any given time and adjust its data
communication mechanisms appropriately.

One final possibility is that a combination of two sets of network protocols be used. As mentioned
earlier, Cyclic-UDP is able to prioritize frames in a media-specific fashion so that more important
frames experience a higher effective network throughput. A continuous media stream could be
subdivided in this way into separate streams of different priority. Protocols that provide guarantees
could be used for the higher priority sub-streams while sub-streams of a lower priority could be
carried by a different protocol suite on a best-effort basis.

6. Future work
This section offers suggestions for future work related to this project.

6.1 Measurements
Measurements should be taken using CM Player to compare the performance of Tenet Suite 1
versus that of Cyclic-UDP under loaded and unloaded network conditions. The objective would be

15

to validate further the guaranteed service that Tenet Suite 1 claims to provide. A suitable location
for such tests would be the Tenet Group’s PC testbed which is a mesh of two-host Ethernet
segments connecting hosts running BSDI BSD/OS 2.0 UNIX. The intention was to include details
of these measurements in this project but at the time of project completion, the PC implementation
of Tenet Suite 1 is not yet stable enough for this purpose.

6.2 Application to demonstrate the Tenet protocols
Now that Tenet network objects have been added to CMT, it would not be difficult to develop an
application which would play two movies from the same remote source on the user’s workstation.
Two streams of data would flow in parallel, one for each movie. One would use Tenet network
objects, the other Cyclic-UDP packet objects. Cross-traffic would then be introduced to load the
network, letting the user easily compare the fidelity of video and audio provided by the two sets of
network protocols. Whereas the measurements of Section 6.1 above would be a scientific,
quantitative validation of the Tenet protocols, the demonstration application described here would
be best suited to public exhibitions of the Tenet Group’s work.

6.3 CMT objects for Tenet Suite 2
The suite of “realtime” network protocols we have used here, Tenet Suite 1, provides a unicast
data service. Many continuous-media applications, however, will require performance guarantees
in a multicast paradigm rather than a unicast one. Video-conferencing with many participants is
one such example. The second suite of protocols from the Tenet Group, called “Tenet Suite 2”
[15][16], will support multiparty communication with guarantees on throughput, end-to-end delay,
and delay jitter bounds.

Network protocols that employ feedback of control information from the destination to the data
source are said to operate in a closed-loop fashion. Transport Control Protocol (TCP) and X.25
are examples of this, as is Cyclic-UDP. Such protocols are difficult to extend for use in the
multicast paradigm since the source can soon get overloaded filtering, and acting upon, feedback
information as the number of destinations increases.

Protocols that operate in an open-loop fashion, conversely, do not require feedback of control
information. In a network that does not offer guarantees but transfers data on a best-effort basis,
reliability can be achieved by means of forward error correction mechanisms. On the other hand,
network protocols which do offer guarantees, such as the Tenet suites, should not require feedback
since the source has already received assurances regarding the level of service provided by the
network and the ability of the receiver to absorb the traffic directed to it, even in the worst case.

In this project, network objects in CMT that operate in a closed-loop fashion have been replaced by
“Tenet objects” that operate in an open-loop fashion. It has been shown that, if the network
provides guarantees to the data source, continuous media applications such as CM Player can
transfer data to a destination without the need for feedback control. Now that this work has been
done, the task of developing toolkit objects for multicast communication should be much easier.
Just as our Tenet objects have used Tenet Suite 1 protocols, the new objects could use the services
offered by the next suite of protocols, Tenet Suite 2. In fact, most of the code could be replicated in
the new objects, a notable exception being the replacement of the code which interfaces with RCAP
with that which, instead, would interface with the new control protocol RCAP2. The extension of
the application CM Player to send multicast data streams to many users, rather than a unicast

16

stream to a single user, should be straightforward.

7. Conclusion
Experiences with the Tenet Suite 1 network protocols and the Continuous Media Toolkit have been
described. New network objects were added to the toolkit which can substitute for those of Cyclic-
UDP, allowing the application developer to easily employ the guaranteed network services of Tenet
Suite 1. CM Player, a continuous-media application which allows a user to view a movie stored at
a remote location, has been successfully extended to include these new network objects. The
advantages of an application having a selection of network protocols at its disposal have been
discussed, providing data transfer on either a best-effort or a guaranteed basis, the choice being
influenced by the condition of the network at that time. Support for JPEG decompression using the
J-Video board has also been added to the toolkit to allow smooth motion video in a development
environment where the network protocols of Tenet Suite 1 are available. Finally, suggestions for
further work which this project makes possible have been made, the most exciting of which is the
addition of multicast stream support to CMT by using the services of the emerging set of realtime
protocols in Tenet Suite 2.

Acknowledgments
I would like to thank Professor Domenico Ferrari for his friendly guidance during this work. I am
grateful to Professor Lawrence A. Rowe who provided valuable feedback for this report. Thanks
must also go to Tenet Group members Wendy Heffner, Bruce Mah and Ed Knightly who have
been generous with their time when I experienced difficulty. Finally, I must acknowledge my
parents who have always been a source of encouragement and moral support.

References
[1] K. Patel, Introduction to CMT, document to accompany the Continuous Media Toolkit,

ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/cmt/Hidden/cmt-3.0.a2.tar.Z (1995).

[2] L. A. Rowe, Continuous Media Applications, Presented at Multipoint Workshop held in
conjunction with ACM Multimedia '94, San Francisco, CA, (Nov. 1994).

[3] B. C. Smith, Implementation Techniques for Continuous Media Systems and
Applications, Ph.D. thesis in Computer Science, University of California at Berkeley,
(September 1994).

[4] D. Ferrari, A. Banerjea, and H. Zhang, Network Support for Multimedia - A Discussion
of the Tenet Approach, Computer Networks and ISDN Systems, vol. 26, pp. 1267-1280,
(1994).

[5] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma, and H. Zhang, The Tenet Real-
Time Protocol Suite: Design, Implementation, and Experiences, Technical Report TR-94-
059, International Computer Science Institute, Berkeley, CA, (November 1994).

17

[6] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley (1994).

[7] L. A. Rowe and B. C. Smith, A Continuous Media Player, Proc. 3rd. Int. Workshop on
Network and OS Support for Digital Audio and Video, San Diego CA (November 1992).

[8] D. Verma and H. Zhang, Design Documents for RTIP / RMTP, unpublished, University of
California at Berkeley and International Computer Science Institute, Berkeley, CA (May
1991).

[9] A. Banerjea and B. A. Mah, The Real-Time Channel Administration Protocol, Proc. 2nd.
Int. Workshop on Network and Operating System Support for Digital Audio and Video,
Heidelberg (November 1991).

[10] A. Banerjea and B. A. Mah, The Design of a Real-Time Channel Administration
Protocol, unpublished, University of California at Berkeley and International Computer
Science Institute, Berkeley, CA (May 1991).

[11] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard, Van
Nostrand Reinhold (1992).

[12] K. Patel, L. A. Rowe and B. C. Smith, Performance of a Software MPEG Video Decoder,
Proc. ACM Multimedia ‘93, Anaheim CA (August 1993).

[13] W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall (1978).

[14] W. R. Stevens, UNIX Network Programming, Prentice-Hall (1990).

[15] A. Gupta, W. Heffner, M. Moran, C. Szyperski, Network Support for Realtime Multi-
Party Applications, Fourth International Workshop on Network and Operating System
Support for Digital Audio and Video, Lancaster, England, (November 1993).

[16] R. Bettati, D. Ferrari, A. Gupta, W. Heffner, W. Howe, M. Moran, Q. Nguyen, R.
Yavatkar, Connection Establishment for Multi-party Realtime Communication,
Proceedings of the Fifth International Workshop on Network and Operating System
Support for Digital Audio and Video , Durham, NH, (April 1995).

