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Abstract

The task of designing an 18 parameter IIR-filter which has to meet tight specifications for both magnitude
response and group delay is investigated. This problem must usually be tackeled by specialized design
methods and requires an expert in digital signal processing for its solution. The usage of the general
purpose minimization method Differential Evolution (DE), however, allows to perform the filter design
with a minimum knowledge about digital filters.
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1.  Introduction
IIR filters are generally applied in cases where tight requirements for the magnitude response are

imposed upon the filter while phase or group delay don't play a major role. Appropriate design algorithms

are widely available for this problem domain [1], [2].
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Fig. 1: Tolerance schemes for magnitude and group delay of a graphics codec [3].

In cases where linear or quasi linear phase is required one usually resorts to FIR filters which can provide
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piecewise exactly linear phase, i.e. piecewise constant group delay. Linearity of phase, however, is only

required in the pass band of a filter which is why for some applications the usage of FIR filters means an

unnecessary high realization expense. An example for this is a graphics codec for sample rate reduction

[3], the magnitude and group delay specifications of which are depicted in Fig. 1.

The specifications of Fig. 1 can be fulfilled by employing a linear phase FIR filter of degree 61 [4]. As the

tight passband specifications for the magnitude can be fulfilled with an IIR filter of comparably low

degree, it seems worthwhile trying to meet the specifications of Fig. 1 with an IIR approach even though

the group delay specifications will enforce a filter degree which is higher than the one needed for just

fulfilling the magnitude requirements. The hope is to achieve an overall reduced realization expense and

a lower overall filter delay. In fact a successful design of this kind has been reported in [4] where the

graphics codec had been realized by a linear phase FIR prefilter of degree 7 followed by an IIR filter of

degree 14. The IIR filter consists of an IIR lowpass of degree 6 which fulfills the magnitude requirements

and an IIR allpass of degree 8 which is used to make the entire filter meet the group delay specifications.

It has been shown in [5] that via specialized design methods for IIR filters which simultaneously consider

magnitude and phase requirements the IIR filter degree can be reduced to 10.

Specialized methods for IIR filter design in the complex domain, however, are usually not readily

available and have the disadvantage of being difficult to implement. In an industrial development process

this can be a major obstacle if these specialized techniques and the necessary expertise are not

available. The development of an appropriate tool requires considerable effort and can quickly turn out to

be a project of its own, requiring a substantial amount of development time and cost. Hence it is

attractive to perform the filter design with a general purpose function minimizer which is powerful enough

to solve truly difficult design problems and yet is simple to understand and to implement. Differential

Evolution (DE) [6] has recently proven to be fast converging for a wide variety of test cases while its

implementation takes less than 300 lines of C source code. In the following chapters the steps to

synthesize the graphics codec by using DE are elaborated. Chapter 2 provides the necessary filter

equations which are used to transform the filter design problem into a objective function minimization

problem. This transformation is described in chapter 3. Chapter 4 introduces the method of DE while

Chapter 5 eventually presents the design results obtained.

2. IIR Filter Equations
The analysis of IIR filters via the z-Transform is well treated in the signal processing literature [7] which is

why only the necessary equations will be given in the following. The transfer function H(z) of an IIR filter
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with z e j= 2πΩ (2)

and Ω = ω
ωA

. (3)

ω  is called the radian frequency and ωA  the radian sampling frequency. The transfer function (1)

exhibits the zeroes
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and the group delay G(Ω) via
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For the case that (1) exhibits only real filter coefficients an, bm, the zeroes and poles of H(z) are either

real or appear in conjugate complex pairs. It is common practice to decompose an IIR filter into a

cascade of subfilters of first and second degree, rendering

H z a H zk
k
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. (8)

If only real coefficients are assumed and Hk(z) is a filter of first degree, we obtain
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If Hk(z) is a filter of second degree, magnitude and group delay are computed according to
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3. Design of the Objective Function
Like in [5] the graphics codec specifications from Fig. 1 shall be met by a cascade of a seventh order

linear phase FIR pre-filter and an IIR filter of order 10 with an overall magnitude response
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and the group delay
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Like in [5], the FIR filter coefficients remain fixed to the values
fν = {-0.033271, -0.019816, 0.169865, 0.415454} (15)

leaving only the radii and angles of poles and zeroes of the IIR part as well as the constant a0 as free

parameters. However, the value a0 in (13) is a redundant parameter and should be fixed during the

optimization process. Otherwise the optimization procedure has infinitely many global optima to choose

from. Hence the only parameters that are varied in the objective function are the radii and the angles of

zeroes as well as poles of the IIR filter. Note that the time constant T0 in Fig. 1 is not required to have a

specific value and therefore will be part of the result of the design process rather than a condition to be

fulfilled.
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As the IIR filter shall be designed by employing a general purpose function minimizer, the design problem

has to be restated as an objective function the minimization of which yields the desired solution. The

main part of the objective function has been chosen to be very simple. Basically it takes on the maximum

absolute deviation of either the magnitude response (13) or the group delay (14) from the corresponding

specifications in Fig. 1, whichever deviation is greater. In addition several penalties are included in the

objective function which reflect special knowledge of the filter design problem. These penalties realize

the following constraints:

1) All parameters have to be positive. Although this restriction is not necessary for the
angles Φ Φ0i jp, , it avoids redundant angle values.

2) The radii rp j
 of the poles must be < 1 to ensure stability of the IIR filter.

3) The angles Φp j
 of the poles must be ≤ 0.284 as it doesn't make sense to locate poles in

the transition band or the stop band of a filter.
4) The radii r

i0  of the zeroes must be ≥ 1 to allow for phase compensation in the passband.

5) The angles Φ0i
 of the zeroes must be ≤ 0.5 in order to avoid redundant angle values.

Each vilolation of a penalty will be considered by adding a positive value to the objective function. The

value itself depends on the extent  of the violation which is penalized. The greater the violation the larger

the penalty value will be chosen. We now can build the objective function f(x) where x is the parameter

vector

x x x x T= ( , ,..., )1 2 18
(16)

with the mapping

x r ii i
= =0 1 2 3 4 5, , , , , (17)

x ii i+ = =5 0 1 2 3 4 5Φ , , , , , (18)

x r ii pi+ = =10 1 2 3 4, , , , (19)

and x ii p i+ = =14 1 2 3 4Φ , , , , (20)

The mathematical formulation of the objective function f(x) is

f x dev A dev G PGC GC( ) max ( ( )), ( ( ))= +
=

∑Ω Ω
� �

µ
µ 1

5

(21)
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and
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dev G
G g T if G g T else

g T G if G g T else
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In (23) T0 is always computed such that the maximum deviation from the requirements in Fig. 1 is
minimal. The penalty terms Pµ in (21) are computed via
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.
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and correspond to the verbal penalty descriptions given above.

A parameter vector x for which the objective function f(x) is zero solves the filter design problem.

4. Differential Evolution for Function Minimization
The objective function (21) is a highly nonlinear and partly non-differentiable function which exhibits

many local minima. Therefore a powerful global minimization algorithm is required which is able to cope

with these properties. Recently Differential Evolution (DE) [6] has proven to be a promising candidate for

solving such problems. As an additional benefit DE is very simple to understand and to implement. DE is

also particularly easy to work with as only few control variables exist which remain fixed throughout the

entire optimization procedure. The method described in the following is one of several variants of DE

which, however, differ only slightly.

DE is a parallel direct search method which utilizes NP D-dimensional parameter vectors

xi,G, i = 1, 2, 3, ... , NP. (29)

as a population for each generation G, i.e. for each iteration of the optimization process. NP doesn't
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change during the minimization process. The initial population is chosen randomly if no assumptions

about the design solution are made. As a rule, we will assume a uniform probability distribution for all

random decisions unless otherwise stated. In case a preliminary design solution is available, the initial

population is often generated by adding normally distributed random deviations to the nominal solution

xnom,1. The crucial idea behind DE is a new scheme for generating trial parameter vectors. DE generates

new parameter vectors basically by adding the weighted difference vector between two population

members to a third member. If the resulting vector yields a lower objective function value than a

predetermined population member, the newly generated vector replaces the vector with which it was

compared. In addition the best parameter vector xbest G,  is evaluated for every generation G in order to

keep track of the progress that is made during the minimization process. The special version of DE which

was used to design the graphics codec is described below.

For each vector xi G, , i = 1,2,3,...,NP, a trial vector vi G, +1 is generated according to

v x F x x F x xi G i G best G i G r G r G, , , , , ,( ) ( )+ = + ⋅ − + ⋅ −1 1 2
, (30)

with r r NP2 3 1, ,∈ , integer and mutually different, and F > 0.

(13)

The integers r1, r2 are chosen randomly from the interval [1, NP] and are different from the running index

i. F is a real and constant factor ∈ [0, 1] which controls the inclusion of the current best vector xbest G,  as

well as the amplification of the differential variation ( ), ,x xr G r G1 2
− . The search procedure centers the

more around the current best vector the closer F is set to 1. At the same time the weight of the differential
variation ( ), ,x xr G r G1 2

−  is increased in order prevent the search from getting too local and greedy. Fig. 2

shows a two dimensional example that illustrates the different vectors which play a part in the vector

generation scheme.
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x

x NP Parameter vectors from generation G
Newly generated parameter vector

X 1

X 2

MINIMUM

x
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   F( - )xr  ,G1 xr  ,G2

x
x

xbest,G

v

xi,G +F(xbest,G -xi,G)

x

v

i,G+1

i,G+1

Fig.2: Two dimensional example of an objective function showing its contour lines and the process for

generating vi G, +1 for DE.

In order to increase the diversity of the new parameter vectors, the vector

u u u ui G i G i G Di G
T

, , , ,( , ,..., )+ + + +=1 1 1 2 1 1 (31)

with u
v for j n n n L

x otherwise
ji G

ji G D D D

ji G

,

,

,

, ,...,
+

+
=

= + + − +
�
���
��1

1 1 1 1
(32)

is formed where the acute brackets 
D

denote the modulo function with modulus D. The starting index n

in (32) is a randomly chosen integer from the interval [1,D]. The integer L is also drawn from the interval

[1,D] with the probability Pr(L=ν) = (CR)ν. CR, the so called crossover probability, is taken from the

interval [0, 1] and constitutes a control variable in the design process. The random decisions for both n

and L are made anew for each newly generated vector ui,G+1.
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}
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the parameters x  ji,G , j=1,2, ... , D

7 7 7

x i,G i,G+1vi,G+1

Fig. 3: Illustration of the crossover process for D=7, n=3 and L=3.

In order to decide whether the new vector ui,G+1 shall become a population member of generation G+1,

it will be compared to xi G, . If vector ui,G+1 yields a smaller objective function value than xi G, , xi G, +1 is

set to ui,G+1, otherwise the old value xi G,  is retained.

5. Design Results
The optimization task stated above was undertaken using the initial settings:

NP = 300

F = 0.85

CR = 1.

and a0 = 2-8  = 0.00390625

The elements of all parameters were initialized with randomly chosen real values between 0 and 1. In

order to properly  detect the maximum in eqs. (22) and (23) all functions were sampled at 100 equidistant

points in the pass band. In the transition band and stop band only 20 points were used to increase

computational speed. No particular effort was made to get fastest possible convergence. With the above

settings the filter was designed after 1146 generations which required 344100 evaluations of the objective

function. Overall computing time was several hours on a 486DX computer with 50MHz clock frequency.

The resulting magnitude and group delay response is depicted in Figs. 4 and 5. The corresponding

parameter values are:

x1 = 1.620493889   x2 = 1.006124616 x3 = 1.016987443

x4 = 2.498671532   x5 = 1.919012547 x6 = 0.2243566662

x7 = 0.3745155931   x8 = 0.4304945767 x9 = 0.02474720217
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x10 = 0.1109348238   x11 = 0.6369678974 x12 = 0.4702593982

x13 = 0.408888042   x14 = 0.8722907901 x15 = 0.2370584458

x16 = 0.125761658   x17 = 0.05192748457 x18 = 0.3109594584
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Fig. 4: Magnitude response of the filter design solution for a0 = 0.00390625.
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Fig. 5: Group delay response of the filter design solution for a0 = 0.00390625.

The value 2-8 for a0 can be implemented by a simple shift operation and doesn't require a real

multiplication. Nevertheless the filter design can be performed for many different values of a0. Another

design example is given below. The setings were

NP = 300

F = 0.85

CR = 1.

and a0 = 0.01

In this case DE needed 930 generations and 279300 function evaluations. The corresponding parameter

values resulting from the optimization are
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x1 = 1.70534277   x2 = 1.019881606 x3 = 1.558364391

x4 = 1.001873851   x5 = 1.829733968 x6 = 0.1320674717

x7 = 0.3776784241   x8 = 0.2309984416 x9 = 0.4321155548

x10 = 0.04620760679   x11 = 0.8493334651 x12 = 0.3932341039

x13 = 0.6438843012   x14 = 0.5428563952 x15 = 0.3089904487

x16 = 0.01219726913   x17 = 0.2359268814 x18 = 0.124328509

The magnitude an group delay responses are shown in Figs. 6 and 7.

��� ���

��� �����

	

	
� �����

	�� ��	

� ���
	 ��� � ��� �
�

��� ���

���
	

���
	��

��� �

��� ���

��� �

��� ��� ��� ��� ��� ���

��� �������

��� ���������

��� ��	
���

� ��� ��	����

� ��� ���������

� ��� �������

��� ��������� ��� ����	�� ��� ����� ��� ������� ��� ������� ��� �������� �����

� 	
�����

� �������

 "!�#�$&% ')(��+*-,�*+.�(�% /0*�12*�$�' 3546	87  9!+#�$�% ':(;��*-,�*+.�(�% /<*=12*�$�' 3>4<��7

ΩΩΩΩ

Fig. 6: Magnitude response of the filter design solution for a0 = 0.01.
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Fig. 7: Group delay response of the filter design solution for a0 = 0.01.

6. Conclusion
It has been demonstrated that it is feasible to design an 18 parameter IIR-filter according to [3] with

requirements for both magnitude response and group delay by employing the general purpose

minimization method of Differential Evolution (DE). In general the above design problem is a difficult one

and requires considerable expertise to be solved successfully. By using DE, however, just basic

knowledge about digital filters is required so that no experts are needed for the design task. DE has the

additional advantage of being easy to understand, simple to implement and easy to work with so that DE

can be used for a wide variety of design and optimization tasks.
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