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Abstract

Recently, physiological and psychoacoustic studies have uncovered new evidence support-
ing the idea that human auditory processes focus on the transitions between spoken sounds
rather than on the steady-state portions of spoken sounds for speech recognition.  Stochas-
tic Perceptual Auditory-event-based Models (SPAMs) were developed by Morgan, Bour-
lard, Hermansky and Greenberg to take this new evidence into account for word models in
speech recognition by machines.  This paper details our efforts to build a speech recogni-
tion system based on some of the properties of SPAMs. Although not all aspects of the
complete SPAM theory have been implemented, we did find that fairly good recognition is
possible with a system that concentrates almost exclusively on the transitions between
speech sounds.  Additionally, we found that such a system enhanced the more conven-
tional phoneme-based system, which emphasized recognition of steady-state sounds.  This
blended system performed better than either system alone, especially in the case of
noise-obscured speech.
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1.0  Introduction

The current state of the art in automatic speech recognition is constrained by several
underlying assumptions that are questionable from an auditory perspective.  Stochastic
Perceptual Auditory-event-based Models (SPAMs) were developed as an attempt to avoid
one of these, the assumption that speech models are a sequence of stationary segments of
uncorrelated acoustic vectors. Morgan, Bourlard, Hermansky and Greenberg hoped that
SPAMs would prove to be more robust under adverse conditions (e.g. noisy speech) than
conventional models [MBHG].

With conventional models, research into recognition has mostly focused on the
steady-state regions of an utterance.  Empirical evidence suggests that these regions are
not as important perceptually as transition regions to the human ability to discriminate
between words that sound alike, the syllables “baa” and “daa” for example. Psychoacous-
tic experiments by Drullman and, earlier, by Furui indicate that information needed for
correct identification is largely contained in spectral transitions [DFP][Furui].  This led us
to believe that the fundamental speech unit of recognition should emphasize the transi-
tions between steady-state regions, rather than focussing almost exclusively on the
steady-state regions themselves, as is usually the case.

SPAMs are a sequence of Auditory Events oravents, separated by relatively stationary
periods, denoted in the model asnon-perceiving states, also referred to in this paper as
“non-transitioning states” or “nts”.  These more slowly varying periods are around 50 to
150 milliseconds in duration and represent speech sounds such as the slowly changing
portion of vowels. Avents are elementary auditory decisions, presumably made in
response to rapid change in the speech spectrum and amplitude.  Avents were designed to
more closely represent the cues of human perception as researchers understand them
[Greenberg].  In this study, avents are assumed to occur at the boundary between two
phones and can be viewed as responses to left-context-dependent phonetic onsets.

We built a recognition system based on avents to validate the SPAM idea of recognizing
speech by focussing on transitions [MBGHW].  We have not implemented several parts of
the complete SPAM theory, most notably the dependency of an avent on previous avents

or on the elapsed time between avents.  Also, the REMAP1 procedure, which is more ide-
ally suited for recognition with SPAMs, has not been substituted in for the usual dynamic
programming step.

2.0  Methods

We used a conjunction of a variety of techniques to implement a system that would recog-
nize spoken words based on avents.

1. REMAP is a new approach [BKM] that could potentially provide soft (probabilistic) targets for the tran-
sition over a region around the estimated onset time.
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2.1  The Digits+ Speech Corpus

The speech recognition task we chose is the Digits+ corpus available at ICSI.  It is com-
posed of 200 speakers saying the words “one” through “nine”, “zero”, “oh”, “no”, and
“yes”.  Each word was recorded in isolation over a clean telephone line at Bellcore.  For
the additive noise in these experiments, we used automotive sound that was recorded over
a cellular telephone.  Noise was randomly selected from this source and then added to the
clean speech waveforms [Tong].

We chose this task over others available because of its small size and simplicity and
because the speech group at ICSI has already had considerable experience with this cor-
pus.  With just thirteen words, training and testing times for each experiment were more
manageable and less demanding on computing resources than larger, continuous speech
tasks.  Because each word is isolated, no grammar or natural language model is necessary.
A recognition system based on conventional phone units had already been developed and
optimized for performance by Kristine Ma [Ma]; this helped us make a realistic evaluation
of the avent-based recognizer’s performance.  The Digits+ task is a minimal task well
suited for developing new speech recognition systems while still large and complex
enough to allow general conclusions to be drawn from the results.

2.2  Hybrid  Hidden Markov Model - Multilayer Perceptron  System

The speech recognition system developed for this work is based on the hybrid Hidden
Markov Model, Multilayer Perceptron system in use at ICSI [BM], illustrated below in
Figure 1.  Acoustic information is processed by a feature extraction method and the result
is used as input to a neural network.  A simple three-layer fully connected neural network
is used to classify frames of features into speech sound units (Figure 2).  The neural net-
work produces a probability for each output for every time frame of speech.  Dynamic
programming operates on this output from the neural network and uses the knowledge in
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Hidden Markov Models of the relevant vocabulary to determine which word best matches
the input data.

We used the neural network simulator BoB, written by Phil Kohn [Kohn], to train the var-
ious neural networks.  Approximately 10% of each training set was reserved as a cross-val-
idation set, so that the network would not overtrain and be unable to generalize for new
inputs.

The word models for the phoneme-based system are conventional Hidden Markov Models
[DKP]  The word models for the avent-based system are also Hidden Markov Models,
though the models in the full SPAM theory are not true HMMs.  Viterbi decoding was
used to find the HMM with the highest likelihood, given the observational vectors from
the MLP.

Figure 1:  Hybrid HMM-MLP speech recognition system
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2.3  Phone-based Recognition

As mentioned before, Kristine Ma implemented a phone-based recognition system for the
Digits+ corpus.  We duplicated her work because small changes, primarily to the phone
set, were necessary to make the phone-based system comparable to our avent-based sys-
tem.

2.3.1  Data

The stored waveforms of the Digits+ corpus were analyzed with the J-RASTA PLP fea-
ture-extraction process [KMHHT][Hermansky].  This produced eight features for every
25-millisecond frame of speech, where each frame overlaps 12.5 milliseconds of the next
frame.  Also, the process provides one value representing energy, and finally a “delta” fea-
ture for each of the aforementioned nine values.  “Delta” features are approximate time
derivatives.  With deltas, each frame contains some information about change between it
and its neighboring frames.  Historically, delta features have improved recognition rates.
In contrast, the energy feature actually handicaps recognition in experiments with realistic
situations where the overall signal energy can vary considerably.  For these experiments,
17 of the above 18 features were used, with the energy value left out.

There are approximately 54,733 frames of speech data in this database.  Phonetic labels
were generated through an automatic forced-alignment process. This is a procedure that

Figure 2: Neural network architecture.
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uses dynamic programming to assign phonemes to frames given a fixed pronunciation
order of sounds in the entire utterance.  Because this is an automated procedure, the labels
are not as accurate as hand-labels produced by human listeners.  Spot-inspection of the
labeled data shows that the onsets and offsets of the phones are often displaced by as much
two or three frames.

Single pronunciation word models were constructed and the durations of the phones in the
models were tuned with the automatic forced-alignment process mentioned above. A word
model is illustrated below, in Figure 3, for comparison with the equivalent avent word
model, to be discussed later.

These data and models were used to perform training and recognition.

In early experiments we tried to “bootstrap” the neural network with the much larger
speech corpus NTIMIT before refining the training with the Digits+ data [Ma].  This
improved the recognition performance of the system a modest amount; but not enough to
warrant the additional time and computing resources necessary, so this technique was not
pursued.

Four “jackknifed cuts” through the data were used, to smooth out anomalies due to the
choice of training and test set.  In the “jackknife” procedure, the Digits+ training set was
divided into four equally sized portions.  For each of the four “cuts”, one-fourth was
reserved for testing and the remaining three-fourths composed the training set.  In this
way, all of the available data is eventually used as part of a test set [BM].

2.3.2  Training

Experiments showed that a 200-hidden unit multilayer perceptron neural network was the
right size for the training data available.  The neural network was trained on 1,950 of the
2,600 total number of words, where approximately a tenth of the training data was
reserved as a cross-validation set.  The remaining 650 words constituted the test set.  A
typical training progression is shown in Table 1. The final network weights are those that
result from the epoch with the highest Cross-Validation Frame-level Correct percentage.

h# s kcl k s h#ss ih ih ih kcl k s s s

Figure 3: Conventional HMM for digit “six”
for phone-based recognition systems.
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2.3.3  Recognition

The trained network was used to classify each frame of the test set.  For each frame, the
neural network produced a probability for each phoneme the frame could represent.  This
probability is divided by priors (the frequencies of each output unit as calculated from the
training set) to produce likelihoods [BM]. Using the HMM models for words, dynamic
programming determined which word contained the highest likelihood path for each utter-
ance in the test set.  This output was scored and the error percentage was used for the com-
parisons in Section 3.

2.4  Avent-based Recognition

Our challenge was to generate suitable avent data and implement a system around the new
sound unit that would effectively recognize the isolated words in the Digits+ corpus.

2.4.1  Data

We created training data for the avents from the training data for the phones.  The pho-
neme labels were used to identify transitions from one phone to another in the waveforms.
The frame just prior to the beginning of a new phone was automatically labelled as the
transition.   All other frames were labeled as “nts” for non-transitioning state, and mapped
onto the non-perceiving state mentioned in SPAM literature [MBGH].  An example, the
word “six” is shown in Figure 4.  The waveform in the figure is labeled with phones, on
the bottom row, and with the corresponding avent labels, on the upper row.  The end of
each sound is marked; the beginning is implicitly understood to be the end of the previous
sound.

Out of the 54,733 frames of data available, 5,960 were labeled as transition frames,
roughly 11%.

TABLE 1. 200 HU network trained on Digits+ data from training cut 1.

Epoch Learning Rate Training Frame-level Correct
Cross-Validation Frame-level

Correct

0 0.008000 64.261566 72.367912

1 0.008000 83.212112 77.305862

2 0.008000 86.361115 79.020081

3 0.008000 88.133095 80.145828

4 0.008000 89.446999 79.339890

5 0.004000 89.198441 80.120247
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As mentioned previously, automatic labelling procedures are not perfectly accurate; we
found avent labels to be as much as two or three frames off from where a human labeler
would place them.  This may not be a critical inaccuracy, because the neural network used
is provided with nine frames of context, enough to include the relevant transition.

We created a new, modified lexicon, again based on the word models for the pho-
neme-based recognition system.    An example is shown in Figure 5, for comparison to the
word model for the phoneme-based system in Figure 3.  Although not detailed in the illus-
tration, a minimum duration requirement was specified in the avent-word models, because
this was found experimentally to improve performance.

phoneme labels

avent labels

Figure 4: Waveform of “six” with avent labels and
phoneme labels.

ntsih-kcl kcl-k k-s s-h#

Figure 5: SPAM for the digit “six”.

nts h#-s s-ihnts nts nts nts nts
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2.4.2  Training

We discovered early in this study that a single net could not be trained to classify avents if
the nts output was included, because the nts output encompassed 90% of every utterance.
The neural network would tend to classify every frame as an nts frame.  We tried subsam-
pling the nts output label heavily in order to reduce the number of nts labels used for train-
ing to approximately the quantity available for the other avent labels.  However, there
were too few frames of the nts output used for training for the network to generalize and
become proficient at detecting the nts frames.  We resolved this by training two networks,
one that was trained only on the avent labels where a transition was occurring and one net-
work that was trained only to distinguish between the nts frames and avents in general,
where all the avents were grouped into one category.  Essentially, the first network is an
avent-classifier and the second network is an avent-detector.  It was still necessary, in this
second network, to subsample the nts frames, but this formulation allowed more of the
data to be used.

After some experimentation, we found that 100 hidden units was a good size for the hid-
den layer in the avent-detecting and avent-classifying networks.  Note that the number of
parameters in these two networks together is approximately equal to the number of param-
eters in the 200-hidden unit neural network used for phoneme classification in the earlier
section.

The avent-classifying network was trained on about 10% of the data.  While it learned to
classify transitions reasonably well, we made several efforts to improve its abilities.  Ini-
tially we used NTIMIT to “bootstrap” this network as well, and again the result didn’t jus-
tify the expense in time and computing resources.

More effective was the technique of using a phoneme-trained neural network of approxi-
mately the same size to bootstrap the avent network.  We trained a 100-hidden unit net-
work on conventional phoneme labels and then trained it further on the beginnings of the
phonemes, where the network received as input only the first frame of every phoneme.  In
this way we slowly retargeted the network for transitions by training on onsets.  Then the
network weights were used to initialize an avent network; for each avent, the weights
associated with the phone corresponding to the right half of the avent were copied into the
weights for that avent.  The network was then trained further on avent data.  This gradual
retargeting procedure resulted in reducing the network’s classification error significantly.
The word-error rate from using this network was about a third lower than the word-error
rate achieved by the neural networks we trained without this gradual retargeting process.
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An example training progression for the whole avent system is shown in Tables 2, 3, 4,
and 5. The percentages shown provide information about the network training, but the val-
ues do not necessarily correlate to the digit recognition ability of the complete system.

The outputs of the avent-detecting network and the avent-classifying network were com-
bined as follows:  the probability assigned by the neural network to the “avent-detected”

TABLE 2. 100 HU network trained on Digits+ phoneme data from training cut 1.

Epoch Learning Rate
Training Frame-Level

Correct
Cross-Validation

Frame-Level Correct

0 0.008000 60.949879 70.423439

1 0.008000 80.699776 76.013817

2 0.008000 84.218147 78.150185

3 0.008000 86.243469 78.495590

4 0.004000 87.490852 78.802612

TABLE 3. 100 HU phone network trained additionally on onsets.

Epoch Learning Rate
Training Frame-Level

Correct
Cross-Validation

Frame-Level Correct

0 0.008000 86.371872 82.573723

1 0.008000 88.783478 84.048256

2 0.008000 90.115738 85.790886

3 0.008000 91.158699 85.790886

4 0.004000 90.922348 85.924934

TABLE 4. 100 HU phone-onset network trained additionally on avents.

Epoch Learning Rate
Training Frame-Level

Correct
Cross-Validation

Frame-Level Correct

0 0.008000 76.262451 74.213829

1 0.008000 83.797935 77.358482

2 0.008000 86.906738 77.735847

3 0.004000 87.497856 77.987419

TABLE 5. 100 HU network training on Digits+ nts data from training cut 1.

Epoch Learning Rate
Training Frame-Level

Correct
Cross-Validation

Frame-Level Correct

0 0.008000 60.742035 63.672131

1 0.008000 68.765907 68.786880

2 0.008000 71.498398 69.967209

3 0.008000 73.438431 71.016388

4 0.008000 75.420219 71.278687

5 0.004000 75.002083 72.590157

6 0.002000 76.614220 72.590157
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output of the network in Table 5 was distributed over the avents, in proportion to the prob-
ability assigned to each avent by the avent-classifying network in Table 4.  This combined
output was used as input to the Viterbi decoder that then produced words.  This system is
illustrated in Figure 6 below.

2.4.3  Recognition

The word models for avent-based recognition are Hidden Markov Models where the avent
states have no self-loop.  That is, any path can stay in an avent state for at most one frame.
Non-transitioning states do have self-loops, however.

Traditionally, priors are used to compensate for the neural network’s tendency to favor the
labels of frames it has seen more often, or, equivalently, to convert from posterior proba-
bilities to data likelihoods (via Bayes’ Rule [BM]).  Division by priors was not fully
implemented for the avent-based recognition system; that is, while avents-versus-nts train-
ing was done with an equilibrated training set (which should be equivalent to division by
priors), we did not divide by priors for the avent classification categories.  We believe that
the system’s performance would not be strongly affected by the utilization of priors
because the training targets presented to the networks were reasonably balanced.  An early
experiment in which the merged avent probabilities were divided by priors produced some
supporting evidence of this.

100 HU
Neural Network

Phoneme
Training

Onset
Training

Avent
Training

nts
Training

Merge

Decoding

100 HU
Neural Network

Figure 6:  System overview of the avent-based recognition
system showing training process.
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2.5  Combining Avents and Phonemes

Examination of the confusion matrices of both the phoneme-based system and the
avent-based system showed that the errors and the types of errors that each system made
were nearly orthogonal.  We conjecture that this reflects the difference in the properties of
the two recognition systems.  For example, the phoneme-based recognition system seems
to have more difficulty differentiating between “no”, “oh” and “zero” in the presence of
noise than the avent-based system.  Confusion matrices for our developmental experi-
ments are shown in Tables 6, 7, 8, and 9.

a. True words at left, recognized words at top

TABLE 6. Confusion matrixa for 200 HU phoneme-based recognition system.  Clean speech.

no yes zero oh nine eight seven six five four thr ee two one

no 45 1 1 1 1 1

yes 49 1

zero 50

oh 1 47 2

nine 49 1

eight 50

seven 50

six 49 1

five 1 49

four 50

thr ee 50

two 1 2 47

one 50

TABLE 7. Confusion matrixa for phone-based recognition system.  Speech, 10db additive noise.

no yes zero oh nine eight seven six five four thr ee two one

no 34 3 2 2 4 1 3 1

yes 48 1 1

zero 7 41 2

oh 1 36 1 3 3 5 1

nine 43 2 1 2 1 1

eight 1 49

seven 48 2

six 1 49

five 2 1 47

four 50

thr ee 1 5 1 41 1 1
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a. True words at left, recognized words at top.

a. True words at left, recognized words along top.

a. True words at left, recognized words along top

two 7 1 1 41

one 1 49

TABLE 8. Confusion matrixa for avent-based recognition system.  Clean speech.

no yes zero oh nine eight seven six five four thr ee two one

no 48 1 1

yes 50

zero 48 1 1

oh 50

nine 2 48 1

eight 1 49

seven 50

six 1 48 1

five 1 49

four 1 49

thr ee 1 1 45 2 1

two 1 49

one 1 49

TABLE 9. Confusion matrixa for avent-based recognition system.  Speech, 10db additive noise.

no yes zero oh nine eight seven six five four thr ee two one

no 43 1 1 1 1 1 1 1

yes 2 46 1 1

zero 1 5 43 1

oh 3 42 3 2

nine 4 1 44 1

eight 48 2

seven 1 45 2 1 1

six 1 5 1 42 1

five 4 46

four 50

thr ee 1 1 3 39 5 1

two 1 1 4 2 42

one 1 3 2 44

TABLE 7. Confusion matrixa for phone-based recognition system.  Speech, 10db additive noise.

no yes zero oh nine eight seven six five four thr ee two one
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The apparent independence of the strengths of each system led us to experiment with
blending the two systems.  From the dynamic programming (Viterbi) stage we can calcu-
late a likelihood for the most probable path through every word, because our task only
permitted isolated words.  For every word in the Digits+ set we added the likelihood for a
particular word from the phoneme-based system to the likelihood for the same word from
the avent-based system.  The likelihood value from the avent-based system is scaled by a
constant factor to compensate for the difference in the observational values produced by
the avent networks and the phoneme network.  Then we selected the word with the best
likelihood value over all for each utterance (Figure 7).

We chose the constant scaling factor for the avent values by performing a series of experi-
ments with a single training cut.  We determined that a value of “10” was optimal for that
training cut, and that is the value we have used for testing across all of the training cuts.
We note that this number is roughly equal to the average number of phone emission prob-
abilities used for every avent probability.

The blended result is significantly better for noisy speech then either system produces
alone, while for clean speech the blended system is roughly equivalent to the phone-based
system.

3.0  Results

The avent-based system, with merged output from the avent-detecting and avent-classify-
ing network, recognized clean speech at roughly twice the error-rate of the pho-
neme-based system.  For speech with 10db additive noise, the avent-based system

Decoding
From Avents

Decoding
From Phones

Scale

Select Best

Figure 7: System overview of the blended recognition
showing the merging of the values from the
individual systems.
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performed about as well as the phoneme-based system.  These numbers are summarized in
Tables 10 and 11 below.

The blended system, with both phoneme and avent likelihoods, produces better results
than either system alone, as shown in the following table. However, only in the additive
noise case is this a strong effect.  Assuming that the distribution of correct answers is a
binomial distribution and using a normal approximation to the binomial for calculation,
we find that the above differences in the noisy speech case due to the blended system is
significant with a p-value less than 0.01.

The blended system makes use of about twice the number of parameters as the 200-Hid-
den Unit phoneme-based recognition system.  To verify that the improvement in the
word-error scores was not due merely to the extra parameters, we trained a 400-HU net-
work and performed phoneme-based recognition.  The resulting scores did not differ sig-
nificantly from the scores from the phoneme-based system with the 200-HU network for
either clean speech or speech with 10db additive noise.  This result indicates that the
improvement in performance noted above probably comes from the different basis of the
two systems rather than from the simple increase in the number of parameters.

a. with 10db additive noise.

a. with 10db additive noise.

a. with 10db additive noise.

Table 10: Phone-based Recognition System Word-error Percentages

1 2 3 4 Average

clean 2.3% 1.5% 1.4% 2.0% 1.8%

w/noisea 11.4% 10.2% 10.3% 11.5% 10.9%

Table 11: Avent-based  System, Word-error

1 2 3 4 Average

clean 2.9% 4.0% 3.1% 4.2% 3.6%

w/noisea 11.7% 9.4% 9.5% 11.8% 10.6%

Table 12: Blended Avent-phone System, Word-error

1 2 3 4 Average

clean 1.7% 0.9% 1.4% 2.3% 1.6%

w/noisea 9.4% 7.4% 5.7% 8.3% 7.7%
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4.0  Discussion

There are a number of open questions, not addressed by the experiments discussed here.

Transitions have been treated in this work as lasting exactly 12.5 milliseconds.  This is a
gross simplification.  Hard targets such as these were necessary for practical consider-
ations in pilot systems.  More accurate would be the “soft” targets under development as
part of the REMAP theory by Konig, Bourlard and Morgan [BKM].  Because these targets
will more accurately portray transitions, we hope that they may improve the avent-based
system.

Diphthongs are an open question with regards to this work.  Diphthongs, in which a
speaker glides from one vowel to another in a single syllable, are technically two distinct
regions with a transition in the middle [Edwards].  For example, the diphthong “ay” in
“nine” is composed of the sounds “aa” and  “iy”.  The issue is not so clear cut, however, in
real speech.  Linguists disagree on which sounds are diphthongs and which are not.
Where exactly to put the transition from one vowel to another is also difficult, because the
transition is often gradual and the second part is often entirely transitional in nature.  In
initial experiments, we tried putting the transition in the middle of the duration of each
diphthong.  To compare with the phone case, we also reduced diphthongs in the pho-
neme-based recognition system to their constituent vowel parts.  This experiment had the
effect that the phoneme-based system’s error rate almost doubled.  Clearly, treating the
diphthong as a single sound rather than as its two constituent sounds is important.  We
think that the large context window (nine frames) that the neural network has as input
allows the network to be able to see the part of the spectrogram that changes in the middle
of diphthongs, because the shift from one vowel sound part to another is likely to occur
less than 4.5 x 12.5 milliseconds or less than 56 milliseconds from the onset of the diph-
thong.

When we modified the avent-based recognizer to treat diphthongs as single sounds, recog-
nition performance improved modestly, not nearly as much as with the phoneme-based
recognizer.  It is not clear why the improvement should be different in the two cases.
From examination of the confusion matrices, we tentatively conclude that the crude
method of assigning a transition point to the exact middle of each diphthong is too inaccu-
rate and further experimentation is needed here to determine a better labelling.

In another area, we noticed that the neural network had significantly less success learning
to classify the initial fricatives at the start of “three” and “zero” than it did learning other
avents.  In cross-validation frame-level performance (during training), the “silence-th”
and “silence-z” avents are correctly recognized in about 30% of the frames, whereas the
average is about 80%.  Inspection of a few of the waveforms suggests that those words are
sometimes spoken with initial low energy, and sometimes with a high-energy burst.  The
low energy onset could be more difficult for the network to learn to recognize.  This expe-
rience suggests that it may be important to distinguish steady-state speech from
steady-state silence, or implement multiple pronunciation avent models.  An initial exper-
iment in this area was inconclusive.  It is likely that more training examples are needed.
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One avenue of attacking these problems with the avent-based system is to try a forced
alignment to see if these problems are exacerbated by poor labels.  Early in our experi-
ments, we tried a trial run of the forced alignment process, but the performance of the
resulting system actually deteriorated.  This result is inconclusive; more effort is needed in
this area.

5.0  Summary and Conclusions

This work is a pilot study of the value of focussing recognition algorithms on the transi-
tions between speech sounds, rather than on the steady-state regions.  We found that a rec-
ognition system based on avents performs almost as well as a phoneme-based system,
particularly with noisy speech, even though the avent-based system we implemented is
non-optimal in many ways.   The recognition system based on transitions makes different
errors from the phoneme-based system and was used to improve the recognition perfor-
mance of this conventional system.  The result is a significant improvement in perfor-
mance rate in the case of noisy speech, more than either system can achieve alone.

We conclude from these experiments that decision states based on transitions are a viable
unit of speech recognition with desirable properties not present in the conventional sound
unit, phonemes.  The relative success of the combination of the two systems suggests that
the currently simplified version of the avents used in the recognizer may not be rich
enough to improve performance levels by itself; it needs assistance from the system based
on steady-states.   This work merely scratches the surface of the many issues in this area.

6.0  Future Work

Because only 10% of the training data is classified as avent frames, a natural next step is to
experiment with dropping unnecessary frames.  This has the effect of speeding up training
and testing by a scalar factor.  It may also facilitate our training of the avent-detecting neu-
ral network by reducing the imbalance between the avent-detected and nts classes more
meaningfully then by simple random subsampling.   This an idea has been mentioned in
published literature at least since 1978 [TD].  In several more recent papers, variable
frame rate analysis techniques are able to eliminate 50% of the total number of frames
without significant loss in performance [MB][LV].  Some of these papers mention that
when low percentages of frames were eliminated, the performance of the recognizer
increased.  This supports the idea that conventional speech recognition systems focus
unduly on the steady-state regions, because eliminating them sometimes improves perfor-
mance.

The criteria for dropping a frame in the Le Cerf and Van Compernolle method is the fol-
lowing: if the norm of the derivatives of the features in a frame is less than some thresh-
old, the frame is eliminated.  We plan to use this criterion to conduct our own analogous
experiment with our avent-based system.  The inaccurate labelling presents a problem in
that the frame-dropping process might result in important labels being lost.  A forced
alignment is necessary and might correct the problem by relabelling the training data.  We
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will train the same avent-based and phone-based recognition systems on the filtered data.
Although much of this methodology is in place, we have no results to report as yet.

Avents clearly show considerable potential for modeling human speech perception better
than steady-state sounds units, in several ways.  Much additional research will be neces-
sary to effectively utilize the avent idea.
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8.0  Appendix

TABLE 13. Phoneme Label Seta

Index Phone Broad Example Description

0 b lab buy voiced bilabial stop

1 d alv dog voiced alveolar stop

2 g vel goat voiced velar stop

3 p lab pie voiceless bilabial stop

4 t alv tom voiceless alveolar stop

5 k vel cat voiceless velar stop

6 dx alv wri ter alveolar flap

7 bcl sil voiced bilabial stop closure

8 dcl sil voiced alveolar stop closure

9 gcl sil voiced velar stop closure

10 pcl sil voiceless bilabial stop closure

11 tcl sil voiceless alveolar stop closure

12 kcl sil voiceless velar stop closure

13 jh alv gym voiced palatal affricate

14 ch alv chase voiceless palatal affricate

15 s alv so voiceless alveolar sibilant

16 sh alv share voiceless palatal sibilant

17 z alv zebra voiced alveolar sibilant

18 zh alv pleasure voiced palatal sibilant

19 f lab fin voiceless labiodental fricative

20 th lab thigh voiceless dental fricative

21 v lab vain voiced labiodental fricative

22 dh lab the voice dental fricative

23 m lab my bilabial nasal

24 em lab bottom bilabial nasal, syllabic allophonic variation

25 n alv not alveolar nasal

26 nx alv dinner nasal flap

27 ng vel sing velar nasal

28 en alv button velar nasal, syllabic allophonic variation

29 l alv limb alveolar lateral

30 el alv bottle alveolar lateral, syllabic allophonic variation

31 r r r ight retroflex approximate

32 w round when bilabial glide

33 y unrfr yet palatal glide

34 hh vel hot voiceless glottal fricative

35 hv vel ahead voiced glottal fricative

36 iy unrfr feet high front unrounded long
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a. Adapted from material from CSLU’s Labelling Guide [LM] and work by Gary Tajchman.

37 ih unrfr fit high front unrounded short or lax

38 eh unrfr pet mid fr ont unrounded short or lax

39 ey diph fate eh -> iy

40 ae unrfr fat low front unrounded

41 aa unrbk father low back unrounded

42 aw diph how aa -> uw

43 ay diph pie aa -> iy

44 ah unrbk but mid central unrounded stressed

45 ao unrbk caught low back rounded

46 oy diph boy ao -> iy

47 ow round boat disputably a dipthong, -> uh

48 uh unrbk book high back rounded

49 uw unrbk boot high back rounded short or lax

50 er r bir d rhotacized mid central vowel

51 axr r butter rhotacized mid central short vowel

52 ax unrbk about mid reduced

53 ix unrfr debit high reduced

54 h# sil (silence) silence

55 q sil ‘oh glottal stop

TABLE 14. Avent Label Set for Digits+

Index Label Index Label

0 ntst 23 v-ix

1 h#-n 24 ix-n

2 n-ow 25 s-ih

3 ow-h# 26 ih-kcl

4 h#-y 27 kcl-k

5 y-eh 28 k-s

6 eh-s 29 h#-f

7 s-h# 30 f-ay

8 h#-z 31 ay-v

9 z-ih 32 v-h#

10 ih-r 33 f-ao

11 r-ow 34 ao-r

12 h#-q 35 r-h#

13 q-ow 36 h#-th

14 n-ay 37 th-r

TABLE 13. Phoneme Label Seta

Index Phone Broad Example Description
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