
Scaling Issues in the Design and
Implementation of the Tenet RCAP2

Signaling Protocol
Wendy Heffner1

wendyh@CS.Berkeley.EDU
Tenet Group

University of California at Berkeley &
International Computer Science Institute

TR-95-022
May 1995

Abstract
Scalability is a critical metric when evaluating the design of any distributed system. In this paper
we examine Suite 2 of the Tenet Network Protocols, which supports real-time guarantees for
multi-party communication over packet switched networks. In particular, we evaluate the scalabil-
ity of both the system design and the prototype implementation of the signaling protocol, RCAP2.
The scalability of the design is analyzed on several levels. It is analyzed with regard to its support
for large internetworks, many multi-party connections, and a large number of receivers in a single
connection. In addition, the prototype implementation is examined to see where decisions have
been made that reduce the scalability of the initial system design. We propose implementation
alternatives that are more scalable. Finally, we evaluate the scalability of system design in compar-
ison to those of the ST-II signaling protocol (SCMP) and of RSVP.

Keywords: scaling, multicast connection, multimedia networking, real-time communication, Tenet proto-
cols

1. This research was supported by the National Science Foundation and the Defense Advanced
Research Projects Agency (DARPA) under Cooperative Agreement NCR-8919038 with the Corpo-
ration for National Research Initiatives, the Department of Energy (DE-FG03-92ER-25135), by
AT&T Bell Laboratories, Digital Equipment Corporation, Hitachi, Ltd., Mitsubishi Electric
Research Laboratories, Pacific Bell, and the International Computer Science Institute. The views
and conclusions contained in this document are those of the author, and should not be interpreted as
representing official policies, either expressed or implied, of the
U.S. Government or any of the sponsoring organizations.

1

1.0 Introduction
In this paper, we take the first step in evaluating of the work of the Tenet Group’s Suite 2 project.
The Tenet Group’s work has been directed toward the issue of providing real-time guaranteed ser-
vice over packet switched networks [FerVer90]. The Tenet Suite 1 project culminated in the design
and implementation of a set of network protocols to provide connection-oriented service based on
a simplex unicast real-time channel. In the Suite 2 project, we have extended this work to provide
support for multi-party applications. The main goal of our project is to understand the limitations
of providing such types of guarantees in this environment. While the group has primarily focused
on designing real-time protocols, we believe that evaluation of research solely based upon simula-
tion can sometimes be misleading. An important component of the Suite 2 project, therefore, has
been our implementation of the protocol design, as was the case for the Suite 1 project. In evaluat-
ing both components, the protocol design and implementation, we must make a strong distinction
between choices mandated by the design and decisions made to expedite the implementation. In
our evaluation, we have tried to make this distinction clear.

This paper will focus primarily on RCAP2, the signaling protocol of Suite 2, for it is this protocol
that must change the most when we made the move to a multi-party framework. RCAP2 coordi-
nates connection setup, teardown, and all other management of connections. In this report, we
have chosen scalability as our metric for evaluation of this work. All viable network protocols
must be able to support growth. Scaling can be viewed on several levels; for example, as our
design was proposed for large internetworks, it must scale to cover large distances and many heter-
ogeneous nodes. In addition, the design must scale to support many multi-party applications of
various types. Finally, it must support many heterogeneous participants in a single multi-party
application. It is clear that we must consider support for heterogeneity as an important factor when
we evaluate the design’s ability to scale. In addition, we must address the issue of fault tolerance
when we evaluate the scalability of a design based on a connection-oriented approach.

The report is organized as follows: in the next section we provide a general overview of the Tenet
Protocols and Suite 2. In Section 3, we discuss the design of the signaling protocol RCAP2, point-
ing out some of the decisions that affect the scalability of the design. In Section 4, we give an
architectural overview and discussion of the prototype implementation of RCAP2. In Section 5,
we begin a detailed evaluation of the scalability of the both the design and the implementation, and
continue with a discussion of some our proposed changes to the implementation. In Section 6, we
discuss some related work, in particular ST-II and RSVP. Finally, in Section 7 we conclude with a
summary of the paper.

2.0 The Design of Suite 2
We begin this section with some general background material on the Tenet approach, and then
move on to examine each of the Tenet Protocols in particular. This section concludes with a dis-
cussion of those components of the system that must undergo change when moving to the multi-
party environment of Suite 2.

2.1 Overview of Tenet Protocols

The Tenet Protocols provide mathematically provable guarantees over packet switched networks.
The Tenet Protocols take a connection-oriented approach, using resource reservation and admis-
sion control to provide these guarantees. Sources specify their traffic, receivers request certain
qualities of service, and then admission tests are performed along the path of communication to

2

see if enough resources are available to accept this new channel’s traffic and meet the receiver’s
requirements. If the traffic can be supported and requirements can be met, then resources are
reserved for the channel. Real-time channels are protected through this process of admission con-
trol; when a network becomes saturated, no additional real-time channels are admitted.

FIGURE 1: The use of resources allocated to real-time channels.

It should be noted that unused resources “reserved” by a real-time channel may be used by non-
real-time traffic. Figure 1 illustrates this usage pattern. The figure shows three established real-
time channels with each channel’s resources protected from other real-time traffic. If there is no
traffic present on a real-time channel, then best-effort traffic may be scheduled in its place. When
present, however, real-time traffic has priority over non-real-time traffic.

Our protocols offer “mathematically provable” guarantees. These guarantees, however, do not
restrict our approach to simply providing deterministicpeak-rate allocation; as shown in
[Zhang93], we can provide deterministic guarantees while the sum of the peak rates of all accepted
connections exceeds the speed of the link. The Tenet Protocol Suites also support a statistical ser-
vice, which can co-exist with the more stringent deterministic service. In statistical service, the
receiver’s quality of service is specified in terms of delay and lossprobabilities; thus, the receiver
will request a minimum probability that a packet delay will not be greater than a fixed maximum
delay and a minimum probability that a packet will not be lost due to buffer overflow. Statistical
versions of the admission control tests are then performed to see if these probabilities can be met.

The communication paradigm of Suite 1 of the Tenet Protocols is that of a simplex unicast connec-
tion. Channel establishment in Suite 1 is accomplished in a fully distributed way with a single
round trip. On the forward pass, admission tests are performed at each node along the route. If the
tests at a node are successful, then resources are tentatively reserved for the channel, and the estab-
lishment message proceeds to the next node on the path. If anywhere along the route an admission
test fails, then the entire establishment fails, and any previously reserved resources are released.
Given a successful completion of the forward pass, the aggregates of minimum delay and jitter
bounds that are accumulated along the path are compared against the quality of service requested
by the receiver. If its requests can be met, then establishment succeeds, resources are committed to
the channel, and rate control and scheduling information is passed on to the data delivery network
protocol for scheduling and policing the newly established channel. Note that in Suite 1, if the
quality of service requested by the receiver has been over-met on the forward pass, then distributed
relaxation of the reserved resources will occur on the reverse pass.

In order to address the issues of multi-party applications, Suite 2 of the Tenet Protocols moves
from the simplex unicast channel paradigm to one consisting of a 1xN multicast connection. Suite

Real-time packets on established channels

Non-real-time, best-effort packets

time

utilization

3

2 continues to support real-time guarantees through admission control and resource reservation.
As we will see in Section 3.1.1, although the establishment process must be modified to cope with
several receivers, it still maintains a single round trip approach similar to the one outlined above to
keep the setup time to as small a value as possible.

2.2 Tenet Protocol Suites

2.2.1 Protocol Stack

The Tenet Protocol Suites are designed to co-exist in a node with other non-real-time protocols
such as TCP and UDP/IP. The Tenet Protocols can only provide guarantees when used in conjunc-
tion with a data link layer that can support packet scheduling with deterministic behavior (e.g.,
synchronous FDDI, ATM, and switched Ethernet1). Real-time data delivery is accomplished
through two protocols: RMTP, the Real-time Message Transport Protocol and RTIP, the Real-Time
Internetwork Protocol. Signaling in the Tenet Protocol Suites is done through RCAP, the Real-time
Channel Administration Protocol.

.

FIGURE 2: Tenet and Internet Protocol Stacks

The Real-time Message Transport Protocol

RMTP is a thin transport protocol that performs fragmentation, reassembly, and source rate con-
trol. Because of the real-time nature of our service, we do not implement any ack or nak based
schemes of retransmission. We assume that data sent via our protocols is delay-sensitive in nature,
and that, if packets are lost or corrupted, they may not be retransmitted within the delay bounds
guaranteed to the recipient. It should be noted that, if reliable delivery is crucial, other schemes
using redundancy such as forward error correction, linear predictive coding, as outlined in [Bol-
CreGar95], may be more appropriate to traffic with real-time constraints. These redundancy tech-
niques have not been included in our protocol designs.

RMTP does not implement any flow control scheme. Given that the delay and jitter bounds are met
by the network, it is assumed that a receiver has made sure at admission test time that it has enough

1. Tenet Protocols cannot provide guarantees on Ethernets that use the standard CSMA/CD collision detec-
tion scheme. Exponential backoff creates non-deterministic behavior, which cannot be built upon to provide
deterministic or statistical delay bounds to the higher layers.

R
C

A
P

TCP UDP

IP

RMTP

RTIP

Signaling

(ATM, FDDI...)

Data Delivery

Data Link Layer

Network Layer

Transport Layer

4

processing power and buffer space to consume the data sent by the source. In Suite 1, the motiva-
tion for this assumption is clear given the single source-destination matching at the time of channel
creation. In the context of a unicast connection, it is obvious that a source’s data rate would be
matched to the specified destination. In Suite 2, there is no direct one-to-one matching between
source and destination. Even in this case, however, each receiver will test its ability to consume the
traffic the source generates, and will refuse the connection if this condition is not satisfied. Section
5.1.3 discusses this issue in more depth, and details how Suite 2 supports heterogeneous receivers
that may require different data rates.

The Real-Time Internetwork Protocol

RTIP, our network layer protocol, performs rate control, jitter control policing, and packet schedul-
ing. RTIP is an unreliable connection-oriented protocol that enforces guaranteed performance.
Since channels have fixed routes, packets are guaranteed to be delivered in order, unless nodes per-
mit overtaking within a connection. The connection-oriented approach eliminates any need for
per-packet routing, since routing for the connection is performed prior to establishment.

The Real-time Channel Administration Protocol

RCAP is a signaling protocol that performs connection setup and teardown. As discussed in the
previous section, connection setup is achieved through admission control and resource reservation.
In addition, RCAP supports queries on the state of the channels.

2.2.2 Changes when moving from Suite 1 to Suite 2

Some of the previously mentioned protocols must change more than others when multi-party
applications are to be supported. For example, RMTP need not change in the move to multicast.
RTIP must be modified to support packet replication on multiple outgoing links at the branching
nodes of a connection. In addition, as will be discussed in Section 3.1.6, RTIP must enforce rate
control over groups of channels that are participating in resource sharing.

RCAP must change radically in the move from unicast to multicast connections. Channel estab-
lishment now must progress across a multicast tree. Futhermore, as outlined in the next section,
several additional mechanisms have been added to RCAP2 (the Suite 2 version of RCAP) to sup-
port scaling for multi-party communication. The remainder of this paper focuses on the design and
implementation of RCAP2, and on how it supports scaling while servicing multi-party applica-
tions.

3.0 The Design of RCAP2
RCAP2 is the signaling protocol for Suite 2 of the Tenet Protocols. The protocol provides services
for both real-time connection administration (e.g., connection setup and teardown) and informa-
tion management (e.g., object creation, deletion, and querying of object state). Suite 2 has intro-
duced long-lived objects, so that object creation and deletion is now decoupled from object use.
This decoupling allows the client application to reuse objects without incurring the overhead of the
object instantiation. For example, if a number of objects are created to describe a distributed
weekly meeting, then these objects can be reused from one week to the next, simply by requesting
setup and teardown of the connections that they describe.

We have taken pains to use a modular approach when designing our protocols. We have tried to
decouple our design from any specific admission control tests and traffic models. This modular

5

approach not only allows for increased support for heterogeneity, but also allows us to experiment
with different design choices.

In this section, we will begin by defining some basic terms that will be used in the remainder of the
document, and then move on to discuss in detail the mechanisms we added to support multi-party
communication.

Channel

In Suite 1 of the Tenet Protocols, a simplex unicast connection, called achannel, is an active entity
that is in existence solely during the life of the connection. In Suite 2 the termchannel has differ-
ent semantics than in Suite 1: in this framework, achannel refers to the passive entity that includes
all data describing the channel and the current state the channel is in. A channel in this context can
be either established (the source is connected to the destination set) or not established.

Target Set

A target set is a logical grouping of receivers and the performance requirements specified by them
(see below). This grouping allows for decoupling of senders and receivers. For example, a source
does not have to keep a list of the individual receivers of its data; rather, a channel’s participants
are defined simply as its source and its target set. Conversely, if a receiver joins a target set, then
connection is automatically attempted to all active channels sending to that target set, dynamically
attaching the new receiver without the direct knowledge2 or involvement of any of the sources. In
addition, the target set abstraction enables heterogeneous receivers to specify differing perfor-
mance requirements.

Sharing Group

A sharing group is a set of channels with some known collective pattern of use. When creating this
group, the client application has specified to the network what that usage pattern is, thus enabling
the network to exploit this information to optimize the allocation of network resources.

Traffic Characteristics

Traffic characteristics consist of a description of the speed and amount of data that a source can
generate. Several traffic models have been proposed to describe sources, such as Leaky Bucket,σ−
ρ, Xmin-Xave-I. Suite 2 supports multiple traffic models by using a generic RcapTrafficSpec base
class to hide the underlying model. This black box is then passed to the admission control tests,
each of which can be coded to accept multiple traffic models.

Performance Requirements

Performance requirements are quality of service parameters that describe the way in which each
receiver wishes the data to be delivered. These requirements can be specified in terms of desired
end-to-end delay, delay jitter, and maximum packet losses due to buffer overflow. In Suite 2, these
requirements are presented as ranges of acceptable performance bounds which should eliminate or
at least reduce the need for multi-phase renegotiation. The client specifies a desired performance
bound and a range that extends to the worst performance bound that he or she might accept. For
example, a client may specify its delay bounds requirement as (Dmax, ∆). Dmax is the desired

2. The sender may request to be notified when additional receivers join. The design of RCAP2 provides
mechanisms that support this type of event triggering.

6

delay bound, however the client will accept delay bounds up to Dmax+ ∆. The ranges are specified
by assigning the desired value and the maximum deviation.

3.1 Services of RCAP2

While it is quite possible to support multi-party applications through the use of several Suite 1 uni-
cast connections, this approach would neither be efficient nor scalable. For this reason, in Suite 2
we have moved to a basic 1xN paradigm for a connection.

We modified several aspects of the existing mechanisms for channel establishment to support the
move from Suite 1’s 1x1 paradigm to a 1xN paradigm in Suite 2. In addition, in moving from uni-
cast to multicast, we added several mechanisms to the protocol suite to improve multi-party com-
munication:

• multicast channel establishment

• dynamic join and leave

• resource partitioning

• advance reservation

• third-party coordination

• resource sharing

• dynamic traffic management

The goals of these mechanisms fall into two broad categories: adding flexibility for the applica-
tion, and optimizing resource allocation. For example, in order to provide flexible support for the
applications, we do not want to restrict a connection to having a fixed permanent set of receivers.
This would mandate the policy that all receivers be assembled prior to making the establishment
request. In Suite 2, receivers may join or leave an active connection, through a technique called
dynamic join and leave. This technique allows for attachment of new receivers to, and detachment
of existing receivers from, an ongoing connection. In addition, we expect that applications may
want to reserve resources in advance in order to guarantee that they will be available at the time of
use. Suite 2 supports this type of pre-allocation of resources through a technique calledadvance
reservation. Advance reservation, in turn, is supported by the underlying mechanism of resource
partitioning. Finally, we expect that complex multi-party applications may wish to use a coordina-
tor to create channels, target sets, sharing groups and to arrange for such actions to occur as chan-
nel establishment and dynamic join. In Suite 2, we allow for authorizedthird-party coordination,
on behalf of the actual participants

The second category of mechanisms support optimization of resources allocated to multi-party
applications. These mechanisms can be used by applications to more accurately specify their
expected use of network resources. For example, as the number of senders increases in a large
multi-party application, it is possible that there will be some known pattern of use that may be
exploited to optimize the allocation of network resources; for instance, some floor control tech-
niques used by the application may restrict the number of concurrent senders. We can optimize
throughresource sharing by only allocating enough resources on shared paths to support the max-
imum number of concurrent senders allowed by the application. In addition, our protocols allow
for media scaling throughdynamic traffic management. Through this mechanism, a source may
modify the amount of reserved resources to track long-term fluctuations in its traffic. This tech-
nique allows for better overall network utilization by controlling the source’s traffic.

7

The following sub-sections discuss each of these mechanisms in more detail.

3.1.1 Multicast Establishment

Connection setup consists of two phases: apreparation phase, which includes routing and an
establishment phase, which performs admission control and resource reservation. The preparation
phase begins by the channel object contacting its associated target set object to obtain the current
list of receivers and their requested performance requirements. This information is used to com-
pute a route from the source to the set of receivers. Routing can be accomplished either by a server
that has some knowledge about the current network state [Widyono94], or it can be dynamically
calculated[BierNonn95]. There are some obvious scaling issues associated with a centralized ver-
sion of the first approach. These scaling problems can be alleviated by distributing the routing
server and by using a routing algorithm based on successive refinements [Moran95]. We discuss
this scaling issue in more depth in Section 5.1.1.

The second phase of connection setup is establishment. Although establishment follows the single
round trip approach developed in Suite 1 of the Tenet Protocols, we now must scale those tech-
niques to service a (potentially large) number of heterogeneous receivers [BetFerGupHe95]. The
multicast establishment process will be presented here as proceeding from the source to the desti-
nations and back. The reader, however, should keep in mind that this process can be implemented
in the reverse direction with very few modifications.

On the forward pass of establishment, at each node (router, gateway or switch) on the multicast
tree admission control tests are performed using the resources available in the channel’s partition
(see Section 3.1.3). A given set of resources are administered by aresource server. For example, at
a gateway there may be a CPU server and several outgoing link servers, or in a crossbar there may
be simply the outgoing link servers. A link resource server would control the allocation of all
resources associated with an outgoing link (e.g., output buffers, bandwidth and scheduling), and it
would administer admission control tests for partitions that were represented on that link.

If all tests succeed at a server, resources are tentatively reserved to support the new channel. In
addition, if all admission tests succeed on a path through a node, then the calculated minimum
local delay bound is accumulated into the aggregate minimum delay bound and is passed in the
establishment message on to the next node on that path. If any of the tests fail at a server, then no
resources are reserved and admission fails for all destinations on a path through that server. If tests
succeed on some servers, then resources are reserved and the establishment message is forwarded
only on to links that succeed inall their admission control tests.

When the establishment message reaches a node that contains a receiver, a destination test is per-
formed. In this test the accumulated delay passed in the message and the jitter contributed by the
last node are compared with the ranges that have been requested by the receiver. If the delay bound
and the jitter bound meet the receiver’s requirements, then the test succeeds and connection is suc-
cessfully established to that destination. If this node is a leaf, the reverse pass of establishment is
started, otherwise the regular admission tests are performed and the forward pass continues. On the
reverse pass, resources are committed on successful paths of the connection, and RTIP2 is given
rate control information in each node. At each branch node along the reverse pass route, the estab-
lishment process waits for all reverse pass messages from sub-trees reachable from that node. On
links that support at least one successful receiver, resources are committed, and rate control infor-
mation is passed to RTIP2. On links where no destinations can be successfully reached, resources
are released, and that link is pruned from the multicast tree. Figure 3 illustrates this process, for a
multicast tree with three intended receivers located at leaf nodes of the tree. On the forward pass,
an admission control test fails for an outgoing link of a node on the right subtree. Since no other

8

destinations are reachable from that node, the upstream node is informed of the failure. All other
nodes and links succeed on their forward pass admission tests, and resources are tentatively
reserved. When the establishment messages reach the left subtree’s leaf nodes, the requested per-
formance requirements are compared with the achievable bounds. In our example, the requested
bound has been met for the middle node but not for the far left node. At this point, the reverse pass
begins, and resources are committed on all links that are on the path from the source to the middle
node. Both the right path from the first branch node and the left path from the left node of the sec-
ond set of branch nodes will be pruned from the tree. Resources are released on these links.

FIGURE 3: An example of multicast connection establishment

It should be noted that the establishment process has been fully distributed, and that all local
admission control decisions are based upon data that are available at that node. There is no central-
ized or global decision making. Our connection-oriented approach, however, makes the Tenet Pro-
tocols vulnerable to node failure. Members of the Tenet group have addressed this concern in their
work on fault handling [ParBan94]. Their approach to this problem uses rapid rerouting for fault
recovery. Although their work was done in the context of Suite 1, there is no reason that these
mechanisms cannot be extended to the multicast environment addressed by Suite 2. Object state,
however, increases the complexity of providing fault tolerance and recovery, for now a failure at a
node not directly on the path of a channel may result in the loss of data relating to that channel. It
should be noted that this type of failure will not disrupt the delivery of data on the affected connec-
tion, but it will simply affect the future management of it. Certain policy decisions such as placing
the channel object at the source node’s RCAP2 daemon can make our design more robust with
respect to this type of failure. In addition, target set information can be dynamically reconstructed
by a message traveling along the path of a connection.

A subtle issue is embedded in the above description of establishment. In Suite 2 we allow for what
we termpartial establishment: the failure of a receiver to be connected does not prevent the overall
channel from being established. We have chosen these liberal semantics because we feel that they
are more flexible. For example, if an application requires anall-or-nothing policy, the service pro-
vider can build a session layer above our protocols that supports the desired semantics. This ses-
sion layer can request establishment, and check the results of that attempt before the connection is
handed off to the application. If the requirements have not been met, the channel can be torn down,
and failure can be reported to the application. If we had chosen to restrict our interface to more
limited semantics (i.e., all-or-nothing), then it would be extremely difficult for a service provider
to supply an interface to applications that allows for a more liberal policy.

failed link test

failed destination test

(a) forward pass (b) reverse pass

release resources
on this link

commit resources
on this link,
inform RTIP

9

3.1.2 Dynamic Join and Leave

Dynamic join begins with a request to insert a receiver into a target set [EffMul93]. Dynamic
attachment is attempted to all channels currently established to the target set. Attachment follows a
process similar to the one outlined in the previous section. In the first phase, a route is found from
the receiver to the nearest attachment point on the multicast tree. In the second phase, establish-
ment occurs in a single round trip. The forward pass progresses from the receiver through the
nodes leading to the attachment point. On each node along the route, resource server admission
control tests are performed with respect to the channel’s partition for the reverse direction. If all
tests on the forward pass are successful then the aggregate delay bound accumulated on the for-
ward pass is added to the delay bound from the source kept at the attachment node, and the total is
compared to the bound specified by the joining receiver. If this test is successful, then resources are
committed on the reverse pass, and RTIP2 is given the rate control and scheduling information in
each node.

Although it is quite possible to implement initial establishment in the reverse direction, we can still
achieve “receiver-oriented” establishment without changing the implementations as described
above. Even if initial establishment progresses from the source to the receivers and back, we can
still have receiver-initiated establishment by leveraging off of both partial establishment and the
join mechanism. A channel is first established to an empty target set and then receivers can join.
Although it is quite possible that a non-optimal multicast tree might result from building the tree
through this type of connection establishment, it is also unclear what impact several dynamic joins
and leaves would have on a multicast tree developed through a source-initiated establishment.

Dynamic leave results in a receiver being removed from a target set and from all channels sending
to that target set. All links in the multicast tree exclusively servicing that receiver are torn down by
releasing resources allocated to that channel in RCAP2 and requesting RTIP2 to remove the rate
control and scheduling information for that channel on that link. It must be noted that, if the node
at which the receiver is located also serves other destinations then no resources are released.

3.1.3 Resource Partitioning

Resource servers control a set of resources either for the CPU, a switch, or an outgoing link. A
resource partition (or simplypartition) is a logical subset of resources (e.g., percentages of buffer
space, bandwidth or computation power, and schedulability) available on a resource server [Fer-
Gup93]. Each resource server, therefore, may have its resources divided amongst one or more
resource partitions. See Figure 4 for an illustration of a node with two partitions and four resource
servers (i.e., one CPU server and three link servers).

10

FIGURE 4: Illustration of Resource Partitioning

When a channel is created, it must specify the partition it wants to belong to. During establish-
ment, admission tests for that channel are performed on the resources available in the channel’s
specified partition. If there are not enough resources in the specified partition to support the new
channel, then it will fail that admission test. Channel establishment decisions, therefore, must only
take into consideration the other channels established in that one partition. Resource partitioning is
a logical division of resources that is only needed during admission control, and thus is only
known to RCAP2, the signaling protocol. Once a channel is successfully established, the concept
of resource partitioning is not needed for rate control enforcement in the data delivery protocols.

Network administrators can use resource partitioning to enforce several different policies with
regard to resource usage. For example, partitioning allows the network to be divided into several
virtual private networks. It can be used in this fashion to restrict specific traffic from or to a partic-
ular sub-domain or set of nodes. In addition, resource partitioning can be employed to enforce a
hard boundary protecting resources for non-real-time traffic, since it allows a network administra-
tor to restrict real-time traffic to use only some subset of the available resources at a node. Recall
that non-real-time traffic may still use the unused resources of any partition, while real-time chan-
nels may only use resources in their specified partition.

3.1.4 Advance Reservation

Advance reservation allows channels to be set up for a fixed interval in the future [FerGupVen95].
This special case of establishment allows distributed applications to more easily coordinate a large
complex communication structure by reserving the resources for it in advance of their use. This is
analogous to booking hotel rooms in advance for a conference. Presumably, if there is denial of
service, then the application has some time to adjust and make alternative plans.

Resource partitioning supplies the mechanism that provides the underlying support for advance
reservation.Advance channels are segregated from channels that request immediate establishment
(termedimmediate channels) by assigning resources to them on a separate partition. This allows
the network administrator to separate out a group of resources, and assign them in the future to
channels that are established in advance. These resources are protected from use by immediate
real-time traffic. Suite 2 requires that advance channels not only declare their start time but also
their duration. By having a declared start and end time, advance channels can be assigned to a
fixed schedule, and resources can be immediately reassigned to other channels upon the scheduled
termination time of a channel. In Suite 2, immediate channels do not specify a duration; hence,
resources are assigned to these channels until they are explicitly released by the application.

Link Server C

Link Server B

CPU Server

Partition 2

Link Server C

Link Server B

Link Server A

CPU Server

Partition 1

Node with 3 Links
Two Resource Partitions Represented

11

3.1.5 Third Party Coordination

Suite 2 supports location independence throughthird party coordination. Objects can be created,
and actions can be performed upon those objects (e.g., establishment, join, and queries), by autho-
rized third party agents. This mechanism supports the concept of network resource booking agents.
When used in conjunction with advance reservation, it further supports this natural model by
allowing a conference organizer to set up in advance complex communication patterns on behalf
of the participants.

Channels, target sets, and sharing groups may be created by anyauthorized requestor. In our pre-
liminary design for authorization, we took a capability-based approach where the object creator
has rights to create, destroy, and request actions on, an object (e.g., request the establishment of a
channel). The creator can grant subsets of these rights to others. To request an action on an object,
the requestor must pass ahandle to the object. This handle contains the requestor’s capabilities for
that object. RCAP2 checks the requestor’s authorization for the action before allowing the request
to proceed.

Although both advance reservation and third party coordination are techniques that primarily sup-
port flexibility, they also simplify the process of creating complex multi-party connections. A sin-
gle organizer can coordinate all object creation and connection setup, and thus simplify the
organization of conferences that might otherwise reach levels of complexity that would be difficult
to administer.

3.1.6 Resource Sharing

We directly address the issue of scalability by allowing for resource sharing. Through this tech-
nique, an application can specify usage patterns over a group ofrelated channels, and the network
can exploit this knowledge by optimizing resource allocation [GuHoMoNg95]. Related channels
may share resources, and thus exploit statistical muliplexing gains. Although rate control is per-
formed over the group of related channels, the network still guarantees that the requested perfor-
mance bounds will be met over the individual channels.

To exploit resource sharing a client application creates asharing group with asharing specifica-
tion. This sharing specification contains an aggregate traffic specification and athreshold number.
Channels are then added to the sharing group. Resource sharing is implemented on a per-resource-
server basis. As each channel in the group is established, it is added to the number of related chan-
nels previously established at that server and compared against the sharing specification threshold.
Prior to reaching the threshold, channels are established normally, as detailed in Section 3.1.1.
Once the threshold is exceeded by the new request, the aggregate traffic specification is used for
admission tests. If the tests are successful, then resources are reserved for the aggregate traffic
specification. In addition, the resources allocated to the channels previously established in the
group are released3. Once the threshold channel has been established, subsequent related channels
need not perform admission tests on those links.

Resource sharing increases network utilization by allowing related channels to exploit statistical
muliplexing gains. In addition, for most applications we can expect that there will be some maxi-
mum concurrence that remains fixed while the number of participating channels may increase.

3. We should note that these resources are available during the performance of admission tests using the
aggregate traffic specification.

12

This pattern of use suggests that this is a very scalable service; very few additional network
resources may be needed as the number of participants continues to grow.

3.1.7 Dynamic Traffic Management

Traditional admission control provides for a one time negotiation for network resources. A source
is expected to supply a bounding traffic specification, and the network performs tests to see if it
can meet the desired service requested by the destinations. Through dynamic traffic management
(DTM), we allow the sender to renegotiate this contract during the life of its connection. Senders
can now bound their traffic on a smaller time interval than the life of a connection.

It is obvious that deterministic service best serves constant bit rate (CBR) traffic. To obtain high
utilization the application must send at a rate as close as possible to its maximum rate. Generating
an accurate least upper bound is trivial for CBR traffic. Unfortunately, several multimedia applica-
tions employ compression, and thus generate variable bit-rate (VBR) traffic. Recent work has
addressed the issue of incrementally bounding VBR traffic [ZhaKni95b][GroKesTse95], thereby
getting a more accurate bound for each time interval. To reap the benefits of this work, we must
assume that the network supplies a mechanism to allow for renegotiation of the resources allocated
to a connection. Dynamic traffic management is such a mechanism.

In DTM4 we use a two-round-trip technique for channel renegotiation, similar to the two-phase
commit used in distributed databases. Our semantics require that all current receivers of the chan-
nel must be supported after the renegotiation. This requirement forces us to use a two-round-trip
approach: the first round-trip tests to see if the new traffic requirements can be met byall links and
nodes servicing the current destination set, and the second round-trip commits or aborts the DTM
event. Whether or not all destinations may be successfully supported with the new traffic specifica-
tion is only known at the end of the first round-trip. Note that it is possible that a channel may suc-
cessfully renegotiate through DTM to lower the amount of assigned resources, and later fail in its
request to re-obtain the original allocation.

4.0 The Implementation of RCAP2

4.1 General Architecture

RCAP2 consists of two components, a user-level daemon and a library that is linked in with client
applications. The RCAP2 daemon services requests from both applications and other RCAP2 dae-
mons. The RCAP2 library provides a set of messages (RcapMessages) and communication mech-
anisms for sending requests and delivering replies to and from the RCAP2 daemon. RcapMessages
are used not only to communicate between library and daemon, but also serve as the base signaling
message used between peer RCAP2 daemons.

4.1.1 RCAP2 daemon

The RCAP2 daemon is a user-level process that serves requests from client processes or peer
RCAP2 daemon processes located at remote nodes. Requests can access and manipulate resources
located at that node. We have designed the daemon with an object oriented structure. Channels,

4. The DTM work is currently in the design stage. The following description of the design may change in
some aspects as the work matures.

13

target sets and sharing groups are realized as derived classes that inherit from a common parent
RcapObject class. By using an object oriented approach, we are able to exploit inheritance to pro-
vide a common interface to all objects. The basic structure of the daemon consists of an RCAP2
level dispatcher (RLD) that dispatches bothinter andintra RCAP2 messages, a location and nam-
ing service (LNS), a series of RcapObjects and RcapObjectManagers, and an establishment sub-
system.

FIGURE 5: RCAP2 daemon architecture

Rcap Level Dispatcher

The RLD services messages sent from outside the daemon (from peer RCAP daemons and from
clients) and messages sent from objects inside the daemon (intra-RCAP2 messages). The dis-
patcher requests a lookup from the LNS on the message destination. The LNS returns a pointer to
the destination object if it is located at the current daemon or a pointer to the object manager if the
message must be forwarded to another daemon. The dispatcher then passes the message to the
object level dispatcher contained within the object referenced by the returned pointer. That object
then services the message request or forwards it onto the proper RCAP2 daemon.

Location and Naming Service

All naming and location services reside in this object. By isolating our naming conventions to this
object, we can easily modify them as the system grows. In the current implementation, objects are
named with anRcapGlobId. We have hidden a location based naming scheme within this global ID
by concatenating the IP address of the object’s location with the object type and number. The loca-
tion and naming service (LNS) within the daemon performs this object lookup. With the current
naming scheme, this lookup is greatly simplified.

Object Managers

Object managers service requests to create, destroy, or forward requests to objects located at other
peer daemons. There is a single instance of each type of object manager at a daemon: channel
object manager, target set object manager, sharing group object manager, routing manager. The lat-

Channel
Sharing
GroupTarget

Set

Partition

Establish
Adm
Tests

External

Queue
Message

Internal
Message
Queue

RLD

Naming
Location &

Route
Mgr

Resource Mgr

Channel
Mgr

TS
Mgr

Group
Mgr

14

ter manager serves a slightly different purpose: it simply provides a level of indirection so that an
object sending a routing request need not know the exact locations of the routing servers.

Target Set Object

The target set object keeps a list of current members and of their performance requirements. In
addition, it keeps track of the list of channels that are established to it. As currently implemented,
for each target set there is a single representation of the target set object. This design choice has an
obvious impact on scaling which we will discuss in the next section.

Channel Object

The channel object is responsible for maintaining global state on a given channel. It is also respon-
sible for initiating the various types of establishment processes (full establishment, attachment ini-
tiated by a new receiver joining the channel’s target set, full teardown, detachment initiated by a
member leaving the target set, and DTM renegotiation). In addition, the channel object is responsi-
ble for serializing conflicting establishment events.

Sharing Group Object

The sharing group object maintains a list of the channels grouped for resource sharing and the
sharing specification attached to them. As each channel is inserted into the sharing group, the asso-
ciated channel object is passed the sharing specification.

Establishment Object

The distributed process of establishment is coordinated at each local node by the establishment
object. This object requests that admission tests be performed on a given partition’s resources at
each server involved in the connection (see Figure 4). Our design allows for different admission
control tests to be used on different servers. For example, one server may use rate control static
priority (RCSP) tests and another may use earliest deadline due (EDD) tests. This is acceptable as
long as a single scheduling discipline is used consistently for admission control testing in a server.
On the reverse pass, the establishment object releases resources on servers leading only to receiv-
ers that cannot be reached. In servers leading to one or more receivers that can successfully be
reached, RTIP2 is given scheduling and rate control information.

4.1.2 RCAP2 library

The RCAP2 library consists of a set of RcapMessages that can be used to call a variety of RCAP2
object methods. The low-level client interface to RCAP2 is based on asynchronous, message-
based, request-reply communication. This interface includes requests to:

• create objects: ChannelNew, TargetNew, SharingNew;

• destroy objects: ChannelDelete, TargetDelete, SharingDelete;

• trigger establish events: Join, Leave, Establish, Teardown, DTM;

• query the state of objects and connections.

The RCAP2 library contains methods to open and close a connection to the local RCAP2 daemon,
and to dispatch messages from and to the client and daemon.

15

4.1.3 RcapMessages

An RcapMessage is a versatile object oriented data structure used in bothinter andintra-RCAP2
communication. RCAP2 uses RcapMessages for communication between an application linked
with the RcapLibrary and the local RCAP2 daemon. In addition, RcapMessages are used to com-
municate between peer RCAP2 daemons. Messages with different payloads are derived from a sin-
gle RcapMessage base class; thus, they share a common interface.

When sent as an intra-RCAP2 message, the structure remains in anunpacked state. In this state,
the fields of the message payload are directly accessible, and the message header is protected
through access methods supplied by the class. If it is sent for inter-RCAP communication, the
RcapMessage is firstpacked: the fields of the RcapMessage are first converted into network byte
order and then packed into a character array member field of the class. Thesend() method of the
message takes care of both packing and reliably sending the message. To receive a message, the
header is first read, and then it is cast as the proper derived class; finally, the remaining payload is
read and unpacked into the fields of the message.

4.2 Implementation Decisions

We made a number of simplifying decisions while constructing the prototype implementation.
These decisions have ramifications for the scalability of the prototype. In this section, we detail
some of these decisions and provide some motivation for each choice.

1. RCAP2 library only contacts the local RCAP2 daemon

In the prototype we assume that communication between the client application and the RCAP2
daemon must occur between processes located on the same machine. This decision requires that
there be an RCAP2 daemon resident at any node at which clients reside.

It is clear that an instance of RCAP2 is required when setting up channels at a node; thus, an
instance of RCAP2 is needed at any point where RTIP2 exists. In Suite 1 all requests are gener-
ated from either the source or the destination of a channel. In that framework, mandating local
communication between the client and RCAP is obvious. If the client is requesting a real-time
channel, serviced via RTIP, then there must be an instance of RCAP resident at the node. This
need is less clear in Suite 2, where we allow for third party coordination. In this context, clients
may request actions that have no effect on the state of their local node.

We chose this arrangement for two reasons. First, it eases authentication issues; there is a single
entry point for a given client. Second, it simplifies the communication pattern to RCAP2
thereby reducing the number of error conditions.

2. no distributed objects

Each instance of an object has a single representation (e.g., each target set is represented by a
single instance of a target set object). There are no distributed representations of any of these
objects. Note that this decision does not mandate that all instances be in some central location
(see #4 below).

We chose this policy purely for simplicity of implementation.

3. co-locate channel objects with their target set objects

We have chosen the policy of co-locating at the same daemon channels objects with their asso-
ciated target set objects. Thus, when a channel is created, the object representing it is placed
within the same daemon at which the specified target set object is located. The normal progres-

16

sion of events begins with the creation of a target set. This is either followed by receivers join-
ing that target set or by the creation of channels sending to it. Each of these events impacts the
amount of data that is stored at the daemon at which the target set object is located.

While this policy optimizes the communication between a channel object and its associated tar-
get set object during channel establishment, teardown, join and leave, we will see in Section
5.2.2 that it limits the scalability of the design.

4. locate a target set object at node where initial create request was made

The object representing a target set is placed at the daemon that receives the creation request.
Again, this policy was chosen for simplicity of implementation, for it does not require any addi-
tional mechanisms to be employed when locating an object.

5. source-initiated establishment and join

We have implemented establishment starting from the source node of a channel, proceeding
down the multicast tree to the receivers, and returning on the reverse pass to the source. Join is
implemented in the same manner. The establishment to a new destination starts at the source
node and progresses to the attachment point, incrementing reference counts at each node for the
number of destinations reachable from that node. When the message reaches the attachment
point of the tree, admission control tests are performed on that node and on each hop to the new
receiver. If the establishment is successful, then RTIP2 is informed on the reverse path back to
the attachment point.

This join technique has allowed us to leverage off of existing establishment code. In addition,
with this implementation, it becomes trivial to add support for bundling join attempts and con-
necting them en masse. This, however, does not permit receiver-initiated establishment, which
we believe is desirable or required in a number of applications. Thus, a future version of the
implementation ought to use the receiver-initiated attachment outlined in Section 3.1.2.

6. no caching of signaling message connections

Signaling messages (RcapMessages) are transported reliably via TCP/IP. The send()
method of the RcapMessage opens a connection to the destination address, sends the message,
and then closes the connection. No connections are kept open and cached in our prototype.

Again we chose this implementation because it was easy to implement. There is far less state
information to be maintained. We have found, however, that we incur a large performance hit
by opening and closing connections for each message.

5.0 Evaluation of RCAP2
In this section we evaluate the scalability of both the design and the prototype implementation of
RCAP2. It is important to draw a clear distinction between the design and the implementation of
the protocol. The former can produce many variants of the latter. While we have attempted to
design a scalable protocol, we are cognizant that many of our initial implementation decisions
have been made at the expense of scalability. What we hope to show in this document is that the
design supports scalability, and that it can generate a scalable implementation. This section begins
with an evaluation of the design, then moves on to a discussion of the current implementation, and
concludes with a sketch of a more scalable implementation.

17

5.1 Design Scalability

5.1.1 Support for Large Internetworks

To support deployment on wide area networks, our design must scale to large distances with many
heterogeneous hosts, routers, switches, and links. Our design must be portable to many environ-
ments. Several design decisions have been made with this in mind.

Like Suite1, Suite 2 supports multiple scheduling algorithms. The design of RCAP2 allows us to
plug in several different admission control tests depending on the scheduling algorithm being sup-
ported by the node. It has been noted [Ferrari92] that, as long as the scheduling algorithms used
along the path of a connection are chosen from the very large class of service disciplines that can
support real-time communication, then end-to-end guarantees can be met. By not fixing our
approach to a single scheduling algorithm such as Weighted Fair Queueing [ParGal93], which
requires homogeneity among the nodes, we can support heterogeneous nodes and create real-time
channels traversing many heterogeneous networks.

RCAP2 chooses a scalable approach to admission control. Connection establishment decisions are
distributed along the paths of the multicast tree. In addition, by reusing the approach taken in Suite
1, the establishment process maintains the low overhead of a single round trip.

The Tenet Protocols are restricted to using data link layers that can support our real-time guaran-
tees. In order for the Tenet Protocols to provide guaranteed service, the underlying data link layer
must supply some form of priority scheduling, as well as allow for bounding packet-delivery time.
For example, traditional CSMA/CD exponential backoff used in broadcast Ethernets results in
non-deterministic behavior. Schemes modifying CSMA/CD by requiring reservation of transmis-
sion slots prior to transmission have been shown to support real-time guarantees over such types of
LANs [YavPaiFin94].

Tenet’s connection-oriented approach requires that RTIP be present in all routers and switches on
the path from source to destination(s). It has been proposed that tunneling (i.e. encapsulation) be
used to cross sub-networks that do not support our protocols. If the end-to-end delay and jitter on
the tunneled section of the path can be bounded then we can still support guaranteed service, other-
wise we cannot [Ferrari92].

Finally the Tenet Protocols assume that routes be pre-computed prior to establishment. This
requirement has obvious scaling limitations if one assumes that it requires centralized route calcu-
lation. Fortunately, this is not required. Routes can be generated dynamically by distributed dis-
covery or they can be calculated by some distributed form of routing server. The Tenet approach
simply requires that they be computed prior to establishment.

5.1.2 Support for Many Multi-Party Connections.

The Suite 2 protocols must gracefully support many multi-party connections. This requires that the
protocols make efficient use of network resources. Strict peak rate allocation for bursty VBR traf-
fic traditionally does not provide high network utilization.

Suite 2 supplies several solutions to this problem. First, as stated in Section 2.1, non-real-time traf-
fic may use unused resources allocated to real-time channels. During peak periods for non-real-
time traffic, the network may have extremely high utilization. The network utilization will only
suffer during periods where there is little non-real-time traffic and several bursty real-time chan-
nels with deterministic guarantees. Suite 2 has supplied two mechanisms that address this situa-

18

tion. The first technique is resource sharing among related channels. This mechanism allows for
statistical multiplexing of real-time traffic. While it is the onus of the client application to specify
the sharing relationship among related channels, one would expect that a tariff structure would
reward the client for cooperating with the network in this optimization.

The second mechanism that supports higher network utilization is dynamic traffic management.
Through DTM, the source’s traffic can be accurately bounded over smaller intervals, thus allowing
the peak and average rates to be closer to one another [ZhaKni95a]. As the peak and average rates
merge, VBR traffic more closely resembles CBR traffic, and therefore, the utilization induced by a
real-time channel increases.

Finally, the protocols support not only deterministic but also statistical services. Statistical service
guarantees bounded loss probabilities, and bounded delay probabilities, and allows for more chan-
nels to be supported by the same resources.

5.1.3 Support for a Large Number of Receivers in a Single Connection

To support a single large connection, our protocols must scale to support many heterogeneous
receivers. These receivers may have different hardware, different amounts of buffer space and
therefore, different rates of consumption. In addition, the receivers may be in widely different
locations relative to the sender.

In such a scenario, we cannot support prolonged multi-phase negotiation between the network and
each receiver. Suite 2 addresses this issue by requiring the receiver to state arange of acceptable
performance. This range contains both desired bounds and minimum performance. On channel
establishment, the network performs a single check to see if the achievable bounds are better than
or fall within the ranges requested by each receiver. If it does, then the receiver is admitted; if it
does not, then the receiver is not connected. The rejected receiver has the option of leaving the tar-
get set and rejoining it with more lax performance requirements.

.

FIGURE 6: Example of geographically disperse receivers

Geographically dispersed receivers may supply performance requirements that reflect their dis-
tances from the senders. As shown in Figure 6, a distributed conference may have to take place
between several participants located in New York and a single participant located in Tokyo. The
participant in Tokyo, in her function as a receiver, must join the main audio and video target sets

19

with must less stringent delay requirements compared to her fellow conferees. If the participant in
Tokyo wishes to send both audio and video data to the other participants, then there may need to be
additional target sets to reflect the delay in sending data from Tokyo to New York.

Figure 7 shows the two video target sets used to support this conference, and each receiver’s spec-
ified delay bound component of the performance requirements. In this illustration, Target Set #1
services video that originates in New York, so both participants A and B will send to this target set.
Note that both A and B not only send to this target set but receive from it as well. Target Set #2 ser-
vices video that originates in Tokyo, thus participants A and B must specify longer delays.

FIGURE 7: Example delay requirements

In addition to supporting receivers requiring differing delays, we must also support receivers with
differing capacities. Differences in amounts of buffer space, processor speed and other machine
characteristics (e.g., presence or absence of decompression hardware) impact the data rate that the
receiver can consume. In addition, low capacity links in the network can prevent reception of high-
bandwidth data. Suite 2 can support these heterogeneous receivers through the use of data layers
and concentric target sets. Senders hierarchically encode their data sending the base layer to one
target set and each enhanced layer to other target sets. Receivers are expected to join multiple tar-
get sets depending on their ability to support data rates. All receivers would join a target set receiv-
ing the base layer, and progressively smaller subsets of the receivers would join target sets
receiving the enhanced layers. Figure 8 illustrates this usage pattern with an example. Receivers
A-F wish to receive data at varying data rates: receivers A and B can receive all three layers,
receiver C can support both the lowest rate encoded in the base layer and a medium enhanced
layer, and receivers D, E and F can only consume the minimum data rate. Three target sets must be
created to service this group of heterogeneous receivers. All receivers should join Target Set #1
and receive the base encoded layer. Receivers A-C should join Target Set #2 and receive the addi-
tional medium-resolution enhanced layer. Finally, receivers A and B should join Target Set #3 to
receive the highest-resolution layer.

FIGURE 8: Support for multiple data rates

TS #1 - N.Y. Video TS #2 - Tokyo Video

A - delay 50-100ms
B - delay 70-100ms
C - delay 100-200ms

Source A

Source B

Source C

A and B are located in New York
C is located in Tokyo

A - delay 100-200ms
B - delay 100-200ms
C - delay 50-100ms

Base Layer

Medium Enhanced
Layer

High Enhanced
Layer F

E

D

C

BA

Target Set #1

Target Set #2

Target Set #3

20

In addition, this technique can be used to circumvent the problem of a bottleneck link on the path
of a connection. As illustrated in Figure 9, by layering the code and establishing the channels in the
correct order, we can detect the highest data rate that the network can support within the range of
layers that the receiver has joined. Continuing the example above, we must begin by establishing
the base-layer channel, then move on to the medium-enhanced layer, and conclude with establish-
ing the high-resolution layer channel. If there exists a bottleneck link on the path that exclusively
serves receiver A, then one of two scenarios can occur: either the base-layer channel succeeds in
its establishment (and possibly other layer channels), or the base-layer channel fails. If the former
situation occurs, then receiver A at least can create a lower resolution data stream out of the com-
ponents it receives. Through this technique, A can determine a rate close to the maximum one its
path can support and, if the rate is acceptable, participate in the application anyway.

FIGURE 9: Using hierarchical encoding to support receivers serviced by low bandwidth links.

5.2 Implementation Scalability

Several of the implementation decisions discussed in Section 4.2 impact scalability. Many of these
decisions were made to expedite the implementation effort. A more robust implementation will
need to incorporate changes such as those detailed in the next section. This section of the docu-
ment flags the non-scalable implementation decisions.

5.2.1 No distributed objects

The prototype implementation has only a single representation of any instance of an object. As the
number of participants in a multi-party application grows, this approach not only creates a classic
hot spot of activity, but also can lead to the object’s size growing beyond the capacity of the dae-
mon process holding the object. For example, as each receiver joins a target set, the size of the
object representing that target set increases. In addition, more state information is maintained by
the target set object as the number of channels established to it grows.

Both a target set object and a channel object can be a hot spot in large multi-party applications. It is
clear from the discussion above that the target set object must be actively involved in joins, leaves,
establishments, and teardowns. Since connection setup is coordinated through a channel object,
this object can be a bottleneck as well when many receivers join and leave the channel’s associated
target set. The channel object is a serialization point for establishment events5. This serialization is
needed to ensure complete matching between senders and receivers during such times as concur-
rent channel establishments and receiver joins. While processing one establishment request, other

Source

A

B
C

D E

F

Bottleneck link

Link only supports
base layer

Link only supports
base and medium
resoulution layers

Link supports all
layers

Although A has
requested all 3 layers
it can only receive
the first two.

21

establishment requests are enqueued until the processing of the pending event finishes. When that
processing is completed, our implementation has taken the scalable approach of bundling queued
join requests and connecting them in a single attachment process.

5.2.2 Co-locating channel objects with their target set objects

While reducing communication overhead, the decision to co-locate channel objects with their tar-
get set objects may detract from the scalability of the design. As the number of senders to a target
set increases, the data representing those channels will be located at the same node, and all activity
for that application will concentrate on that single daemon.

5.2.3 Locating the target set at the node that received the creation request

At first glance, the simple policy of locating the target set at the node that received the creation
request seems to be scalable. In Suite 2, however, we wish to support the possibility of a third party
coordination. In a sample scenario, a third party coordinator may create several target sets, chan-
nels, sharing groups, join many receivers, and then request advance reservation for the channels.
With our current policy, all objects created by that coordinator would be placed at that one node.
When we scale this example to the case in which the coordinator creates several large conferences,
we may overrun the resources and abilities of that RCAP2 daemon.

5.3 Scalable Implementation Proposal

It is clear from the previous section that we must distribute some of the objects in RCAP2. We
begin with a discussion of how each object scales, leading us to understand which objects must be
distributed and when. We then detail how various actions such as object component creation,
object component lookup, establishment, join and DTM might occur in this framework. Finally,
we conclude with an analysis of this proposal and of a possible alternative to it.

5.3.1 Object Scaling

We begin our discussion about distributing object state information by examiningwhat objects
present scaling problems andwhen do they present those problems. Our analysis covers both
object size and object activity.

Target Set Object

The target set object presents a scaling problem in scenarios where a large number of participants
are using a single target set. Recall that the target set object is an object that maintains state infor-
mation on current members and currently established channels sending to it. As either the number
of members increases or the number ofactive (i.e., established) channels increases the size of the
target set object grows. A more critical scaling issue may be the one of activity. This object must
be contacted during most establishment events (with the exception of DTM). In addition, it must
coordinate all requests by receivers to join and leave.

5. Establishment events include initial establishment, incremental attachment or detachment triggered by a
join or leave, DTM scaling, and full teardown.

22

Channel Object

The channel object size grows only when it is actively involved in an establishment event. During
this process, the object enqueues incoming establishment requests. As each request is serviced, it
is dequeued and is no longer kept. Therefore, unlike the target set object, the amount of data main-
tained by a channel is not monotonically increasing with the number of participants. The amount
of cached data simply increases at times of concurrent establishment activity. Current connection
state information is not kept in the channel object; it is maintained in a distributed fashion in a sep-
arate data structure along the nodes of the connection. The channel object does not keep a list of
the currently connected receivers. That information may be discovered by sending a message
along the path of the channel.

It should be noted that apassive (i.e. not established) channel object has a fixed size, and its asso-
ciated target set is unaware of its existence. Joins to the associated target set do not impact a pas-
sive channel object; thus, a channel object in this state cannot be considered a hot spot.

Sharing Group Object

The sharing group object simply contains a list of channels in the sharing group, and the sharing
specification attached to the group. It cannot be viewed as a hot spot, for it is only contacted upon
channel creation, and is not on the critical path of establishment. The amount of data maintained
by the object increases with the number of channels participating in resource sharing, regardless of
whether or not the channels are established. This object can be viewed as a scaling problem only if
we believe that this state information might grow past the capacity of the daemon in which it
resides. Unlike the channel object, we have not instituted any sharing group object placement pol-
icy that would require co-location with any other objects. Scaling problems, therefore, are not
compounded by any location policies.

5.3.2 Distribution of Object Components

It is clear that we can make our implementation more scalable by distributing the target set object.
This can be achieved by either placing the components regionally (i.e., one per domain), or by a
more flexible policy that triggers component creation when a target set’s membership reaches
some high watermark. Each policy has its own distinct advantages. While the latter policy is more
flexible and allows for better scaling, the regional placement policy more naturally meshes with
our approach to distributed routing. For purposes of discussion we will assume that a regional
placement policy will be adopted.

Each target set object component contains data about the members located in a given domain and a
list of the locations of the other components of the target set object. At the time of creation, a sin-
gle component of the target set object is instantiated. The generation of additional target set object
components is triggered when non-local receivers are added or attempt to join. A similar technique
for distributing objects has been used in such systems as the Grapevine mail service [SchBirN-
eed84]. In Grapevine, each GV Registry must know about all other components of the GV Regis-
try. Experience with the Grapevine system has shown that there are some scaling limitations to this
design. Xerox PARC addressed these problems in a later version of the mail service, Clearing-
house, by adding another level of indirection and creating a hierarchial system of registries [Opp-
Dal83]. The limitation seen in Grapevine may not apply directly to our use of the technique. In
Grapevine, the GV Registry system must cover all areas where mail is delivered. In our system, a
target set object must only cover regions where there are participants in that particular target set.
Thus, the regional scope of the problem is in general quite different.

23

The distribution of channel object components raises some interesting questions. As we have seen
in the previous section, the passive channel object itself does not need to scale. However, after
establishment, the channel object becomes active, and a potential hot spot for future joins, leaves,
and for DTM events. If a channel is sending to a very large target set, the initial establishment may
also suffer from a scaling problem. Recall that a channel object begins establishment by requesting
the current membership of the target set. The channel object then requests a route from the source
to this list of participants. Given this procedure, we should also attempt to distribute the coordina-
tion of initial establishment so that each component of the channel object may independently
request routing for some subset of the participants. In other words, if a single object must coordi-
nate a large list of participants during an initial establishment, then we still have a scaling problem.

5.3.3 Distributed Actions

Component Creation

As previously stated, target set object component creation is triggered when a non-local receiver is
added to or attempts to join any of the components of the target set. Channel object component
creation is triggered during establishment. A component of the channel object is to be placed in
each region in which a component of the channel’s target set object resides. To make the system
more scalable, the local components of the channel objects should not be co-located with the local
target set object components. Since we have concluded that the sharing group is not likely to be a
bottleneck, it will not be replicated.

Name Lookup

We must revisit the issue of object naming with the advent of object components. Recall that we
have hidden a location-based naming scheme within an RcapGlobId by concatenating the IP
address of the object’s location with the object type and number. It is clear, however, that as we
move to a distributed implementation of objects, we must change our technique of object naming.
While some sort of global name must still be assigned to the logical object, we must resolve this
name into one of the names of the different physical components depending on the location of the
access. This level of indirection can be hidden within the location and naming service.

In this new framework, we must institute Regional Location and Naming Servers, RLNS. A RLNS
is placed in each region and it holds mappings of global object names to the names of local object
components placed in its region. The local LNS residing in the daemon now becomes a cache of
lookups. An object’s global name is simply the RcapGlobId of the initial component of the object.
If a new component is made, the new component’s RLNS is given the mapping of the global name
to the regional object component’s local ID. When a client makes a request, the object is looked up
at the local daemon’s LNS; if an entry is not found there, then the RLNS is queried. If the RLNS
returns with a mapping, then that information is cached at the LNS, using an LRU replacement
policy. If no mapping is returned, then the global name is used in a similar fashion to how it is used
our current implementation

24

.

FIGURE 10: Lookup table in the RLNS and LNS

When a component of an object is destroyed, then its entry must be purged from the RLNS. As
long as there is robust error handling to service the case when a component no longer exists, the
cached entries in the LNS lookup table need not be removed. In other words, a daemon may send a
request to the cached address, get back an error message saying the object does not exist, and then
purge the entry and use the global address.

Connection Setup

In our proposed implementation, all components of a target set object are aware of all channels
sending to that target set. During channel creation, a single component of the channel object is
instantiated. The channel object is then replicated during connection setup, with a component
placed in every region where components of the target set object exist. Connection setup is modi-
fied as follows, with the initial component of the channel object coordinating each step.

1. The channel object contacts the local target set object component to get a list of the current
members and a list of any other components of the target set object.

2. For each component of the target set object, a component of the channel object is placed in that
region.

a. The new local component of the channel object queries that region’s target set object to
get its members and its list of other target set components. At this point, the local target
set object knows that a new channel is attempting establishment, and any subsequent
joins to that component of the target set object will result in an attach request being sent
directly to this new local component of the channel object.

b. The local target set object’s list of components is passed back to the initial component
of the channel object. Then at the primary site, this list is merged with all other compo-
nents previously received.

3. When all components of the channel object have been created, the initial component begins the
preparation phase and signals each other component to begin the process as well. In this sys-
tem, the preparation phase can be implemented in parallel with connections routed regionally,
and cross-region attachment points mutually agreed upon by the routing servers.

4. Once this phase completes, the results are sent to the source node to begin establishment. The
distributed establishment phase is implemented as before.

Dynamic Join

In a move to a more scalable solution, we must implement receiver-initiated attachment as outlined
in Section 3.1.2. As subsequent receivers join a local component of a target set object, the local
component of the channel object is informed. Only that component of the channel object coordi-

homeIP/object/instance

localIP/object/instance

localIP/object/instance

homeIP/object/instance

homeIP/object/instance

homeIP/object/instance

Global Name Object Lookup

localIP/object/instance

localIP/object/instance

25

nates attachment of the new receiver, and no other components of the channel object must be con-
tacted6. In this new framework, establishment events can be serialized regionally; when an event
that spans the entire multicast tree such as DTM crosses regional borders, it is serialized by the
local component of the channel object. For example, if a receiver attachment is currently being
processed, and a DTM event arrives from another region, the DTM event will be enqueued until
the attachment completes. Serialization of these events on a regional basis results in an increased
concurrence of establishment events.

Dynamic Traffic Management

A component of a channel object must be able to serialize establishment events in its region. The
procedures for dynamic traffic management are relatively unaffected by the distribution of objects,
with one exception; the forward pass of the prepare phase must halt prior to entering a new region.
The new local component of the channel object must be informed of the DTM event arriving in its
region so that it may serialize and coordinate events in its region. Similarly, when the final phase of
DTM completes in a region, the channel object component is informed that the event has finished.

Dynamic Leave and Final Teardown

If a receiver leaving a target set is the last member of that component of the corresponding target
set object, then the component is removed. All other components of the target set object are
informed so that they may flush that component’s name and address from their list. In addition, the
RLNS is informed, so that it may flush that entry for the target set object. This process, however,
does not occur if the receiver leaves the initial component of the target set object. In this case, the
component remains until the target set is deleted, so that we always have at least one instantiation
of the object that is referenced by the global ID.

Dynamic detachment of a receiver from a channel only involves the local component of that chan-
nel’s object. Again, if this is the last receiver in this region, and this is not the initial region, then
the component of the channel object is removed.

Teardown results in the destruction of all components of the channel object other than the initial
component. Therefore, if a channel is in a passive state, there exists only one component of the
object.

5.3.4 Analysis and alternate proposal

Although the outlined changes solve several scaling problems, one still remains: all components of
the target set object must know about all channels sending to the corresponding target set.

An alternative design would have each component of a target set object know only about channel
objects that had initial components in their region. In this scenario, all establishment events would
have to be funneled through this initial (primary) component of the channel object, and be dis-
patched to the affected component of the channel for servicing. Joins would be broadcast to all
components of the target set object, so that each component could contact the subset of recognized
channels. This second design has the drawback of increased communication. It also is unclear if
the amount of additional data required in the first approach would ever scale to such a point as to
require this optimization. We anticipate that the issue of hot spots will have the largest impact on

6. We may wish to mandate that attachment points must be in the same region as the joining receiver.

26

the scaling of the system. This latter design idea reintroduces the hot spot at the channel object by
forcing all establishment events through its initial component.

6.0 Comparison with other approaches
It is a valuable exercise to compare the scalability of this design with those of other approaches
proposed within the network research community. In this section we will examine two protocols
designed to support multi-party applications, ST-II and RSVP. ST-II is a network layer protocol
that provides not only data delivery and routing but also resource reservation, whereas RSVP is
designed simply as a resource reservation protocol. It is expected that RSVP will be deployed in
conjunction with the new version of IP Multicast, which will supply the data transport and routing
functions.

6.1 ST-II Signaling (SCMP)

ST-II is a connection oriented network protocol that includes mechanisms for connection setup,
teardown, connection modification, data delivery, and routing. ST-II is a general specification that
has generated several implementations. This section will begin with an examination of ST-II’ s sig-
nalling protocol (SCMP) as specified, and then move on to a discussion of the scalable extensions
added to the Heidelberg Transport System’s (HeiTS) implementation of SCMP.

In ST-II, resource reservation is based upon aflowspec that contains a rich set of quality of service
parameters, which not only characterize the service requested by the receiver but also model the
source’s traffic. This is in contrast with RCAP2, which makes a distinction between a source’s traf-
fic specification and a receiver’s performance requirements by having them specified separately.
We make a distinction between those parameters that are specifically under the control of the
sender and those that simply reflect how the data are to be received. The flowspec as listed in the
ST-II specification consists of a large set of parameters. This set includes such common indices as
throughput and delay, as well as several less clearly defined parameters such asDutyFactor and
Reliability [DelHerHofSch94]. Several implementors of ST-II have chosen to allow the use of only
some subset of these parameters.

All establishment events are sender-oriented. During establishment, a route is dynamically gener-
ated from the source to the set of receivers, and resources are allocated7 on the way. If it is discov-
ered during the resource reservation process that there are not enough resources to support the
flowspec, then the flowspec is modified to reflect the amount of resources that can be supplied on
that particular path. In addition, the flowspec may also be modified to reflect the delay bound seen
thus far in that path from the source. When a message containing a flowspec reaches atarget (i.e.,
a receiver), this can either accept or reject the connection. If the connection is accepted, then the
flowspec is sent back to the source. All targets must adhere to the same flowspec; in other words,
there must be a homogeneous data rate along the multicast connection. After the flowspec replies
have been received, the source must decide the final flowspec. It has the choice of either picking
the “lowest common denominator” of the flowspecs and issuing a CHANGE request, or of discon-
necting those targets from the connection with reduced flow specifications. Suite 2, on the other
hand fixes the traffic specification prior to establishment, and does not require this further negotia-
tion phase. As we stated earlier in this document, we suggest the use of hierarchical encoding and

7. It is important to note that the ST-II protocol specification does not describe how resources are to be
reserved or scheduled.

27

multiple target sets to handle the issue of heterogeneous receivers. As illustrated in Section 5.1.3,
we can handle the problem of bottleneck links without the need for this additional negotiation
phase.

It is implicit within the description of the ST-II establishment process that partial establishment
semantics are supported. ST-II also supports dynamic attachment and detachment of receivers. All
establishment is sender-oriented. Atarget must request attachment through an out-of-band mes-
sage. The source then generates a CONNECT message to add that target to the connection. This
attachment process follows the description above, with the source specifying a flowspec that may
be modified as it progresses towards the target. The target may then accept or reject the connec-
tion.

ST-II’ s sender-oriented approach has been the center of much criticism [MiEsShZh94], [DelHer-
HofSch93]. By having all establishment attempts funneled through one point, the source becomes
a bottleneck and a scaling limitation. The Heidelberg Transport System’s (HeiTS) implementation
has addressed this problem by adding support for receiver-initiated attachment and providing it in
two extensions.

The first extension, “join stream at router”, begins with a target sending a request message to the
source. If that message intersects with the existing multicast tree, the request is serviced by that
node of the tree. Connection establishment then progresses from that point in the tree back to the
receiver. If the target accepts the flowspec, then the source can be optionally informed.

The second extension, “create path backwards”, progresses from the target toward the source. The
initial flowspec must be provided out-of-band or chosen by the target. This latter approach can
lead to a mismatch between resource allocations. The authors of [DelHerHofSch93] suggest that
“a small set of encoding and data format helps to solve the problem”. However, it is difficult to
restrict the number of encoding and data formats if we wish to support a wide variety of applica-
tions, which again touches on the problem of scalability. Suite 2 handles this problem by having
the channel object involved in the attachment process. All components of this object contain the
traffic specification of the source so that this information is available during attachment. It is
important to note that, if we do not employ the approach outlined in Section 5.3, our design has
simply replaced the existing bottleneck with one at the channel object.

Resource sharing can be supported in ST-II through thestream groups mechanism; however, algo-
rithms must still be developed to employ this feature. ST-II is obviously less scalable without this
feature for the reasons discussed in Section 5.1.2.

On a final note, we must address the issue of fault management. Both ST-II and Suite 2 are connec-
tion-oriented. As such, they are more vulnerable to faults along the path of a connection. After a
fault occurs, there will be some disruption in the service while the route is rebuilt. Connectionless
protocols must also re-route around failures, but sources may continue sending during this process.

6.2 RSVP

Unlike ST-II, RSVP is simply a reservation protocol. As such, it distributes resource requirements
and negotiates quality of service values. It does not perform any resource reservation or admission
control. In addition, it is assumed that both data delivery and routing will be accomplished by com-
panion protocols such as IP Multicast. Unlike both ST-II and the Tenet Suite 2 Protocols, RSVP
uses a MxN connection as its basic paradigm. This approach is supported by IP Multicast, which
allows for several sources to send to a single multicast address.

28

RSVP uses a receiver-oriented reservation process [ZhaDeer93]. Receivers supply aflowspecthat
contains both the requested data rate and the performance requirements for that receiver.
Resources are negotiated for the receiver on the basis of this flowspec. In addition, RSVP supports
a packet filterwhich indicates the way in which a receiver wishes to use the reserved resources. In
the initial design, three filter types were identified: the null filter, a fixed filter, and a dynamic filter.
If the receiver does not use a filter, then it will receive all data sent from any source to the multicast
address. Using a fixed filter, a receiver may specify a set of sources from which it wishes to receive
data. The packets from these sources may use the resources that have been allocated on behalf of
the receiver. A dynamic filter is used if the receiver wishes to “switch channels”, thereby dynami-
cally choosing which source can use the resources. The dynamic filter option is currently labeled
“experimental” in the RSVP specification [BrZhEsHeJa95]. Given the basic MxN paradigm, there
is some complexity involved in negotiating resources on common sub-paths for receivers using
different packet filters.

We believe that RSVP’s receiver-oriented approach is more scalable than a strict sender-oriented
approach, but we also feel that a hybrid of the two more naturally supports multi-party applica-
tions. Senders can best characterize their own traffic, so we feel that in a number of applications it
is reasonable that the initial establishment of the data stream be initiated at the sender. In addition,
receivers should have the ability to dynamically join an ongoing connection. This process should
be receiver-initiated, and should not bottleneck at the sender. RSVP’s proposed receiver-oriented
design leaves some open questions. For example, it is unclear how the data are to be formatted at
the source in order to supply the varying rates specified by the collection of heterogeneous receiv-
ers. The use of hierarchical encoding has been suggested in [ZhaDeer93], but this approach
implies that the data encoding format is visible to the filtering at the network layer. In addition,
does the filtering code in the network recognize all encoding formats, or is this information some-
how user-supplied [DelHerVogWol93]? In Suite 2, we avoid these issues by suggesting that sepa-
rate channels be set up for each encoded layer. This technique makes the support for multiple data
rates invisible to the network. Our approach does require the receiver to reassemble the data arriv-
ing on different channels. In RSVP, this layered data would be delivered with the same stream, and
thus may be somewhat easier to reassemble and synchronize.

RSVP supports a connectionless service supplied by IP Multicast, and usessoft state to describe
the reserved resources. This soft state must be periodically refreshed or it will time out and be dis-
carded. Receivers must send outreservation messages containing their requested flow specs and
packet filters. The RSVP designers have tried to reduce the impact of these periodic multicasts by
coalescing messages along the multicast route. Before the reservation messages from multiple
receivers are forwarded toward each source, they are combined at branch points into a single
bounding flowspec.

In addition to requiring that receivers generate reservation messages, sources must send outpath
messages. A path message contains the source’s flowspec and an F-flag indicating if it will allow
filtered reservations on its data. These periodic path and reservation messages provide a technique
for rendezvous in this protocol which allows RSVP to more easily adapt to faults in the network.
During the period of recovery, prior to path and reservation message rendezvous, data will be
delivered unfiltered in a best-effort fashion. If receivers have specified filters, they may receive a
barrage of unwanted data during this process.

In summary, by taking a connectionless approach using soft state, the protocol is more tolerant to
faults in the network. In addition, RSVP’s receiver-oriented approach is more scalable than ST-II’ s
original sender-oriented service. It is not clear, however, if this is more scalable than Suite 2’s
hybrid approach, which allows both sender- and receiver-initiated actions. Finally, although RSVP

29

is a scalable reservation protocol, it does not attempt to support the type of guaranteed-perfor-
mance service that is the target of the Tenet Protocols.

7.0 Summary
We have provided a detailed examination of the Tenet Suite 2 Protocols, looking in particular at
the issue of scalability in the RCAP2 signaling protocol. Suite 2 addresses the problem of supply-
ing guaranteed service over a packet-switched network for multi-party applications. Within this
framework, we have supplied a scalable design that supports large heterogeneous internetworks,
many connections, and many receivers on a single connection. We support heterogeneous net-
works by supporting multiple scheduling algorithms and by fully distributing the admission con-
trol process. By adding such mechanisms as resource sharing and dynamic traffic management, we
can support more efficient use of network resources, allowing for more real-time connections to be
created. Finally, the design can support heterogeneous receivers through the use of hierarchical
encoding and multiple concentric target sets.

Several implementation decisions we made in building the prototype of Suite 2 did not scale. The
most notable of these was the decision to have only a single representation of each object instance.
We have sketched an alternative implementation that both scales well and supports the original
RCAP2 design. Through this exercise we have shown that, while there may be scaling flaws in our
initial prototype implementation of RCAP2, the design is much more scalable.

Acknowledgments
I would like to thank my fellow members of the Tenet Suite 2 Group for their support through the
years during the design and implementation of these protocols. I have learned a great deal each of
them. In particular, I would like to thank Mark Moran for directing me toward the topic of scal-
abily and for discussing initial ideas with me to solve some of the scaling problems in our proto-
type.

Finally, I would like to thank my advisor, Professor Domenico Ferrari, for his guidance, insight
and kindness.

References
[BetFerGupHe95] Ricardo Bettati, Domenico Ferrari, Amit Gupta, Wendy Heffner,

Wingwai Howe, Mark Moran, Quyen Nguyen, Raj Yavatkar. Con-
nection Establishment for Multi-Party Real-Time Commuication.Pro-
ceedings of the 5th International Workshop on Network and Operating
System Support for Digital Audio and Video, pages 255-270, Durham,
New Hampshire, April 1995

[BierNonn95] Ernst Biersack, Jorg Nonnenmacher. WAVE: A New Multicast Rout-
ing Algorithm for Static and Dynamic Multicast Groups.Proceedings of
the 5th International Workshop on Network and Operating System Sup-
port for Digital Audio and Video, pages 243-254, Durham, New Hamp-
shire, April 1995

30

[BolCreGar95] Jean-Chrysostome Bolot, Hugues Crepin, Andres Vega Garcia.
Analysis of Audio Packet Loss in the Internet.Proceedings of the 5th
International Workshop on Network and Operating System Support for
Digital Audio and Video, pages 163-174, Durham, New Hampshire, April
1995

[BrZhEsHeJa95] R. Braden, L.Zhang, D. Estrin, S. Herzog, and S.Jamin. Resource ReSer-
Vation Protocol (RSVP) - Version 1 functional specification, Internet
Draft, April 12, 1995

[DelHerHofSch94] Luca Delgrossi, Ralf Guido Herrtwich, and Frank Oliver Hoffmann. An
Implementation of ST-II for the Heidelberg Transport System,Internet-
working - Research and Experience, Vol. 5, 1994

[DelHerVogWol93] Luca Delgrossi, Ralf Guido Herrtwich, Carsten Vogt and Lars C. Wolf.
Reservation protocols for internetworks: A Comparison of ST-II and
RSVP, Proceedings of the 4th International Workshop on Network and
Operating System Support for Digital Audio and Video, pages 199-207,
Lancaster, U.K., 1993

[DelHerHofSch93] Luca Delgrossi, Ralf Guido Herrtwich, Frank Oliver Hoffmann and Siby-
lle Schaller. Receiver-Initiated Communication with ST-II, preliminary
version, Sept. 1993,

[EffMul93] Wolfgang Effelsberg and Eberhard Muller-Menrad. Dynamic Join
and Leave for Real-Time Multicast.International Computer Science Insti-
tute, TR-93-056, September 1993

[FerGup93] Domenico Ferrari and Amit Gupta. Resource partitioning in Real-
Time Communication.Proceedings of the IEEE Symposium on Global
Data Networking, pages 128-135, Cairo, Egypt, December 1993

[FerGupVen95] Domenico Ferrari, Amit Gupta, and Giorgio Ventre. Distributed
advance reservations of real-time connections.Proceedings of the 5th
International Workshop on Network and Operating System Support for
Digital Audio and Video, pages 15-26, Durham, New Hampshire, April
1995

[Ferrari92] Domenico Ferrari. Real-Time Communication in an Internetwork,Jour-
nal of High Speed Networks, pages 79-103 vol. 1 no. 1, 1992

[FerVer90] D. Ferrari and D. C. Verma, A Scheme for Real-Time Channel Establish-
ment in Wide-Area Netwroks,IEEE Journal: Selected Areas in Commu-
nications, SAC-8, pages 368-379, April 1990

[GroKesTse95] M. Grossglauser, S. Keshav and D. Tse. The Case Against Varriable
Bit Rate Service.Proceedings of the 5th International Workshop on Net-
work and Operating System Support for Digital Audio and Video, Pages
307-310,Durham, New Hampshire, April 1995

[GuHoMoNg95] Amit Gupta, Wingwai Howe, Mark Moran, and Quyen Nguyen.
Resource sharing in multi-party realtime communication.Proceedings of
INFOCOM 95, Boston MA, April 1995

31

[MiEsShZh94] Danny J. Mitzel, Deborah Estrin, Scott Shenker and Lixia Zhang, An
Architectural Comparison of ST-II and RSVP, Proceedings of the Confer-
ence on Computer Communications (IEEE Infocom), Toronto, Canada,
June 1994

[Moran95] Private discussions with Mark Moran on his thesis topic, U.C. Berkeley,
CA andIndustrial Liaison Program talk, Berkeley, CA, March 1995

[OppDal83] D.C. Oppen and Y.K. Dalal. The Clearinghouse: A Decentralized Agent
for Locating Named Objects in a Distributed Environment.,ACM Trans-
actions on Office Information Systems 1(3):230-253, July 1983

[ParBan94] C. Parris and A. Banerjea. An Iinvestigation into Fault Recovery in
Guaranteed Performance Service Connections.Proceedings of SUPER-
COMM/ICC’94, New Orleans, LA, pages 175-181, March 1994

[ParGal93] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flowcontrol in integrated services networks: The single node
case,”IEEE/ACM Transactions on Networking, vol. 1, pp. 344--357, June
1993.

[SchBirNeed84] M.C. Schroeder, A. D. Birrell, and R. M. Needham. Experience with
Grapevine: The Growth of a Distributed System.ACM Transactions on
Computer Systems 2(10):3-23, February 1984

[Widyono94] R. Widyono. The Design and Evaluation of Routing Algorithms for
Real-time Channels. International Computer Science Institute, TR-94-
024, June 1994

[YavPaiFin94] R. Yavatkar, P. Pai and R. Finkel. A Reservation-based CSMA Protocol
for Integrated Manufacturing Networks.IEEE Transactions on Systems,
Man and Cybernetics 1994

[ZhaDeer93] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel
Zappala. RSVP: A New Resource ReSerVation Protocol.IEEE Networks
Magazine, 30(9):8-18, September 1993

[ZhaKni95a] Hui Zhang, Edward W. Knightly. Traffic Characterization and Switch
Utilization Using a Determenistic Bounding Interval Dependent Traffic
Model.Proceedings of IEEE INFOCOM’95, Boston, MA, April 1995

[ZhaKni95b] Hui Zhang, Edward W. Knightly. A New Approach to Support Delay-
Sensitive VBR Video in Packet-Switched Networks.Proceedings of the
5th International Workshop on Network and Operating System Support
for Digital Audio and Video, Pages 275-286, Durham, New Hampshire,
April 1995

[Zhang93] Hui Zhang. Service Disciplines for Packet-Switching Integrated Service
Networks. University of California at Berkeley. PhD Dissertation 1993

