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Abstract
We propose a preemptive migration scheme that assumes no prior knowledge about the behavior
of processes, and show that it significantly outperforms more traditional non-preemptive migration
schemes.

Our scheme migrates a process only if the process’ expected remaining lifetime justifies the cost
of migration. To quantify this heuristic, we perform empirical studies on the distribution of process
lifetimes and the distribution of memory use (which dominates migration cost) for a variety of
workloads. We use these results to derive a robust criterion for selecting processes for migration.

Using a trace-driven simulation based on actual job arrival times and lifetimes, we show that under
our preemptive policy the mean slowdown of all processes is 40% less than under an optimistic non-
preemptive migration scheme that uses name lists. Furthermore, the preemptive policy reduces the
number of severely delayed processes by a factor of ten, compared with the non-preemptive scheme.
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1 Introduction

In most existing systems, load balancing is non-
preemptive and based on a priori knowledge of pro-
cess behavior. Previous analytic studies have shown
that the additional benefit offered by preemptive mi-
gration is small compared with the benefits of simple,
non-preemptive schemes [ELZ88]. But simulation stud-
ies (which can use more realistic workload descriptions)
and implemented systems have shown greater benefits
for preemptive migration [KL88] and [BSW93]. This
paper tries to resolve these conflicting results.

In addition, we explore in depth one of the questions
raised by preemptive schemes — which processes should
be eligible for migration? To answer this question, we
derive the functional form of the distribution of process
lifetimes and study the distribution of memory use. Us-
ing these, together with a fairness principle which states
that one process should not suffer for the benefit of oth-
ers, we derive (analytically) locally optimal eligibility
criteria for migration.

We present a trace-driven simulation based on actual
job arrival times, lifetimes and memory use. The simu-
lator shows:

e The preemptive migration policy reduces the mean
slowdown by 35 —45%, and cuts the number of sig-
nificantly slowed processes by a factor of ten, com-
pared to a reasonably optimistic non-preemptive
scheme.

e The performance of our analytic eligibility criterion
for migration is similar, over a range of loads, to the
performance of an optimal parameterized eligibility
criterion (See Section 4.1.1)

1.1 Load balancing

Given a network of time-sharing host machines, load bal-
ancing is the idea of migrating processes across the net-
work from hosts with high workloads to hosts with low
workloads. The reasons for load balancing include min-
imizing the average completion time of processes and
maximizing the utilization of the processors. Analytic
models and simulation studies have demonstrated the
performance benefits of load balancing, and these re-
sults have been confirmed in existing distributed sys-
tems (see Section 1.6).

An important part of the load balancing strategy is
the Migration Policy, which determines when migra-
tions occur and which processes are migrated. This is
the question we address in this paper. *

1The other half of a load balancing strategy is the location
policy, namely how to choose a new host for the migrated process

Process migration for purposes of load balancing
comes in two forms: implicit? remote execution (also
called non-preemptive migration), in which some new
processes are automatically executed on remote hosts,
and preemptive migration, in which running processes
may be suspended, moved to a remote host, and
restarted. In non-preemptive migration only newborn
processes are migrated. Migration policies may also be
classified as having a priori knowledge about the func-
tion of the processes, or how long they will take, or
having no prior knowledge about the function of the
processes. Prior knowledge is often implemented as a
name-list (e.g. [Sve90]) that specifies (by name) which
processes are eligible for migration. These name-lists
may have been created by a user or by the system. Poli-
cies that don’t rely on any prior knowledge only have
system data to work with, like the current age of each
process or its memory size.

This paper examines the performance benefits of pre-
emptive, implicit load-balancing strategies that as-
sume no prior information about processes.

1.2 Our Model/Definitions

Migration primarily benefits cpu-bound processes.
Throughout this paper, we model a process as using
two resources: cpu and memory. Our model does not
include T/O. Thus, we use “age” and “lifetime” to mean
cpu age (the cpu time a process has used thus far) and
cpu lifetime (the total cpu time it uses during its life).
Since we assume that hosts time-share among processes,
the slowdown imposed on a process 1s

Slowdown of process p = M
cpu time (p)
where wall-time(p) is the total time p spends either get-
ting cpu or waiting on cpu during its life.

1.3 Distribution of process lifetimes

Previous efforts to measure the distribution of process
lifetimes have produced conflicting results. [SPG94]
claims that process lifetimes have an exponential dis-
tribution, which implies that the expected remaining
lifetime of a process is independent of its current age.

[SPG94] states

“...The duration of cpu bursts have been
measured. Although they vary greatly

to run on. Previous work ([Zho89] and [Kun91]), has suggested
that choosing the target host with the shortest cpu run queue is
both simple and effective. Our work confirms the relative unim-
portance of location policy.

?Implicit refers to the fact that the system is migrating the
processes rather than the user (explicit).



from process to process and computer to
computer, they tend to have a frequency
curve generally characterized as exponential or
hyperexponential3”.

Rommel, [Rom91], also claims his measurements
show that “long processes have exponential service
times.” On the other hand, [LO86] measured 9.5 million
Unix processes between 1984 and 1985 and concluded
that process lifetimes have a UBNE (used-better-than-
new-in-expectation) type of distribution. That is, the
greater the current cpu age of a process, the greater
its expected remaining cpu lifetime. Specifically, they
found that for T' > 3 seconds, the probability of a
process’ lifetime exceeding T seconds is 7T ~°, where
1.05 < ¢ < 1.25 and r is the normalization factor.

Many of the location policies and migration policies
proposed in the literature (see for example [ELZ88],
[MTS90] [BK90], [EB93], [LR9I3], [LM82], [WM85]) are
based on the assumption that process lifetimes are ex-
ponential or hyperexponential.

We show that the function form of the process lifetime
distribution proposed by [LO86] is correct for processes
older than 1 second. This functional form is consis-
tent across a variety of machines and workloads, and
although the parameter of this function varies (from .8
to 1.3), it is generally near 1.0. Thus, as a rule of thumb,

1. The probability that a process with age 1 second
uses T' seconds of cpu time is about %

2. The probability that a process with age 7' seconds

uses an additional T seconds of cpu time is about
1

5

Note how slowly this function drops off compared to
the exponential distribution, for which the probability
that a process uses an additional one second of cpu time
is %, and the probability that a process uses an addi-
tional T seconds of cpu time (regardless of its age) is
e~T. This and other empirical results we obtain on pro-

cess lifetimes impact our choice of migration policy.*

1.4 Migration policies: Which processes
are worth migrating?

As described in Section 1.6, most existing migration
policies are non-preemptive, meaning that only newborn
processes are migrated.

3The hyperexponential distribution is defined as the combina-
tion of two or more exponential distributions. [Wol89]

4The rule of thumb implies that the expected remaining life-
time of all processes is infinite (a consequence of integrating the
tail of the % distribution from zero to infinity). For practical
purposes, of course, there is a finite bound on the lifetimes of
processes. In order to circumvent this complication, we consider
median (rather than average) remaining lifetimes.

Migrating newborn processes is less expensive than
migrating running processes, because the newborn has
no allocated memory, and easier to implement, because
the newborn has no state in the system (such as open
files or interprocess communication channels).

Unfortuntely, the UBNE distribution of process life-
times (described in Section 1.3) implies that newborn
processes have the shortest expected lifetimes and are
least likely to run long enough to justify the cost of
migration. Migrating short-lived processes not only im-
poses large slowdowns on the migrated processes; 1t also
consumes CPU time and network bandwidth without ef-
fectively transferring work away from overloaded hosts.

Thus a “newborn” migration policy is justified only if
the system has knowledge about the processes and can
selectively migrate only those processes likely to be cpu
hogs.

In the absence of this kind of prior knowledge, how-
ever, the UBNE distribution of lifetimes suggests mi-
grating older processes, since they have longer remain-
ing life expectancies. There are two potential problems
with such a strategy:

1. There is a danger that the additional cost of mi-
grating older processes (i.e. transferring memory
and system state) could be prohibitive.

2. There is a danger that if only old processes (older
than, say, one second) can migrate, it might not
be possible to migrate enough processes to have a
significant load balancing effect.

Our measurements indicate that both of these con-
cerns are unfounded. In regard to the first, we will show
that the average memory size is small and uncorrelated
with age; thus, older processes have a higher probability
of outliving their migration times than new processes.
In regard to the second concern, we will show that more
than 50% of total cpu time is spent on processes with
ages greater than four seconds; thus, a migration policy
that migrates only these processes can have a significant
load-balancing effect.

These results are not surprising considering that the
observed lifetime distribution has a much longer tail
than the exponential distribution. This tail implies that
there are many long-lived processes, and that the ex-
pected remaining lifetimes for these processes is high.
Therefore, whatever the migration cost is for these pro-
cesses, 1t may still pay to migrate them.

1.5 Trace-driven simulation

We use a trace-driven simulation to evaluate the perfor-
mance advantages of our preemptive migration policy
over non-preemptive migration. For the non-preemptive



policy, we assume optimistically that we have name-lists
telling us which processes are eligible for migration. In
our preemptive policy, we assume no prior knowledge of
the processes. We find that

1. The performance benefits of preemptive migration
are significantly greater than the benefits of non-
preemptive migration.

2. The workload description has a great effect on the
simulation results.

3. Models based on exponential service times underes-
timate the performance benefits of preemptive mi-
gration.

4. The standard metric of system performance, mean
slowdown, understates the performance benefits of
migration.

1.6 Related Work

Most existing systems provide some form of user-
controlled remote execution, but relatively few provide
automated load balancing by migrating processes. Of
the ones that do, the majority are based on implicit re-
mote execution of new processes; few provide preemp-
tive migration. (The taxonomy below is based in large
part on [Nut94].)

The systems that have implemented user-controlled
remote execution and migration include:  Accent
[Zay87], Locus [Thi91], Utopia [ZZWD93], DE-
MOS/MP [PM83], V [TLC85], and NEST [AE&7]. Sev-
eral of these provide some form of automated location
policy.

Some other systems provide automated remote exe-
cution, but perform preemptive migration only at the
explicit request of a user or for reasons other than
load-balancing (such as preserving autonomy): Amoeba
[TvRaHvSS90], Charlotte [AF89], Sprite [DO91], and
Condor [LLM88]. Although these systems are capa-
ble of migrating active processes (with varying degrees
of transparency), none have implemented a policy that
preempts processes for purposes of load-balancing.

Only a few systems have implemented automated
load-balancing policies with preemptive migration:
MOSIX[BSW93] and RHODOS [GGIt91]. The MOSTX
load-balancing scheme is similar to the strategies recom-
mended in this paper; our results support their claim
that their scheme is effective and robust.

Although few systems use preemptive migration for
load-balancing, there have been many simulation stud-
ies and analytic models showing the performance bene-
fits of various load-balancing strategies. Some of these

studies have focused on load-balancing by remote ex-
ecution ([LM82], [WMS85], [CK87], [Zho89], [PTS88],
[Kun91], [HJ90], [ELZ86]); others have compared the
performance of systems with and without preemptive
migration ([BF81], [ELZ88], [KL&8]).

Our work differs from both [ELZ88] and [KL88] in
that we use trace-driven simulations rather than syn-
thetic workloads. This approach eliminates as a source
of error the unrealistic workload descriptions that are
necessary for analysis. Furthermore, our migration pol-
icy differs from [KL88] in that our proposed migra-
tion policy uses preemptive migration exclusively, rather
than in addition to remote execution (which they call
“placement”).

Many load-balancing systems depend on a prior: in-
formation about processes; for example, explicit knowl-
edge about the runtimes of processes or user-provided
lists of migratable processes ([Sve90], [ZF87], [Zho89],
[ZZWD93], [DO91], [LLI0], [AEST]).

1.7 Organization of this paper

In Section 2, we measure the process lifetime distribu-
tion, compute the conditional lifetime distribution, and
make several empirical observations about process life-
times. These results will be used in developing our load
migration policy.

Section 3 proposes a preemptive load-balancing policy
based on the principle of choosing processes for migra-
tion that are most likely to run long enough to justify
the cost of migration. We analytically derive the opti-
mal minimum age at which a process should be eligible
for migration.

Section 4 presents the results of a trace-driven sim-
ulation showing the performance benefits of our pre-
emptive migration policy compared with a typical non-
preemptive migration strategy, and discusses its rele-
vance to previously implemented strategies.

2 Probability distribution func-
tion for Unix process lifetimes

To determine the probability distribution functions for
Unix processes, we measured the lifetimes of over one
million processes, generated from a variety of academic
workloads, including instructional machines, research
machines, and machines used for system administra-
tion. We obtained our data using the Unix command
“lastcomm,” which outputs the cpu time used by each
completed process.

We observed that long processes (with lifetimes
greater than 1 second) have a predictable and consis-
tent distribution. Section 2.1 describes this distribu-



tion. Section 2.2 makes some additional observations
about shorter processes. Lastly in Section 2.3 we make
some general empirical observations about process cpu
usage that we will need in developing our process mi-
gration strategy.

2.1 Process lifetime distribution when
lifetime > 1 second

Figure 1a is an impulse plot showing our process lifetime
measurements on a heavily used instructional machine,
po, during mid-semester. The plot depicts only pro-
cesses whose lifetimes exceed one second. The impulse
(line) at 2¢ seconds indicates the fraction of processes we
counted whose lifetimes exceeded 2¢ seconds. Figure 1b
shows the same data on a log-log scale. The straight line
in log-log space indicates that the process lifetime dis-
tribution is accurately described by the curve T, where
c 1s the slope of of the line.

For all the machines we studied, the process lifetime
data (for processes of age exceeding one second) is de-
scribed by a curve of the form 7, where ¢ ranges from
about —.8 to —1.3 for the different machines. Table 1
shows the estimated lifetime distribution curve for our
measurements on each machine we studied. The param-
eters were estimated by an iteratively weighted least-
squares fit (with no intercept, in accordance with the
functional model). The standard error associated with
each estimated parameter gives a confidence interval for
that parameter (all of these parameters are statistically
significant at a very high degree of certainty). Finally,
the R? value indicates the goodness of fit of the model
— the values shown here indicate that the fitted curve
accounts for greater than 99% of the variation of the ob-
served values. Thus, the goodness of fit of these models
is essentially perfect.

Although the range of parameters we observed is
fairly broad, in the absence of measurements from a
specific system, assuming a distribution of % 1s substan-
tially more accurate than assuming that process life-
times are exponentially distributed.

Table 2 shows the lifetime distribution function, the
corresponding density function, and the corresponding
conditional lifetime distribution function. We will refer
to the conditional lifetime distribution often during our
analysis of migration strategies. The second column of
Table 2 shows these functions when ¢ = —1, which we
will assume in our analysis in Section 3.

2.2 Measuring the process lifetime dis-
tribution in general

In this section, we will see that processes of age < 1
second complete at an even slower rate than those of

Distribution of process lifetimes
(fraction of processes surviving T secs.)
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1 4 16 64 256 1024
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Figure 1: a)Distribution of process lifetimes for pro-
cesses measured on machine po, mid semester. The
impulses show the measured data; the curve shows the
fitted values. b) The same distribution as in (a), shown
on a log-log plot. The straight line in log-log space indi-
cates that the process lifetime distribution is accurately
described by the curve T, where ¢ is the slope of of the
line.



Name Total Num. Estim. Std. R?
of Number Procs. | Lifetime | Error val
Host Procs. with | Distrib.

Studied | Age> 1 Curve
pol 77440 4107 | 177997 .016 | 0.997
po2 154368 11468 | T-1%° .012 | 0.999
po3 111997 7524 | T2 .021 | 0.997
cory 182523 14253 | T7°88 .030 | 0.982
pOrsc 141950 10402 | 7% .015 | 0.997
bugs 83600 4940 | 17082 .007 | 0.999
faith 76507 3328 | 77078 .045 | 0.964

Table 1:  The Estimated Lifetime Distribution Curve

for each machine measured, and the associated good-
ness of fit statistics. Description of Machines: Po 1is
a heavily-used DECserver5000/240, used primarily for
undergraduate coursework. Pol, po2, and po3 refer to
measurements made on po mid-semester, late-semester,
and end-semester respectively. Cory is a heavily-used
machine, used for coursework and research. Porsc is
a less frequently-used machine, used primarily for nu-
merical analysis research. Bugs is a heavily-used ma-
chine, used primarily for multimedia research. Faith s
an infrequently-used machine, used both for video appli-
cations and system administration.

Seconds (T) Num processes s(T) Constant
that live Region
> T secs

0 77440 || 52%

2-6 40117 || 57%

2-5 22991 || 77%

2—1 17808 || 76%

9- 13581 || 73%

9—2 9980 66%

2T 6632 || 62%

20 4107 || 46% N

2! 1890 || 47% N

22 894 || 54% N

5 483 || 53% v

27 255 || 53% N

95 134 || 46% v

2° 62 || 50% N

97 31 45% vV

28 14 || 79%

2° 11 || 91%

210 10 || 40%

211 4 || 25%

212 1

Process Lifetime Distribution for When
Processes of Age > 1 second c=-1
Pr {Proc. lifetime > T sec | age > 1 sec} = T° =z
Pr {Lifetime = T sec | age = 1 sec} = —cT! =45
Pr {Lifetime > a sec | age = b > 1 sec} = (%)C =2

Table 2: The cumulative distribution function, probabil-
ity density function, and conditional distribution func-
tion of processes lifetimes. The second column shows
the functional form of each for the typical value of c.

Table 3: Process lifetimes measured on machine po,
mud-semester. These measurements correspond to Fig-
ure 1.

age > 1 second.
That is,

Pr {Process lifetime > a sec| age = b < 1 sec} > (%)

To see this, let
s(T) = Pr { Process lifetime > 27| lifetime > T’}

For each machine we studied, we found that s(7") was
constant when 7" > 1. We refer to this constant as
the machine’s survival ratio and denote it by s*. In the
range 7' < 1, s(T) varies, but always s(7") > s*. Table 3
illustrates this point; the third column, s(7), is nearly
constant for processes whose cpu lifetimes exceed one
second. (We ignore the last few entries in the table,
since they involve too few processes to be statistically
useful.)

In the previous section, we showed empirically that in
this constant region (7" > 1) the distribution of process
lifetimes has the functional form 7~¢. The following
analysis shows how to derive this functional form from
the survival ratio s*.

Pr { Process lifetime > 27| Process lifetime > T} = s”

— Pr {Process lifetime > 27"} = s*-Pr {lifetime > T’}

Iterating the above recurrence, we obtain the formulas
in Table 2:

Pr { lifetime > 77| lifetime > 1} (s*)eT



— 7ls(s")

= —, whens*=.5

T

2.3 More Empirical Observations

Lastly, we make the following empirical observations
that we will need when discussing migration policies.

e For all machines we studied,
> 50% of all cpu time was used by processes of age
at least 4 seconds.
> 60% of all cpu time was used by processes of age
at least 2 seconds.
This is due to the long tail of %

e For all machines we studied,
Pr[Process lifetime > .33 sec] < .15.

3 Migration Policy

A migration policy is based on two decisions, when to
migrate processes and which processes to migrate. The
focus of this paper is the second question (we will touch
on the first question in Section 4.1.1):

Given that the load at a host is too high, how
do we choose which process to migrate?

Our heuristic is to choose the process that has highest
probability of running longer than its migration time.

The motivation for this heuristic is twofold. First,
from the host’s perspective, a large fraction of the mi-
gration time is spent at the host (packaging the process).
It only makes sense for the host to invest this time to get
rid of the process if it is less than the expected remain-
ing CPU time. Secondly, from the process’ perspective,
the migration time has a large impact on response time.
If the expected total lifetime of the process is longer, the
overhead imposed by migration can likely be amortized
over a longer lifetime.

Most existing migration policies only migrate new-
born processes (non-preemptive), because these pro-
cesses have no allocated memory and therefore their mi-
gration cost is less (see Section 3.1).5 The problem with
this policy is that the process lifetime distribution (Sec-
tion 2) tells us that these newborn processes actually
have the shortest expected remaining lifetimes.

A “newborn” migration policy is thus only justified if
the system has prior knowledge about the processes and

5The idea of migrating newborn processes might also stem
from the fallacy that process lifetimes have an exponential distri-
bution, with all processes have equal expected remaining lifetimes
regardless of their age.

can selectively migrate only those processes likely to be
cpu hogs. However, the ability of the system to predict
process lifetimes is quite limited, as shown in Section 4.

Can we do better? The lifetime distribution shown
in Section 2 points us towards migrating older pro-
cesses. However, there are two potential problems with
this strategy. First, the additional cost of migrating
old processes (the memory transfer cost) might over-
whelm the benefit of migrating longer-lived processes.
Secondly, since the vast majority of processes are short,
there might not be enough long-lived processes to have
a significant load-balancing effect.

Section 3.1 addresses the first 1ssue by quantifying the
difference in migration costs between preemptive and
non-preemptive migration. We show that the memory
transfer cost for most processes is small and that there
is no correlation between a process’ age and its vir-
tual memory size. Thus, old processes have the highest
chance of living long enough to justify their migration
cost.

Section 3.2 shows that although there are few long-
lived processes, they represent a significant part of the
total CPU load; thus, migrating old processes is suffi-
cient to balance the system load.

In Section 3.3 we use the conditional distribution
of process lifetimes (from Section 2) to derive a lower
bound on the age of a migrant process.

3.1 Migration cost as a function of pro-
cess age.

The cost of migrating a process can be modelled as the
sum of a fized migration cost for migrating all the state,
except for the virtual memory, plus a memory migration
cost. These costs vary depending on the system. For
Sprite ([DO91]), the average fixed cost has been mea-
sured at .33 seconds and the memory migration cost is
2 seconds per MByte of memory transferred. We will
use these numbers as a working example throughout the
rest of this paper.

Migration Fixed
cost ~ migration cost

= .33 s+ 2 s/MB memory transferred

Memory
migration cost

The amount of a process’ memory that must be trans-
ferred during migration depends on properties of the dis-
tributed system. [DO91] have an excellent discussion of
this issue, and we borrow from them here.

At the most, it might be necessary to transfer a pro-
cess’ entire virtual memory. With a distributed file sys-
tem (as in Sprite) it is only necessary to write dirty
pages to the file system before migration. When the



process is restarted at the target host, it will retrieve
these pages. In systems that use precopying (such as
the V system), some of the virtual memory might need
to be copied over more than once, but total delay im-
posed by the migration is usually reduced.

For the trace-driven simulation (Section 4) we use the
following model of migration cost

Migration
cost

= .33 s+ 2 s/MB resident VM

By Section 2.3, the probability that a newborn pro-
cess lives for another period equal to its migration cost is
less than 15%, so migrating newborn processes doesn’t
malke sense.

To evaluate the additional cost of migrating active
processes, we examine the distribution of memory sizes
for UNIX processes, and the relationship between a pro-
cess’ age and its memory size. We find that for the ma-
jority of processes (> 85%), the size of the resident set
is less than .5 MB, and thus (for our cost model) the
cost of migrating an active process is roughly four times
the cost of migrating a newborn. Furthermore, we find
that for processes over age one second, there i1s no cor-
relation between a process’ age and its virtual memory
size.

Figures 2 and 3 show the memory use of processes
on the two machines in our sample with the largest and
smallest average memory size, “po” and “hera.” Po and
is a heavily-used instructional machine; hera is used for
academic administration. Each figure shows the 85th,
95th and 99th percentiles for resident set size. Although
the 95th and 99th percentile lines fluctuate with age, the
85th percentile line is roughly constant and below 0.5
MB, regardless of process age.

We also examine the distribution of total memory
sizes and found, similarly, that the 85¢h percentile line
is below 1MB regardless of the age of the process.

We made our measurements using the UNIX “ps”
command to take snapshots of all processes at one hour
intervals (thus, some long-lived processes were sampled
more than once) over the course of 5 days. We ignored
processes whose resident set sizes were zero, because
these processes are not active and hence not available
for migration. Some processes are not shown in the fig-
ures for purposes of scaling, but the percentile lines are
based on data from all processes.

[43

3.2 Moving Enough Work

The second concern mentioned above is that if only old
processes are eligible for migration, there might not be
enough of them to produce a significant load-balancing
effect.

Memory use for po

MB
99th percentile g
95th percentile o
7 85th percentile a
3 .
2 .
1 1
0

1 4 16 64 256 1024
Age (seconds)

Figure 2: From machine po: Scatterplot of resident set
size of 7731 processes as a function of the age of the pro-
cess. The processes have been grouped by age (rounded
up to the next power of two). The lines show percentiles
of memory use within each group. For example, in the
above figure, for processes between 8 and 16 seconds of
age, 85% are using less than half a megabyte and 95%
are using less than two megabytes. (The 366 discarded
processes with resident set size zero are not shown.)

Memory use for hera

MB
99th percentile g
95th percentile o
85th percentile a
1.5 A
1 .
.5
Y
0
1 4 16 64 256 1024

Age (seconds)

Figure 3: From machine hera (this machine is used by
the Computer Science staff for administrative work) :
Scatterplot of resident set size of 13977 processes as a
function of the age of the process. (The 2306 discarded
processes with resident set size zero are not shown.)



Although there are few old processes, they account for
a large part of the total CPU load. In the distribution
shown in Table 2, fewer than 3% of processes live longer
than 2 seconds, yet these processes make up more than

60% of the total CPU load (see Section 2.3).

3.3 Choosing the Age Parameter

So far, we have shown that it is desirable to mi-
grate older processes, because they have a greater load-
balancing effect, and undesirable to migrate newborn
processes, because they are unlikely to live long enough
to amortize the cost of migration.

We have suggested a load-balancing strategy based
on migrating the oldest available process, but we have
not addresses the question of specifically how old a pro-
cess must be before it is eligible for migration. We will
answer this question by applying the following fairness
principle:

One process should not have to suffer for the
benefit of other processes.

Specifically, if the migration strategy indicates that
one of the processes should be moved away from a
heavily-loaded host, then fairness dictates that the slow-
down imposed on the migrant process should be no
higher than the slowdown i1t would suffer by staying at
the source host. If no such process is available (because
all processes are too young), we shouldn’t migrate any
process.

Using the distribution of process lifetimes, we will
now derive a lower bound on the age of migrant pro-
cesses that satisfies this requirement. In section 4.1.1,
we will show results from a trace-driven simulation that
suggest that this bound is also optimal for general sys-
tem performance. In other words, a migration policy
that is locally fair is also globally optimal.

First we derive the expected slowdown imposed on a
migrant process as a function of its age. Denote the
age of the migrant process by a, the cost of migrating
the process by ¢, the lifetime of the migrant by L, the
number of processes at the source host by n, and the
number of processes at the target host (including the
migrant) by m, we have

E {slowdown of migrant}
/OO Lifetime of Slowdown given
Pr - e
a lifetime is t

migrant is t

o t_
/Pr{t§L<t+dt|L2a}-na+c+tm( %)
t=a

na—i—c—}—m(t—a)dt

dt

If there are n processes at a heavily loaded host, then
a process should be eligible for migration only if its ex-
pected slowdown after migration is less than n (which
is the slowdown it would experience in the absence of
migration).

Thus, by the fairness principle
implies

+ 5+ 35 < n, which

£
’2a

_ . . Migration cost
Minimum migration age =

n—m

The MOSIX migration policy [BSW93] is based on a
similar, but simpler restriction: the age of the process
must exceed the migration cost. Thus, the slowdown
imposed on the migrant process must be less than 2.0.
This bound 1s based on the worst case, in which the
migrant process dies immediately upon arrival at the
target.

The MOSIX requirement is likely to be too harsh,
for two reasons. First, it ignores the slowdown that
would be imposed at the source host in the absence of
migration (presumably there is more than one process
there, or the system would not be attempting to migrate
processes away). Secondly, it is based on the worst-case
slowdown rather than (as shown above) the expected
slowdown. We will explicitly compare MOSIX’s policy
with ours in Section 4.1.1.

4 Trace-driven Simulation

In this section we present the results of a trace-driven
simulation of process migration. We compare two mi-
gration strategies, and show that the proposed age-
based preemptive migration strategy (Section 3) per-
forms significantly better than an optimistic version of
a non-preemptive strategy that migrates newborn pro-
cesses according to the process name (similar to strate-
gies proposed by [ZZWD93] and [Sve90]).

We also suggest that the most common metric of sys-
tem performance, average slowdown over all processes,
understates users’ perception of the benefit of process
migration. We suggest alternative metrics intended to
quantify the number of noticeable slowdowns the user
suffers. By these metrics, the benefits of preemptive mi-
gration appear far more significant. We feel that this re-
sult should inspire reappraisal of earlier work ([ELZ88])
that demonstrated limited benefits for preemptive pro-
cess migration.
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Figure 4: The distribution of virtual memory use and
resident set size for all processes measured (includes pro-
cesses shown in Figures 2 and 3).

4.1 The Simulator

We have implemented a trace-driven simulation of a net-
work of six workstations®. Processes are submitted to
the cluster with start times and durations taken from
real machine traces (the same traces presented above in
the derivation of the distribution of process lifetimes).
We selected 6 periods of high activity from these traces,
each eight hours long, and executed them simultane-
ously on a simulated network.

Although the workloads on the six hosts are homoge-
neous in terms of the mixture of jobs and the approx-
imate level of activity, there is considerable variation
during the eight-hour trace. At any given time, one of
the six hosts is usually idle; however, during busy in-
terval, all six are active. In order to evaluate the effect
of these variations, we divided the eight-hour trace into
eight one-hour intervals.

Although the start times and durations of the pro-
cesses come from trace data, the virtual memory size of
each process is chosen randomly from the distribution
in Figure 4. In accordance with the results shown in
Figures 2 and 3, this memory size is uncorrelated with
the age of the process.

The strategies we considered are:

name-based non-preemptive migration A process
is eligible for migration only if its name is on a list

8 The trace-driven simulator and the trace data are available
by anonymous FTP at (address deleted from draft to avoid iden-
tification of authors)

of processes that tend to be long-lived. If an eligible
process arrives at a heavily-loaded host, the process
is executed remotely on the host with the lowest
load. Processes cannot be migrated once they have
begun execution.

age-based preemptive migration A process is con-
sidered eligible for migration only if it has aged
for some fraction of its migration cost. Every time
a new process is born at a heavily-loaded host,
the oldest eligible process on that host is migrated
away.

The performance of name-based nonpreemptive mi-
gration depends on the list of eligible process names.
We derived this list by sorting the processes from the
traces according to name and duration and selecting
the 15 names with the longest mean durations. Adding
more names to the list detracts from the performance
of the system, as it allows more short-lived processes
to be migrated. Removing names from the list detracts
from performance as it becomes impossible to migrate
enough processes to balance the load effectively. Since
we used the trace data itself to construct the list, our
results may significantly overestimate the performance
benefits of this strategy.

4.1.1 Choosing migration parameters

Both migration strategies depend on the decision of
when processes are migrated; i.e. the definition of a
heavily-loaded host. Like Zhou ([Zho89]) and others, we
use a simple threshold on the number of jobs in the run
queue. Alternative strategies using more global load in-
formation improved system performance somewhat, but
they are not the focus of this paper. We chose a load
threshold of 2 processes.

For the preemptive migration policy, we also need to
choose a minimum age criterion — how old a process
has to be to be eligible for migration. According to
the fairness principle discussed in Section 3.3, then, the
minimum age for a migrant process is

Minimum
migration age

_ Migration cost
(n —m)

where n is the load at the source host and m is the load
at the target host (including the potential migrant).

In Section 3.3, we claimed that this criterion not only
satisfies the fairness principle; it is also globally opti-
mal. In order to evaluate this claim, we compared the
performance of this criterion with the performance of
the alternative criterion

Minimum

. . = Migrati t
migration age f * Migration cos



where f is a system parameter. As we discussed in
Section 3.3, MOSIX choose the parameter f = 1.0,
based on a worst-case analysis of the slowdown imposed
on the migrant. Although this age threshold offers a
strict limit on the slowdown seen by a migrant pro-
cess, 1t imposes greater slowdowns on the processes that
would have benefited if a younger process were allowed
to migrate away.

A previous simulation study [KL88] chose a lower
value for this parameter (0.1), but did not explain how
it was chosen.

Figures 10a and 10b compare the performance of the
analytic minimum age criterion with the optimal fixed
parameter (f). The optimal fixed parameter varies con-
siderably from trace to trace, and appears to be roughly
correlated with the average load during the trace (the
traces are sorted in increasing order of total load).

The performance of the analytic minimum age is of-
ten better than (and always within a few percent of) the
performance of the optimal fixed value. The advantage
of the analytic minimum age criterion is that is is pa-
rameterless, and therefore more robust across a variety
of workloads. We feel that the elimination of one free
parameter is a useful result in an area that is plagued
with so many parameters.

4.1.2 Metrics

We evaluate the effectiveness of each strategy according
to the following performance metrics:

mean slowdown Slowdown is the ratio of wall-clock
execution time to CPU time (thus, it is always
greater than one). The average slowdown of all
jobs 1s a common metric of system performance.
We will also consider normalized slowdown, which
is the ratio of inactive time (time in queue and time
during migration) to CPU time. In this context,
the normalized slowdown is always one less than
the slowdown.

variance of slowdown This metric is often cited as
a measure of the unpredictability of response time
[SPGY4]. In light of the observation that the dis-
tribution of slowdowns is skewed (see Figure 9), it
might provide greater insight to interpret this as a
measure of the size of the tail of the distribution;
that is, the number of processes that suffer unusual
and noticeable delays.

number of severely slowed processes In order to
quantify the number of noticeable delays explicitly,
we consider the number (or percentage) of processes
that are severely impacted by queueing and migra-
tion penalties.
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For the sake of simplicity, we assumed that processes
are always ready to run (i.e. are never blocked on I/0).
During a given time slice, we divide CPU time equally
among the processes on the host.

Our model of migration cost is based on Sprite
[DO91]: the total cost of migration is .33 seconds plus
2.0 seconds per megabyte of resident virtual memory
(for new procs, of course, the resident set size is zero).
As a further simplification, we charge the entire cost
of migration to the source host. This is, of course, a
pessimistic assumption for advocates of preemptive mi-
gration.

4.2 Simulator Results
4.2.1 Performance of migration strategies

Figures 5-8 show the performance of the two migration
strategies relative to the base case of no migration. Non-
preemptive migration reduces the mean slowdown (see
Figure 7) by 20%7 for most traces (and almost 50%
for the two traces with the highest loads). Preemptive
migration reduces the mean slowdown by 50% for most
traces (and 70% for the two high-load traces). Thus,
the performance improvement of preemptive migration
over non-preemptive migration is typically between 35%
and 45%.

This improvement is somewhat greater than that pre-
dicted by previous analytic models [ELZ88]. The pri-
mary reason for this discrepancy is that the workload
model required by queueing-theoretic analysis doesn’t
describe real workloads. In reality, the variance of pro-
cess lifetimes is higher than that of the exponential and
hyperexponential distributions used, and process inter-
arrival times are more correlated (bursty) than the usual
memoryless Poisson arrivals.

Our results are in accord with previous simulator
results [KL88] which used a more accurate distribu-
tion of process lifetimes than [ELZ88], but which used
randomly-generated workloads with Poisson arrivals
rather than trace data.

4.2.2 Alternative metrics

Although mean slowdown is the most common metric
of system performance, we feel that the comparison of
slowdowns (as above) understates the benefits of migra-
tion as perceived by users.

"For purposes of comparing the strategies, we will use normal-
ized slowdowns (see definition above). Thus a mean slowdown of
1.5 is said to be 50% better than a mean slowdown of 2.0, since
it is 50% closer to 1.0, which is the minimum possible value. The
other metrics, including the standard deviation, are not affected
by this normalization.
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Figure 5: Percentage of processes slowed by a factor of
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Figure 6: Percentage of processes slowed by a factor of
5 or more.
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Figure 8: Standard deviation of slowdown.
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Figure 9: Distribution of process slowdowns for trace 0
(with no migration). Most processes suffer small slow-
downs, but the processes in the tail of the distribution
are more noticeable and annoying to users.

As shown is Figure 9, even in the absence of migra-
tion, the majority of processes suffer small slowdowns
(typically 80% are less than 3.0 — see Figure 5). The
value of the mean slowdown will be dominated by this
majority. From the user’s point of view, however, the
important processes are the ones in the tail of the dis-
tribution, because although they are the minority, they
cause the most noticeable and annoying delays.

We propose three metrics to attempt to quantify these
delays. Figures 5 and 6 explicitly measure the number of
severely impacted processes, according to two different
thresholds of acceptable slowdown. Figure 8 shows the
standard deviation of slowdowns, which reflects not only
the number of severely impacted processes, but also the
annoyance of unpredictable response times.

By these metrics, the benefits of migration in gen-
eral appear greater, and the discrepancy between pre-
emptive and non-preemptive migration appears much
greater. For example in Figure 6, in the absence of mi-
gration, 7 — 18% of processes are slowed by a factor of 5
or more. Non-preemptive migration is able to eliminate
41 — 62% of these, which is a significant benefit, but
preemptive migration consistently eliminates nearly all

(90 — 96%) severe delays!
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Mean slowdown
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Figure 10:  Comparison of two criteria for choosing

mimimum migration age. The Best Fired Parameter
Criterion wnvolves using one fized ratio of age to migra-
tion cost to decide the eligiblity of a process for migra-
tion, where this fived constant is the best possible fired
parameter for that trace, as determined by the simula-
tor performance. QObserve that the best fizred parameter
changes with each trace. The Analytic Criterion is our
parameterless criterion, described in Section 3.3.



4.2.3 Preemptive vs. non-preemptive migra-

tion

The alternate metrics discussed above shed some light
on the reasons for the discrepancy between the per-
formance of preemptive and non-preemptive migration.
Two kinds of mistakes are possible in a non-preemptive,
name-based strategy that are eliminated by the age-
based, preemptive strategy:

Migrating short-lived jobs whose names are on
the list of eligible processes: This type of error
imposes large slowdowns on the migrated process,
wastes network resources, and fails to effect signif-
icant load-balancing.

Failing to migrate long-lived jobs whose names
are not on the list: This type of error imposes
moderate slowdowns on the potential migrant, and,
more importantly, inflicts delays on short jobs that
are forced to share a processor with a CPU hog.

Both of these errors are reflected in the standard de-
viation of slowdowns (Figure 6): for most of the traces,
name-based migration offers little improvement over no
migration. In three traces it actually degrades the per-
formance of the system.

One other benefit of preemptive migration is grace-
ful degradation of system performance as load increases
(as shown in figures 5-8). In the presence of preemp-
tive migration, both the mean and standard deviation
of slowdown are nearly constant, regardless of the over-
all load on the system.

4.2.4 Potential complications

Previous preemptive load-balancing strategies (e.g.
[BSW93]) have included mechanisms to avoid perverse
behaviors such as repeated migration of a single long-
lived process or bulk migrations back and forth between
machines. For the most part, we found that simple
strategies were stable and well-behaved, and no special
checks were necessary to avoid these behaviors.

For example, we found that the number of migrations
necessary to maintain good load balance is small; thus,
there is little danger of rampant, system-wide oscilla-
tion. For name-based migration, fewer than 2% of pro-
cesses are migrated; for age-based migration, fewer than
5% of processes are migrated (except when the system
load is quite high). Furthermore, it is rare that more
than one migration is in progress at a given time.

Another potential problem for dynamic load-
balancing strategies is the danger that placement de-
cisions might grow stale during a migration; that is,
that by the time a process arrives at the target host of
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a migration, the load there might have increased. This
problem is especially troublesome for preemptive migra-
tion strategies, where migration times are longer (due
to to need to transport the migrant process’ memory).

We found, though, that a simple placement policy
(choosing the host with the lowest current load) worked
well for both preemptive and non-preemptive migration.
For name-based migration, 95% of migrant processes
arrived at a host with no load, and the remaining 5%
arrived at a host with one other process. For age-based
migration, 70 — 80% of processes arrived at a host with
no load, but up to 10% arrived at hosts that were them-
selves heavily-loaded.

This result confirms that the increased migration
times required by preemptive migration make 1t more
difficult to choose the best target host. It also suggests
that as the system load increases, the impact of location
policy on system performance becomes more significant.
Nevertheless, for the system loads we modelled, the per-
formance of simple locations policies was adequate.

5 Future Work

We are currently undertaking projects to explore more
completely the following topics:

e the distribution of memory sizes and resident set
sizes 1n environments other than academic comput-
ers

o the effect of different cost models (cost of remote
execution vs. cost of preemptive migration) on
the relative performance of preemptive and non-

preemptive migration

We feel that an important direction for future work
in this area will be the addition of I/O to the model of
system behavior and a study of its effect on the benefit
of preemptive migration.

6 Conclusion
The main points of this paper are:

e The process lifetime distribution indicates that old
processes are likely to have long remaining life-
times. Thus 1t is often preferable for a load-
balancing scheme to migrate old processes (pre-
emptive migration) rather than newborn processes
(remote execution), even if the cost of preemptive
migration is much higher.

e Migration has a more significant load-balancing
effect by moving a small number of long-lived



processes rather than many short-lived processes.
Preemptive migration is more effective than non-
preemptive name-based migration because it mi-
grates exactly the processes that consume the most
CPU time. In our simulations, fewer than 5% of
processes are migrated once and fewer than .25%
of all processes are migrated more than once.

e Using the observed distribution of process lifetimes,
we have derived an analytic criterion for the min-
imum time a process must age before being mi-
grated. This criterion is parameterless and robust
across a range of workloads.

o We observe that exclusive use of mean slowdown
as a metric of system performance understates the
benefits of load-balancing schemes as perceived by
users.

We now recapitulate our derivation of a preemptive
migration scheme that assumes no prior knowledge of
the behavior of processes.

Without a prior: knowledge, the only information
available for migration decisions is system state, e.g.
the process’ cpu age and memory use. To figure out
how to use this information, we studied the distribution
of process lifetimes and the distribution of memory use.

The general shape of the lifetime distribution sug-
gested that migration schemes should migrate older pro-
cesses, because they have the longest expected remain-
ing lifetimes, and therefore are best able to amortize
their migration cost.

The problem with migrating older processes, though,
is that their migration cost is higher, because of the need
to transfer the memory associated with the process. Our
study of the distribution of memory sizes showed that
the memory use (and hence the migration cost) of most
processes is small and uncorrelated with age. This gave
support to the strategy of migrating older processes.

We then answered the following two unresolved ques-
tions:

1. How old should a process be before it is eligible for
migration? Is there a lower bound on a migrant’s
age, or should we just migrate the oldest process
available?

2. If we’re only migrating old processes, are there
enough old processes around to have a significant
load balancing effect?

To answer the first question, we proposed a fairness
principle that limits the slowdown that can be imposed
on a migrant process, and then used the functional form
of the distribution of process lifetimes to derive a lower
bound on the age of a migrant process (as a function
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of its migration cost). We showed that, for the load
threshold 2.0, one should migrate only processes whose
age exceeds half their migration cost. Being more strict
or more lenient is suboptimal.

We addressed the second question with the observa-
tion that the oldest 2% of all processes account for over
half the total cpu usage and therefore create a signifi-
cant load balancing effect.

Using a trace-driven simulation, we compared the per-
formance of the proposed preemptive migration policy
with an optimistic name-based non-preemptive policy.
The arrival times and duration of processes in the sim-
ulation are taken from real workloads. Under the pre-
emptive policy, the mean slowdown of all processes is
40% less than under the non-preemptive policy.

In addition, we proposed alternative metrics intended
to quantify users’ perception of system performance.
For example, while users might not notice a small
change in the average response time, they would ap-
preciate a reduction in the number of long, noticeable
delays. By these alternative metrics, the discrepancy
between preemptive and non-preemptive policies is even
greater. In our simulated system, preemptive migration
cuts the number of severely delayed processes by a fac-
tor of ten, compared to non-preemptive migration.
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