INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Comparing Algorithms for
Dynamic Speed-Setting of a
Low-Power CPU

Kinshuk Govil* Edwin Chant Hal Wasserman?
TR-95-017
April 1995

Abstract

To take advantage of the full potential of ubiquitous computing devices, we will need systems
which minimize power consumption. Weiser et al. and others have suggested that this may be
accomplished in part by a CPU which dynamically changes speed and voltage, thereby saving
energy by spreading run cycles into idle time. Here we continue this research, using a simulation
to compare a number of policies for dynamic speed-setting. Our work clarifies a fundamental
power vs. delay tradeoff, as well as the role of prediction and of speed-smoothing in dynamic
speed-setting policies. We conclude that success seems to depend more on simple smoothing
algorithms than on sophisticated prediction techniques, but defer to the eventual replication of
these results on actual multiple-speed systems.

*Computer Science Division, University of California, Berkeley, kgovil@cory.eecs.berkeley.edu.
t Computer Science Division, University of California, Berkeley, chance@cory.eecs.berkeley.edu.

{Computer Science Division, University of California, Berkeley, halw@cs.berkeley.edu. Supported by NDSEG Fellowship DAAHO4-
93-G-0267.

1 Introduction

Recent developments in ubiquitous computing make 1t
likely that the future will see a proliferation of cordless
computing devices. Clearly it will be advantageous for
such devices to minimize power consumption. The top
power-consumers in a computer system are the dis-
play (68%), the disk (20%), and the CPU (12%) [4].
There is seemingly little which can be done to mini-
mize screen power-consumption, beyond employing a
screen-saver and waiting for hardware improvements.
Disk power-consumption may be optimized by spin-
ning down the disk whenever it has been inactive for
several seconds; [2, 4, 5] have researched this topic.

It is certainly possible to imagine ubiquitous com-
puting devices with neither disks nor conventional dis-
plays; and, for such devices, minimizing the power-
consumption of the CPU will be particularly critical.
Methods for saving CPU power have been suggested
by [1, 3, 7]. They point out that it is possible to build
CPUs which can run at several different speeds: and
voltage may be decreased approximately linearly as
speed decreases. A CPU, regarded as a capacitor-
based system, satisfies the physical law

Energy/sec o« Voltage? - speed.

Thus, as voltage and speed are linearly decreased,
Energy/task o< Voltage? oc speed?.

And so it is possible to save overall energy usage by
reducing speed.

Therefore, it is advantageous to have a CPU ca-
pable of dynamic speed-setting. Such a CPU could
well decrease power usage without inconvenience to
the user. For example, a CPU might normally respond
to a user’s command by running at full speed for 0.001
seconds, then waiting idle for the next command; run-
ning at one-tenth speed, the CPU could complete the
same task in 0.01 seconds, thereby saving energy with-
out generating noticeable delay.

The essential performance factors of a dynamic
speed-setting policy are power-savings and delay.
To save power, a CPU would ideally run at a flat, av-
erage speed. But this would result in unacceptable
delay; hence a tradeoff between the two factors must
be accomplished. The question of how to measure de-
lay is found to be non-trivial, as is the question of how
much delay is acceptable. Ideally, we would have spe-
cific knowledge about allowable delays for the various
processes of a given application; but such information
is not currently available.

In seeking to strike an optimal balance between low
power-consumption and low delay, an algorithm must

consider issues of prediction and smoothing. Given
that there may be pragmatic limits on the frequency
with which CPU speed can be changed, a speed-
setting policy must predict how busy the CPU will be
in the near future. Given this prediction, the policy
will then have to make a decision aimed at smoothing
speed. For example, if a peak in CPU usage is pre-
dicted, the policy might increase speed, but it might
also keep speed low, thereby evening out speed at the
cost of increasing delay.

Note that the above conceptual distinction between
prediction and smoothing is not quite objective. For
instance, a speed-setting algorithm which strongly at-
tempts to set a flat, average speed may be thought
of in terms of prediction (it always predicts that the
near future will be like the average) or in terms of
smoothing (it smoothes to the greatest extent possi-
ble). Nevertheless, our goal here will be to separate
the two functions to some extent, trying to understand
the utility (or lack thereof) of several algorithms for
prediction and for smoothing.

Weiser et al. [7] present just one practical speed-
setting policy, PAST. PAST’s prediction algorithm
is elementary, and its smoothing is somewhat ad
hoc. Hypothesizing that more sophisticated predic-
tion methods will allow for substantially improved per-
formance, we here set out to compare the performance
of several new policies.

In Section 2, we review the assumptions, measures,
and simulation model employed by Weiser et al. In
Section 3, we indicate how we have altered this model.
In Section 4, we present a number of new speed-setting
policies. In Section 5, we analyze the performance of
these algorithms. Finally, in Section 6, we present our
conclusions and suggest avenues for further research.

2 Previous work

Weiser et al. evaluate their policies via a simulator
running on trace-data. Traces record CPU-usage for
a workstation running standard applications; no at-
tempt was made to capture the unique workload (if
any) of a ubiquitous computing device.

It is assumed that speed may be set to any real
number on range [minspeed, 1], where 1 represents
full speed. Weiser et al. compile data for min_speed
values of 0.2, 0.44, and 0.66 (corresponding to imag-
ined CPUs with full voltage 5.0 V and minimum volt-
ages 1.0 V,22V, or 3.3V).

Trace data is first divided into uniform-length in-
tervals; for each interval, one computes the percent
of time in which the CPU was active (run_percent).

Figures 1 and 2 give examples of such data for inter-
val lengths 0.01 seconds and 0.05 seconds, respec-
tively. Not surprisingly, at the smaller interval length
the run_percent values are far more bursty.

The Weiser et al. policies recompute CPU speed at
the start of each interval that contains a process-start
or process-stop event; thus speed is not recomputed
for intervals in the midst of long runs or long idles.
When the speed is not fast enough to complete an
interval’s work, excess_cycles spill over into the next
interval.

Each Weiser et al. simulation runs a given policy
on a given trace ten times, for interval lengths 0.001,
0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.25, 0.5, and 1.0
seconds. Total energy consumption is then plotted
as a function of interval_length. Delay_penalty, a
somewhat subjective measure of delay computed by
reference to the excess_cycles values, is also recorded.

If an optional flag is set, the simulator attempts to
divide idle time into hard_idle, which must be left in-
tact, and soft_idle, into which run_cycles may allow-
ably be stretched. For example, it i1s valid to stretch
an application’s run_cycles into time spent waiting for
the user’s next command (soft_idle), but not valid to
stretch a process into time which it must spend wait-
ing after requesting data from disk (hard_idle).

The realism of this simulation is somewhat limited:
it 1s not possible to model event reordering due to
speed changes or to identify situations in which delays
could be invidiously additive. This seems an inherent
difficulty of simulating on simple trace data.

3 Simulation model

We employed the same traces used by Weiser et al. Our
simulator is based on theirs, but has been changed in
several respects.

e We recompute speed at the beginning of each in-
terval, even if the interval is in the midst of a long run
or idle. This could be regarded as less efficient than
the Weiser et al. method, as its implementation would
require additional interrupts. On the other hand, we
feel the Weiser et al. model to be unrealistic: in par-
ticular, 1t gives its policy premature knowledge that
a long run has begun. Moreover, we wished to cre-
ate and analyze our policies in a way more suited to a
uniform, per-interval speed-setting.’

1We also used this revised simulation method when running
Weiser et al’s policy. We intended this as a measure friendly
to their policy: when run on our modified simulator, its perfor-
mance improved somewhat (though only when measured with
the revised delay metric described below).

e The Weiser et al. option of dividing idle into hard
and soft seemed degenerate, often failing to identify
any significant amount of soft_idle. Some of our simu-
lations are thus run without making use of this mode.
However, we later confirm that runs with the hard/soft
option yield similar results.

e All of our simulations are for min_speed = 0.2.

e To speed up the simulation, we removed the cal-
culation for the 0.001 second interval_length.

e An error was corrected: due to a programming
bug, the Weiser et al. simulator was overly optimistic
about the amount of work which could be completed
in an interval.

e Rather than plotting our results as power vs.
interval length, we plotted power vs. a delay mea-
sure. Thus we attempted to focus more clearly on
the power vs. delay tradeoff, regarding interval length
as a merely internal parameter.

Theoretically the two plotting methods are not un-
related, as the Weiser et al. PAST policy is intended to
limit its delay of work essentially to an interval length.
However, as excess_cycles are allowed to spill over into
future cycles, true delay if thus an unclear function
of interval length and delay_penalty. The importance
of delay_penalty is clearly indicated by the fact that
Weiser et al.’s algorithm FUTURE, an artificial algo-
rithm which has perfect knowledge of the next inter-
val, still uses more energy than PAST because it is not
allowed to push excess_cycles into future intervals.

Instead of trying to combine interval length and de-
lay_penalty into a meaningful composite number, we
substituted our own measure of delay, which is illus-
trated in Figure 3. For a given CPU task, consider
plotting the amount of work that remains to be done
as a function of time. The lower line in Figure 3 illus-
trates what this plot would look like when the CPU
is running at full speed; the upper line illustrates the
same task being run slowly, belatedly, and intermit-
tently on a variable-speed CPU. We take the area be-
tween the two lines as a measure of the task’s delay;
we then divide the sum of all the “delay areas” in the
trace by the sum of all the “full speed” areas to derive
a figure for average delay. This measure, while still
arbitrary, is rather sophisticated: it fairly represents
delay both within and between intervals, it is not un-
duly sensitive to arbitrary time-slicing of tasks into
smaller tasks, and it considers a task which is nearly
allowed to complete before a delay (so that it may
already have generated most of its child processes) as
having a lower delay figure that a task which is delayed
at its start.

1.2

Fraction of interval
o o
o)} e}
1 I

o
~
|

0.2 -

1.2

3.2 34 3.6 3.8
Time (seconds)

Figure 1: Run_cycles per interval. Trace emacsl, interval_length 0.01 seconds.

Fraction of interval
o o
o)} e}
| |

©
~
I

0.2%

4.2 4.4 4.6 4.8 5 5.2 54 5.6
Time (seconds)

Figure 2: Run_cycles per interval. Trace emacsl, interval_length 0.05 seconds.

5.8

12 T T T T T T
slowed down ---
l e \\ =
\\
N
© N
o ™~
(] \\
0.8 |- . -
IS N
o \\
[8) N
c N
> \\
%06 - \\ -
© N
8 .
s | . STTTTTTmTTTTs S~
c \\
204 |- N —
Q ~
o N
0.2 |- \\\ -
0 | | | | | N
0 5 10 15 20 25 30

time (seconds)

Figure 3: Graph of work still to be done as a function of time for a hypothetical process that normally takes 10
seconds to execute. The bottom line shows the situation when the CPU executes the process at full speed; the
top line, the situation when the process is executed at a slower, intermittent speed.

4 Speed-setting policies

4.1 PAST

PAST is the only practical speed-setting policy pre-
sented by Weiser ef al. We employ it for purposes of
comparison.?

e PAST:

— Prediction: PAST calculates how busy
the previous interval was (including ex-
cess_cycles brought into the interval). Tt
then predicts that the coming interval will
be identical to this previous interval.

— Speed-setting: If the prediction is for
a busy interval, PAST increases speed; if
for an idle interval, PAST decreases speed.
Some smoothing is accomplished by limiting
the amount by which speed can change (ex-
cept if excess_cycles rises particularly high).

2Tt should be noted, however, that PAST was evidently only
intended as a reasonable first-version policy. Moreover, our cor-
rection of a simulator bug, as noted in the previous section,
may have affected the relative performance of the policy in ways
which Weiser et al. did not have the opportunity to correct for.

Since PAST makes an effort to complete work
within the interval after that which generated it, it
is not surprising that delay rises and power-usage falls
as the interval length increases. Weiser et al. identify
the range of interval_lengths from 0.01 seconds to 0.05
seconds as one in which delay and energy-savings both
seem reasonable. For a simple algorithm, PAST does
surprisingly well.

Nevertheless, we felt that there was considerable
room for improvement here. We particularly dis-
agree with PAST’s prediction algorithm: in a bursty
trace such as that illustrated in Figure 1, the as-
sumption that adjacent intervals will be similar is in
fact almost certainly wrong. Moreover, it seems non-
optimal that PAST only considers the excess_cycles
that went into the previous interval, ignoring the
seemingly more valuable figure of excess_cycles coming
out of that interval into the new interval. Predicting
by looking back only one interval seems bad from the
point of view of smoothing; and the attempt to patch
this problem with an arbitrary limit on speed-change
seems ad hoc—and dangerous in that a process can
be delayed several intervals while the system slowly
banks up speed. The behavior of PAST can be down-
right strange: given uniform input data, it can thrash
speed without coming to a limit; furthermore, due to

35

mistaken speed-setting decisions, it saves little more
energy when min_speed is 0.2 than when it is 0.44.
Finally, we feel that the role of interval_length is con-
fused, as it influences the outcome of the simulation in
three different ways: it determines (1) the frequency
with which speed can be corrected, (2) the acceptable
amount of delay, and (3) how far into the past PAST
looks when making its predictions. We would wish to
see a clearer separation of these distinct functionali-
ties.

In short, we felt that, particularly with more so-
phisticated prediction methods, it should be possible
to create a better policy.

4.2 FLAT

Our first policy is FLAT, a simple algorithm which
tries to smooth out speed to a global average. FLAT
takes an input (const), which must be a real number
on range [0,1].

e FLAT (const):

— Prediction: We predict the new
run_percent to be (const).

— Speed-setting: Set speed fast enough to
complete the predicted new work plus the
excess_cycles being pushed into the new in-
terval.

While FLAT is strong on smoothing, it also re-
sponds effectively to excess_cycles, and so should not
generate bad delays. However, it employs no smart
prediction techniques.

4.3 LONG_SHORT

LONG_SHORT attempts to outdo FLAT with a
more predictive policy, one which attempts to find a
golden mean between local behavior and a global av-
erage:

e LONG_SHORT (const):

— Prediction: The policy maintains two av-
erages of previous run_percents (including
any excess_cycles added into each interval).
One average is short-term (last 3 intervals);
the other is long-term (last 12). The pre-
dicted new run_cycles is then a weighted
sum of the two averages. (const) deter-
mines this weighting: its use is somewhat
arbitrary, but, essentially, higher values give
more weight to the local average.

— Speed-setting: Set speed fast enough to
complete the predicted work.

Note that LONG_SHORT, an early algorithm, is
less elegant than FLAT and is more like PAST (partic-
ularly in that it uses excess_cycles only in an indirect
way). Our hope was that this algorithm would work
best for some ideal value of (const) at which it pre-
dicted accurately by giving some, but not too much,
weight to local behavior. This can alternatively be
thought of in terms of smoothing: LONG_SHORT at-
tempts to smooth to a global average, but still shows
some respect for local peaks.

4.4 AGED_AVERAGES

A perhaps cleaner variant of LONG_SHORT,
AGED_AVERAGES attempts to predict via a
weighted average: one which smoothly reduces the
weight given to each previous interval as we go back
in time.

e AGED_AVERAGES (const):

— Prediction: The predicted new
run_percent is equal to a weighted average of
all previous run_percents, where the weight
given to an interval’s data i1s decreased by a
factor (const) for each 0.01 seconds that we
go back into the past.

— Speed-setting: Set speed fast enough to
complete the predicted new work plus ex-
cess_cycles.

For example, if intervallength is 0.01 seconds,
(const) equals %, and the previous run_percents
are R(t — 1), R(t — 2),..., then the predicted new
run_percent would be

1 2 4

3 - R(t 1)+9 “R(t 2)+27 “R(t=3)+---
Note that (const) is defined so that aging will be es-
sentially independent of interval length; this we regard
as one step toward reducing the confusing multiple ef-
fects of the interval length figure.

We hoped that AGED_AVERAGES, Ilike
LONG_SHORT, would work best for an ideal value
of (const), at which its aged averages would optimally
balance the long-term and the short-term past.

4.5 CYCLE

We now experiment with more sophisticated pre-
diction algorithms. The CYCLE policy was inspired

by run_percent plots such as Figure 2. Observe that
these run_percent values look quite cyclical. Can we
take advantage of such cycling to predict?

e CYCLE (const):

— Prediction: Examine the last 16 values of
run_percent. Does there exist X such that
the last 2X values seem to approximately
repeat a cycle of length X7 If so, predict
by extending this cycle. If no good cycle is
found, just predict the new run_percent to
be a flat (const).

— Speed-setting: Set speed fast enough to
complete the predicted new work plus ex-
cess_cycles.

Observe that CYCLE behaves like FLAT except
that at times it prefers to make a “smarter” guess by
reference to a discovered cycle.

4.6 PATTERN

CYCLE is generalized somewhat in PATTERN.
Here we divide run_percent values into four possible
“magnitudes”: 0 to 0.25, 0.25 to 0.5, 0.5 to 0.75,
and 0.75 to 1. We may then identify the last (const)

run_percents with one of 4{const) possible patterns of

successive magnitudes. Can we then match with a
previous occurrence of the same pattern to predict?

e PATTERN (const):

— Prediction: Find the most recent se-
quence of (const) previous run_percents that
matches the last (const) intervals. Predict
that the coming run_percent will have the
same magnitude as that which followed the
matching previous intervals.

— Speed-setting: Set speed fast enough to
complete the predicted new work plus ex-
cess_cycles.

This model of pattern-discovery is evidently some-
what partial and arbitrary. Nevertheless, we hoped
that, when (const) was set optimally, repeated
patterns—e.g., repeated peaks of a certain common
width—would be picked out to good effect.

4.7 PEAK

PEAK is a more specialized version of PATTERN.
It looks specifically for narrow peaks, such as those
which occur frequently in Figure 1.

e PEAK (const):

— Prediction: The policy uses several heuris-
tics based on the expectation of narrow
peaks. For example, if the run_percent is
falling, it is expected to fall farther; when 1t
is high, it is expected to pass its peak and
fall somewhat; when it is low and flat, it is
expected to stay low and flat.

— Speed-setting: Set speed fast enough to
complete the expected new work plus a
(const) fraction of the excess_cycles.

Observe that we have modified our speed-setting
policy of always trying to complete all excess_cycles;
this policy was eminently logical but perhaps too cau-
tious.

5 Performance of our policies

In Section 5.1, we run each of our policies in turn,
comparing the results to those of PAST and finding
the optimal value of each policy’s constant. All these
runs are done on trace emacsl, a relatively short trace
of text being typed into an emacs buffer. In Section
5.2, we then compare the various algorithms, double-
check with runs on a substantially different trace, and
draw conclusions.

5.1 Runs of each policy

Figure 4 shows the performance of FLAT running
with several possible values of its constant; PAST is
also provided for comparison. Observe that, for each
policy, results are presented for a selection of nine in-
terval lengths; usually these form a curve, slanting off
toward more delay and less energy as interval_length
increases. The optimal algorithm that works within a
given delay limit is found by starting on the x-axis at
the desired delay figure and then moving vertically un-
til one reaches the lowest curve. Thus policies whose
results curve closer to the origin are superior, while
sets of data points that seem “shifted” along a sin-
gle curve represent different ranges of possible energy-
usage and delay but a similar energy vs. delay trade-
off.

FLAT clearly outdoes PAST.? We also note that
FLAT seems to achieve optimality around a (const)
value of 0.4.

3This is not an artifact of our new delay measure. If one
uses Weiser et al’s delay_penalty figure instead, the difference
is only more pronounced.

1 T T T T T T T T
flat0 —-
flat .1 {=--
08 flat .2 -><--- _
X
AN flat .5 -
K
206 |- So i
© N~
g N \?\\\
5 Qo aXE
(O] S “\\\\
$0.4 |- DN T -
& “X‘f
RGN ‘
<>‘~‘<><> \\%\\
02 |- By —
X~~~T:BE~:-\+\?:\\\
R se g e H
0 1 1 1 1 1 1 1 1
0.5 1 2 32 64 128 256

8 16
delay factor (logscale)

Figure 4: Performance of policy FLAT on trace emacsl. FLAT, run with several possible values of its input
constant, is compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.25, 0.5,

and 1.0 seconds are displayed connected.

1 T T T T T T T T
long_short0 —+-
long_short1 {--

08 long_short 2 ->---
long_short5 -©--
206 |- .
@
2]
]
>
o
()
$04 |- N —
REENA
R e
02 | N %{j\i\ . —
e N e S
/”\D , RV E f't*\\
B ~<g>.%j,1.—.:»€> BH
0 | | | | | | | |
0.5 1 2 32 64 128

8 16
delay factor (logscale)

Figure 5: Performance of policy LONG_SHORT on trace emacsl. LONG_SHORT, run with several possible
values of its input constant, is compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02, 0.03, 0.05,

0.1, 0.25, 0.5, and 1.0 seconds are displayed connected.

256

The next figure describes the performance of
LONG_SHORT. This algorithm is shifted toward
lower energy usage and higher delay. Again it out-
does Weiser et al. easily. Results improve as (const)
increases, leveling out around (const) = 3 to 5. This
seems to indicate that paying attention to the local
average is particularly advantageous.

The next figure describes the performance of
AGED_AVERAGES. We consider this result a disap-
pointment, since, rather than indicating an optimal
value of (const), the plot demonstrates that the higher
(const) is, the better. Thus AGED_AVERAGES
works best with (const) = 1, in which case it simply
predicts by calculating the unweighted average of all
run_percents so far. Thus, contrary to our hypothesis,
it seems here that the best one can do is to predict via
the global average, in which case AGED_AVERAGES
is little different from FLAT.

Figure 7 describes the performance of CYCLE. Re-
sults seem lackluster; (const) values around 0.5 are
optimal.

Figure 8 describes the performance of PATTERN.
The results here are particularly disappointing: there
is no significant change as (const) varies, suggesting
the meaningful patterns are not being found.

Figure 9 describes the performance of PEAK. Re-
sults seem strong, with PEAK achieving optimality
at a (const) value of 0.2. Note, however, that PEAK
at 0.2 performs little better than PEAK at 1.0. This
indicates that our experiment of being lazier about
the completion of excess_cycles has had little effect.
Thus, if PEAK proves to be a strong policy, we should
attribute this primarily to the prediction algorithm
rather than to the experimental smoothing.

5.2 Comparison of the policies

Figure 10 summarizes the performance of the
best policies from Figures 4 through 9. Surpris-
ingly, the simplest policy, FLAT 0.4, is optimal for
the delay values below 8, while LONG_SHORT 3,
which 1s scarcely more complex, is optimal for the
higher delay values. Of our more sophisticated pre-
dicting algorithms, only PEAK 0.2 comes close to
equaling FLAT and LONG_SHORT at medium de-
lay. AGED_AVERAGES, CYCLE, and PATTERN
all have disappointing performance. It is particularly
telling that CYCLE is consistently worse than FLAT.
For CYCLE imitates FLAT except when it is “trying
to be clever”; and so this result would suggest that
when CYCLE tries to be clever, the result is generally
for the worst.

To indicate that the above data is not specific to
emacsl, we have duplicated the runs in Figure 10 on
a quite different trace, kestrel.marl; nearly ten hours
long, this trace is on a workload including “software
development, documentation, e-mail, simulation, and
other typical activities of engineering workstations”
[7]. The results are shown in Figure 11. Since the
simulator was capable of identifying much of the idle
time in kestrel.marl as soft, we were also able to
run these traces with run_cycles stretched only into
soft_idle. Also note that delay factors are unusually
small for this trace, apparently because a long block of
full-run intervals, which our algorithms handled near-
optimally, dominated the delay measure.

In spite of these substantial differences, compara-
tive results for the various algorithms are quite sim-
ilar to those on emacsl. The main difference is
that PEAK 0.2 has edged ahead of FLAT 0.4 and
LONG_SHORT 3 to become the optimal algorithm
for medium delay values. It is notable that PEAK,
having been designed to work well with thin peaks,
proves particularly effective for small interval lengths,
at which such bursty peaks are common. Figure 12
illustrates the superior behavior of PEAK 0.2 rela-
tive to PAST by tracking the speeds they respectively
set on a stretch of kestrel.marl for the 0.005 sec-
ond interval_length. These speeds are graphed along
with the effective run_percent—that is, run_cycles di-
vided by (run_cycles + soft_idle). Note the compar-
ative smoothness and the greater correspondence to
run_percent of the PEAK speeds.

6 Conclusions and directions
for future research

We found that several of our predictive algorithms
performed poorly; only PEAK exhibited strong per-
formance. We might then conclude that simple algo-
rithms which place their emphasis on rational smooth-
ing rather than “smart” predicting may be most useful
after all.

Nevertheless, further possibilities for prediction re-
main to be tried. A policy might divide past informa-
tion per process and use its knowledge of the expected
run-loads of various types of processes to deepen its
understanding of the system’s computational needs.
Moreover, each application could provide the system
with useful information—both about how much it ex-
pects to be loading the system and about how much
delay of a given process it would regard as acceptable.
Indeed, communication of straightforward deadlines

energy usage

energy usage

1 T T T T T T T T
aged0 —+-
aged .2 {I--
08 F XN aged .4 -]
AN
\\?‘;\\; aged1l -©--
0.6 - Hge -
o
04} N -
N 1
Frm,
02 - N]
<>\ [—
SE -
0 | | | | | | | |
0.5 1 2 4 8 16 32 64 128 256
delay factor (logscale)
Figure 6: Performance of policy AGED_AVERAGES on trace emacsl. AGED_AVERAGES, run with several
possible values of its input constant, i1s compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02,
0.03, 0.05, 0.1, 0.25, 0.5, and 1.0 seconds are displayed connected.
1 T T T T T T T T
cycle0 —+-
cycle .2 {3--
08 & cycle .5 -
XD_k NG cyclel ©--
0.6 - RN S -
XK
04 | v N .
02 | TR . -
\"‘_.\; o
S e S OIS vy IR
0 | | | | | | | |
0.5 1 2 4 8 16 32 64 128 256

delay factor (logscale)

Figure 7: Performance of policy CYCLE on trace emacsl. CYCLE, run with several possible values of its input
constant, is compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.25, 0.5,

and 1.0 seconds are displayed connected.

1 T T T T T T T T
pattern 4 —+-
pattern 8 {3--
08 X Gk pattern 11 -<---
206 |- S, -
=] e
o \ié:-
504 [L8 i
*\&\\\
TH
02 | RN -
‘@t\,\\
S -
0 | | | | | | | |
0.5 1 2 4 8 16 32 64 128 256
delay factor (logscale)
Figure 8: Performance of policy PATTERN on trace emacsl. PATTERN, run with several possible values of its
input constant, is compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.25,
0.5, and 1.0 seconds are displayed connected.
1 T T T T T T T T
peak 0 —+-
peak .1 {3--
08 peak .2 ->---
©06 |- -
®
2]
]
B
q,)04 — . \ -
| = *x .
02 X“><‘~*. \\
BE}X»;-.EF\. N
0 | | | | | | | |
0.5 1 2 4 8 16 32 64 128 256

delay factor (logscale)

Figure 9: Performance of policy PEAK on trace emacsl. PEAK, run with several possible values of its input
constant, is compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.25, 0.5,

and 1.0 seconds are displayed connected.

10

energy usage

energy usage

1 T T T T T T T T
flat .4 —+-
aged 1 4l--
08 long_short 3 ->---
+_ O
N peak .2 ©--
06 |- Ny -
Sy O
AR N
04 | * ‘\«\:\\ —
SR T
\\'{:Qi‘ \\
Sk B
02 | TS .
TR
\<>>C = .f D -F]
SSadCEEERE R EJ’}{ ,,,,,,,,,,, Seememm T X
0 | | | | | | | |
0.5 1 2 4 8 16 32 64 128 256
delay factor (logscale)
Figure 10: Performance of various policies on trace emacsl. The best policies from Figures 4 through 9 are here
compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.25, 0.5, and 1.0 seconds
are displayed connected.
1 T T T T T T T
flat .4 —+-
aged1 {3--
08 long_short 3 ->---
3 eak .2 ©--
+55 p
0.6 I TRE 7]
TR
TROE
04 ~o s -
<>\ ‘>‘<\:‘+'\‘x\E’L <
Oy
TR e
0.2 |- ‘<>~><_‘<>" ____ =+]
K= N
e XKoo DTN
------- X
0 | | | | | | |
0.015625 0.03125 0.0625 0.125 0.25 0.5 1 2 4

delay factor (logscale)
Figure 11: Performance of various policies on trace kestrel.marl. The best policies from Figures 4 through 9 are

here compared to PAST. For each policy, interval lengths of 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.25, 0.5, and 1.0

seconds are displayed connected.

11

Fraction of interval

1.2

0.8

e

0.6

0.4

0.2

18.15

18.2 18.25

Time (seconds)

Figure 12: A stretch of the kestrel.marl trace, with effective run_percent (= run_cycles / (run_cycles + soft_idle))
graphed alongside the resulting speeds set by PEAK 0.2 and by PAST. Interval_length is 0.005 seconds.

to the system (a keystroke must be processed in 0.01
seconds, and so on) would be an obvious component
of an optimal speed-setting policy.

Testing out such theories, however, would quickly
go beyond the limits of a simulation. Finally, the
hypothesis that a computer’s speed may be dynam-
ically changed without inconveniencing the user must
be tested on a real system, so that the user-level ef-
fects of CPU speed-changes may be unambiguously
observed. As multiple-speed CPUs seem consistent
with the technological capabilities of the near future,
the day when this research may be further advanced
is to be expected shortly.

We thank Marvin Theimer, Mark Weiser, Alan De-
mers, Scott Shenker, and particularly Brent Welch,
without whose help this project would not have been
possible.

References

[1] A.P.Chandrakasan, S. Sheng, & R. W. Brodersen,
“Low-power CMOS digital design,” TFEE Journal
of Solid-State Circuits, Vol. 27, pp. 473-484, April
1992.

12

[2]

Fred Douglis, P. Krishnan, & Brian Marsh,
“Thwarting the power-hungry disk,” Proc. Winter
1994 USENIX Conference, pp. 293-306, January
1994.

Mark A. Horowitz, “Self-clocked structures for low
power systems,” ARPA semi-annual report, Com-
puter Science Laboratory, Stanford University, De-

cember 1993.

Kester Li, Roger Kumpf, Paul Horton, & Thomas
Anderson, “A quantitative analysis of disk drive
power management in portable computers,” Proc.

Winter 1994 USENIX Conference, pp. 279-292,
January 1994.

Kester 11, “Towards a low power file system,”
CS Tech Report 94-814, University of California,
Berkeley, May 1994.

Mark Weiser, “Some computer science issues in
ubiquitous computing,” Communications of the

ACM, Vol. 36, pp. 74-83, July 1993.

Mark Weiser, Brent Welch, Alan Demers, & Scott
Shenker, “Scheduling for reduced CPU energy,”
Proc. Symposium on Operating Systems Design
and Implementation, pp. 13-23, November, 1994.

18.3

