INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 @ (510) 643-9153 @ FAX (510) 643-7684

A Combined BIT and
TIMESTAMP Algorithm for the
List Update Problem

Susanne Albers, Bernhard von Stengel, Ralph Werchner
TR-95-016
April 27, 1995

Email: {albers, stengel, werchner}@Qicsi.berkeley.edu

Abstract. A simple randomized on-line algorithm for the list update
problem is presented that achieves a competitive factor of 1.6, the best
known so far. The algorithm makes an initial random choice between two
known algorithms that have different worst-case request sequences. The
first is the BIT algorithm that, for each item in the list, alternates between
moving it to the front of the list and leaving it at its place after it has been
requested. The second is a TIMESTAMP algorithm that moves an item in
front of less often requested items within the list.

Keywords. On-line algorithms, analysis of algorithms, competitive anal-
ysis, linear lists, list-update.

1. Description of the algorithm

The list update problem is one of the first on-line problems that have been studied
with respect to competitiveness (see [5] and references). The problem is to maintain
an unsorted list of items so that access costs are kept small. An initial list of items
is given. A sequence of requests must be served in that order. A request specifies an
item in the list. The request is served by accessing the item, incurring a cost equal
to the position of the item in the current list. In order to reduce the cost of future
requests, an item may be moved free of charge further to the front after it has been
requested. This is called a free exchange. Any other exchange of two consecutive
items in the list incurs cost one and is called a paid exchange. The goal is to serve
the request sequence so that the total cost is as small as possible.

An on-line algorithm has to serve requests without knowledge of future requests.
An optimal off-line algorithm knows the entire sequence o of requested items in
advance and can serve it with minimum cost OPT (o). We are interested in the
competitiveness of an on-line algorithm. Let A(o) be the cost incurred by the on-line
algorithm A for serving the sequence o. Then the algorithm is called ¢-competitive if
there is a constant b so that A(o) < c¢- OPT(o) + b for all request sequences o. The
smallest ¢ with this property is called the competitive factor of the algorithm.

The well-known MOVE-TO-FRONT rule is 2-competitive, which is optimal for
deterministic algorithms [4, 6]. The performance of a randomized on-line algorithm
A can be better, if it is evaluated against the oblivious adversary [2]. The oblivious
adversary specifies a request sequence o in advance and is not allowed to see the ran-
dom choices made by the on-line algorithm A. Let E[A(c)] denote the corresponding
expected cost. The algorithm is called e-competitive if there is a constant b so that
E[A(0)] < ¢-OPT(o)+bfor all request sequences o. Against this adversary, the opti-
mal competitive factor of a randomized on-line algorithm for the list update problem
is not yet known.

Usually, the cost of accessing the ith item in the list is 7. For simplicity, we
assume that cost to be ¢ — 1 instead. Clearly, a ¢-competitive on-line algorithm for
this ‘2 — 17 cost model is also c-competitive in the original model. With either cost
model, it 1s known that no randomized on-line algorithm for the list update problem
can be better than 1.5-competitive [7].

We will combine two on-line algorithms for the list update problem that store
with each item some information about past requests. Both algorithms use only
free exchanges. The first is the 1.75-competitive BIT algorithm due to Reingold,
Westbrook, and Sleator [5]. The algorithm maintains a bit for each item in the list.
Initially, the bit is set at random to 0 or 1 with equal probability so that the bits of
the items are pairwise independent.

Algorithm BIT. Fach time an item is requested, ils bit is complemented. When
the value of the bil changes to 1, the requested item is moved to the front of the list.
Otherwise the position of the item remains unchanged.

The second algorithm is an instance of the TIMESTAMP algorithm recently in-
troduced by Albers [1]. Depending on a parameter p in [0, 1], this algorithm achieves
a competitiveness of max {2 — p,1 + p(2 — p)}. The optimal choice of p gives a ¢-
competitive algorithm, where ¢ = (1 + v/5)/2 ~ 1.62 is the Golden Ratio. The
TIMESTAMP algorithm maintains for each item the last two times it has been re-
quested. An item is treated in one of two ways (which can be determined once at
the beginning by a random experiment, so that the algorithm is barely random, that
is, it uses only a bounded number of random bits independent of the number of re-
quests [5]). With probability p, the item is moved to the front of the list after it
has been requested. With probability 1 — p, it is treated in a different way. We use
the TIMESTAMP algorithm with parameter p = 0, so that it is deterministic. The
resulting 2-competitive algorithm can be formulated as follows.

Algorithm TS. After each request, the accessed item x is inserted immediately in
front of the first item y that precedes x in the list and was requested at most once
since the last request to x. If there is no such item y or if x is requested for the first
time, then the position of x remains unchanged.

Our new algorithm is a combination of these two algorithms.

Algorithm COMB. With probability 4/5 the algorithm serves a request sequence
using BIT, and with probability 1/5 il serves the sequence using TS.

Theorem 1. The on-line algorithm COMB is 1.6-competitive.

In the following, we will prove Theorem 1 using a well-known technique [3, 5] of
analyzing separately the movement of any pair of items in the list. The algorithms
BIT and TS permit such a pairwise analysis.

2. Projection on pairs of items

Our goal is to look only at two items at a time when we consider a request sequence,
the list maintained by the on-line algorithm, and the cost of the off-line algorithm.
Let o be a sequence of m requests, and let o(t) be the item requested at time ¢
for t = 1,...,m. Let L be the set of items of the list. Consider any deterministic
algorithm A that processes o. At time ¢, requesting o () incurs a cost that depends
on the current list maintained by A. This cost can be represented as the sum

D A(t@)

el

where A(t,z) is equal to one if item z precedes o(t) in the list at time ¢, and zero
otherwise. The cost A(c) of serving the entire sequence o has then the following
form, using A(t,z) = 0 for z = o(1):

Alo) = > > Alta)

t=1,....m z€lL

= 2 2. Alke)

rzel t=1,..m

= 2 2 2 Alw

z€Ll yeL t:0(t)=y

= 3 > (A(t2) + AlLy)).

{zy}CL:x#ty t:o(t)e{z,y}

With the abbreviation

Alo)= 3 (Altz)+ Alt,y)), (1)

t:o(t)e{z,y}

we can write this as

Alo)= 3. Axlo). (2)

{zy}CL sty

Let 0., be the request sequence o with all items other than z or y deleted. Only
these requests are considered in (1). In the sum there, A(t,z) + A(t,y) is the cost of
accessing o(t) in the two-element list that consists of the items x and y in the order
of the full list maintained by A. In that way, the term A,,(o) denotes the cost of the
algorithm ‘projected’ to the unordered pair {z,y} of items.

The algorithms BIT and TS are compatible with the projection on pairs. That
is, when these algorithms serve a request sequence o, then at any time the relative
order of two items x and y in the list depends only on the projected request sequence
04y and the initial order of z and y. This is obvious for the algorithm BIT which
moves an item independently of any other item. For the algorithm TS, this follows
from the following lemma, applied to the request sequence o or any prefix of it.

Lemma 2. In the list obtained after algorithm TS has served the request sequence o,
item x precedes ilem y if and only if the sequence o, terminales in the subsequence
xx, xyx, or xxy, or if x preceded y initially and y was requested at most once in o.

Proof. Suppose o,, terminates in zz or zyz, and let y precede z in the list at the
time of the last request to z. Then y is among the items that have been requested at
most once since the preceding request to z. Since x is inserted in front of the first of
such items, = precedes y in the final list.

Let o,, terminate in the subsequence zzy, and let 1, 3, and {3 be the times
of these last three requests to = or y. After the request to x at time ¢y, item =z is

moved somewhere in front of y. Suppose that after the request to y at time ¢3, item
y is, contrary to our claim, moved somewhere in front of x, and suppose further that
y is the first of the items in ¢ that has not been requested between ¢; and ¢; and is
requested after ¢, and then moved in front of . Let {3 be the time of the preceding
request to y (item y must be requested at least twice to be moved), where ty, < ;.
Then ¥ is inserted immediately in front of an item z that has been requested at most
once between ty and t3, so z # z, and z is in front of = at time ¢3. If 2 was requested
before t,, then o,, ends in xx or xzx, where we have shown that x is in front of
z after t3. So z is an item that has not been requested between ¢; and ¢ and is
requested after ¢, and then moved in front of x, but before the request to y at time
t3, contradicting our assumption that y is the first of such items. Thus x precedes y
in the final list as claimed.

If 0., terminates in one of the subsequences yy, yzy, or yyz, then by the same
argument with x and y interchanged, y precedes x in the final list.

The only remaining cases are when both x and y are requested at most once
in 0. Then neither item is moved, so their relative order is as in the initial list. [

By Lemma 2, the relative order of any two items x and y in the list when TS
serves o is the same as when TS serves o, on the two-element list consisting of z and
y. In other words, T'S,,(0) = TS(04y,), where T'S(0,,) denotes the cost of TS serving
0y on the two-element list (with z and y in the same initial order as in the long list).

Similarly, the projected cost of the algorithm BIT fulfills BIT,(c) = BIT(04y).

Note that this cost is a random variable.

For the optimal off-line algorithm OPT, we work with the inequality
OPT . (c) > OPT(04y), (3)

which states that the projected cost of OPT processing o is at least as high as the
optimal off-line cost OPT(o,,) of serving o,, on the two-element list. An optimal
off-line algorithm OPT for only two items can be easily specified. However, (3) may
not always hold with equality. In that case, the moves of OPT for all pairs of items
cannot be combined to yield an algorithm for the entire list. The different notation
OPT emphasizes that this algorithm may perform better than the projection of OPT
serving requests on a longer list.

A randomized algorithm can be regarded as a probability distribution on deter-
ministic algorithms A. Then, (2) carries over to expected values. For the expected
cost of our on-line algorithm COMB we will prove in Section 3 the inequality

E[COMB,,(0)] < 1.6 - OPT(04,) (4)

for all pairs {z,y} of items. By the preceding discussion, this implies E[COMB(o)] <
1.6 - OPT(0) and thus shows Theorem 1.

3. Competitiveness of the algorithm

As shown in the previous section, the competitiveness of the algorithm COMB can
be analyzed considering only request sequences o, to the items z and y in a two-
element list. We partition o,, into subsequences, each of which is terminated by two
consecutive requests to the same item. Assuming that = precedes y in the initial list,
the first subsequence is of the form z'yy, z'(yz)*yy, or z'(yz)*z for some I > 0 and
k > 1. If that subsequence terminates in xz, the next subsequence is of the same
form. If it terminates in yy, we consider next the subsequence of one of these forms
with = and y interchanged. Continuing in this manner, o is partitioned uniquely. We
can assume that the last subsequence is also of this form by appending the requests yy
to 04y, which affects costs negligibly.

It suffices to prove (4) for each subsequence. The cost for such a subsequence of
04y 1s the same as when the subsequence is served by itself, for the following reason:
Whenever an item has been requested twice in a row, it is moved to the front by BIT
and T'S. For OPT, we can assume the same behavior, because it is optimal to move
the item, say x, to the front after the first of two or more consecutive requests to x:
Then the cost of serving these requests is 1, and this move might cause an additional
cost 1 for the next request to y; if * were kept at the end of the list, the cost would
be at least 2. Thus, after a subsequence of o,, ending with zz has been served by
BIT, TS, or OPT, these algorithms start on the next subsequence with item z at
the front of the list. When algorithm BIT is used, the bits of some items may have
changed, but the expected cost is not affected; algorithm TS treats any request to y
after the requests xx as if y is requested for the first time.

The cost for serving a subsequence varies with the algorithm. We first prove a
lemma for the BIT algorithm.

Lemma 3. Suppose that BIT has served the request sequence xyzx, or the sequence yx
on a list where initially x preceded y. Then z is in fronl of y with probability 3/4.

Proof. We show that after BIT has served either sequence, item y is in front of z if
and only if the bit of = is 0 and the bit of y is 1: Namely, if the bit of = was set to
1 at the last request to =, then = was moved to the front. Otherwise, z’s bit is 0, so
the bit was set to 1 at the preceding request to z (in the sequence zyz) and z is front
of y at the time of the request to y (which holds by assumption for the sequence yz).
Thus, y’s bit must have been set to 1 after the request to y to move y in front. The
bits of both items are independent, so y is in front of = with probability 1/4. (]

Lemma 4. In the initial list of two items, let x be in front of y. The following table
describes the expected cost for serving the indicated request sequences, where [> 0

and k > 1, by the algorithms BIT, TS, and OPT.

request sequence BIT TS OPT
zlyy % 2 1
! (yz)Fyy 2k+1 2k k+1
J:l(ya:)k;z; %k + % 2k — 1 k

Proof. The initial [requests to = incur no cost for any of the algorithms. Consider
the request sequence z'yy. Since x precedes y before the first request to y, the cost
of serving that request is 1. After that request, algorithm BIT moves item y to the
front with probability 1/2 so that the expected cost for the service by BIT is 3/2.
Algorithm T'S incurs cost 1 at both requests to y by Lemma 2. Clearly, the optimal
off-line algorithm OPT moves y to the front after the first request to y.

The sequence z'(yz)*yy is served by BIT as follows: The first subsequence yx
incurs expected cost 3/2 since the first request costs 1, after which y is moved to the
front with probability 1/2, so the request to x has expected cost 1/2. Any further
request to y or z in the subsequence (yz)* incurs expected cost 3/4 by Lemma 3
(and Lemma 3 with = and y interchanged). Lemma 3 also shows that the final two
requests to y have expected cost 3/4 and 1/4, respectively. Thus, the BIT algorithm
serves z!(yz)*yy with expected cost %k + % + i. By the same reasoning, that cost for
the sequence z'(yz)Fz is 3k + 1.

When algorithm TS serves the sequence z!(yz)*yy, then the first two requests
of the form yx incur costs 1 and 0, respectively, since y is left behind x after the first
request to y. All subsequently requested items are moved to the front of the list by
Lemma 2. The resulting costs are therefore 2k (note & > 1). Similarly, 7S serves
z!(yz)*z with cost 2k — 1.

The optimal off-line cost for serving the sequence z'(yz)*yy is k + 1 since for
each of the k pairs yx of requests, at least one has cost 1, and an extra cost unit is
caused by the final double request to y. It is optimal to move y to the front at any
time before the last request to y. The optimal off-line cost for serving the sequence
z!(yz)*z is k. Tt is optimal to leave z always at the front of the list. (]

The performance of algorithm COMB, which selects BIT with probability 4/5
and TS with probability 1/5, follows from Lemma 4. COMB serves the request
sequence z'yy with expected cost 1.6, the sequence z!(yz)fyy with cost 1.6k 4 0.8,

and the sequence z!(yz)*z with cost 1.6k. In each case, this is at most 1.6 times the
cost of OPT'. This proves (4) and thus Theorem 1.

The probabilities for deciding between BIT and TS are optimal: The critical
sequences are r'yy and z!(yz)*z (for z'(yz)*yy COMB performs better), were the

simplest cases are yy with expected cost 1.5 for BIT and 2 for TS, and yzxz with
expected cost 1.75 for BIT and 1 for TS. If a randomizing adversary chooses yy with
probability 3/5 and yzx with probability 2/5, then both BIT and TS have expected
cost 1.6, or 1.6 times the cost of OPT. Thus, by Yao’s Theorem [8] (or a simple direct
argument), no randomized combination of BIT and TS can have cost less than 1.6
on both sequences (and their repetitions in longer sequences).

4. Conclusions

We have presented a simple randomized on-line algorithm for the list update problem
that has a competitive factor of 1.6. The best known lower bound for that factor
is 1.5 [7]. The remaining gap is small, but the obvious open question is: what is the
best possible competitive factor?

Our algorithm uses two known algorithms that already have good competitive
factors. We have used the fact that the worst-case request sequences for these algo-
rithms are different. In a similar way, it is possible to construct other 1.6-competitive
algorithms. For example, one can use the original TIMESTAMP algorithm [1] with
different parameters p, determined by a random experiment: With probability 1/10,
TIMESTAMP is used with p = 0 (corresponding to our algorithm 7'S), with probabil-
ity 1/15, it is used with p = 1 (yielding the deterministic MOVE-TO-FRONT rule),
and with probability 5/6, it is used with p = 2/5. This means that an item is always
moved to the front with probability 2/5, otherwise treated essentially as in algorithm
TS (see [1] for a full description of TIMESTAMP when pis not 0 or 1). However, with
probability 1/6 all items are treated in the same manner. This correlation reduces
the competitive factor of the algorithm from the Golden Ratio (about 1.62) to 1.6.
The analysis of this algorithm is similar to Lemma 4. In fact, the algorithm generates
the same distribution on projected lists as COMB. However, COMB is simpler and
uses with high probability the easily implementable BIT" algorithm.

It may be that the optimal competitive factor is indeed 1.5. There is a 1.5-
competitive algorithm for serving requests on a list of up to four items. That algorithm
is based two-dimensional partial orders, but it is beyond this article to describe;
furthermore, the algorithm cannot be extended to longer lists. Its performance can
also be compared against OPT', assuming that the optimal off-line algorithm projects
to pairs. It is conceivable that for longer lists, OPT does not suffice to describe the
performance of OPT' (that is, the inequality in (3) is strict) for certain critical request
sequences. In that case, the optimal competitive factor must be analyzed by other
tools than the projection to pairs of items, which has so simplified our analysis.

References
[1] S. Albers, Improved randomized on-line algorithms for the list update problem,

Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms (1995) 412-419.

[2] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power
of randomization in on-line algorithms, Algorithmica 11 (1994) 2-14.

[3] S. Irani, Two results on the list update problem, Information Processing Letlers

38 (1991) 301306
[4] R. Karp and P. Raghavan, Personal communication (1990), cited in [5].

[5] N.Reingold, J. Westbrook, and D. D. Sleator, Randomized competitive algorithms
for the list update problem, Algorithmica 11 (1994) 15-32.

[6] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging
rules, Communications of the ACM 28 (1985) 202-208.

[7] B. Teia, A lower bound for randomized list update algorithms, Information Pro-

cessing Letters 47 (1993) 5-9.

[8] A. C. Yao, Probabilistic computations: Towards a unified measure of complexity,
Proc. 18th Annual IEEE Symposium on Foundations of Computer Science (1977)
222-2217.

