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Abstract

The goal of physical mapping of the genome is to reconstruct a strand of DNA given a collection of
overlapping fragments, or clones, from the strand. We present several algorithms to infer how the
clones overlap, given data about each clone. We focus on data used to map human chromosomes 21
and Y, in which relatively short substrings, or probes, are extracted from the ends of clones. The
substrings are long enough to be unique with high probability. The data we are given is an incidence
matrix of clones and probes.

In the absence of error, the correct placement can be found easily using a PQ-tree. The data
is never free from error, however, and algorithms are differentiated by their performance in the
presence of errors. We approach errors from two angles: by detecting and removing them, and by
using algorithms which are robust in the presence of errors.

We have also developed a strategy to recover noiseless data through an interactive process which
detects anomalies in the data and retests questionable entries in the incidence matrix of clones and
probes.

We evaluate the effectiveness of our algorithms empirically, using simulated data as well as real
data from human chromosome 21.

*International Computer Science Institute. Research supported in part by NSF grant no. CDA-9211106.

tComputer Science Division, University of California, Berkeley. Research supported in part by NSF grant no.
CCR-9005448.

{Research supported in part by DOE Grant DE-FG03-94ER61913



1 Introduction

1.1 The Physical Mapping Problem

In this paper we present several combinatorial algorithms for reconstructing a DNA strand given
a collection of overlapping fragments of the strand. A human chromosome, which is a DNA molecule
of about 10% base pairs, is too long to be studied in its entirety and must be broken into fragments or
clones. Depending on the cloning technology used, the sizes of the clones may be as small as 3, 000
base pairs or as large as 2,000,000 base pairs. Information is gathered from the individual clones,
and then the DNA is reconstructed by mathematically determining the positions of the clones.

The goal of physical mapping is to infer how the clones overlap to form the DNA molecule, given
data about each clone. The present paper focuses on the Sequence Tagged Site (STS) mapping
strategy, which is widely used for physical mapping within the Human Genome Project and other
related molecular biology projects [PSM*91], [MCG*93]. In particular the recent mapping of human
chromosome 21 [CRG%92] and human chromosome Y [VFH192, FVHP92] use this strategy. In the
STS approach relatively short substrings called probes are extracted from the DNA strand itself,
often from the endpoints of clones. Each probe is sufficiently long that it is highly unlikely to occur
a second time on the DNA strand; thus it identifies a unique site along the DNA strand. A probe is
said to occur on a clone if it matches a substring in that clone. This occurrence can be tested either
by hybridization or PCR experiments. We present algorithms to determine probe ordering, given
data for each clone indicating which probes occur on it.

In the absence of errors, the correct orderings can be found very easily using the PQ-tree data
structure [BL76] to generate the set of all arrangements of probes consistent with the data. The
data is never free from error however, and algorithms are differentiated by their performance in the
presence of errors.

The most common type of error is a false negative, where an incidence between a probe and a
clone occurs but is not observed to occur. False positives also occur. In addition, in some cloning
technologies the data is subject to error due to clone abnormalities, such as chimeric clones, which
consist of two distinct segments of the DNA strand joined together. Deletions, insertions, and
inversions of clone segments also occur.

In this paper we present reconstruction algorithms which are both effective and robust in the
presence of errors. Exploiting the fact that each probe occurs at a unique point, we take it as our
fundamental problem to determine the left-to-right order of the probes along the DNA strand. Once
this order is known the overlap structure of the clones can easily be inferred.

All the central computational problems in this paper are NP-hard. For this reason we have
evaluated the effectiveness of our algorithms empirically, using simulated data generated according
to a probabilistic model, as well as real data from human chromosome 21.

1.2 The Maximum Posterior Probability Problem

In this section we formulate the problem of finding the most likely values of the underlying
data and the ordering of the probes, given the measured data. The underlying data specifies the
incidences between probes and clones; it also includes the information that certain probes have been
extracted from the ends of particular clones; such a probe is called an end probe from the associated
clone.

To define the problem we must specify the joint distribution of the following three random
variables:

e A, which ranges over all possible values A of the underlying probe-clone incidence data (see
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Figure 1: Example of underlying data matrix A and measured data matrix D

Figure 1). The matrix A has a row for each probe and a column for each clone; the ¢, j element
a;; is equal to 0 if probe ¢ is not incident with clone j, to 2 if probe ¢ is an end probe from
clone j and to 1 if probe 7 is incident with clone j but i1s not an end probe from j. Each probe
is an end probe from at most one clone and each clone has at most two end probes.

e P the correct probe ordering.

e D, which ranges over all possible values D of the measured probe-clone incidence matrix. The
matrix D has a row for each probe and a column for each clone. D differs from A because
of measurement errors called false positives and false negatives. A false positive occurs when
a;; = 0 and d;; = 1, where d;; is the 7, j element of D. Similarly, a false negative occurs when
a;; = 1 and d;; = 0. Since end probes are extracted from known clones, we assume that this
data is not subject to error; thus d;; = 2 if and only if a;; = 2.

The joint distribution of A, P and D will depend on the following parameters:
e m, the number of probes;

e n, the number of clones;

e p, the chimeric clone rate;

e ¢, the false negative rate;

e ¢, the false positive rate;

The distribution also depends on the end probe data, which is arbitrary except for the constraints
that each clone has at most two end probes and each probe is an end probe from at most one clone.
Finally, it depends on the distribution of the number of probes on each clone.

The specification of the joint distribution is given in two parts:

1. The a priori distribution of the state of nature; i.e., the distribution of the ordered pair (A, P).

2. The conditional distribution of D given that A = A and P = «. This distribution is determined
by the false positive rate and false negative rate.

We sometimes use the symbols A, # and D to denote the events A = A, P = 7 and D = D,
respectively. Using this convention, the goal of the maximum posterior probability method, given the
measured data D, is to find a matrix A and a permutation 7 to maximize p[A A 7| D]. Equivalently,
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the goal is to maximize the product p[x]* p[A|x] * p[D|A A w]. We assume that all permutations of
the probes have the same a priori probability, so that p[n] is a constant. Thus the problem reduces
to maximizing the product p[A|x] * p[D|A A 7] over all A € A and 7 € P.

We now specify p[A|x]. Let A™ denote the matrix obtained by permuting the rows of A into the
order specified by m; thus A7 ; = Az(;y ;. Then it suffices to specify the distribution of A", assuming
that 7 is the correct probe ordering. Each column of A™ corresponds to either a normal clone or
a chimeric clone. In a column corresponding to a normal clone the ones form a consecutive block,
since the probes incident with a normal clone must be consecutive in the ordering #. Also, each
2 in such a column must occur either first or last in the block, since it represents an end probe
from the clone. Similarly, in a column of A™ corresponding to a chimeric clone, the ones form two
blocks, each block may contain at most one 2, and a 2 must occur either first or last in its block. It
remains to specify the distribution of block sizes. This distribution should reflect the distribution
of clone lengths, clone locations and probe locations in real data. For example, if the clones are of
constant length L and the probes occur according to a Poisson process of rate A, then block sizes
should have a Poisson distribution with mean AL. However, to avoid cumbersome calculations in
our algorithm for maximizing p[A A 7| D] we make the simplifying assumption that the distribution
of block sizes is uniform over a range of integers [minsize..mazsize], where minsize and mazsize
are input parameters. Furthermore, we assume that the distribution of block sizes is insensitive to
clone and probe location.

Given the identities of the end probes for each clone, our probability model makes the following
assumptions about A™:

e The clone corresponding to a column is chimeric with probability p, and normal with proba-
bility 1 — p;
e If the column is normal then its endpoints (4, j) are drawn from the uniform distribution over
all ordered pairs such that:
L1<i<j<m
2. mainsize < j—1+4+ 1 < mazxsize;
3. the index of each end probe for the clone lies in the set {i,j}.
4. the block of nonzeroes in the column extends from row i to row j, and twos occur precisely

in those rows (if any) corresponding to end probes for the clone.

e If the clone is chimeric then the endpoints of its two fragments, (4, j, k,(), are drawn from the
uniform distribution over all 4-tuples such that:
i< i<k<]
. muinsize < j —i14+ 1 < mazxsize;

1

2

3. minsize <l —k+ 1 < mazxsize;

4. the index of each end probe for the clone lies in the set {1, j, k,1};
5

. if the clone has two end probes then the index of one of them lies in the set {i,j} and
the index of the other in the set {k,(};

6. the column has two blocks of nonzeroes, one extending from row i to row j, and the other
from row k to row [, and twos occur precisely in those rows (if any) corresponding to end
probes for the clone.

Finally, we specify p[D|A A w]. This distribution depends on the false negative rate ¢ and the
false positive rate §. If a cell contains a 2 in A then it contains a 2 in D. If a cell contains a 0 in A
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then 1t contains a 1 in D with probability é and a 0 in D with probability 1 — é. If a cell contains a
1 in A then it contains a 0 in D with probability € and a 1 in D with probability 1 — .

Note that the matrix A™ is highly constrained: in each of its columns the nonzeroes occur in one
or two consecutive blocks, and the twos occur at block boundaries. The number of ones in each block
must lie between minsize and mazsize. Let A™ be the set of matrices satisfying these constraints.
Using Bayes’ Theorem, one can show that the problem of maximizing p[A A 7| D] is equivalent to
the following: Choose a permutation # and a matrix A such that A™ lies in A" and A has twos in
exactly the positions where D has twos, to minimize

<(n_1;2ﬁ)bou,n) <ﬁ>blm,w) (m)bzm,n) (ﬁ)cm,w) <1i€)d(,4,ﬂ)

where:

e s = maxsize — minsize + 1;

e fori=0,1,2, b;(A) is the number of columns of A which are designated as chimeric and have
exactly 7 end probes;

e ¢(A) is the number of cells containing a zero in D and a one in A;

e d(A) is the number of cells containing a one in D and a zero in A.

The base in each of the first three factors is of the form (15;19)%’ where N (7) is the number of ways
block boundaries can be assigned for a normal clone with 7 end probes, and C(¢) is the number of
ways block boundaries can be assigned for a chimeric clone with ¢ end probes.

Lettmg I{O = —ln(n_liﬁ, I{l = —ln(l_f'm, ]\72 = —ln(l_p)?ﬁ, L = —lnﬁ and
M = —In &, we can re-express the maximum posterior probability problem as follows: choose 7
and A™ in A" to minimize Kobo(A, ) + K1b1(A, 7) + Kaba(A, 7)) + Le(A) + Md(A). Section 3.1
describes an effective algorithm to find a good solution of this optimization problem. The problem
is NP-complete even in the absence of false positives and chimeric clones [B75].

2 Algorithmic Approaches

We present several approaches to the problem of recovering the underlying data A and the permu-
tation m from the measured data D.

2.1 The Maximum Posterior Probability Method

As discussed above, we attempt to find a matrix A and a permutation = which maximize p[A A
7|D]. Given a particular 7, we can quickly determine an optimal A. We use simulated annealing to
search over the space of 7’s. In Section 3.1, we present an effective procedure for doing this.

2.2 The Hamming Distance TSP

We describe this approach in the case where end clone information is not available, so that the
matrix A of underlying data contains only zeroes and ones.

There exists a permutation 7 of the rows of A which produces a matrix A™ in which each column
corresponding to a normal clone contains one block of ones, and each column corresponding to a
chimeric clone contains two blocks of ones. Define a gap as a block of zeroes in a column, flanked



by a one immediately above and a one immediately below. Then the number of gaps in A™ is equal
to the number of chimeric clones. Now consider the effect of introducing random errors. A false
negative will change a one to a zero, typically splitting a block into two parts, and thus creating a
gap. A false positive will change a zero to a one, typically splitting a gap into two gaps. Thus, when
the permutation 7 is applied to the matrix D of measured data, the number of gaps in the resulting
matrix D™ tends to be approximately equal to the number of chimeric clones plus the number of
false positives and false negatives. This suggests the heuristic principle that a permutation of the
rows which minimizes the number of gaps will correspond to a good probe ordering. Minimizing the
number of gaps can be cast as a Traveling Salesman Problem called the Hamming Distance TSP
[AKNWO1], in which the cities are the rows of A together with an additional row of n zeroes, and
the distance between two cities is the Hamming distance between the corresponding rows; i.e., the
number of positions in which the two rows differ. The Hamming distance TSP is NP-complete by
transformation from the Hamiltonian path problem.

The Hamming Distance TSP has the disadvantage that its objective function is insensitive to the
false positive rate, the false negative rate and the frequency of chimeric clones; thus it models the
choice of an optimal probe ordering less faithfully than the maximum posterior probability approach.
Its advantage 1s that the technology for solving large Traveling Salesman problems is far advanced,
so that near-optimal solutions are very easily obtained. We use a local search method due to Zweig
[Z92], based on an operation called Divide-and-Merge, which rapidly and dependably gives near-
optimal solutions to instances of the Hamming Distance TSP with around one thousand cities. We
have found that, with a coverage of 10 or more and at least as many probes as clones, near-optimal
solutions to the Hamming Distance TSP indeed correspond to near-optimal probe orderings. This
is true over a range of error rates (see Computational Results).

2.3 Methods for Obtaining a Good Initial Probe Ordering

The maximum posterior probability approach leads to a complex optimization problem which
we attack by a local search method (cf. Section 3.1). The execution time of the local search can
be reduced by providing the algorithm with a good initial solution. In addition to using the TSP
solution, we have explored two other methods of obtaining such an initial solution: sorting and
splitting.

2.3.1 Sorting

In the absence of false positives, false negatives and chimeric clones, the true ordering of the
probes satisfies the following ordering principle. Let C; be the set of clones incident with probe
i. If probe j lies between probes i and k in the true ordering, then |C; N C;| > |C; N Cy| and
|C; NCy| > |C;NCy| . We have devised a fast method called sorting which iteratively rearranges the
probes with the goal of finding a probe ordering satisfying the ordering principle. Such a procedure
must necessarily be imperfect since, in the presence of errors and chimeric clones, there may not
exist an ordering that satisfies the ordering principle. The method is presented in Section 3.2. Tt
has been found to give a good initial ordering, thereby reducing the time required for the maximum
posterior probability calculation.

2.3.2 Splitting

Let G be a bipartite graph with vertex set P U C, where P is the set of probes and C is the set
of clones, and with an edge between probe p and clone ¢ if and only if p is incident with ¢. We
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assume that GG is connected, as otherwise the physical mapping problem decomposes into connected
components whose order along the chromosome cannot possibly be ascertained from the data.

We say a set of probes X covers a probe p if each clone incident on p is also incident on some
probe in X. Briefly, given a probe p, we remove the set of probes P that share a clone with it, all
the probes covered by P, and all the clones that are not incident with any of the remaining probes.
If G is left with exactly two components then p is a splitter. In this case we accept that the probes
in one of these subgraphs lie to the left of p, and the probes in the other lie to the right of p. When
there are no false positives or chimeric clones the ordering implied by all the splitters is good, and
its use as an initial ordering speeds up the maximum posterior probability computation.

2.4 Screening and Post Screening

We have found that false positives and chimerics are particularly troublesome for our algorithms.
Therefore, we have devised methods for removing false positives and splitting chimeric fragments
into their component parts. These methods are not foolproof, and they sometimes destroy linkages
between nearby probes; however, the overall effect of the screening methods is quite favorable.

By removing probe-clone incidences that are incorrectly labeled as false positives and splitting
clones that are not chimeric, the screening process can sometimes incorrectly break a contig into
several components. Without restoring these critical linkages, it is not possible to determine the
order in which these components occur along the DNA strand. Thus, we use a two stage approach.
In the first stage we obtain a good ordering for the probes in each connected component. Then,
by inspecting the original data, we restore critical information that hooks the components together.
This process is called post screening.

Screening is described in Section 4.1 and post screening is described in Section 4.2.

2.5 Algorithmic Strategy

We have experimented with a number of strategies for finding a good probe ordering. A very
fast method which gives reasonably good solutions is simply to solve the Hamming Distance TSP.
The following strategy has proved effective for obtaining better solutions, at the cost of a modest
increase in execution time.

e Apply screening to eliminate false positives and split chimeric clones.

e After screening the data may decompose into several connected components. For each con-
nected component:

1. Use the sorting heuristic or the Hamming distance TSP to obtain a reasonably good
initial probe ordering.

2. Starting with this initial ordering, obtain a near-optimal solution to the maximum pos-
terior probability problem.

e Use a post screening procedure to hook together the probe orderings for the several connected
components of the screened data.

e This strategy can be enhanced by a retesting process in which the results of the optimiza-
tion procedure are used to identify likely experimental errors. The corresponding probe-clone
incidences can then be rechecked in an iterative fashion.

Our computational results are summarized in Section 7.
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2.6 Relationship to Previous Work

In the field of physical mapping, simulated annealing has been used by [RML93], [AGL94], and
[ACT93], among others. [RML93] presents a software package used to construct a YAC map of
S. pombe. This package uses simulated annealing to minimize a distance measure, dg; = %
summed over consecutive pairs of probes a and b. ng4; is the number of clones hybridizing to either
probe, and rg; is the number of clones hybridizing to both. That paper also presents a screening
strategy that is similar to ours except that it discards chimeric clones rather than splitting them;
[AGL94] presents an updated screening procedure that splits chimeric clones.

[ACT93] presents a simulated annealing approach to ordering clones by minimizing the Hamming
distance summed over consecutive pairs of clones. The Hamming distance objective function is also
used to order clones in [YWA94]. A heuristic search procedure based on random clone reversals is
described, and found to outperform a simulated annealing implementation. The Hamming distance
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metric has seen extensive use in radiation hybrid mapping; [MBC91] provides a comparison with
other methods in that context.

[GI94] presents two algorithms for ordering probes when the data is contaminated with chimeric
fragments, but not false positives or false negatives. The first of these approaches is based on
minimizing x, the maximum number of chimeric fragments imputed on a single clone, while the
second approach is based on minimizing o, the total number of chimeric fragments summed over all
clones.

The maximum posterior probability objective function we use is an improvement on the methods
described previously because it is sensitive to the relative rates of false positive, false negative, and
chimeric errors. Furthermore, it can be extended in a principled way to accommodate other errors
such as deletions. Our retesting results indicate that this objective function is highly effective in
identifying errors.

3 Reconstruction Algorithms

3.1 Local Search

Recall that the choice of A involves specifying a linear ordering 7 of the rows of D, designating
each column as normal or chimeric, choosing a block of rows for each normal column, and choosing
two blocks of rows in each chimeric column. We shall show that, given 7, there is a simple procedure
for making the remaining choices optimally. The resulting optimal choice of the underlying data
given m will be denoted A(w). In the determination of block boundaries, we do not enforce the
restriction that block sizes lie between minsize and maxsize. While these restrictions provide
appropriate values for the a priori probabilities, they approximate what in reality is an unbounded
distribution. Therefore we do not bias against blocks with unusual lengths; this has the added
advantage that no blocks that begin or end with zeros need be considered. This yields the following
optimization problem: Find 7 to minimize the objective function F(7), defined as Kobo(A(7), 7) +
K1b1(A(w), m)+ Kaba(A(m), 7))+ Le(A(w), 7))+ Md(A(w), 7). Ko, K1, K2, L, and M will be referred
to as the “costs” of chimerics (with the specified number of end probes), false negatives, and false
positives respectively. Our strategy for solving this optimization problem is based on the fact that
for a given m, A(w) and F(x) are easily computed.

F(x) is the sum of terms derived from the individual columns of the matrix. To determine the
contribution of each column, we make two simple calculations, one based on the assumption that the
column is normal, and the other on the assumption that the column is chimeric. The contribution
of a column to F(w) is then the smaller of the two terms. Let C' be the number of nonzero entries in
the column; in typical cases C is a small constant. If the column is normal, then we need to choose
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the first and last rows in its block. For an optimal choice, these rows must contain ones or twos
in the given column (given the relaxed assumptions on block lengths). Thus, there are (g) choices
for the block boundaries, but by using appropriate data structures and dynamic programming, the
optimal boundaries can be determined in time O(C'), as described in Section 3.1.1.1 If the column
is chimeric we must choose the boundaries of two blocks, and we may assume that the first and last
row of each block contain ones or twos. Thus there are ((i) choices for the block boundaries, but
again the optimal choices can be determined in linear time. These times hold both with and without

end probe information.

3.1.1 Computing A(n)

The following paragraphs describe our O(C') method for the objective function calculation in
more detail. The procedure commences by replacing consecutive occurrences of zeros or ones with
single symbols. Attached to each symbol is the cost of negating all the underlying zeros or ones, i.e.
of implying that they are all false positives or negatives. This simplification relies on the fact that
it cannot be advantageous to assign a block boundary in the middle of a sequence of zeros or ones.

Two scans are then made over the symbols, one from left to right, and the other from right to
left. Only the left to right scan will be described here as the other is analogous. The purpose of
this scan is to create an array, mlr, whose ith element lists the maximum “advantage” that can be
gained by positioning the main block of ones to the left of the #th symbol (possibly including it).
“Advantage” refers to the advantage in cost that is gained over the cost of implying all the positive
probe-clone incidences to be experimental errors, which we call the total negation cost. Thus, in
the absence of twos, and assuming the clone is not chimeric, the optimal cost is given by the total
negation cost, less the value stored in the last entry of the array. Assuming that the column is
chimeric, we need both the left-to-right and right-to-left arrays, and search for the position 7 for
which mlr[i] + mri[i + 1] is maximized, and the optimal cost is the total negation cost less this
amount, plus the appropriate cost for implying chimerism.

The presence of twos is accommodated by initializing the arrays to zero advantage each time a
two 1s encountered. After these arrays are initialized, we calculate the optimal cost for each possible
endpoint configuration of the twos, and choose the best. Consider, for example, a clone that we
assume to be chimeric, in which two twos are present. Assuming the twos are in positions #1 and
t2, and that they mark the leftmost endpoints of the two fragments, and that the total number
of symbols is k, the maximum advantage is given by mlr[t2 — 1] + mlir[k]. Assuming the first two
is a rightmost endpoint and the second two is a leftmost endpoint, the optimal cost is given by
mrl[1] + mlr[k]. Similar calculations can be made for all the other possibilities.

Pseudocode is presented below that outlines the generation of the left to right array, mir. An
auxiliary array, partial, is also used. Note that the advantage of having a two (a known endpoint) in
a block is set to zero rather than infinity; the constraint is enforced after the arrays are initialized.

Array Initialization:

partial[0] = 0;

mlr[0] = -HUGE_.AMOUNT;

boolean seen_a_two = false;

for (unsigned i=1; i<x=Num_Symbols; i++)

1n a previous paper we described an 0(02) algorithm for column evaluation. We are grateful to Mudita Jain and
Fugene Myers for originally developing a dynamic programming approach to this problem, thus reducing the running

time to O(C).
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if (Symbol[i].type == 0)

ad = -Symbol[i].negation_cost;

// ad is the advantage of having the symbol in a block
else if (Symbol[i].type == 1)

ad = Symbol[i].negation_cost;
Total_Negation_Cost += ad;

else // a2
{

seen_a_two = true;
ad = 0;
}

// calculate the partial sum and max if appropriate.
partial[i] = partial[i-1] + ad;
if (seen_a_two)
{
if (ad > partial[i])
partial[i] = ad;

else if (Symbol[i].type == 2)
partial[i] = mlr[i] = 0; // the entry is a 2; start over.
if (Symbol[i].type = 2)
if (mlr[i-1] > partial[i])
mlr[i] = mlr[i-1];
else
mlr[i] = partial[i];

3.1.2 Neighborhood Structure

We attack the problem of optimizing over permutations by local search, using a move operation
which is related to the 2-opt and Or-opt move operations used for the Traveling Salesman Problem.
Given the present permutation #, the move operation selects a “neighboring permutation” as fol-
lows. Let D™ be the matrix obtained by reordering the rows of D in accordance with the current
permutation; L.e., DT, = Dy(;y ;. Define a gap in column j as an interval [i..k] in column j, such
that rows ¢ and k contain ones in column j, and the intervening rows contain zeroes.

Operation Move:

e Select a gap at random in the matrix D™. Let it be interval [i..k] in column j. The chosen
move will make rows 7 and k adjacent.

o Let u, the upper weight of the gap, be defined as the number of ones in column j at or above
row 7, and let £, the lower weight of the gap, be the number of ones in column j at or below



row k. Randomly choose either to move row ¢ or to move row k, where the probability of

choosing 7 is HLU and the probability of choosing & is Z-I—Lu;

e If ¢ has been chosen then either move row i downward past rows ¢+ 1,---, k— 1 or reverse the
block of rows i,2+ 1,---,k — 1, the two choices being equally likely;

e If k has been chosen then either move row k upward past rows &k — 1,---,7 4+ 1 or reverse the
block of rows i + 1,2+ 2,-- -, k, the two choices being equally likely.

We have observed that, in cases where the only errors are false negatives, the move operator
appears to have the following property: if the move operator is applied repeatedly, then after a long
enough period of time the successive permutations oscillate around a near-optimal permutation;i.e.,
there is a near-optimal permutation 7 such that, for each probe 7, the long-run average position of
probe i approaches 7(i). In the case of noiseless data, random iteration of the move operation tends
to converge to an ordering with the consecutive ones property. We have no theoretical explanation
for these phenomena, (see Figure 17.)

Since the above move is defined only in terms of gaps, and makes no reference to known end
probes, 1t sometimes happens that its application fails to place twos in extremal positions. Therefore
we occasionally apply another move, in which a non-extremal two is chosen at random, and the row
in which it lies is swapped with another row chosen at random in which there is a one in the same
column as the selected two. Typically this move is used ten percent of the time.

3.1.3 Simulated Annealing Strategy

We have found that simulated annealing, using the move operators defined above, is an effective
method of obtaining near optimal solutions. The simulated annealing strategy that we use, however,
is unusual in that we typically start from a good solution. In order to take advantage of this fact,
we have developed an adaptive way of setting the initial temperature. It is based on the observation
that if a solution is near optimal, random moves will almost never increase its quality, whereas if
the solution is random, random moves will improve it about half the time.

If we start with a random solution, we desire that essentially all the moves that are initially
proposed be accepted. On the other hand, if we start with an optimal solution, we desire that no
moves be accepted. The heuristic we adopt produces this behavior by setting the initial temperature
to a value that accepts a fraction of the moves equal to twice the fraction of random moves that cause
improvement. Other than in setting the initial temperature, we use a conventional cooling schedule
and a conventional stopping rule [L88] [AL87]. The maximum number of moves considered at each
temperature step is 20 times the number of STSs. The temperature is multiplied by 0.95 as soon as
this number of moves have been attempted, or when 25% of this number have been accepted. The
procedure terminates when less than 5% of the moves are accepted for four consecutive temperature
steps.

In its relation to simulated annealing, the neighborhood structure that we use is significant for
several reasons. First it is important to note that the moves are not in general reversible; for example,
when a gap is eliminated, there is no guarantee that it can be re-created. This is important because
the theoretical justifications of simulated annealing are predicated on a symmetrical transition ma-
trix. The non-reversible moves that we use have the advantage, however, that in the absence of false
positives and chimerics, convergence is much faster than it would otherwise be; excellent solutions
are often found early on despite the fact that almost all the moves that are proposed are accepted.
It is possible to take advantage of this by terminating the search when the best solution found is not
replaced within a limited number of moves. Computational experience with the simulated annealing
algorithm is reported in Section 7.
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3.2 Sorting

We have devised a simple procedure for finding a good initial ordering of the probes. The
procedure is based on refinements of the following ordering principle. Let the set of probes be
{1,2,---,m}. Let C; be the set of clones incident with probe i.Then, in the absence of errors, we
may make the following inference: if probe j lies between probes ¢ and k in the true ordering of the
probes, then |C; N C;| > |C; N Cy| and |C; N Cx| > |C; N Cy|. The ordering principle is rigorously
valid in the absence of noise and chimeric clones, since every clone that is incident with both probe
1 and probe k must also be incident with probe j. In the presence of noise and chimeric clones
the principle may fail, but it remains a good heuristic guide to the construction of a good probe
ordering. We have devised a sorting heuristic that seeks to construct a good probe ordering by
iteratively permuting the probes with the goal of enforcing the ordering principle.

We make the following assumptions:

Connectedness For every partition of the set of probes into two nonempty sets A and B, there
exist probes ¢ € A and j € B such that C; N C; # ¢;

Distinguishability If ¢ # j then C; # Cj.

There is no essential loss of generality in these assumptions; if the connectedness assumption
is violated then the set of probes divides into noninteracting connected components whose order
cannot be ascertained from the data; if the distinguishability assumption is violated then each set
of indistinguishable probes can be treated as a single probe for the purpose of probe ordering.

3.2.1 The Noiseless Case

We begin by considering the noiseless case, in which there are no false positives, false negatives
or chimeric clones. The goal in this case is to find a probe ordering such that probes incident
with each clone are consecutive. The PQ-tree algorithm of Booth and Lueker computes a succinct
representation of all such orderings in linear time. Here we give some alternative approaches based
on the ordering principle. The next lemma, whose simple proof we omit, shows the equivalence of
the consecutive ones property and the ordering principle.

Lemma 1 Let 0 = (0(1),0(2),---,0(m)) be a permutation of the probes. Then, in the noiseless
case, the following are equivalent:

Consecutive Ones Property The probes incident with each clone are consecutive in o;

Ordering Principle If i < j < k then |Co(i) N Co(j)| > |Co(i) N Co(k)| and |CU(]') N Co(k)l >
|Coiy N Cory

Define the noninclusion property as follows: for every ordered pair (C1, C3) of clones, there is a
probe that is incident with C7 but is not incident with C3. When this property holds the probe-clone
incidence data determines the true probe ordering uniquely up to reversal, and we can characterize
the true ordering using a refinement of the ordering principle.

For each probe i, define the following partial ordering =; of the set of probes: j =; k if

(IC;nCs| > |C; N Cy|) vV (IC; N C| = |C; N Cr]) A(C; N Cy # ¢) A(|C;| < |Crl)-

This partial order has the following significance when the data is noiseless and the noninclusion
property holds: If j =; k then probe k does not lie between probe 7 and probe j in the true ordering.
Let N(7) be the set of probes that occur together with probe i on at least one clone. Formally, N (%)
is the set of probes j such that C; N C; # ¢; in particular, probe 7 lies in N (7).

x11



Lemma 2 Suppose that

e the connectedness and distinguishability assumptions hold;
e there are no false positives, false negatives or chimeric clones, and

e the noninclusion property holds.

Then the true ordering of the probes is uniquely determined up to reversal by the requirement that
the following properties hold for each i:

e The probes in N (i) occur consecutively in the ordering as a block B(i);

e Starting ai probe i and moving either to the right or to the left, the probes in B(i) form a
decreasing chain in the partial order ;.

We present a simple algorithm that finds the true ordering when the hypotheses of Lemma 2
hold. Throughout the algorithm the variable @ denotes a sequence of distinct probes from the set
{1,2,---,m}, a denotes the first element of 7 and w denotes the last element of 7. Throughout the
process, the sequence 7 constitutes a consecutive block in the true ordering. At the beginning of
the first step, 7 is initialized to the sequence consisting of the single probe 1. Each step adjoins one
element to 7 as follows:

1. Tf every element of N(w) lies in m then replace the sequence 7 by its reversal.

2. Choose a probe k which, among probes in N(w) which do not occur in 7, is greatest in the
ordering >,,. If w =1 « then append k to the end of m; otherwise, append k to the beginning
of .

Using Lemma 2 one can prove inductively that, after every step, the probes in 7 form a consec-
utive block in the true ordering. Since a new element is adjoined to m at each step, it follows that,
after the mth step, 7 gives the true ordering of all the probes.

3.2.2 The Sorting Algorithm

We next present an algorithm for ordering the probes in the presence of errors and chimeric
clones. It is motivated by the algorithm for finding the true ordering of the probes in the noiseless
case under the noninclusion assumption, and in that case it produces the true ordering. It is based
on the same s =; and sets N(7) used in that algorithm. However the sorting algorithm is more
elaborate than that algorithm, since we would like it to produce a reasonably good ordering even in
the presence of errors, chimeric clones and proper inclusion of one clone by another.

The sorting algorithm is guided by the desire to order the probes so that, for each ¢,

e The probes in N(i) occur consecutively in the ordering as a block B(i);

e Starting at probe i and moving either to the right or to the left, the probes in B(7) form a
decreasing chain in the partial order »;.

In general, such an ordering will not exist, so the heuristic will be forced to make some compromises.

Our algorithm for ordering the probes proceeds in m steps. Throughout the algorithm the
variable 7 denotes a sequence of distinct probes from the set {1,2,---,m}, a denotes the first
element of 7 and w denotes the last element of 7.

At the beginning of the first step, 7 is initialized to the sequence consisting of the single probe 1.
Each step adjoins a new element to m and rearranges m in accordance with the ordering principle.
At the end of the process 7w will contain all the probes.

Each step proceeds as follows:
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If every element of N(w) lies in  then replace @ by its reversal;

e Choose a probe k£ which is maximal in the ordering =, among the probes which do not lie in

;

Append k to the end of =;

Sort 7 into the unique linear order such that:

1. If r 1 s then s precedes r;

2. If r and s are incomparable in > then they maintain the same relative order as before
the step.

We have found that the performance of the sorting algorithm can be improved in practice by
introducing a parameter w called the window size which limits the effect of any given iteration;
instead of sorting the entire sequence 7 at each step, only the last w elements of = are sorted. The
performance of the algorithm is also improved by dividing the computation into two phases, where
the purpose of the first phase is to find a probe which will occur first in the final ordering. This
is done by running the above algorithm until the first time that every element of N(w) lies in =.
The probe w (i.e., the last probe in 7) is then identified as the first probe in the final ordering,
and the computation is restarted with 7 initialized to the sequence consisting of the single probe
w. Section 7 reports on the computational results obtained using a version of the sorting algorithm
which incorporates these two improvements.

3.3 Splitting

Splitting is a method for finding an approximate probe ordering. It works well in the presence of
false negatives, but becomes ineffective when false positives or chimeric clones are present. Splitting
works by repeatedly breaking the contig into right and left components, and counting the number of
times each probe appears on either side. Consider the bipartite graph GG as described in Section 2.3.2.
There is a vertex for each clone and probe, and an edge for each clone-probe incidence. We assume
that this graph is connected, as otherwise the mapping problem decomposes into disconnected
components whose order along the chromosome cannot be ascertained from the data.

We say a set of probes P covers a probe p if each clone incident on p is also incident on some
probe in P. Let N(s) be the set of probes that share a clone with probe s. Probe s is called a splitier
if, when N(s) and all the probes covered by N(s) as well as those clones that are not incident with
any of the remaining probes are removed, the resulting subgraph of G has exactly two connected
components. Let the vertex sets of these two components be denoted by A and B, and let the
vertices in neither component be denoted by M. In the noiseless case, M correctly separates A from
B; i.e., one of the two possible left-to-right orientations of the DNA strand has the property that
every probe or clone in A is strictly to the left of every probe or clone in M, and every probe or
clone in B is strictly to the right of every probe or clone in M.

In the case where false negatives occur but false positives and chimeric clones do not, the par-
titions associated with splitters still provide valuable information about the ordering of the probes.
We have found empirically that a probe which is a splitter with respect to the noiseless data and is
not involved in any false negatives is also likely to be a splitter with respect to the noisy data.

The above observations suggest that the following algorithm should give a good probe ordering
in the absence of false positives and chimeric clones.

1. Determine which probes are splitters and, for each splitter, determine the components A and

B.

3
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Figure 2: Probe s is a splitter. Darkened probes and clones are removed.

2. Arbitrarily select two sets of probes which occur in opposite components. Label one set “Left”
and the other “Right”.

3. Associate with each probe q a left tally a(q) giving the number of times it occurs in a component
where a larger fraction of the probes intersect the “Left” than the “Right”. Generate a right
tally 5(q) analogously.

4. Sort the probes in decreasing order of a(q) — 5(q), breaking ties in increasing order of a(q).

This procedure gives a good initial ordering, even when there are moderate number of false
negatives.

4 Screening and Post Screening

4.1 Screening False Positives and Chimerics

As mentioned earlier, false positives and chimerics are especially troublesome for our algorithms.
In particular, these types of errors degrade the speed of simulated annealing and render the splitting
algorithm inoperable through lack of splitters. Moreover, the accuracy of all the algorithms is
harmed. Therefore we have developed several methods for finding and removing false positive and
chimeric probe-clone incidences, the best of which we call the spanning graph screener.

Let ¢ be a clone and S the set of probes that are incident on it in the measured data. Two
probes in S are said to belong together if neither is a false positive, and in case ¢ is chimeric the two
occur on the same fragment of ¢. The spanning graph screener attempts to partition S into parts
each consisting of a maximal group of probes that belong together on ¢. Thus each false positive
should constitute a part by itself, and if ¢ is chimeric the remaining parts should correspond to the
fragments of ¢. The spanning graph screener is based on the observation that if two probes in S
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occur together on sufficiently many other clones, then they are likely to belong together on c¢. It
works as follows:

e Set a threshold level T.

e For each clone:

— For each pair of probes on the clone create an edge whose weight is the number of other
clones on which the two probes appear together.

— Delete all edges with weight less than T.
— Find the connected components of the graph formed by the edges.

— Replace the clone with a separate “fictitious” clone for each component. This operation
is called a split.
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Figure 3: Disjoint connected components created by screening and reconnected by post screening

Figure 4 shows the performance of the screening algorithm for several combinations of chimeric
and false positive rates.

False Positive Rate cc =10 cr = 0.25 cr = 0.5
0.1% ~, 94,73 | 95, 95, 38 | 94, 91, 14
0.5% -, 92, 36 97, 88, 16 92, 87, 7
1.0% -, 90, 21 92, 86, 8 88, 82, 6

200 clones, coverage 10, probe rate 1.0, and threshold 6. Chimeric rate (cr) varies between 0 and 0.5. False
negative rate fixed at 10%. Each cell shows the percentages of chimerics and false positives that were
screened, and the percentage of splits that did not correctly identify a false positive or a chimeric fragment.
Percentages averaged over 10 runs.

Figure 4: Screening Results

4.2 Post Screening

The screening procedure will sometimes destroy correct linkages between probes, and thus break
the contig into several smaller pieces. To counteract this, we have developed an algorithm which
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identifies connected components created by the screening process and reorders them according to
the unscreened data (see Figure 3.)

The post screening algorithm first finds connected components in the ordered, screened data.
Since the rows are ordered, we assume that adjacent or nearly-adjacent rows which do not overlap
lie in separate components.

Once determined, the components are reordered so as to maximize the average pairwise intersec-
tion between the probes near the ends of adjacent components. We use a greedy merging strategy
that repeatedly links together the two components whose ends have the highest average intersection.
When there are only a few components, an exhaustive search is possible, but we have found that
greedy merging is a robust competitor that can function even when there are numerous components.

Results of the post screening algorithm are shown in Section 7.

5 Combining Permutations

It often happens that many very different permutations achieve optimal, or nearly optimal, objective
function values. In such cases, the most useful information is found in the subsequences that all
such permutations have in common, and we have developed a fast, robust way of extracting this
information.

The user sets a threshold level ¢, and the pairs of probes that are within ¢ positions of each
other in every permutation are deemed to be adjacent. An adjacency matrix is constructed, and
the connected components are found. Then the ordering of an arbitrarily chosen one of the given
permutations is imposed on each component.

This scheme has several virtues. The first is its simple parameterization on the threshold level.
A threshold level of one ensures that the extracted subsequences are identical in all permutations.
Setting the threshold level higher allows for local discrepancies in the subsequences, and is corre-
spondingly more robust. The scheme can also deal with an arbitrary number of permutations, and
the calculations can be done incrementally and on-line as they are generated.

6 Retesting

We have developed a highly effective approach to recovering the noiseless data through an interactive
process in which an algorithm is used to detect anomalies in the data, and these anomalies are then
rechecked through further probe-clone incidence experiments. At a general step, for each probe i
and clone j, some number ¢;; > 1 of independent tests will have been conducted, each purporting to
measure whether probe ¢ occurs on clone j; let y;; denote the number of such tests with a positive
outcome, and let n;; denote the number of such tests with a negative outcome. The problem of
finding a maximum posterior probability matrix A of noiseless data, given the matrices (y;;) and
(n;;) can be cast as a generalization of the minimization problem in Section 3.1. Near-optimal
solutions to this problem can be found by local search. Once a solution A = (a;;) has been found,
we identify certain questionable cells whose data needs to be confirmed or disconfirmed by further
tests. A matrix entry a;; is deemed to be questionable if the maximum posterior probability model
disagrees with the most recent test performed on the cell. Thus a cell remains questionable only
until retesting confirms the algorithm’s prediction. This allows highly improbable errors that are
correctly identified by the optimization procedure to be corrected immediately, without the multiple
retesting events that would otherwise be required. The identification of the underlying data then
proceeds by repetition of the following algorithm:

e For the given data (y;;) and (n;;), use local search to find a matrix A and a permutation «
that (nearly) maximizes p[A A 7| D].
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e Identify and retest the questionable cells.

The iteration continues until no questionable cells remain. Because the false positive and false
negative costs are different for different probe-clone incidences, an added sweep between the extremal
nonzero entries of each column is necessary in the column evaluation procedure.

Using simulated data, only a few iterations are typically required to identify the correct permu-
tation of the probes, and the number of repeated tests is comparable to the number of errors present
in the data.

Figure 5 presents the number of retests required to obtain internally consistent data using the
method described in Section 6.

False Positive Rate || Ratio of Retests to Original Errors | Ratio of Retests to Correctly Identified Errors
0.1% 1.16 1.29
0.5% 1.12 1.19
1.0% 1.22 1.27

Average of five instances: 200 clones, coverage 10 and probe rate 1.0. False negative rate fixed at 10%

Figure 5: Retesting Table

7 Computational Results

In this section we present some computational results for the various algorithms. We present results
using data from human chromosome 21 generated by Cohen’s group at CEPH [CRG192] as well as
simulated data.

In the simulated data, unit length clones are generated so that their midpoints are distributed
uniformly and independently over an interval of length N. ? With probability p, a random, non-
overlapping unit length fragment is generated and appended to a clone, thus creating a chimeric
clone. Probes are chosen from the endpoints of clones. The probe rate p € [0,2] is the expected
number of probes taken from a single clone. In the case where p < 1, each clone is chosen with
probability p to contribute a single probe. For p > 1, each clone contributes at least one probe, and
with probability p — 1 contributes two probes. False negatives and false positives are introduced
with rates € and 6, as described in Section 1. The ratio of the number of clones to the length of the
chromosome 1s called the coverage. Our results can be summarized by the following observations:

e The algorithms perform well when the coverage is at least seven, and extremely well when the
coverage is at least ten.

e The splitter algorithm runs quickly and produces good permutations even when the false
negative rate is high (see Table 9 and Figure 16), but it performs poorly in the presence of
even a modest number of false positives and chimeric clones.

e The Hamming distance TSP runs quickly, but the permutation quality suffers when the false
negative rate is high.

e Screening speeds up the running time of simulated annealing by a factor of approximately 20,
but when the error rate is high, the final permutation may not be as good.

2Qur algorithms also work when the clone sizes vary, in particular when one clone may be contained in another.
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e Simulated annealing is by far the slowest algorithm, but it is also the most robust when the
error rates are high.

In all of our simulations, the correct probe ordering is [1,2,-- -, m]. We present the computed
permutations plotted against this identity permutation. In other words, we present the data in the
form of a two-dimensional array, where a dot in the 7,j entry denotes a probe in the ith position
of the identity permutation and the jth position of the computed permutation. In the plots for
the Chromosome 21 data, the results of our algorithms are plotted against the order published in
[CRGT92]. The quality of an ordering can thus be judged by how close it is to the identity permu-
tation or its reverse. Plots with long line segments of +45 degrees within connected components are
more desirable than those with short scattered segments within components.

It sometimes happens that the STSs fall into several disconnected groups, and the interrela-
tionships between those groups cannot possibly be discovered. The boundaries of such groups are
marked on our graphs by horizontal lines. This situation occurs if, after false positives and chimeric
fragments are correctly separated, the data breaks into several components. Obviously this check
can only be done for simulated data.

In the first four sets of data, we show six plots and six sets of timings, one for each of the following
algorithms and sequences of algorithms:

e Sorting

e Splitting

e Screening—Hamming Distance TSP—Simulated Annealing—Post Screening
e Screening—Sorting—Simulated Annealing—Post Screening

e Hamming Distance TSP, and

Simulated Annealing.

The first set of results is on the Chromosome 21 data. In the second set we use simulated data
and vary the coverage from 10 to 5. The third set of results is on simulated data where the false
negative rate is 20% or 30%. The fourth set is on simulated data with a 30% false negative rate and
no false positives or chimeric clones.

The final set of data helps substantiate our choice of move operator for the Local Search algorithm.
We present plots of the best ordering found in 40, 000 random moves, and the average ordering from
moves 35,000 to 40,000. We present results for the Chromosome 21 data and for simulated data
with false negatives only. In the plots of average positions, a dot in the i, j entry denotes a probe in
the ¢th position of the identity permutation, and whose average position over the last 5,000 moves
is j in the computed permutation. In the plots of the best position, a dot in the ¢, j entry denotes a
probe in the ith position of the identity permutation, and whose position is j in the best computed
permutation, z.e. that which minimizes the number of implied false negatives.

The plots we present are particular to the instances of the problem, but we have chosen plots
which are representative of the algorithms, given particular parameters. The times are in seconds,
and the programs were run on a SUN SPARC2.

Figures 6 and 10 show running times and plots for various combinations of the algorithms on the
Chromosome 21 data.

Figures 7 and 11 through 14 show running times and plots for various combinations of the
algorithms on simulated data with varying coverage.

Figures 8, 12, and 15 show running times and plots for various combinations of the algorithms
on simulated data with varying false negative rate.

Figures 9 and 16 show running times and plots for various combinations of the algorithms on
simulated data with a 30% false negative rate and no false positives or chimeric clones.
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Sorting | Splitting | Screen/TSP/SA/Post | Screen/Sort/SA/Post | TSP | SA
14.6 45.3 44.9 17.9 | 331.0
Figure 6: Running Times on Chromosome 21 Data
Coverage || Sorting | Splitting | Screen/TSP/SA/Post | Screen/Sort/SA/Post | TSP SA
10 2.9 4.8 79.4 376.5 15.3 | 1542.7
7 2.3 3.6 50.2 124.2 16.7 | 1250.1
6 2.1 3.2 47.5 48.0 22.0 | 13531
5 1.9 2.8 50.0 39.5 16.0 | 1281.4

Simulated Data: 200 clones, probe rate 1, False negative rate 20%, false positive rate 0.1%, chimeric clone
rate 25%.

Figure 7: Running Times with Varying Coverage

8 Conclusions and Future Work

This paper has presented several algorithms for use in chromosome physical mapping with sequence
tagged sites. In the absence of experimental errors, this is a simple task, but when errors are
present, the problem is NP-hard. The Hamming distance TSP approach, and the maximum posterior
probability simulated annealing approach have proved particularly robust in the presence of false
positive, false negative, and chimeric errors. We have also been successful in screening out false
positives and splitting chimeric clones.

There are several ways in which this work might be usefully extended. The first deals with
incorporating other sources of information, the second deals with additional forms of errors, and the
final extension addresses the direct analysis of pooled data.

Genetic linkage data, in situ hybridization data, and other information that provides the approx-
imate location of STSs is often available, and we would like to have an integrated way of utilizing
this knowledge. Furthermore, the PCR data may yield varying degrees of evidence that a probe
occurs on a clone. Therefore a real-number representation may be preferable to a zero-one format.
It is also important to accommodate missing data.

Secondly, our methods assume an error model that is incomplete. In particular, repeated STS
sequences appear to be a problem in some data sets, such as the chromosome Y data. We anticipate
that utilizing these other forms of information and explicitly recognizing a wider variety of errors
will improve performance on many data sets.

The final extension that we are studying uses our programs to order STSs directly from pooled
data. The standard approach to analyzing pooled data is to first disambiguate the STS-clone
incidences, and then, using the disambiguated data, to order the STSs. In contrast to this, our

False Negative Rate || Sort | Split | Screen/TSP/SA/Post | Screen/Sort/SA/Post | TSP SA
20% 2.3 3.6 50.2 124.2 16.7 | 1250.1
30% 2.3 3.6 67.3 84.4 22.5 | 1358.2

Simulated Data: 200 clones, probe rate 1, coverage 7, false positive rate 0.1%, chimeric clone rate 25%.

Figure 8: Running Times with Varying false negative rate
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Sort | Split | Screen/TSP/SA/Post

Screen/Sort/SA /Post

TSP

SA

1.8 17.7 668.2

681.5

19.8

956.9

Simulated Data: 200 clones, probe rate 1, coverage 7, false positive rate 0%, false negative rate 30%,

chimeric clone rate 0%.

Figure 9: Running Times with 30% false negatives, no false positives, and no chimeric clones

preliminary results indicate that the Hamming-distance TSP approach can produce good orderings
operating directly on the pooled data. Essentially, each pool is viewed as a massively chimeric clone,

and the robustness of the Hamming-distance TSP to this type of error is exploited.
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Figure 2: Coverage 10, 200 Clones, Probe Rate 1, False Negative Rate 20%, False Positive Rate .1%,
Chimeric Clone Rate 25%
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Figure 3: Coverage 7, 200 Clones, Probe Rate 1, False Negative Rate 20%, False Positive Rate .1%,

Chimeric Clone Rate 25%
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Figure 4: Coverage 6, 200

Clones, Probe Rate 1,

Chimeric Clone Rate 25%
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Figure 5: Coverage 5, 200 Clones, Probe Rate 1, False Negative Rate 20%, False Positive Rate .1%,
Chimeric Clone Rate 25%
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Figure 6: Coverage 7, 200 Clones, Probe Rate 1, False Negative Rate 30%, False Positive Rate .1%,
Chimeric Clone Rate 25%
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Figure 7: Coverage 7, 200 Clones, Probe Rate 1, False Negative Rate 30%, False Positive Rate 0%, Chimeric

Clone Rate 0%
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Figure 8: Average and best results of 40,000 random moves on Chromosome 21 data using Local Search
neighborhood structure

T T ':’ T

|

k)
»
|

160 n 160

120 | \ . - 120 | J'\ .
80 - W\\ . 80 17 '.s‘\ 7

i % _
0 ot K \
1]
1 1 1 I ﬂ I I 1 1 y
40 80 120 160 40 80 120 160

Average Position of Last 5,000 Moves Best Position

XxX1



Figure 9: Coverage 7, 200 Clones, Probe Rate 1, False Negative Rate 20%, False Positive Rate 0%, Chimeric
Clone Rate 0%
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