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Abstract

The ability to reserve real-time connections in advance is essential in all dis-
tributed multi-party applications (i.e., applications involving multiple human beings)
using a network that controls admissions to provide good quality of service. This
paper discusses the requirements of the clients of an advance reservation service, and
a distributed design for such a service. The design is described within the context of
the Tenet Real-Time Protocol Suite 2, a suite being developed for multi-party com-
munication, which will offer advance reservation capabilities to its clients based on the
principles and the mechanisms proposed in the paper. Simulation results providing
useful data about the performance and some of the properties of these mechanisms
are also presented. We conclude that the one described here is a viable approach to
constructing an advance reservation service within the context of the Tenet Suites as
well as that of other solutions to the multi-party real-time communication problem.
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1 Introduction

Some of the important multimedia applications of integrated services networks re-
quire that advance reservations be possible. The clients who wish to set up multi-
media multi-party meetings (i.e., meetings involving multiple human beings) need to
schedule those meetings in advance to make sure that all or most of the participants
will be able to attend; at the time the meeting is scheduled, they must also be certain
that the network connections and the other resources required will be available when
needed and for the entire duration of the meeting. Unfortunately, distributed mul-
timedia applications must be supported by real-time communication services, which
are to provide the necessary quality-of-service (QoS) guarantees, and these services
cannot admit an arbitrary number of connections. Thus, there is no guarantee that
the resources for a pre-scheduled meeting will be available at the time the meeting is
expected to start, unless they can be reserved in advance.

To our knowledge, advance reservation services are not available within any of the
existing schemes for real-time communication (see for example [1, 3, 4, 14, 15, 16]).
Let us consider, for example, the Tenet scheme [8], which has been one of the first to
be implemented (in the Tenet Real-Time Protocol Suite 1 [1]). The Tenet protocols
can coexist with non-real-time protocols such as those in the Internet suite. A network
or internetwork in which they run will be able to carry integrated real-time and non-
real-time traffic; however, the version of the scheme that has been described and
implemented allows the real-time service to establish real-time channels to saturate
(in the worst case), and, when channels with statistical delay or reliability bounds are
involved, even to overbook, some of the network’s resources. Since the environment
is a packet-switching one, non-real-time traffic is able, even when resources are fully
booked or overbooked, to exploit any resources not currently in use (even if they
have been reserved) by real-time connections. In the client-service interface of the
Tenet Suite 1 [1], there is no way a client can request the establishment of a real-time
channel in advance. At any time before the beginning of a conference, a request could
arrive that is accepted and that saturates the real-time capacity of one or more of
the network’s resources; this allocation, which cannot be prevented in any practical
and efficient way, may preclude the establishment of one or more of the channels on
which the conference depends, thereby causing the attempt to set up the conference
to fail. Nor is it possible to predict when the resources needed by the conference will
all be available, as real-time channels are to be established as soon as possible and
for an indefinite duration.

This paper addresses the problem of extending the Tenet scheme to allow for
advance reservations of real-time channels. Our study has been performed within the
context of a profound revision of the Tenet scheme, which has resulted in the design
and development of a second-generation protocol suite, the Tenet Suite 2. Since
this suite has been built to provide effective support to multi-party applications, the
advance reservation service must be regarded as one of its essential new features.

Section 2 discusses the service requirements for advance reservations. In Section 3,



we describe the distributed advance reservations mechanisms we have designed for,
and are implementing in, the Tenet Suite 2 [10]. The principles on which our mech-
anisms are based, however, are easily portable to other approaches and protocols for
real-time communication. We also present several simulation results in Section 4.

2 Client requirements

The only true requirement network clients with multi-party applications have, in the
area we are investigating here, is that they be allowed to specify in advance their
needs in terms of real-time channels as though these channels were to be created
immediately, and to obtain in this way a guarantee that the resources for those
channels will be available at the future time they have specified. Clients will accept
the necessity to reserve channels in advance if they can convince themselves that this
is the only way to avoid the risk of partial (or total) rejection of their requests at the
time they need to use the network.

The service model in the existing proposals and realizations of real-time communi-
cation services, including that in the Tenet Suite 1 [1], assumes that real-time channels
are requested (and established) for an indefinite duration. Clients are not asked to
specify for how long such channels (to be called immediate channels in the sequel)
will be alive, and this non-negligibly simplifies their tasks. The network, incidentally,
would not have much use for this information, since planning future allocations would
require predicting arrivals of new requests along with departures of currently exist-
ing channels, and arrivals cannot be precisely predicted in an environment in which
advance reservations are not supported. The current establishment model, in which
channels are to be created immediately (i.e., as soon as possible), coincides with that
of a normal telephone call, whose expected duration never has to be specified by the
caller.

When advance reservations are introduced into such a service, the provider has to
do some planning for future allocations of resources, and this planning would be easier
if the expected durations of the channels were known. A limitation of this duration
would also allow more clients to reserve channels in advance, thereby increasing the
sharing and the utilization of the resources. This modification of the service model for
channels reserved in advance (henceforth to be called advance channels) is consistent
with the practice of booking other types of facilities, for example, meeting rooms,
which may never be reserved for an indefinite amount of time. For this reason, clients
should be expected to accept this service model and conform to it without too much
difficulty, especially if negotiating an extension of the channel’s duration is sufficiently
easy and inexpensive.

The same meeting-room analogy can be used to argue that, if the service provider
found it useful to adopt a coarse granularity for time, i.e., to accept only starting times
and durations that are integral multiples of, say, five minutes, clients would find it
fairly easy to conform. Similarly, clients would probably accept, though perhaps not
enthusiastically, reasonable values for the minimum and maximum advance notice



with which reservation requests can be submitted (e.g., not less than one hour and
not more than six months) if such limits were imposed by the provider.

Even with advance reservations, there is the possibility that a request be rejected.
The significant difference with respect to the case in which a request for the immediate
creation of a channel is rejected is that there is still time to reschedule or cancel
the meeting without any great disruption of the participants’ lives. A multi-party
multimedia application usually requires the establishment of many real-time channels,
even if each one of them is a multicast channel. If one or more of those channels cannot
be reserved in advance for the starting time and the duration specified by the client,
the client would certainly appreciate being informed by the service provider about
other values of the starting time and/or of the duration that would make it possible
to set up all the channels requested.

One way the provider could encourage advance reservations is to offer lower charges
for an advance channel than for the equivalent immediate channel. These discounts
could be justified with the same arguments that are the basis of similar discounts for
airline tickets, i.e., easier and more effective planning.

Thus, to summarize, an advance real-time channel will be requested by specifying,
besides the parameters that define an immediate channel, the following two quantities:

(i) the starting time, and

(ii) the duration.

These two times may have to be (or to be transformed into) integral multiples
of a time granule, and the starting time may have to satisfy the constraints (if any)
on advance notice, as mentioned above. In the case of a rejection of the request, the
client should be notified of the reason for the rejection, and of what changes to which
parameters, including (i) and (ii) above, would be effective in getting the request
accepted.

3 An advance reservations service

In this section, we describe the design of an advance reservation service for a real-
time (or integrated-services) network that uses the Tenet protocols. The service will
be offered by the Tenet Suite 2, but could be easily implemented also in the Tenet
Suite 1. The basic design alternatives and decisions are discussed in Section 3.1. In
Section 3.2, we provide some background information about the Tenet Scheme 2, with
the objective of facilitating the understanding of our design. Section 3.3 is devoted to
a description of the distributed mechanisms we have chosen to accomplish our goals.
While this description is presented in the framework of the Tenet protocols, the
underlying ideas and techniques are also applicable to other schemes and protocols.



3.1 Design alternatives and decisions

Since clients are expected to accept rather easily the requirement that advance chan-
nels be created for a definite amount of time, we have chosen to enforce this require-
ment in our design due to its expected beneficial effect on the utilization of network
resources. The question may be asked, then, whether the specification of a duration
should be required also for immediate channels. The advantages of such a decision
would be uniformity and the potential for better resource management; the main
disadvantage would be that clients who have an immediate need for transferring in-
formation do not often know how long the session will be, and, in any case, are not
accustomed to having to specify its duration. This disadvantage is a very serious one,
so serious that we believe it cannot be ignored. In our design, immediate channels
will normally be created with an indefinite duration.

In the establishment of immediate channels, which in the scheme described in [§]
only considers the situation at the time the request is made, we must now look at all
the future situations as well: Figure 1 shows a case in which no immediate channel
can be created through a server (i.e., a network component that has resources to be
allocated) at time t; even though the resource in question is fully available in the server
at that time. This complication can be avoided, and the establishment of immediate
channels still kept as fast as possible, by separating the two types of channels so that
the admission tests for a new channel only take into account the channels of its type
in each server. Resource partitioning [7, 9], a service the Tenet Suite 2 will offer
network managers, is an almost perfect solution for this problem. The immediate
partition treats any new request exactly as described in [8]. The advance partition
must instead use a different mechanism (to be presented in Section 3.3) to test new
requests for admission. Note that this mechanism can be made more complicated,
if necessary, than the one used for immediate channels, since advance reservation
requests are usually less urgent than immediate requests, and can be run in the
background wherever they are run. Also, the two types of requests do not have to be
processed serially or in a specific order by a server to reflect their relative importance;
being totally independent of each other, they may be executed simultaneously and in
any order.

The partition-based solution raises, however, a problem: each resource has to
be allocated statically to each partition, and this may cause inefficiencies due to
fragmentation [9] and, worse, to poor allocation decisions; one of the two partitions
for a resource may be saturated while the other is almost empty. Since choosing
a priori allocations suitable for the types of requests that will arrive is hard, the
implementation of a movable boundary between the two partitions must be explored;
mechanisms for obtaining this result will be described in Section 3.3.

With the introduction of the two partitions referred to above, we do not prevent
other uses of resource partitioning, as long as the additional partitions to be created
can be regarded as sub-partitions of the immediate or advance ones. The only re-
striction of this arrangement is that, for example, an advance channel cannot be a
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Figure 1: A request for an immediate channel cannot be accepted at time ¢;, even though the
resource is 100% free at that time. The shaded areas represent fractions of the resource that have
been reserved in advance.

member of a sub-partition of the immediate partition, or vice versa.

As for the minimum advance notice required for an advance reservation, which was
mentioned in Section 2, it seems reasonable to set it to zero: if there is enough room for
the requested duration in all the servers to be traversed within the advance partition,
why should the network not accept such an “immediate reservation”? This argument
suggests that the crucial distinction between the two partitions might be not so much
that between advance and immediate channels, but that between channels of definite
and indefinite duration. In fact, it would perhaps be useful to allow for the advance
reservation of indefinite-duration channels, but in our design, for simplicity, we ignore
this possibility, and do not allow advance reservations of indefinite-duration requests.
Thus, all such requests are immediate, and belong in the immediate partition, while
all definite-duration requests are tested against the advance partition, even if their
starting time coincides with the current time.

Finally, a decision is to be made concerning the organization of our advance reser-
vation service. A natural choice in this area is the centralized one. Most of the
advance reservation services in other fields are centralized (e.g., hotel rooms, meeting
facilities), or at least make use of a single database (e.g., theater or airplane seats).
A centralized solution for a real-time network running the Tenet protocols is feasi-
ble, but would suffer from the problems usually associated with centralization: the
creation of a performance and reliability bottleneck, poor scalability, and the need
to keep in the central reservation agent an up-to-date view of the present and future
resource allocations throughout the network. The last problem could be solved by
centralizing all channel setups, including those of the immediate channels; however,
this would be a major departure from the Tenet approach, which, being targeted



to large internetworks, has always tried to maximize distribution of control opera-
tions. We have therefore adopted a distributed procedure also for the establishment
of advance channels, which is described in Section 3.3.

3.2 The Tenet Scheme 2

The scheme on which the Tenet Suite 2 is based implements the multicast real-time
channel abstraction. This communication abstraction is defined as a simplex connec-
tion between a source and a target set, i.e., a set of destinations, capable of guaran-
teeing a given (and possibly different) quality of service (QoS) to each destination in
the target set. A real-time channel (“channel” for short in the sequel) is characterized
in the Tenet schemes at the network layer by a quadruple of traffic parameters and,
for each destination, a quadruple of QoS parameters; these two quadruples are listed
in Table 1. Scheme 2 allows channels to be established from the source or from the
destinations; we describe here, for brevity, only the former procedure.

When a client wants to set up a channel, it invokes the Real-Time Channel Ad-
ministration Protocol (RCAP) and passes to it suitable identifiers for the source and
the destinations, as well as the source’s traffic parameters and each destination’s QoS
parameters. RCAP gets a possible route for the channel from a Routing Server, and
issues a channel-establish message from the source. This message follows the given
route, replicating itself at each subtree vertex it encounters on its path, and sending
a copy of the message down each of the branches of that subtree. Admission tests
are performed at each server (where a server is a node or a link) reached by a copy
of the message; if any of the tests is unsuccessful, a channel-reject message is sent
back toward the source; if all tests are successful, a copy of the message is sent to the
next server on that path, until it reaches one of the destinations. Each destination
makes a final decision about the setup request for the new channel, and returns an
channel-accept or channel-reject message to the source. Messages of both types wait
for those from the destinations in the same subtree at the subtree’s vertex, where
they are merged with them before the resulting message is forwarded on the reverse
path toward the source.

Some resources had been tentatively reserved by the channel-establish message or
one of its replicas in each traversed server. When receiving the returning message(s),
which will generally contain both accepts and rejects from the various destinations in
the corresponding subtree, the server cancels those reservations (if all the replies are of
the channel-reject type) or adjusts them according to the information received from
each accepting destination. These adjustments are reflected in the return message
forwarded to the server immediately upstream, as well as in the amounts of resources
actually reserved in the server for the new channel. At the end of all this activity, the
source receives the results of the request within a single return message, and transmits
them to the client for evaluation and further action.

The channel so created, reaching the destinations that have accepted the request,
is now ready for immediate use and remains in existence until it is torn down explicitly



Traffic parameters (of a source)

Xmin minimum interpacket interval

Xave | minimum average interpacket interval
I averaging interval

Smax maximum packet size

QoS parameters (of a destination)

Dmax end-to-end delay bound

7Zmin | minimum probability of timely delivery
Jmax end-to-end delay jitter bound
Wmin minimum probability of no

loss due to buffer overflow

Table 1: Network layer traffic and QoS parameters in the Tenet schemes

by the client or destroyed by an irrecoverable failure.

3.3 A distributed advance reservation mechanism

In a distributed approach, the advance reservation information must be stored in
the servers of the network: each server has to keep track of how much of each of its
resources has been reserved at various future times, besides knowing how much of each
resource is set aside for those channels that already exist at the present time. This
increase in the amount of state information to be recorded in each server certainly
makes fault recovery more complicated and time-consuming; however, this important
problem is outside the scope of this paper, and its discussion is therefore postponed
to a future publication.

Having divided each resource in a server into at least two partitions, we can just
concern ourselves with the amount of each that is allocated to the advance partition.
Since the boundary between the two partitions is movable, we allow this amount to
vary from time to time; however, we subdivide the future-time axis of a server into
intervals characterized by the following two properties:

(i) an interval does not include any instant at which a channel traversing the server
starts or ends its life; these events delimit intervals but never occur within them;

(i1) the allocations of resources to the advance partition are constant throughout an
interval; they can only change (i.e., the boundaries for some of the resources
in a server can only be moved) at the transition point from an interval to the
next.



‘ Channel id ‘ Buffer space | Processing power

312 14 800

174 8 144

586 11 650

Resources allocated 33 1594

Resources available 50 2000
Start time 002041735
End time 002641735

Table 2: An example interval table in a server

Property (ii) could be regarded as a consequence of property (i), as it is reasonable
not to move the boundary between the two partitions when nothing changes; it is only
when a channel request that cannot fit in its natural partition comes to life that we
may have to use resources from the other partition to support it.

The basic mechanism used to manage the advance partition in a server is the
interval table, which lists all the advance channels that will traverse the server during
a future interval, together with the requirements for each of the server’s resources.
The interval table, an example of which is shown in Table 2, includes also the amounts
of each resource that are available to the advance partition during the interval, as
well as the totals that have been allocated to advance channels.

Table 2 assumes that the scheduling discipline the server implements is one that
requires only buffer space and processing power to be considered as resources (if a
deadline-based discipline is used, we need to consider also the “schedulability” or
“delay” resource [7]). In the table, buffer space is expressed as a number of packet-
sized buffers, and processing power in Kbits/s; times are measured in milliseconds. We
have omitted several columns that contain local bounds and other channel parameters.

When the advance partition in a server is empty, there is only one interval table;
its top row is empty, its start time is the current time (as we have decided not to re-
quire any minimum advance notice), and its end time is “infinity”. When an advance
channel request is received from a client, the source! sends out an advance establish-
ment message containing, together with all the usual traffic and QoS parameters, the
start and end times of the reservation.

The arrival of this message at our server causes the only existing interval to be
subdivided into three intervals: (current, start), (start, end), and (end, current + max
advance notice). For each interval, the corresponding interval table is created; the
first and the third have the top rows empty, whereas the second has just the requested
channel in it (assuming the available resources are sufficient to accept the channel,
i.e., assuming that the request passes all the tests against the available resources).

The situation remains as described until a message relating to the same channel

IThe Tenet suites allow receiver-initiated as well as sender-initiated channel establishment. We
describe only the sender-initiated procedure here to simplify the discussion.



comes back from the destination(s), assuming, for simplicity of description, that no
other establishment request is received by the server before this time. If the return-
ing message is a channel-accept one (i.e., at least one destination has accepted the
request), then the reservation is confirmed; only some of the values in the second
table are modified to adjust the reservations and set the local bounds. If, on the
other hand, the returning message is a channel-reject one, then the three tables are
re-merged into the initial empty table.

This procedure is repeated at the arrival of every successive request at the server.
In general, such an arrival will find the future-time axis of the server subdivided into
n intervals, and its expected lifetime will cover completely a fraction of them, but its
birth and death may split up to two of the existing intervals; for example, in Figure 2,
tables Ty and T56 will not be affected by the addition of the new channel, while T},
will be relabelled T11/ (its end time will change from t3 to t1/) and T45 will be renamed
Tys (its start time will become t4 instead of t4); Tys and T34 will be updated by the
simple addition of a row corresponding to the new channel, and T/ and Ty will be
created from Ty, and Tys, respectively, in the obvious way.

100%

'New Request

resource

ov

to tl ti t2 t3 t4 t4, t5 t

Figure 2: Effects on the intervals and interval tables of the addition of an advance channel

Thus, after the arrival of the new request, the server will have two more interval
tables; to put a curb on the proliferation of tables, we use the time granules that
have been mentioned in Section 2 and earlier in this section, with the provision that
a client-specified time not satisfying this rule will be modified to coincide with that
of the nearer inter-granule transition. Of course, if the return message is a channel-
reject one, the new interval tables (e.g., 715 and Tys) will be deleted, and the others
restored to their previous state.



When the current time becomes equal to the start time of an interval, the table
of the previous interval is deleted, and the table of the next interval becomes the
current table. Those advance channels whose start time coincides with the start time
of the current interval, i.e., with the current time, can spring to life automatically in
all the servers they traverse without any need for establishment, thereby producing
the illusion of being connectionless, while in reality they were established in advance.
This result can be smoothly achieved in networks whose nodes have clocks that are
kept in approximate synchrony by, for instance, protocols such as NTP. Note that the
intervals have variable lengths so as to minimize the number of tables in a server. In
fact, this number at any time is bounded from above by twice the number of advance
channels established in the server at that time.

We shall now sketch mechanisms for moving the boundary between the two parti-
tions, as mentioned in Section 3.1. First, suppose that in a server one of the interval
tables 1s full when a new advance request is received. Instead of sending a negative
return message back towards the source, we may choose to reduce by the needed
amount the current allocation of that resource to the immediate partition. This re-
duction could be temporary, i.e., from the current time to the end time of the interval
in which the advance partition was saturated, in which case the relevant “Resources
available” entry in each of the tables chronologically preceding the saturated one and
in the saturated one would have to be increased by the same amount; or the reduc-
tion could be permanent, in which case all tables in the server would be updated. Of
course, if the boundary is moved only temporarily, we have to make sure that the
allocation of the resource to the immediate partition is re-increased at the time the
table that was saturated is deleted. As long as there is a mechanism that can move
the boundary in the other direction on demand, such as the one to be described in
the next paragraph, we may be tempted to favor a permanent reduction; however,
it may be necessary to put curbs to the expansion of the advance partition, since
advance reservations might sometimes be too aggressive and leave too little room to
the immediate ones.

Conversely, let a request for an immediate channel be received by a server in which
the immediate partition is out of one of the resources. Then, instead of rejecting the
channel, the server could look at the interval tables kept by the advance partition
to determine whether a sufficient amount of that resource is available there. If such
an amount is available in all of the tables, the server can allocate that amount to
the immediate partition by reducing the appropriate “Resources available” entries
accordingly. When amounts of that resource are released by immediate channels, the
server has the option of returning those amounts to the advance partition by suitably
updating the tables, or it may do so only on demand, using the mechanism described
in the previous paragraph. If, on the other hand, a table is found in which the re-
quired amount is not available, the server may reject the request or accept it for a
limited time. The latter option introduces a third type of channel, the immediate
channel with definite duration; however, this is not a channel that may be requested
by a client (who can request an advance channel with an immediate start time in-
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stead), but a restriction imposed by the network on an immediate channel for lack of
resources. We favor this option, and have included it in our design, since we want to
maximize network utilization and minimize the blocking probability. A watermark
to protect the advance partition may be necessary too, and network managers may
find it useful to create only immediate channels with definite duration once this wa-
termark 1s exceeded, so as to leave room for farther-future reservations while using
near-future resources for requested immediate channels instead of keeping them for
unlikely advance requests.

All the dilemmas we have mentioned above without resolving them are policy
choices. We have designed mechanisms that allow network managers to specify the
policies. The evaluation of the possible policies is a topic for future research.

4 A simulation-based evaluation

We performed a number of simulation experiments to evaluate the performance of our
advance reservation mechanisms. For this discussion, we have selected four interesting
sets of simulation experiments. In the first set, we ran simulations of simple chan-
nel requests, with and without the advance reservation mechanisms. To distinguish
the effects of the two components of the advance reservation mechanisms, namely
partitioning-induced protection and priority changing (which we describe below), we
repeated the previous experiments using only one of the two components. The third
set of experiments considered multi-party advance reservations requests that varied
in conference size and in advance notice period, while the fourth set evaluated the
effect of time granularity on the performance of our advance reservation mechanism.
In this section, we describe the simulation scenario, the workload, and the results
obtained with these experiments.

4.1 Simulator description

We ran these simulations on an enhanced version of Galileo [13], an object-oriented
real-time network simulator. This version provides complete support for multi-party
real-time communication protocols, including support for advance reservations.

Our goal was to make the experiments as realistic as possible, so that we could
confidently predict the behavior of our implementation of the advance reservation
service in the Tenet Suite 2 [10]. For example, we used the NSFNET backbone
network topology in our simulations (see Figure 3). We assumed 45Mbps for each link,
and we set the propagation delay along the diameter to 40 ms. In all our experiments,
we created a partition for non-real-time traffic containing 20% of the resources in
each server; this left up to 80% of the resources for real-time communication. We also
made the amount of buffer space in each server large enough that the buffer space
test would always be successful, and we chose the delay bounds large enough so that
schedulability would never be a problem (for the Earliest-Due-Date (EDD) scheduling

11
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Figure 3: The NSFNET topology

discipline that we used in our simulations). Thus, bandwidth or processing power was
the limiting resource in all servers and all scenarios.

4.2 Simulation workload and evaluation metrics

In all the experiments, the sources and destinations for the channels were uniformly
and independently distributed among the network nodes. We ran the same simula-
tions without advance reservations and with advance reservations for different resource
allocations to the two partitions.

To keep comparisons meaningful, we only considered relatively homogeneous work-
loads, where all channels have identical traffic descriptions, and all destinations specify
identical performance requirements:

e Deterministic delay bound D = 400 ms ;

Deterministic jitter bound J = 16 ms;
e Minimum inter-packet time Xmin = 8 ms;

e Maximum packet size = 8 Kbits.

The traffic description corresponds to that of a compressed video stream at a peak
rate of 1 Mbps, at 30 frames per second with four data packets per frame ; the average

12



rate did not matter, because bandwidth was allocated according to the peak rate, and
bounds were deterministic. The start times and the duration of the channels varied
randomly and uniformly within specified time intervals.

We performed many sets of experiments with varying workload parameters; for
each of these workloads, we ran many simulation experiments, and averaged the
results thus obtained.

The main metric we adopted for evaluation and comparison was the acceptance
ratio, defined as follows:

Number of destinations reached with advance reservation

Acceptance ratio = Number of destinations reached without advance reservation

We were also interested in the timeliness and the computational cost of channel
establishment, for which we used a different metric: the computational overhead
associated with admission control. In the simulations, we used the EDD scheduling
discipline [8], in which admission control tests at a server take O(n) time, where n is
the number of resource allocations existing at that server. We summed the values of n
(the number of existing channels when a new request arrives at a server) at all servers
on the new channel’s path to obtain an index for the total establishment overhead.
This led us to the following metric for comparing computational overheads:

Total computational overhead with advance reservation

Overhead ratio = - - —.
Total computational overhead without advance reservation

4.3 Simulation experiments
Simple workload

In the first set of experiments, we compared the following two scenarios:

e 150 simplex unicast connections, and 50 10-person conferences (each conference
requiring 10 multicast 9-destination channels), all in the same partition, which

was allocated 80% of the network’s bandwidth; we call this the without advance
reservations case; and

e two partitions, with 150 simplex unicast connections in the immediate partition,
and 50 10-person conferences in the advance partition; with varying partition
allocations, so that the total resource allocation for these partitions equals 80%
of the network’s bandwidth; we call this the advance reservations case.

We deliberately chose this workload to saturate the network, because we wanted
to observe the network’s behavior under heavy real-time load. It should also be
observed that, in this workload, all conferences are of the same size, and that there
exist resource sharing relationships among the conference channels (only up to 2 of
the 10 channels constituting a conference may be active at any given time) so that
they can share resource allocations [11, 12].
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Acceptance Ratio

In Figure 4 and all of the remaining figures, we report on the horizontal axis the
fraction f of the total resources that is allocated to the immediate partition. The
advance partition’s allocation is 100(0.8 — f)% of the total resources. Note that the
boundary between the partitions remained fixed for the duration of each simulation
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Figure 4: Acceptance ratio and overhead ratio for the first set of experiments

In Figure 4, we observe that there is a large region in which the acceptance ratio
is higher than 1, i.e., in which the acceptance rate is higher with advance reservation
mechanisms than without these mechanisms. However, there is also a large region in
which the ratio i1s lower than 1. Thus, moving the resource allocation boundary is
necessary whenever the workload is such that the boundary falls in an area with low
acceptance ratio.

The same figure shows that our advance reservation mechanisms reduce the com-
putational overhead of admission control for all allocations. As we increase the alloca-
tion to the immediate partition, the overhead increases (due to resource sharing, the
computational overhead is higher for single channels than for channels that belong to
a conference [11]; the overhead increases because we accept more individual channels
at the expense of conference channels). However, after reaching a peak value, the
overhead start decreasing (the overhead reduction due to the increasing rejection rate
of conference channels starts dominating and offsetting the overhead increase due to
the growing acceptance of individual channels). Our measurements show that the
admission tests overhead is usually less than 1 ms per server on a 12 SPECmarks

(SPEC 92int) SUN SS IPC [2].

Isolating the effects of the two components

Our advance reservation mechanisms affect resource reservations in two ways: first,
resource partitioning provides isolation and protection between the advance requests
and the immediate requests; second, advance reservation provides higher priority
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to connections that come with larger advance-notice periods. In the second set of
experiments, we ran additional simulations to separate the effects of the resource
partitioning mechanisms from the effects of priority changes. For this, we added the
following scenario to those considered in the previous set of experiments:

e two partitions, with 150 simplex unicast connections in the first partition, and 50
10-person conferences in the second partition, where resources are not reserved
in advance; we call this the only partitioning case.

As the graphs of Figure 5 show, the gains (and losses) observed in Figure 4 arise
primarily from the isolation and protection provided by the resource partitioning
mechanisms. However, we should remember that, in our simulations, all conferences
were of the same size (10 members each); it would be more realistic to simulate
different-sized conferences, as we did in the third set of experiments discussed below.
As shown in the second diagram in Figure 5, the overhead of admission control is
substantially lower in the only partitioning case than in the advance reservations
case, where multiple tables are manipulated.
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Figure 5: Isolating the effects of the two components

Multiple conference sizes and advance notice periods

In the third set of experiments, we considered different types of conferences, under the

assumption that larger conferences tend to be requested with larger advance notice

periods. To reduce the simulation time, we decided to leave the immediate partition

empty; this did not affect our results because we were interested only in the effects

of the priority changes on the channels expected to be usually reserved in advance.
We compared the following three scenarios:

e 10 50-person conferences, and 50 10-person conferences, all in the same par-
tition, which was allocated 80% of the network’s bandwidth; we call this the
without advance reservations case;
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e two partitions: the first partition empty; 10 50-person conferences and 50 10-
person conferences in the second partition, where resources are not reserved in
advance; we call this the only partitioning case; and

e two partitions: the first partition empty; 10 50-person conferences and 50 10-
person conferences in the second partition, where resources are reserved in ad-
vance; we call this the advance reservations case.

The average advance notice period was set to 3 hours for 10-person conferences,
and 6 hours for 50-person conferences. In each case, the actual advance notice period

was randomly selected from a uniform distribution around the mean.

18 I I T T T T I 18 | | T T T T I
1.6 | : 1.6 | :
14 F 14 F 1
| ° ‘ | |
12 F ‘ | | ‘ : b= 12 F : : 1
e S S S 1 ] 1r : | |
| | i | | |
08 ‘ : 2 08 - ‘ ‘ ‘
: : : : : oy : : : : : : :
- H : H B H : > - H H H e H H :
0.6 i i e i i i O 0.6 i i i i i i i
04 | | : ; : : : 04 | | : ; = : | :
02 | | : ; : ; : : 02 | | : ; : ; : :
0 i i i i i i i 0 i i i i i i i
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07

Resource allocation to the immediate partition

Resource allocation to the immediate partition

Figure 6: Multiple advance notice periods and conference sizes

As the graphs in Figure 6 show, when we consider conferences with different
sizes, the higher priority provided by the advance reservation mechanisms leads to
a considerable increase in the acceptance ratio. Thus, the experiments show that,
in general, both components of our advance reservation mechanisms help improve
the connection acceptance rate. The overhead ratio also increases, due to the higher
acceptance ratio, and, because of the absence of immediate requests, does not have a
maximum for an imtermediate value of the relative resource allocation.

Effect of time granularity

In the fourth set of experiments, we decided to observe the effects of time granularity
in advance reservations.

We ran our tests on the advance reservations and without advance reservations
scenarios of the third set while varying the granularity of start times and durations
from 1 minute to 15 minutes. We assumed that the natural tendency of the users
would be to ask for connections with start times and durations that vary randomly
and uniformly within specified time intervals.
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Figure 7: Effect of time granularity

As in all of the experiments described above, we created a partition for non-real-
time traffic containing 20% of the resources in each server. Figure 7 shows that the
acceptance ratio and the overhead ratio decrease slightly as we increase the time
granularity. However, the lower acceptance ratio may be due to the assumption
made in the simulations that the start times are completely random within a small
time interval. So, we conclude that time granularity does not appreciably affect the
performance of our mechanisms.

5 Discussion and conclusion

We have presented a fully-distributed scheme for advance reservations of real-time
connections. The experiments have shown that our distributed mechanisms work, and
their cost is affordable. An interesting feature of our advance reservation mechanisms
is that they favor channels that belong to conferences (and, because larger conferences
usually have larger advance notice periods, our mechanisms favor larger conferences
over smaller conferences). Conferences may not be held if there are no advance
reservations; for example, a conference may not be held at all if all its channels, or a
substatial fraction of them, are not established.

We have recently learnt about two other efforts to provide advance reservations for
real-time communication. Reinhardt[15] proposes a signaling mechanism for advance
reservations with the ST-II protocol and Delgrossi et al.[6] discuss the design issues
encountered when trying to support advance reservations in ST-1I. The signaling
approach in [15] is somewhat similar to ours, except that it uses fixed-size intervals,
with the accompanying extra overhead (for example, with five-minute granularity, the
overhead for a two-hour video conference would be approximately twenty-four times
the overhead for an immediate reservation, which is the extremely unlikely upper
bound for overhead in our case). In [5], the authors propose an advance reservation
mechanism for predictive service [4], which requires characterizing advance reservation
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request arrivals, start times, and durations. Since it is designed for predictive service,

their approach cannot be used to reserve guaranteed-performance channels.
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