A Fast Parallel Cholesky

Decomposition Algorithm for

Tridiagonal Symmetric Matrices”

Ilan Bar-On' Bruno Codenottit Mauro Leoncini®
TR-95-006
February 1995

Abstract

In this paper we present a new fast and stable parallel algorithm for computing the
Cholesky decomposition of real symmetric and positive definite tridiagonal matrices.
This new algorithm is especially suited for the solution of linear systems and for
computing a few eigenvalues of very large matrices. We demonstrate these results
on the Connection Machine CM5, where we obtain a very satisfactory performance.
We finally note that the algorithm can be generalized to block tridiagonal and band
systems.

Key words. Parallel algorithm, Cholesky decomposition, LR and QR algorithms, Figenvalues, Sym-
metric, Tridiagonal, and Band Matrices.

AMS(MOS) subject classifications. 65F15

* Research produced with the help of the National Science Foundation, Infrastructure Grant number
CDA-8722788, and the Cooperation Agreement CNR-NCRD.

! Department of Computer Science, Technion, Haifa 32000, Israel.

! Istituto di Matematica Computazionale del CNR, Via S. Maria 46, 56126 Pisa, Italy. Research partially
supported by the ESPRIT III Basic Research Programme of the EC under contract No. 9072 (Project
GEPPCOM).

§ Dipartimento di Informatica, Universitd di Pisa, Corso Italia 40, 56125 Pisa, Italy. Research supported
by the ESPRIT III Basic Research Programme of the EC under contract No. 9072 (Project GEPPCOM),
and by Italian M.U.R.S.T. 40% funds.

i

1. Introduction. We consider the problem of computing the Cholesky decomposition
of very large real symmetric tridiagonal matrices. In addition to being one of the most
natural approaches to the solution of positive definite linear systems, this decomposition is
a valuable tool in many diagonalization techniques for computing eigenvalues and singular
values of matrices. Rutishauser’s cubically convergent LR algorithm is based on the iterative
application of Cholesky decomposition [21]. The divide and conquer approach can also be
combined with it [6, 7, 8]. More recently, the Cholesky decomposition, or a variation
of it, has been used in connection with the accurate computation of the singular values
of bidiagonal matrices [12, 15], and of the eigenvalues of specially structured symmetric
tridiagonal matrices [10]. Moreover, it has been shown that Francis’ QR algorithm (see
[16, 17]) can be implemented using a band Cholesky decomposition [3, 4, 5]. We also point
out that, despite the amount of work devoted to the parallel solution of tridiagonal linear
systems (see, for instance, [2, 13, 23, 24, 26]), the use of Cholesky decomposition in such a
context has not received a great deal of attention.

The classical serial algorithms for computing the Cholesky decomposition cannot be
efficiently parallelized, nor directly vectorized. It is therefore natural to seek an algorithm
directly amenable for an efficient parallel implementation. In this paper we introduce a new
algorithm based on a preprocessing stage that subdivides the original problem into inde-
pendent smaller subproblems that can be solved in parallel. The preprocessing stage makes
use of block-cycling and prefix sum computation techniques [11]. Our parallel algorithm
is computationally efficient, scalable, and can be efficiently vectorized. From a theoretical
viewpoint, our algorithm computes the Cholesky factors of an order N symmetric tridiago-
nal matrix in time O(n) using p processors, where N = np and n = Q(log N). We have also
implemented our algorithm on a CM5 parallel supercomputer with 32 nodes [27], where
we have obtained a speedup of three orders of magnitudes over the sequential algorithm
described in Section 4.

Our parallel algorithm is usually pointwise stable. Let 8 be the relative working pre-
2

cision. Then the relative perturbations are bounded by #' = H;Tl where Ay and Ay are
N

the largest and smallest eigenvalues, respectively. Also, in many practical cases we observe
that 6’ = 0?—;]. For instance, if Ax/A; = p, and we want the eigenvalues with a relative
precision g, then we store the original matrix in double precision (i.e. = p?), and we do
the computation in quadruple precision (i.e. § = u*). Moreover, we can verify the accuracy
of the computed decomposition with no additional cost, and thus tailor the precision to the
best of our needs.

This paper is organized as follows. In Section 2 we define concepts and notations used
throughout the rest of the paper. In Section 3 we review the LR algorithm for computing
the eigenvalues of symmetric tridiagonal matrices. This will provide a motivation to the
development of a parallel algorithm for computing the Cholesky decomposition of such
matrices. In Section 4 we describe a sequential algorithm that computes the Cholesky
factors and discuss its implementation, computational cost, and numerical accuracy. In
Section 5 we describe the parallel algorithm, providing details of the preprocessing stage,
and, in Section 6, we analyze its computational cost and suitability to vectorization. In
Section 7 we present the experimental results obtained on the CM5, and in Section 8 we
discuss the numerical accuracy of the algorithm. Finally, we mention some applications of

1

the algorithm to the implementation of the QR algorithm, and state some open problems.

2. Definitions and Main Notations. We denote by R™ the set of real vectors of
order n and by

e; =1[0,...,0,1,0,...,0]7,

where the 1 is in the 7th position, 7 = 1,...,n, the standard basis for this vector space.
(n)

HES

We denote by M(n) the set of real matrices of order n, and by AT the transpose of A.
We denote a tridiagonal symmetric matrix 7" € M(n) by

When needed, we emphasize that a particular vector e; is in R™ by writing e

ar by
b2 a9 b3
by,
b, an
In this paper we assume that T is unreduced, that is, b; #0, 1 =2,...,n.
We say that a nonsingular matrix P € M(m) is a cyclic transformation if
p_ H 0 He M(m-1),
AT 1) h e R(m=1,

Note that H must be nonsingular.

We say that the computation of the Cholesky decomposition of a matrix A is point-
wise stable if the computed Cholesky factors are the exact decomposition of a pointwise
perturbation of A.

We measure the theoretical running time of a sequential algorithm by counting the
number of flops, i.e., floating point operations. We also refer to the flop count as to the
number of arithmetic steps. The running time of a parallel algorithm implemented on a p
processor machine is the maximum, over the p processors, of the number of steps performed.
We refer to this measure as to the number of parallel steps. 1t is plain that the actual running
time can be highly affected, on vector pipeline computers (both sequential and parallel), by
the suitability of the algorithm to vectorization.

The speedup of a parallel algorithm A over a sequential algorithm B is the ratio

T(n)
Sp(n) =
p() TA,p(n)7
where Tg(n) is the running time of B on inputs of size n while T4 ,(n) is the running
time of A on inputs of size n with p processors. It obviously holds that S,(n) < p, for
otherwise a sequential simulation of the parallel algorithm would beat the (supposedly)
best known sequential one. However, the upper bound on the speedup does not necessarily

holds in the presence of inner parallelism of the hardware, i.e. in case of vector and pipeline
architectures.

The work done by a parallel algorithm running in time 7" on a p processor machine is
defined as the product W = Tp. When the work done by a parallel algorithm equals the
running time of the best sequential algorithm for the same problem we say that the parallel
algorithm is (theoretically) work optimal.

3. An overview of the LR algorithm. The sequential LR algorithm developed by
Rutishauser was termed by Wilkinson as “the most significant advance which has been
made in connexion with the eigenvalue problem since the advent of automatic computers”
(see [29], p. 485). For computing the eigenvalues of tridiagonal symmetric matrices, this
algorithm is very simple and efficient, with a cubic convergence.

The LR algorithm iteratively computes a sequence of tridiagonal matrices that gradually
converge to a diagonal matrix with the same eigenvalues. Starting with the original matrix
Ag = A and with eig = 0, for s = 0,1, ..., the sth step consists of the following stages:

e choose a shift yg;

e find the Cholesky decomposition of B, = A, — y,I = L,LT;

o set Agyq = LZLS and eig = eig + ys.
As soon as the last off diagonal element becomes negligible, eig is a new exposed eigenvalue.
It is easy to see that the third stage of the above algorithm can be efficiently parallelized.
In addition, after a few steps, the shifts y; in the first stage can be read off the last diagonal
element of the matrix (see Rutishauser and Schwarz [22]). It follows that the Cholesky
decomposition is the main difficulty in implementing the LR algorithm on a parallel machine.
This is a major motivation to focus our attention on the development of an efficient parallel
implementation of Cholesky decomposition. For further discussions on the LR algorithm
the reader is encouraged to see Wilkinson [29], Parlett [20], Grad and Zakrajsek [19], and
Bar-On [3, 5, 8].

4. Cholesky decomposition. In this section we describe a sequential algorithm to
compute the Cholesky decomposition of a symmetric tridiagonal matrix which is particularly
suitable for the use in the LR algorithm, and analyze its computational and numerical
properties.

Consider the Cholesky decomposition stage in the LR algorithm described in Section
3, and let (1) be the matrix to be factored. We have that

dy di Yy
Y2 dy dy y3
(2) To=T = ys ds - it
' . d‘n—l Un

Instead of computing the decomposition (2), and considering that this process must be re-
peatedly applied over LR iterations, we compute the quantities z; and z; using the following
recurrences:

21 = 0,
(3) ry = ai,
12/, L
zi = bifris1, 1=2,...,n,
X, = a;—%, t1=2,...,n.

Note that in the recurrences (3) we only use the a;’s and b?’s (rather than the b;’s). It can
3

be easily proved by induction that z; = d? and z; = y?. Now, if we set

f1 92
g2 f2 g3
T =1"L= 93 ,
9n
9n I

then we can efficiently compute the quantities f; and g? as follows:

fl = z1+ 29,

2 -

g: = zixxy, 1=2,...,m,
fi = T+ Zi41 1=2,...,m,

where it is assumed that z,41 = 0.

This process can therefore be iterated. If needed, the elements of the matrix 7; (im-
plicitly) generated at the ith step of the LR algorithm can be easily recovered. By using
this variant of the Cholesky decomposition, which we call revised decomposition, we avoid
the computation of square roots.

Complexity. The computation of the revised decomposition requires n additions and
multiplications, and therefore 2n flops. In Table 1 we compare the typical running times of
some computational routines on a DEC Alpha 7000 Model 660 Super Scalar machine. The
BLAS routine “dgemm” performs matrix multiplication, the LAPACK routines “dpotrf”
and “dpbtrf” [1] perform the Cholesky decomposition on dense and tridiagonal matrices
respectively, and the private routine “trid” performs the above revised decomposition. The

Routine n | Flops | Time | Mflops

dgemm 400 | 2xn3 0.95 | 135.48

dpotrf 600 | 2xn3/6 | 0.99 | 72.11

dpbtrf | 200000 2xn 1.01 0.39

trid 200000 2xn 0.08 5.00
TABLE 1

LAPACK Computational Routines

Mflops column puts into evidence the rather inefficient use of computing power made by
the sequential algorithms for tridiagonal matrices. This is mainly due to the presence of
very short vectors (cfr [18], p. 156), but also to the fact that, in view of the use of shifts in
the LR algorithm, it is not possible to know a priori if the decomposition will succeed, and
this makes it necessary to check in (3) if z; > 0.

Numerical Stability. Cholesky decomposition is pointwise stable. Usually the entries of
the given matrix are known up to some perturbation so that it is very useful to investigate
the “structure” of the perturbations introduced by rounding. To show this, let us denote
the computed value of @ by @ = fl(a), and assume that the standard operations satisfy

fllaopb)=(aopb)(1+n), |n<d,
4

where op stands for 4+, —, %, or /, and 6 is the machine relative precision. For example,
 ~ 10716 in standard double precision. Then the actual computation of the decomposition
can be formulated as follows:

5 = Cz(l—I'ﬁz)/iz—l :éz/iz— ’ 1= 17"'7”7

T; = (ai—,é’i)(l—l—a;») =a; —)

where ¢; = b?, &g = zo, |8i] < 0 and @; = a;(1 + ;) with |a;| < |af| < 6. For the classical

error bounds of the Cholesky decomposition one can see [28] and [14].
5. Parallel Cholesky decomposition.

5.1. Mathematical formulation. Let 7" € M(n) be the unreduced symmetric tridi-
agonal matrix in (1). In block notation, 7" can be written as

T Uy
Uy, Ty /Tg gqe M(nz)a
i= n;, = TL,
T = Us : foi

,rn‘i - Z]:l n]?

' UqT UH—I = bm¢+1€§ni+1) (G;?i))Ta
Uy T4
and the Cholesky factors of the decomposition in (2) as
Ly
Ry Ly Li € M(ni),

LRl Rz ()
R, L,
By equating T with the product LL”T, we see that
T =T, = I, LT,
and
T =Te— BeRY =Ty — o2, (N = e, k=20

It is therefore clear that the preliminary computation of the “perturbations”

! _ 2
amk_1+1 - amk—l+1 - ymk_l—f-l

reduces the original problem (computing the Cholesky decomposition of T') to ¢ independent
instances of the same problem, i.e., the computation of the Cholesky factors of 77, ..., T}.
We now show some preliminary facts about these perturbations that we will use to prove
the correctness of our parallel algorithm.

Fork=1,...,q—1,let

ay by
by ay b3
Ty = bs o :
by,
by, O,

and let L) denote the Cholesky factor of T(,,,). We write L(;41) in block notation as
follows

L
L = (k) .
(k+1) (Rir1y Lip)

Then it easily follows that

NE+41 T Nk41
yznk+1 _ (eg K+)) R(k+1)Ra+1)eg Kt1)

2 T p-1
bmk+1eka(mk)emk.

In our parallel algorithm we will actually compute

—_ 4 _ 2 T -1
(4) :Emk - amk - amk - bmkemk—lT(mk—l)emk_17

and then obtain

/ _ 2 ,
amk—}—l = Omp4+1 — bmk—}—l/xmka

which is consistent with recurrences (3), from which we have y2 ., = b2 . /2y, and
:ka - amk - y?%”bk
LEMMA 5.1. Let Pj,i=1,...,7, be a sequence of cyclic transformations. Then
J
H; 0 H 0
P="r---PP = ; =
=T ()= (V)

is a cyclic transformation.

LEMMA 5.2. Let P, be a cyclic transformation such that

[Hy 0 Timy—1) bmpemu_y | _ T(mk—l) *
(5) P(mk)T(mk) - (h{ 1) (kaeglk—l Gy, a 0 dmk .
Then we have
(mp—1)

(6) Uy = Gy, + bmkh{emk—l = Tmy-

Proof. From the second equality in (5), we have

mg—1 —
T(mk—l)hk = —bmkegnkk_l)7 hk = _bka(mlk—l)emk—h

so that (4) and (6) are equal. O

In the preprocessing stage of our parallel algorithm we apply a sequence of parallel
cyclic transformations to obtain the so called pivot values z,,,, for k =1,...,¢— 1.

6

5.2. The algorithm. We assume for simplicity that the order N of the matrix T is
such that N = ng, with ¢ = p = 2", and that p is the number of the available processors. We
initially distribute the entries of the matrix between the processors, so that each processor
stores n consecutive rows. We denote these blocks of rows by

b(i—l)*n—}—l A(i—1)xn+1 b(i—l)*n—}—Z
B, = € M(n,n+ 2),

bi*n Uixn bi*n-l—l

fore=1,...,p.

The algorithm, that we call Parallel Cholesky, consists of three stages.
(1) Diagonalization,

(ii) Bottom-Up and Top-Down Sweeps,

(iii) Factorization.

Stage (i) consists of O(n) parallel steps, that are performed by each processor in an
independent way, i.e. no interprocessor communication is required. In stage (ii) the pro-
cessors perform O(logp) operations each which do require interprocessor communication.
Finally, in stage (iii) each of them perform O(n) operations independently and in parallel.
Altogether, the number of parallel steps is O(n 4 logp). If n = Q(log N) we have that the
overall work done is O(np) and, since this coincides with the sequential complexity of the
problem, the algorithm is work optimal.

Stage (i): Diagonalization. For simplicity of notation we denote a given block B by

bl ay bg
(7) B= by A b, € M(n,n+2).
bn Qp, bn—}—l

Note that A is a tridiagonal matrix of order n—2, and that by and b,, in the middle row (col-

umn) of B should be actually read as bgegn_Q) and bnegn__;) (b2 (egn—z))T and b, (67(:_—22))T)7
respectively. Each processor i, 1 < ¢ < p, performs a forward Gaussian elimination proce-
dure to eliminate b, in the last row, and then a backward Gaussian elimination procedure
to eliminate by in the first row. In matrix notations this amounts to applying a cyclic
transformation,

1 —byfT

B = PB = I B =AY,
T 1) g=A"te"D,
so that
by df b)) by v Yy
(8) B = by A b, = by A b, ,
b, al, bpi1 Y w by

since y = b}, = b], for symmetry. Processor 1 performs only a forward Gaussian elimination
procedure to eliminate b, in the last row, obtaining

B’:(A bn)EM(n,n—}—l),
w bn+1

and processor p remains idle. By the end of stage (i), the in-between rows do not further

contribute to the search for the pivots z,,, , so that they can be ignored. The original matrix

has now been reduced into a (2p — 3) X (2p — 3) tridiagonal symmetric matrix. Note that

processor 1 contributes one row, while processor ¢, # > 1 contributes two rows, i.e.,

'wgo) bgo)
by
T7© = O :
p—1
T}
yz(g_)l lwg(a—)l

where bgi)l = b;py1. Processor i = 2,...,p— 1 stores the submatrix

Z(O) yZ(O)
0 O 0 |

w; i1

-
e
[l
TN
S
S
@ @

while processor 1 stores

Xl(O) — (wgo) bgo)) = (- bgo)) ‘

Stage (ii): Bottom-Up and Top-Down Sweeps. We apply cyclic transformations to
the reduced matrix 7(®). We first perform a Bottom-Up sweep as follows:
For s =1,...,log,p— 1, let

b(s—l) (s—1) (s—1)

2i-1 Y21 Yo

s—1 s—1 s—1 s—1
T.(g) - (T2Ei—11;) - ygi—l) w(gi—ll)) b%i 1)) (1) :
I Ly T
Y2 Wa; bita
fori=2,...,p/2°—1. Asin Stage (i), we eliminate ygfj) in the top row, and ygf_l) in the

bottom row, by applying a cyclic transformation, i.e.

ng) (5)) (s=1) ;(s-1) yZ(S)
1 s—1 s—1
(s) _ p(s)pls) _ Yoio1' Wyiq by
Ty = BTy = e =1 ()
21 21 21
0 o

(s)

We then form a matrix T using the extreme rows

(0o
i () 0) |

w; i1

P A Cot)
s x{Y A o
= (e)= 8 e
2 ygs—) lwgs—) bgs—)
Then we eliminate ygs_l) in the bottom row by applying the cyclic transformation
Tgs—1 b(QS_l)
(9) Tl(sl) _ Pl(S)Tf,so) — bgs—n 055_1) ygs—l) :
,wgs) b(zs)

(s)

and we form the matrix X;”’ with the new bottom row
XO = () 6)= (o b)),

We then proceed with a Top-Down sweep as follows.
For s =logyp — 2,logyp —3,...,0 let,

s T gs bgs) ,
(s) _ X](' " _ J%S)H (s) () i=3,5,...,p/2° = 1,
T = = b o \
AN E Y e e) =it Ljisedd
' Yi w; " b
(s)

We then eliminate y;”’ in the bottom row by applying a cyclic transformation as in (9), and

7

we form the matrix XZ»(S) = (Tige bgi)l)

THEOREM 5.3. Stages (i) and (ii) of the Parallel Cholesky algorithm correctly compute
the pivots xp, k=1,...,p— 1.

Proof. With respect to a given processor k,1 < k < (p — 1), the sequence of parallel
transformations applied in stages (i) and (ii) of the algorithm consist of a sequence of cyclic
transformations applied to the submatrix 7,,,), and so, from corollary 5.1, to some given
cyclic transformation. Since this annihilates the off diagonal element b,,,, the proof follows
from Lemma 5.2. O

Stage (iii): Factorization. The parallel factorization of the independent blocks is
straightforward. Processor 1 computes the Cholesky decomposition of its original block
T1, while processors 2 through ¢ modify their blocks according to the rule

a;'n—}—l = Gip41 — bzzn—l—l/xi—h
before computing their decompositions.

Figure 5.1 contains a flowchart of the algorithm.
9

r () ()

&

2 7 7 7 7 7 7
25 T T
T4 T3(1)

D) TS(O) T4 TS(O) ZTg T7(0)

| | |

T () T3 T4 T5 Te z7

F1G. 5.1. A flowchart for p = 2° processors.

Fact.

6. Parallel computational cost. In this section we study the computational cost of

the Parallel Cholesky algorithm of Section 5.2.

Stage (i). To determine the cost of this stage, we give the details of the forward
and backward Gaussian Elimination procedures. We denote the blocks in each
processor as in (7), and the computed transformations as in (8). Since we compute
the revised decomposition introduced in Section 4, in what follows we actually use

the squares ¢; of the off diagonal elements b; of the matrix 7.
e Forward Gaussian elimination:
1. Set z = ¢ and w = as.
2. Fori=3,...,n set

t = ¢fw,
z = zx*xt/w,

10

w = a; —1.

e Backward Gauss elimination:
1. Set v = a,_1.
2. Fori=n—-—1,...,2 set

t = ¢fv

v o= a;_1—1

The flop count for Stage (i) is therefore ~ 6n, This is a pretty accurate measure of
the number of parallel steps performed by the p processors (no communication is

involved).
Stage (ii). Let

b v wn by v Y
T = Y1 owy by - v owy by
by vy o by vy Yo
Y2 wy b3 Yy w b3

denote a typical transformation in the Bottom-Up sweep. Again, we consider the
squares of the off diagonal elements, c; = b2 and 2z, = y?, i = 1,2, and compute
z = y%. Therefore, we perform the following calculation

Q. = W * vy,

g = C?/aa

v = 1-5,

t1 = =f(wi*7),
ty = =f(v2%7),
v o= v — 1,

w = wy— 1y,

z = [ty ki

This calculation takes 11 parallel steps. Similarly, let

z1 by 1 by
T= by ve Yo = by vy o
Yo wy b3 Tq9 b3

denote a typical transformation in the Top-Down sweep. Then we compute ¢t =
vg — ¢g/x1 and x9 = wy — 23/t in 4 parallel steps.
Stage (iii). The number of parallel steps is ~ 2n, as was shown in Section 4.

The total number T}, of parallel steps is therefore:

T, ~6n+11r+4r + 2n = 8n + 157,
11

where r = logy p. Assuming that r € n we conclude that the cost of the parallel algorithm is
governed by the factor 8n. Hence, the parallel algorithm requires about 4 times the number
of flops of the sequential algorithm (see Section 4). The theoretical speedup is thus p/4.
However, on vector, pipelined, and super-scalar machines, the flops count determines the
true performance of an algorithm only to within a constant factor. Actually, an algorithm
with a worse flops count might perform better in the case it can be vectorized. We show
now that our parallel algorithm can be vectorized.

Vectorization: Let N = p* n where p = 2" is the number of “physical” processors.
Suppose that each of such processors has the availability of one or more vector units. One
possibility to exploit the additional power given by the latter rests on employing some
“parallel slackness”. In other words, we assume that the number of available processors
is larger than p and let each physical processor simulate many such “logical” processors.
More precisely, let n = P x m, where P = 2!, so that N = ¢ * m, with ¢ = p+ P = 2717,
We let each physical processor performs the tasks of P corresponding logical processors.
The number of flops in stages (i) and (iii) is still ~ 8n. The number of flops in stage (ii)
increases to ~ 15(r+ P), which is still negligible for (r + P) < n. However, the main stages
of the algorithm, namely stages (i) and (iii), can now be vectorized, with each processor
working on vectors of length P = 2!, We provide an example in this direction with the
implementation of the algorithm on the CMb5. The results obtained are reported in the
next section.

7. Numerical examples. In this section we present some experimental results ob-
tained on a CM5 parallel supercomputer with p = 32 nodes. Fach node is in turn composed
of 4 vector units, controlled by a SPARC microprocessor, and 32 Mbytes of memory. The
running time and speedup for the largest problems we could experiment on are shown in
Table 2. We have computed the Cholesky factorization of several classes of tridiagonal
matrices, including (a) the matrix

—_ N
— N
—

1
1 2

(b) matrices obtained from T above by varying the diagonal elements, and (c) random
tridiagonal matrices. The order of the test matrices is N = p*n = ¢ * m, where p = 32 is
the number of the “physical” processors actually available, and ¢ is the number of “logical”
processors (cf. Section 6). Table 2 gives the running times for each of the following stages
of the algorithm.

—_

. D - Logical Diagonalization.

2. I - Bottom-Up and Top-Down stages performed by the logical processors within
any physical processor.

. E - Bottom-Up and Top-Down stages performed by the physical processors.

. C - Logical Factorization.

B oo

12

5. S - Sequential algorithm.

N 3 %22 22 224
n 3 %219 920 919
m 3% 28 27 28
D 1.444 0.963 0.480
I 0.033 0.033 0.035
E 0.005 0.008 0.009
C 0.562 0.372 0.186
total 2.045 1.376 0.710
S 2704.121 | 1791.729 | 880.850
speed-up 1322 1302 1240
TABLE 2

Computational examples on the CM5, ¢ = 21°.

The results shown in Table 2 are those obtained for the matrix T" above. Very similar
results have been obtained with the other test cases.

8. Error Analysis. We first present a simple a-posteriori estimate, and then proceed
to give an a priori analysis.

8.1. A-posteriori error analysis. Consider stage (iii) of the parallel algorithm, which
is the actual transformation applied to the matrix. As in (7), let B denote the block as-
signed to a processor, and let xy be the pivot computed by the previous processor. We
compute the following:

2 = Ci/-ri—la 1=1,,...,,n,
T, = a;—z, 1=1,,...,,n.

Due to rounding errors, we get

Zi=¢/ti1, G=c(l+¢), |lg<b, i=1,,...,,n,

T, =a; — %, flizai(l—l—m), |772'|§0, t=1,,...,,n,

where Zg is the computed pivot. In this analysis there is a small discrepancy because %, is
not the same as the pivot transmitted to the next processor. To fix this problem, we define
&, as this new kind of pivot. Then, in the first step above,

2 = (e1/30)(1 + e)(do/30) = &1/,
where
&= (1+e)e, (T+e)=(1+ea)(dp/io)

The perturbation in the first off diagonal element is further influenced by the factor Z{, /0.
If we assume that [(Z(— Z0)/Z0| = O(#), we can see that the algorithm is pointwise
stable. We found that practically, even for very ill conditioned matrices, this factor is

13

relatively small (see Table 3). Moreover, for some applications like eigenvalue computation,
we can sometimes allow for more than pointwise perturbations in the off diagonal elements
without loosing accuracy in the final results.

In Table 3 we compare the number of correct computed digits with the estimate given
by the a priori error analysis. We consider three different tests: Test 1 - for random
diagonally dominant matrices. Test 2 - for the tridiagonal matrix (1,2,1). Test 3 - for
random tridiagonal matrices. We have added an appropriate shift to the diagonal elements
to monitor the size of smallest eigenvalue of the matrix, which governs the number of a priori
correct digits (enclosed in parenthesis). Each Test column gives the number of correct digits
in the computed factorization as produced by the a posteriori error bound. The -’
for no correct digits at all.

stands

Shift Test 1 | Test 2 | Test 3
10-%(8) 14 15 16
10-5(—) 12 14 16
1071%(-) 12 14 8
107M(-) 12 14 6
TABLE 3
A posteriori as compared to a priori results, N = 22° m = 28.

Finally note that the a posteriori bound requires no additional cpu time or memory
space, so that it can be used to tailor the precision of the computed results with no additional
cost. We next perform an a priori error analysis and show that the parallel algorithm is
pointwise stable provided some extra precision is used.

8.2. A-priori error analysis. Let T be a tridiagonal symmetric positive definite
matrix of order N = pn, where p is the number of processors available, each processor being
identified by the label ¢, for i, = 1,...,p. We denote by A;, 7 =1,..., N, the eigenvalues
of the tridiagonal matrix, so that

/\1>/\2>"')\N_1>/\N>0.

We further denote by 0 the relative precision to which we know the matrix coefficients.
We then assume that pointwise é—perturbations in the matrix coefficients may lead up to
O(#') relative perturbations in its eigenvalues, where <0 <1. Although theoretically
we can only say that # = (A\;/Ay)@ (see Barlow and Demmel [10] and Demmel and Kahan
[12] for some exceptions to this rule), we often do get 6’ = O(é) in practical applications.
However, to be on the safe side, we will assume in the following that the preprocessing
stage is performed with 8 = §(Ax/)1) precision, where @ = (Ay/A;). The actual precision
should be determined by the application according to some previous knowledge or based on
the a posteriori bounds. We note that increasing the precision is a scalable operation that

does not require extra memory space.
14

TueorREM 8.1. Let i, = 12°, where 1 = 2'j + 1. Then, the pivots z;, and :U;»p are
computed from the same tridiagonal symmetric matriz, namely,

(s+1)
X;

0
TZ(SZ)—I

TQSZ'

of order n;, = n + 2s+ 1 when j is odd, and
Xl(s—l)

s=—2
(yry

ip = ’

0
Tyl
Ts;

of order ni, =n+2s—1 when 1 = 1.
Proof. The computation of z;, in the case ¢ > 3, proceeds by diagonalizing T;,, and
then by merging,

T = QU oUTS - oursy,

in the Bottom-Up sweep. Finally, we merge X](-SH) with TZ»(S) in the Top-Down sweep. A
similar procedure is performed for the case i = 1. The computation of x;»p proceeds by
a sequence of Top-Down transformations, and a Cholesky factorization of the respective
modified matrix 7] . O

THEOREM 8.2. The computed pivots &;, and i;»p correspond to different O(8) relative

perturbations of the computed matriz ’j;p, and O(8)\) absolute perturbations of its diagonal
elements. Hence,

|&5,/#,| = (L4 n) |nl=O((n+r)d) = 0().

Most likely, || = O(#) so that we can perform the computation using O(f) precision.

For technical reasons, we now state and prove some lemmas and postpone the proof of
Theorem 8.2 to the end of this section.

We denote the transformations in stage (i) by

vz v — A0) U
z A ¢ | = z A c ,
c w U w— 200

15

where

E(O) = oy, 0 = C(eg_gA_len—Z)a
A = &, 6o = z(eF A ey),
u=cz(el ,A7ey),

where we have replaced the off diagonal elements with their squares to simplify the repre-
sentation. We denote the middle transformations in the Bottom-Up sweep by

v — A(S_l) Ul
Uy wy — Egs_l) c
c Vg — A(Qs_l) Uy
Ug Wy — 2(5_1)
v; — Als) U
Uy wy — Egs_l) c
= (s-1)
c vy — Ay Ugy
u wy — n(s)
fors=1,...,7r — 1, where

and

(10) 0, = dul_l,ya 0s = ';2_27’ u = ﬁésasv

with

(11) y=1-6, =72, di=w -3, dy=u - ATV

Here we may compute di(d3) in two different ways. a) Accumulate the corresponding par-
tial shifts and then deduce their sum from the corresponding element wq(v;). b) Update
these elements with each newly created partial shift. We note that method a) will probably
compute dy(dz) more accurately than method b), especially when these partial shifts tend
to increase monotonically. We therefore choose it in the following analysis, although the
same bounds could be achieved using method b) as well.

Finally, we denote the transformations in the Top-Down sweep (as well as the first trans-
formations in the Bottom-Up sweep) by

o Cc g C
c v—AB) U = d u |,
u w — n() 1
for s=r—1,...,0, where
1= w— E(S‘H), nis+l) — »ls) 4 Ost1, Ost1 = 7,

16

with
(12) d=v— A(S+1)7 A(S+1) = A(S) + 6s+17 65-}-1 = =

Zo

LEMMA 8.3. The computed value of dy, i.e.,
0?1 = fl(wl - i}(s)) = fl(wl - fl(Efzo 5i))v o; = fl(Ui)a
in step s + 1 of the Bottom-Up sweep is such that
dy = wy — i(s), i(s) =) i—00i,

where

g
|

w1(1+€u71)7 |€u71| < 07
o, = 6i(l+e,), 1=0,...,3 |&|=0(0).

N
|

Proof. We have that
(il = ('wl — 2(5))(1 + 6::21) =W — §(5)7 W = 'wl(l + 6@1), |€,LD1| < |€C21| < 0,

and i(s) = %(5), Then we obtain

S

s s—1
i(s) = o, H (1—|—€]‘):ZEZ',
i=0 j=i1—1

i— =0

where ¢y = 0 and |¢;| <@ for 7 =0,...,(s —1). Hence,
s—1
T, = 0; H (1 + Gj) = (Afi(l + €gi),
7=1—1

with |¢,,| = O(6). O
COROLLARY 8.4. Under the hypotheses of Lemma 8.3 we obtain similar results for ds,
that is,

(?.2 = '?/}2 — Z(S), '?/}2 = ’02(1 —|— 6@2), |€@2| S 0,
where A = AG) | and
AW o5 G Fi=6i(1tes), les| = 0(8).

Similarly, in step s — 1 of the Top-Down sweep (or in the first transformations of the
Bottom-Up sweep), we obtain

v=v(1+¢€), el <0,
w=w(l+ez), |ea| <0,
17

d=o— A"
’LZJ—

il = _(8)7

where A = AG) | and T = $) s above.

We now consider stage (i).
LEMMA 8.5. The computed transformation in stage (i) is affected by perturbations of
the order of 8, with the following structure:

v Z v — A(O) @
zZ A ¢ |=> z A T
¢ w U w— T

Proof. The forward elimination procedure can be viewed as a Cholesky factorization
of A (see Section 4), and therefore produces a matrix A which differs from A for an O(#)
perturbation. Hence,

—1

Go=clel A e,)14 e), ler] < 6.
Then,
Go=e(el A leny), T=+4e) 1+ ea)e=(1+c)e,
and |e.| = O(9). Similarly, the backward elimination produces another #-perturbation of

A, which we denote by A. Hence, we have

bo=2(eTA)14 &) = 2(TA e)(1+ ¢,

where

TA—I
(13) the =g gl <,

et A e
We now analyze expression (13).
Let
M >72> V-3 > Yn2 > 0,

be the eigenvalues of A, and 7;,%;, i = 1,...,n — 2, those of A and A, respectively. Let A’
denote the leading submatrix of A of order n — 3, and let its eigenvalues be

I I I I
Y1 > Y2 > Yn—a > Yp—g > 0.

Let A" and A denote the corresponding submatrices, whose eigenvalues are denoted by 7.
and 4/, 1 =1,...,n — 3, respectively. Then

(fde) HATL _To+d)Tl+a)
(eFA™! 1;[7 1;[7 _H(1+z')H(1+e)_(1+77)’

with || = O(#). Though very general, this bound captures the possible behavior of the
error since we can actually exhibit a matrix for which this bound is achieved. More special
upper bounds can also be derived, see for example Sun [25]. However, since A is a relatively
small submatrix of the original matrix, the estimate v = O(v,—_2) is likely to be more
accurate, and in this case |n| = O(0) so that 8 = 8 will suffice.

We then obtain

Go=2TA 'er), zZ=(14+n)l+e)l+e)z=(1+¢)z,

with |e,| = O(f). Finally, we have that

n

e(el A7 er) TT(1 + caima)(1 + €20), ljl <6, j=5,...,2n,

1=3

i

(l
w

and from 7 = Ze(el _,A™ e;), we get

[Tisa(14 e21)(1 + 622')H

(1+e)(l+e) . el =0(0),

= (14¢,)u=
which completes the proof. We further note that for 7, = 1, the corresponding analysis is
much simpler, and the computed pivot satisfies:

i=w-3", T=wl+te) |l <0

We next analyze the Bottom-Up stage.

LEMMA 8.6. The computed transformations in each of the Bottom-Up steps are affected
by perturbations of the order of 8, except for the first step where the perturbations are of the
order of 8. The structure of the perturbations is

v — ALY 0
w0 Wy — igs_l) C
¢ Ty — Z(;_l) o
Uy Wy — i)
v] — Z(s) U
W Wy — igs_l) T
= _ _ —(s=1) _
C vy — A, Usy
i Wy — i(s)

fors=1,...,r—1.
Proof. From (10) we have that

~ _ ’&,2(1-}-65) A _ 2 — C(1+62)
Ts = daA(1+es)’ ! (1 ﬁ)(l + 63)7 p= dydy(14€1)’

19

with |¢;] <8, i =1,...,5. Hence,

U+)0+ e,)d+6) m _ U
(Lt+e)(l+e) dy do7

0, =(14¢€,)0s =

where, 3 = B and ¥ = 1 — 3. Using Lemma 8.3 and Corollary 8.4, we get

dy = (14 eg)dy = (b~ A1 eg,) = 7y — AF V.

We observe that the perturbation in the original element vy of T is now determined by
vy = v2(1 + €172)(1 + €52) = v2(1 + €U2)7 |€U2| = O(|€u2|)7
since |z, | < 6. Similarly,

SR (E A (TR (ETE N
° I (14 €7)(1+€3) diy iy’

where |eg|, |€7] < 6, and
do=(1+ eq)dy = (b — S0 4 €gy) = — 07V,
Here, the perturbation in wq is determined by
wy = wl(l + €y)(1 + €51) = wl(l + €w1)7 |€w1| = O(|€u1 |)

Finally, from (11), we get

7= (14 e)(1+€q,)(1 +€q,) _c
d1d2(1—|-€1) N dld‘Q7

so that
c= (1+€C)C7 |€C| :O(|€u1|+|€u2|)7

and from

(1+es)(1+e)
(1+€,)(1+es,)

U= BSS(1+€8)&S(1+€9) = %565 = (1+€u)ﬂ’

with |eg|, |eq]| < 6, we get |e,| = O(F). Therefore,
l€w, |, [€w, | = O(8), s=2,...,(r=1),
except, possibly, for the first step, where |e,,|, |en,| = O(8). O

We conclude with the analysis of the Top Down stage.
20

LEMMA 8.7. The computed transformations in each Top-Down step are affected by per-
turbations of the order of 8, except for the last step where they are affected by perturbations
of the order of 8. The structure of the perturbation is

To c Top ©
¢ - AtY 7 = d
u w5y T
fors=(r—1),...,1. A similar statement holds for the first transformation in the Bottom-

Up sweep.
Proof. We have from (12),

8¢) = (c/io)(1+), b5=bs(1+es,) =2/,
where

To =129, c=c(l+e¢), |e|=0(8).
Hence, using Corollary 8.4,

d

H— K(5)7 Z(s) — A(S_l) n (557

and from,

7= (14)60 = (14 €)1+ 6)(1 +)

bl

ull

with |eg| < 6, we get
d= (o - AN+ e) =7 A",
Here, the perturbation in » is given by
t=v(l+a)(l+a)=ovlte), |6 =0(el),
and,
le,] = O(8), s=r—1,...,1,

except, possibly, for step s = 1, where |¢,| = O(f). Finally, the perturbation in w is given

by

T =8y = — 5 m—i(s), T =w(l+ €y),

with |e,]| < 6. 0

CoROLLARY 8.8. The computed pivots &;, and :Egp are affected by perturbations of the
order of 8, so that

Bi,/3 | = (1+m), [0l =O(Nb).
21

Proof. We note that 7;, is derived from the original matrix by a sequence of parallel
transformations of the type described in Lemmas 8.5, 8.6, and 8.7. Then, both z;, and

!/

x;, are derived from this matrix by further, though different, transformations of this same

type. The upper bound is determined as in the proof of Lemma 8.5. O

Note that the bound of Corollary 8.8 is pessimistic. Most likely, the computed pivots
are affected by perturbations of the order of # only, so that || = O(N8).

We now proceed to refine this statement. Let ’]A;p denote the computed matrix 7;,. We
take, as the diagonal elements that have not been computed as yet, the difference between
the original element of T and the corresponding computed shifted sum.

LEMMA 8.9. The matriz ’fip is obtained from order of 8 perturbations in Tip, a matriz

affected by O(0) perturbations in T'. Hence, if we denote by

n n

Alied 5 AGr) ---/\(ifll > AP >0

(1)

the eigenvalues of T;,, and by /A\Z the corresponding eigenvalues of j}p, we get

AP > An(140(6)) > 0,
i.e., the matriz ’j;p is positive definite. A

Proof. We note that the computed matrix 7; is derived from perturbations of the order
of 8 of the off diagonal elements of some matrix 7, affected by O(f) perturbations in 7.

Let us denote by Xl(ip), i =1,...,np, the corresponding eigenvalues of 72'?, then,

(1400w <X, XY <M+ 0(0)),

i

and therefore
A = Xij;) oA = Xif;’)(l +O@)(M/AN) > Av(1+0(8)) > 0,

as required. 0O

Proof of Theorem 8.2. The two pivots are computed from 7; by a sequence of trans-
formations almost as in Lemmas 8.5, 8.6 and 8.7. The only difference is the following. The
diagonal elements of Tip are given by pair of numbers, the first being the original element
of the tridiagonal matrix, and the other the accumulated partial sum. Hence, beside the
standard relative perturbations of the order of 8, we may get additional absolute perturba-
tions of the order of #A;, which are negligible. Hence, the proof is the same as in Lemma
8.5. Moreover, since perturbations are probably of the order of # only, we should expect
the relative errors to be bounded by a quantity of the order of 4. 0

9. Conclusions and Open Problems. The results of this paper can be easily gen-
eralized in two directions, i.e. to block-tridiagonal and to band matrices. In both cases
the algorithmic framework remains essentially the same. In addition, it is possible to apply
similar ideas to the development of a parallel version of the QR algorithm.

Future work to be done include a detailed analysis of the latter, together with a com-
parison with previous work by two of the authors [9].

22

REFERENCES

[1] E. ANDERSON ET AL., LAPACK Users’ Guide, STAM, 1992.

[2] T. BAR-ON, A practical parallel algorithm for solving band symmetric positive definite systems of linear
equations, ACM Trans. Math. Softw., 13 (1987), pp. 323-332.

[3] , Efficient logarithmic time parallel algorithms for the Cholesky decomposition of band matrices,

Tech. Report 661, Technion, Computer Science Department, 1990.

[4] ——, A new divide and conquer parallel algorithm for the Cholesky decomposition of band matrices,
Tech. Report 667, Technion, Computer Science Department, 1991. Submitted to SIMAX.

[5] ——, Fast parallel LR and QR algorithms for symmetric band matrices, Tech. Report 749, Technion,
Computer Science Department, 1992. Submitted to TOMS.

[6] ——, Interlacing properties for tridiagonal symmetric matrices with applications to parallel computing,
Tech. Report 9317, Technion, Computer Science Department, 1993.

[7] ——, Parallel computation of the spectrum of a symmeiric tridiagonal matriz, Tech. Report 9318,

Technion, Computer Science Department, 1993.

[8]

, A new divide and conquer parallel algorithm for computing the eigenvalues of a symmeltric
tridiagonal matriz, Tech. Report 832, Technion, Computer Science Department, 1994. Presented
in [CCAM 94, Submitted to the Journal of Computational and Applied Mathematics.

[9] I. BAR-ON AND B. CoDENOTTI, A fast and stable parallel QR algorithm for symmetric tridiagonal
matrices, Linear algebra and its applications, (1994). To Appear.

[10] J. BARLOW AND J. DEMMEL, Computing accurate eigensystems of scaled diagonally dominant matrices,
Siam J. on Numerical Analysis, 27 (1990), pp. 762-791.

[11] B. CoDENOTTI AND M. LEONCINI, Introduction to Parallel Processing, Addison-Wesley Publishing
Company, 1993.

[12] J. DEMMEL AND W. KAHAN, Accurate singular values of bidiagonal matrices, Siam J. Sci. Stat. Com-
put., 11 (1990), pp. 873-912.

[13] J. J. DONGARRA AND A. H. SAMEH, On some parallel banded system solvers, Parallel Computing, 1
(1984), pp. 223-235.

[14] Z. DRMACG, M. OMLADIE, AND K. VESELIC, On the perturbation of the Cholesky factorization, Siam
J. on Matrix Analysis and Applications, 15 (1994), pp. 1319-1332.

[15] K. V. FERNANDO AND B. PARLETT, Accurate singular values and differential qd algorithms, Numeriche

Mathematics, 67 (1994), pp. 191-229.

[16] J. FraNcis, The QR transformation, part I, Computer J., 4 (1961), pp. 265-271.

[17] ——, The QR transformation, part II, Computer J., 4 (1962), pp. 332-345.

[18] G. H. GoLuB AND C. F. V. LoAN, Matriz Computations, The Johns Hopkins University Press, 1989.

[19] J. GRAD AND E. ZAKRAJSEK, LR algorithm with Laguerre shift for symmetric tridiagonal matrices,

The Computer Journal, 15 (1972), pp. 268-270.

[20] B. N. PARLETT, Laguerre’s method applied to the matriz eigenvalue problem, Mathematics of Compu-
tation, 18 (1964), pp. 464-485.

[21] H. RUTISHAUSER, Solution of eigenvalue problems with the LR transformation, Nat Bur. Standards,
AMS, 49 (1958), pp. 47-81.

[22] H. RUTISHAUSER AND H. SCHWARZ, The LR transformation method for symmetric matrices, Numeriche
Mathematics, 5 (1963), pp. 273-289.

[23] A. SAMEH AND D. Kuck, On stable parallel linear system solver, J. Assoc. Comput. Mach., 25 (1978),
pp- 81-91.

[24] H. S. STONE, Parallel tridiagonal equation solver, ACM Trans. Math. Softw., 1 (1975), pp. 289-307.

[25] J. SUN, Componentwise perturbation bounds for some matriz decompositions, BI'T, 32 (1992), pp. 702—
714.

[26] P. SWARZTRAUBER, A parallel algorithm for solving general tridiagonal equations, Mathematics of
Computation, 33 (1979), pp. 185-199.

[27] THINKING MACHINE COROPORATION, The Connection Machine CM-5 Technical summary, Oct. 1991.

[28] J. H. WILKINSON, A priori error analysis of algebraic processes,in Proc. International Congress Math.,
1968, pp. 629-639. Moscow: Izdat.

[29] ——, The Algebraic Eigenvalue Problem, Oxford Science Publications, 1988.

23

