INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Efficiency Comparison of
Real-Time Transport Protocols

Pasquale Di Genova* and Giorgio Ventref
TR-95-004

March 1995

Abstract

In this paper we consider the problem of providing efficient network support to dis-
tributed real-time applications with different communication requirements. In the
case of resource reservation protocols, the level of efficiency of a transport service
connection provided by a communication system is influenced by the applications
requirements, in terms of amount of network resources needed to provide guaranteed
Quality of Service. We consider the Tenet protocol suite, a connection-oriented in-
ternetworking set of protocols based upon resource reservation. The suite provides a
real-time network service (i.e., a service with guaranteed performance) to two types
of applications: continuous media (CM) clients that generate data at regular time
intervals (e.g., video and audio); message oriented clients that generate data at arbi-
trary times (e.g., urgent messages and remote control applications). We compare the
performance of the transport protocol for CM clients (CMTP) to that of the transport
protocol for message oriented clients (RMTP). In particular, we consider the buffer
usage in the underlying real-time internetwork protocol (RTIP). The results of the
simulations show that in the CMTP case, by taking advantage of the regular nature
of CM clients, proper mechanisms can be adopted to further smooth traffic, so that
buffers are used much more efficiently than in the RMTP case.

*The Tenet Group, Computer Science Division, Department of EECS, University of
California, Berkeley and International Computer Science Institute, Berkeley. E-mail:
{digenova,ventre}@icsi.berkeley.edu

tDipartimento di Informatica e Sistemistica, Universita degli Studi di Napoli “Federico II” Napoli,
Italy.

1 Introduction

Under the term Real-Time Communication a wide variety of quite different commu-
nication requirements is included. They range from those charaterizing applications
exchanging isochronous data such as digital video and audio, to those typical of hard

real-time applications like control systems and robotics.

The characteristic common to all these applications is the need for a communica-
tion service capable of providing a well defined Quality of Service (QoS) in terms of,
for example, available bandwidth, end-to-end communication delay and jitter, and
data losses. We might define such a service reliable, provided that the term reliability
be redefined, by assigning it a broader meaning that implies the capability of a system

to guarantee a set of quality-of-service parameters.

However, the different characteristics shown by distributed real-time applications
require the availability of a communication service capable of satisfy such diversity

in the framework of a guaranteed QoS environment.

Several protocols have been proposed or implemented in the last years, present-
ing different approaches to the problem of providing guarantees in a communication
service[1][13][4] [2].

Proposals adopting resource reservation schemes in addition to rate and admission
control mechanisms, appear to be capable to offer a stronger QoS semantic, capable
to satisfy even the communication requirements of the most demanding real-time

applications.

The major drawback of the resource reservation approach is, of course, a reduced
level of network utilization that these protocols present. This problem derives from
the need of preventing network users from being jeopardized by other users even
when these are transmitting at worst-case conditions. The costs related to factors
such as bandwidth allocation, memory buffer and cpu utilization in the nodes of
modern, high-bandwidth, network architectures, give enormous importance to the
development of techniques for optimal allocation of such resources. We believe that
this challenging goal can be achieved by studying and exploiting the charateristics of

typical real-time applications, in order to provide them with a communication service

tailored to their specific needs.
The use of QoS parameters can assist resource management and help in matching
user requirements and traffic characteristics to the network’s capabilities. Character-

istic QoS parameter values for different traffic streams are shown in table 1 [8].

Traffic Type | MaxDelay(s) | Max Delay | Av. Throughput | Acceptable Packet
Jitter (ms) | (Mbps) Error Rate

voice 0.25 10 0.064 10e-1

video 0.25 10 100 10e-3

image 1 - 2-10 10e-9

Table 1: Characteristic QoS parameter values for different traffic types.

In particular, this table considers multimedia types. Voice, video and sequenced
image display are called continuous media types because traffic is generated at regular
time intervals: a voice bit stream of 64kbps is generated by 8 bit encoding of samples
taken at intervals of 125 ps; video frames sent at 30 frames per second are distant 33
ms from each other.

Many multimedia applications use these media types[12]. An example is com-
puter supported collaborative work (CSCW). The goal of this service is to create a
virtual common working environment to favour interactions amongst geographically
distributed professionals. Participants in a CSCW application, other than generating
and receiving video and audio data, also share distributed editors, spreadsheets and
drawing spaces. Another example is the Virtual Café. Remote users can interact
through a common electronic space where interaction is informal, with users that can
freely join or leave the meeting. A third example is a tele-lecture in which a lecturer
sends audio, video and digitized slides to students located in remote sites. Students
wishing to intervene send audio and video data to both the teacher and the remaining
students of the virtual classroom.

In all these examples, to facilitate interaction, the receivers need be kept up to date
with participant sending data. For this reason, data need be sent regularly. However,
not all real-time applications have this requirement. There are real-time applications

that generate data irregularly and in a limited amount. These kind of applications,

called message-oriented or message driven applications, require network guarantees in
all the cases where data need arrive at destination within a prefixed deadline. Typical
message-oriented applications are those performing remote measurement or control,
as well as high-performance computing on distributed memory systems [10].

As an example, we consider the case of telepresence applications, i.e. applications
that enable a user to be virtually present in a remote site at the scope of, for example,
measurment reading[9]. An example of this kind of application is teleprogramming
where a user remotely controls or manipulates devices such as sensors or robot[T7].

Since CM clients provide traffic with a certain regularity, they can characterize
their future behavior better than real-time message oriented clients. Thus, CM trans-
port services can use this a priori knowledge of future data transmission timing to
smooth traffic and thus more efficiently utilize network and end-system resources such
as buffers.

The goal of this study is to compare the performance of a real-time transport
protocol suitable suitable for CM applications to that of a real-time transport protocol
suitable for message-oriented applications. In particular, we consider as performance
index the utilization of buffers in the network nodes.

The results of our study show how buffers can be used more efficiently. This is
important since higher efficiency means both an increase in network resource utiliza-
tion (e.g., buffers) and improved network performance (e.g., end to end delay). If
the buffer requirement of a channel is small then many connections can flow through
a node without suffering buffer overflow. Consequently, if buffer overflow is avoided
then retransmission is unnecessary and a high throughput can be achieved. High
throughput can be achieved also for a second reason: limited buffer requirement
means smaller queues in the network nodes and thus smaller queueing times.

The paper is organized as follows: section 2 considers transport protocols for real-
time applications; section 3 gives an overview of a specific real-time protocol stack
(upon which we have developted our simulations) called Tenet; section 4 describes
one of its transport portocol suitable for continuous media applications; section 5
explains a rate control scheme that we implemented at such layer to increase buffer

efficiency; section 6 shows the simulation scenario we adopted, and highlights the

results we obtained from our simulations; finally, we give the conclusion of our study.

2 Transport Protocols for Real-Time Applications.

Why is a specific transport layer protocol needed for continuous media traffic?

Current transport protocols are not well-suited towards serving real-time or CM
clients in a heterogeneous network; the introduction of a specific transport protocol

for CM clients is an attempt to better satisfy continuous media service requirements.

Transport layer service requirements can be supported through two different ap-
proaches. In the first approach, a general transport layer service is offered but options
are provided on this service to adapt it to the client’s service requirements. This is
the approach taken by TCP, which implements a flow control mechanism based upon
a sliding window. To make this protocol suitable to different flavours of applications,
a dynamic window management scheme has been introduced such that the width of

the sliding window is adapted to the actual communication needs [3].

In the second approach multiple transport protocols are designed, each tailored to
meet the various transport service requirements of end users. As we have seen in the
introduction, real-time applications can be considered as divided in two main classes:
CM applications and message-oriented applications. Since these have different re-
quirements, the Tenet approach has been to split the transport layer vertically into
two distinct parts and implement a specific protocol for CM clients and a specific
protocol for message-oriented clients. The transport protocol for message-oriented
applications delivers/receives data to/from the network layer at irregular intervals.
For these applications irregular data transfer is sufficient (i.e., transmission is "mes-
sage driven”) but network performance such as end to end delay and throughput need

be guaranteed.

Typical applications which require a real-time message transport protocol are:
o Urgent messages, such as distributed or remote process control applications. In
these cases, end to end delay need be limited to a few seconds.

o Electronic mail service with guaranteed delivery latency, where end to end delay

4

need not be necessarily small but must be upperbounded?.
e Remote control or real-time data acquisition, where reliability and timely delivery
of small/medium size messages is crucial for the success of the application.

On the other side, the transport protocol for CM applications delivers/receives
data to/from the network layer isochronously conserving the timing characteristic of
the sender. Typical continuous media application [12]are:

e Videoconferencing

e Virtual Classroom

e Voice communication

o CSCW applications

e Virtual Café

Furthermore, transport protocols for CM applications provide the following func-
tionalities to implement rate control, that is to control the rate at which packets
are sent to the network; enable self-timed data transmission since data is generated
isochronously and thus transmisson is time-driven; provide a data stream abstraction,
that is a simplex, end to end, continuous, sequenced, periodic transfer of data.

This results in an improvement of buffer usage in the network nodes and a re-
duction of interactions between sending and receiving client since no flow control is
needed. The stream abstraction is more natural for CM clients. If a client requires a
full motion video, a full motion stream is created. If a client requires slow motion, a
slower stream is set up. If a client requires an audio connection, an audio stream is
created. The client only sees these high-level characteristics (full motion video, slow
video, audio) of its traffic. He need not to know anything about the network-oriented
QQoS parameters such as average throughput, maximum delay on which the resource
allocation and admission control schemes are based upon at the real-time network
protocol layer. It is the duty of the transport protocol translate the different stream
types into the characteristic QoS parameter values. Without a stream, if the client
wanted to freeze a video frame, it would stop sending packets, but the connection
would still be there, perhaps blocking resources, even though it is not being utilized.

With the stream abstraction, clients have a better control over use of resources be-

ITCP ensures reliable packet delivery but gives no guarantees on delivery latency.

cause in general, one stream is associated with each end-user service requirement (full
motion video, slow motion video, freeze frame). By having the stream abstraction
at an upper layer (i.e, the transport layer), we can easily translate the CM client

requirements into QoS parameters (see fig 1).

Stream abstraction

Transport protocol
for continuous media
applications

QoS interface

Real-time network
protocol

Figure 1: Stream abstraction provided by the transport layer and QoS interface
provided by the network layer.

From this viewpoint we can restate why a specific transport protocol is neces-
sary for CM clients: if we can tailor the transport service to the client’s service
requirements (and by making CM streams visible at the transport service) then we
can specify the user’s requirements more naturally and can use more efficiently the

network resources allocated to the transport service connection.

3 The Tenet Real-time Protocol Suite

We choose to study the efficiency of network resource usage in a real case scenario. We
considered proposed and existing real-time protocol suites that have been studied[1]
and implemented[13][4] [2]. Amongst these, we choose to consider the latter because
of the availability of an implementation of the suite and because a simulation model
was already availabile. Before entering in the details of the simulations, in this section

we give an overview of the Tenet protocol suite.

The Tenet suite is a connection-oriented internetworking protocol suite based upon
resource reservation. The suite incorporates the concept of real-time channel, a sim-
plex unicast end-to-end connection with performance guarantees (e.g., guarantees on
end-to-end delay and packet loss probability). The number of real-time channels the
network can accept is limited by channel admission control tests which take place
before establishing a new channel[5]. A new version of the protocol suite, based on a
multicast channel abstraction, is currently under development[6]. The network/client
interface model takes the form of a contract between the client and the network.
The client promises to obey certain traffic restrictions and the network undertakes to
provide a certain pre-agreed level of service.

This service model implies:

1. Admussion control. The admission of new real-time channels must be controlled
so to ensure that their resource usage does not violate guaranteed real-time services
to existing established channel.

2. Resource reservation. Buffer space need be reserved to ensure that packets
will not be dropped; likewise switching bandwidth and processing power to ensure an
upper bound on packet delivery.

The client defines the traffic specifications through:
®%,.;,: minimum packet interarrival time
or,,.: average packet interarrival time
05,,4: maximum packet size
o [: averaging interval for z,,.

The clients Quality of Service requirements are:

QoS, = (D, Z,W, J,U)

where D is the end to end delay, 7 is the probability that the delay bound is satisfied
7 = Prob{delay < D}, W is the probability of packet loss due to buffer overflow, J
is the delay jitter (max variation in packet delivery), and U is the probability that
delay jitter is satisfied.

Real-time channels can be:

o deterministic: a real-time channel where Z=U=W=1; all packets arrive and arrive
on time (guarantees are absolute).

e statistical: a real-time channel where 0 < Z %« U « W < 1; some packets are lost
and/or are late and/or have high jitter (only some guarantees are made).

o best-effort: a real-time channel where Z=W=U=0. No guarantees are made.

The Tenet Suite 1 consists of four protocols as shown in figure 2.

Non Real-time | Real-time
Applications Applications RCAP "
TcP RMTP CMT%/
P RTIP

Data Link Layer (e.g. FDDI,ATM)

Figure 2: Tenet real-time protocol stack.

eReal-time Channel Administration Protocol (RCAP): A resource management
protocol that performs channel setup based upon the clients QoS performance re-
quirements, its traffic description, and the availability of network resources.

e Real-Time Internet Protocol (RTIP): An internetworking protocol which pro-
vides data transfer on a simplex, unreliable, guaranteed performance packet service.
It schedules packets according to reservations made by RCAP.

e Real-time Message Transport Protocol (RMTP): an end-to-end real-time data
transfer protocol which provides an unreliable guaranteed performance message ser-
vice to the clients. RMTP maintains state at the end points of the channel. RMTP
state is used to regulate the rate of packets entering the network, and the fragmen-
tation and reassembly of messages into packets.

e Continuous Media Transport Protocol (CMTP): a transport protocol suited for
clients which generate and/or consume data at regular time intervals (i.e., continu-

ous media clients). CMTP provides unreliable, end-to-end, continuous, sequenced,

periodic transfer of data.

The Tenet protocol suite can coexist with the TCP/IP protocols. and can be
easily implemented in a wide spectrum of internetworking environments. In fact, to
adapt Tenet real-time protocol suite to different networks, we need to change only:
1. The admission control test

2. The local bound computations

4 Description of the Continuous Media Transport Protocol

The basic components and interactions of the CMTP implementation are illustrated

in figure 3

Sending Client Receiving Client

Write Read

Service Service

Primitives Primitives

Sender’s Buffer Receiver’'s Buffer

Connections

Figure 3: Basic interactions of CMTP.

On the left side we have the sending host. It consists of a sending client, a CM'TP
entity (CMs) and a buffer shared between the two.

Similarly, on the right side we have the receiving host. The service CMTP offers
is divided in a set-up phase and a data transmission phase.
Set up requests are handled on behalf of CMTP by RCAP, which reserves resources at

the sending and receiving hosts and establishes a network level real-time connection

via RTIP.

2c 1 2b

G

Figure 4: Set up Phase of CMTP.

The main steps of the set up phase are shown in figure 4:

1. The sending client (Cs) requests a continuous media (CM) connection from the
CMTP entity on the sending side (CMs), specifying its traffic characteristics and the
QQoS requirements.

2. If the CMTP entity is willing to handle the request, it passes the request to
the CMTP entity (CMr) on the receiving side (2a) and thus up to the receiving client
(2b). If not, CMs informs Cs that the request was denied (2c¢).

3. If the receiving client accepts the request, then the connection is established;
otherwise, the connection is refused.

4.The sending client is informed of the receiving client’s decision.

The main steps of the data transmission phase are shown in figure 5:

At the sending side.

1. The sending client informs the transport service (CMs) that transmission begins
by opening a stream.

2. The sending client writes data into the buffer it shares with CMs.

3. CMs informs CMr that data is being stored in the receiver’s buffer. Data
transfer occurs through RTIP.

10

Sending Client Receiving Client

3:Read datafrom

2:Write datain the receiver's buffer.

Buffer 1:0pen a stream

and start Tx.

3:Inform CMr data ready
e Read

Sender’s Buffer Receiver’s Buffer

4: Data Transfer
at guaranteed
R performance R
~

—_—

Figure 5: Data Transmission Phase of CMTP.

4. Once per period CMs copies the data from the sender’s buffer to the receiver’s

buffer, satisfying the performance requirements specified during set up phase.

At the receiving side.

1. CMr receives an Open PDU packet from its peer entity on the sending side
(CMs).

2. CMr informs Cr that the channel has been opened.

3. The receiving client reads data from the receiver’s buffer.

Finally, figure 6 shows the main steps of the stream closure of CMTP.

1. The sending client informs CMs that it wants to close a stream.

2. CMs empties the sender’s buffer (2a) and informs CMr that the stream is being
closed by sending a Close PDU packet (2b).

3. CMr informs the receiving client that the stream has been closed.

5 A Rate Control Scheme

To implement a rate control scheme, we choose a sliding window algorithm. A sliding
window is used to smooth the traffic sent by the CM client. We introduce the following

relation:

11

Sending Client Receiving Client

1:Close stream

| 2aEmpty

_— buffer : Send Close PDU

Sender’s Buffer Receiver's Buffer

RTIP RTIP

Figure 6: Stream Closure of CMTP

IT=nxT (1)

where | is the averaging interval defined previously and the width of the sliding
window, T is the frame time, and n is the number of frames per window. If the

window begins at t=0, the window interval can be represented as:

I=1o=[0,n+T] (2)

At time t = T (i.e., the next window) can be represented as:

[=1Ip=[T,(n+1)T] (3)

that is, a translation of width T of the original window.

The condition on x,,. implies an upper bound on the number of packets that

can be sent in a window of length I (i.e., #) The condition on z,,;, implies an

upper bound on the number of packets that can be sent in T (i.e., %) Considering

CMTP’s sliding window rate control scheme, the maximum number of packets that
we can send in the last frame of an interval is determined by the conditions on .,

and T pe:

T 1
MazPackets = main{) —NP,_1} (4)

Tmin Tave

12

where N P,_; is the number of packets sent in the previous (n-1) frames.
This equation, for the numeric values of T=10ms, 1=50ms, n=5, x,,;,,=2.0ms,

Tape=2.Dms and a packet arrival distribution as shown in figure 7 becomes:
MazxPackets = min{5,3} =3 (5)

Let us consider the next time frame of width T, that is the interval [6T, 7T]. Let
us calculate how many packets the algorithm allows to send in this time frame.

Formula 4 becomes:

T 1 10 50
MazxPacketsin[6T,7T] = min{ , — NP1} =min{—,-——18} =2 (6)

3
Tmin Tave 2725

Figure 7: An example of how many packets arrive per time frame T to RTIP using
the sliding window rate control scheme.

RMTP does not implement a sliding window rate control scheme. Therefore, it

will send packets at intervals of ,,;, until the x,,. condition does not hold (i.e., when
I

Tave

packets have been sent) and then it will wait until the next interval (1) before
sending further packets (see figure 8). This behaviour affects the number of buffers
utilized in RTTP.

10 15

|

10 1315 1

L

2T 3T 4T 5T

3T 4T 5T

Figure 8: Packet interarrival distribution over I (I=5T) for RMTP (a) and CMTP
(b).

13

6 Simulation Scenario

We have implemented a simplified model of CMTP on the real-time network simulator
Galileo[11] for comparison with RMTP. In particular we were interested in evaluating

buffer usage.

Assumptions for the model In developing our model of CMTP, we chose the
following traffic characteristics for traffic generated by CMTP:

0r,.;n = 2.0ms

0L, = 2.0msS

o/ = 50ms

e Type of realtime channel: deterministic

These parameters control the rate at which CMTP entities send data. As long as
the traffic that CMTP sends to RTIP behaves according to these parameters, RTIP
will guarantee CMTP’s performance requirements.

Furthermore, we made the simplifying assumptions:

1. There are always buffered packets ready to be sent.

2. All packets are of the same size.

3. There is no delay jitter control.

Because we assume no delay jitter, and because CMTP is a deterministic time-
driven protocol (because of the first assumption), we can consider RTIP to be a
work-conserving queue (i.e., no waiting packets are left unserved).

CMTP is deterministic because it sends packets according to the sliding window
rate control scheme described in the next section. The assumptions for ., Tape and
I are based on typical values. From these values, CMTP implements its rate control
scheme.

Using our simplified model of CMTP for this study, we show that CMTP utilizes
buffers more efficiently than RMTP because it smooths traffic. We ran many sim-

ulations comparing the number of buffers used when a particular number of CMTP

14

or RMTP clients were running. In this study, we show the results produced by four
CMTP clients versus four RMTP clients sending packets at the peak rate (worst

case). The number of buffers used is shown in figure 9.

Buffers RMTPvs.CMTP
22.00

20.00

| G i b
18.00 : ! | Din !
N T T T 7

16.00

! v [i
14.00 ! ' v I {
i I

12.00

10.00

8.00

6.00

4.00

- l‘ll'l]‘ll'ﬂ‘lll'l'ﬂ‘l]'l“l'llﬂ]\IWl'l"'ﬂll'l'ﬂl'l'l'lTI'llH'l\I'WI‘I'\'lfﬂ'ﬂYﬂlTﬂllH\ﬂ\W“m‘llfl'ﬂl'mxll'ml'l'l'“'llﬂ

\ ! \ | s
0.00 50.00 100.00 150.00 200.00

0.00

Figure 9: Buffers utilized for four RMTP clients vs. four CMTP clients.

As the figure shows, CMTP uses buffers more efficiently than RMTP because
of its sliding window rate control scheme. When using CMTP, the maximum num-
ber of buffers used is three, while for RMTP the maximum number is over twenty.
Since CMTP smooths traffic, the number of buffers used oscillates between zero and
three. In contrast, RMTP does not smooth traffic, so the number of buffers used first
increases and then oscillates. The initial upward sloping portion of the graph (for
t < 50) occurs because the sources are sending packets at an interarrival rate of ;.

This continues until the z,,. condition is no longer satisfied (around t=40, i.e.,
when the number of packets sent in the interval I is equal to KIM) In fact, RMTP
sends packets at 2 ms intervals. Thus in I (of width 50 ms) we can send i: 20
packets. If the first packet is sent at t=0, and further packets at intervals of 2ms,
the last packet (number 20) is sent at t=40 ms. The subsequent plateau means that
RTIP is sending out packets at the same rate that they are arriving (40 < ¢ < 70).

15

The successive oscillations are due to a source that either stops sending packets (i.e.,
the number of packets sent in the interval I is equal to I—Ive) or starts sending packets

again because a new interval | begins.

7 Conclusions

The goal of the simulation was to examine how CMTP can improve network resource
utilization (buffers) when considering CM clients. Because of the regularity of data
produced by CM clients, CMTP was able to smooth it using a priori knowledge about
the timing of future data transmission.

We described a sliding window rate control scheme used by CMTP to smooth
traffic. Since RMTP is unable to smooth traffic, we showed that it caused RTIP to
use more buffers than did CMTP. These preliminary results provide justification for
having a separate transport layer protocol for CM clients and to continue the imple-
mentation of CMTP in the internetwork. However, the need for a reliable transport
service tailored for message-oriented real-time applications, requires the development
of techniques to improve the efficiency of the implementation of protocols such as
RMTP. We plan to pursue this goal by analysing the communication patterns of typ-
ical message-oriented applications, in order to devise an optimized resource allocation

scheme.

References

[1] D. P. Anderson, R. G. Herrtwich, and C. Schaefer. Srp: A resource reservation
protocol for guaranteed-performance communication in the internet. Technical
Report TR-90-006, International Computer Science Institute, Berkeley, Califor-
nia, February 1990.

[2] A. Banerjea, D. Ferrari, B.A. Mah, M. Moran, D.C. Verma, and H. Zhang. Tenet
real-time protocol suite: Design, implementation, and experiences. Technical Re-
port TR-94-059, International Computer Science Institute, Berkeley, California,
November 1994.

16

3]

[4]

[11]

[12]

D. Clark, V. JAcobson, J. Romkey, and H. Salwen. An analysis of tcp processing
overhead. IKFEE Communications Magazine, June 1989. pp 23-29.

L. Delgrossi, R.G. Herrtwich, and F.O. Hoffmann. An implementation of st-ii for
the heidelberg transport system. technical report no. 43.9303. Technical report,
European Networking Center, Heidelberg Germany, IBM ENC, 1993.

D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia - a
discussion of the tenet approach. Technical Report TR-92-072, International
Computer Science Institute, Berkeley, California, October 1992.

D. Ferrari and A. Gupta. Resource partitioning for real-time communication.
First IEEFE International Symposium on Global Data Networking, Cairo, Eqypt,
December 1993.

J. Funda. Towards delay-invariant remote manipulation. Technical report, Uni-

versity of Pennsylvania, Dept. of Computer and Information Science, May 1991.

D.B. Hehmann, M.G. Salmong, and H.J. Strittgen. Transport services for mul-
timedia applications on broadband networks. Computer Communications, 13,

1990.

D.R. Hofstadter and D.C. Dennet. The Mind’s I: Fantasies and Reflections on
Self and Soul. Basic Books, New York, 1981.

D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-time communication in multihop
networks. [EEFE Transaction on Parallel and Distributed Systems, 5(10):1044—
1056, October 1994.

E. Knightly and G. Ventre. Galileo: A tool for simulation and analysis of real-
time networks. Technical Report TR-93-008, International Computer Science

Institute, Berkeley, California, March 1993.

C. Szyperski and G. Ventre. Efficient multicasting for interactive multimedia
applications. Technical Report TR-93-017, International Computer Science In-
stitute, Berkeley , California, March 1993.

17

[13] L. Zhang and S. Deering et. al. Rsvp: A new resource reservion protocol. PRFE-
LIMINARY DRAFT, 1993.

18

