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Abstract

In this paper, we describe the theoretical formulation of REMAP, an approach for
the training and estimation of posterior probabilities using a recursive algorithm that is
reminiscent of the EM (Expectation Maximization) algorithm (Dempster et al. 1977) for
the estimation of data likelihoods. Although very general, the method is developed in the
context of astatistical model for transition-based speech recognition using Artificial Neural
Networks (ANN) to generate probabilities for hidden Markov models (HMMs). In the
new approach, we use local conditional posterior probabilities of transitions to estimate
global posterior probabilities of word sequences given acoustic speech data.  Although
we still use ANNS to estimate posterior probabilities, the network is trained with targets
that are themselves estimates of local posterior probabilities. These targets are iteratively
re-estimated by the REMAP equivalent of the forward and backward recursions of the
Baum-Welch algorithm (Baum et al. 1970; Baum 1972) to guarantee regular increase (up
to alocal maximum) of the global posterior probability. Convergence of the whole scheme
is proven.

Unlike most previous hybrid HMM/ANN systems that we and others have devel oped,
the new formulation determinesthe most probable word sequence, rather than the utterance
corresponding to the most probable state sequence. Also, in addition to using al possible
state sequences, the proposed training algorithm uses posterior probabilities at both local
and global levels and is discriminant in nature.
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1 Introduction

The ultimate goal in speech recognition is to determine the sequence of words that has
been uttered. Classical pattern recognition theory shows that the best possible system (in
the sense of minimum probability of error) is the one that chooses the word sequence with
the maximum probability (conditioned on the evidence). If word sequence: is represented
by the statistical model M;, and the evidence (which for our purposes is acoustical) is
represented by X, then we wish to choose the sequence that corresponds to the largest
P(M;|X). In (Bourlard & Morgan 1994), summarizing earlier work (such as (Bourlard
& Wellekens 1989)) we showed that it was possible to compute the global a posteriori
probability P(M|X) of adiscriminant form of Hidden Markov Model (HMM) M given
a sequence of acoustic vectors X. This was done in the framework of hybrid speech
recognition systems using HMMs together with an Artificial Neural Network (ANN), or
more particularly a Multi-Layer Perceptron (MLP), to estimate the HMM (local) emission
probabilities. We had two goalsin doing this:

1. To use more discriminant models that are trained according to the Maximum A
Posteriori (MAP) criterioninstead of the commonly used Maximum Likelihood (ML)
criterion.

2. To define an approach to properly interface ANNSs (and in particular, MLPs) with
HMMs. In this framework it was shown that it is possible to train systems mini-
mizing common cost functions to generate posterior probabilities of output classes
conditioned on the input pattern. However thisrequired the definition of anew HMM
formalism to accommodate such probabilities.

However, in order to get reasonable results in our late-80's efforts, we had to smplify
the original scheme. We now view these changes as being a consequence of our limited
understanding, rather than any fundamental limitation. Despite the restricted implemen-
tations (which will be briefly described in Section 6 of this paper), we still were able to
alleviate some drawbacks of the typical HMM approach, including:

1. strong distributional assumptions
2. lack of discrimination

3. little incorporation of time correlations

Despite the potential improvements over these limitations, hybrid HMM/MLP pro-
cedures still estimated probabilities for likelihood-based models. Additionally, for these
models, transition and emission probabilities were described independently of each other.
Nonetheless, ssimple systems based on this approach have performed very well on large
vocabulary continuous speech recognition (Renals et al. 1992), generally doing as well as
far more detailed and complex conventional systems.
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Recent work at ICS| has provided us with further insight into the discriminant HMM,
particularly in the light of recent work on transition based models (Konig & Morgan 1994,
Morgan et al. 1994). This new perspective has motivated us to further devel op the original
Discriminant HMM theory (Bourlard & Morgan 1994), in which an MLP is trained to
optimize the full a posteriori probabilities of Markov models given the acoustic data via
conditional transition probabilities, i.e., probabilitiesof the next state given the current state
and the current acoustic vector. This approach uses posterior probabilities at both local and
global levels and is more discriminant in nature. It aso has the potential of using some
information about the language modd (i.e., HMM topologies and transition probabilities),
as contained in the training data.

In this paper, we introduce the Recursive Estimation-Maximization of A posteriori
Probabilities (REMAP) training algorithm for hybrid HMM/MLP systems. The proposed
algorithm models a window of possible transitions rather than picking a single time point
as a trangition target. Furthermore, the algorithm incrementally increases the posterior
probability of the correct model, while reducing the posterior probabilities of al other
models. Thus, it bringsthe overall system closer to the optimal Bayes classifier.

If you are familiar with HMMs and with neural networks as statistical estimators, you
may want to skip the Background section of this paper; however, we still recommend that
you read the next two short sectionsin order to understand the motivations and notation for
the newer material presented in the rest of the document.

2 Motivations

As noted above, the current work is motivated by a desire to train and use statistical
recognition systems that are discriminant at the global (i.e., utterance) level. However,
any rea system will also have some underlying focus or perspective that permits some
simplifying assumptions. In our recent work, we have concentrated on the view of speech
as a sequence of trangitions. Perceptualy, transitions are commonly viewed as the most
significant aspect of speech. However, innearly al current HM M-based speech recognizers,
we find:

1. Thereis alack of balance between transition probabilities (which are actual prob-
abilities and whose values are scaled differently depending on the branching factor
of HMM topologies) and emission probabilities which are likelihoods. In addition
to this, given the usual assumption of independence for feature vector components,
the data log likelihoods are proportional to the dimension of the feature space. As
a consequence of both of these factors, transition probabilities usually have a much
smaller range of values, and do not strongly affect recognition performance.® Sev-

IActually, this problem originates from unrealistic assumptions that are made in HMM theory when
factoring emission-on-transition probabilities into emission densities and transition probabilities that are
independent of the acoustic data.



eral “patches’ have been developed to try to minimize the impact of this problem,
including:

(@ A minimum duration phoneme model, which appearstowork at least aswell as
more complex duration models (e.g., Gamma or Poisson-distributed durations)

(b) Log scaling (raising to a power) of transition probabilities and language model
probabilities so that they are no longer probabilities, but are more balanced with
emission likelihoods. Thus, aclean mathematical theory isno longer preserved.

2. Therehave been attemptsto mode transitionsby transforming non-stationary features
into stationary ones. A partia solutionto thisproblemisto usetimederivativefeatures
(Furui 1986). Ingeneral, though, the problem of modeling (non-stationary) transitions
is still an open one. Another step in this direction was to use RASTA processing
to emphasize transitions (Hermansky et al. 1992). While this is sometimes helpful
in reducing errors due to mismatches between training and testing conditions, the
resulting observation sequence is a representation that has emphasized the regions
of strong change and de-emphasized temporal regions without significant spectral
change. This is a mismatch to the underlying speech moddl in standard HMMs,
which has been designed to represent piecewise stationary signals.

While psychoacoustic experiments suggest that transitions (in the sense of temporal
regions of significant spectral change) are important to speech perception, the discriminant
HMM theory (Bourlard & Morgan 1994) affirms that recognition should actually be based
on probabilities of transitions (in the sense of changes of model state) conditioned on
observations. As shown in this paper, it is actually possible to train and to use this kind
of model. While state transitions are not the same thing as observation transitions, state
transition models do have the potential of alleviating the stationarity assumptionsimplicitly
made in all current HMMs, and so there is good reason to think that they can represent
spectral transitions better.

3 Definitions and Notation

We first define notation and basic terms:

o A setof HMM states@Q* = {qa, . . - , gx }, from which phone and word modelswill be
built. Each state class will be associated with a specific probability density function
(PDF) or with specific statistical properties (see “conditional transition probabilities’
in5.3).

o X ={x1,...,2n} isasequence of acoustic vectorsthat isassociated with a specific
utterance.

e A sub-sequence of acoustic vectors that is local to the current vector, extending ¢
framesinto the past and d framesintothefuture: X4 = {z,_.,... %, ..., Tpia}-
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The set of possible elementary speech unit HMMs. M = {m,...,m,,...,my}.
For large vocabularies (and in our case), these elementary speech units are often
phones or phone-like units. Each of those speech units are then assumed to be
composed of a succession of afew discrete stationary states from @@ *. Usually, each
speech unit m,, is represented in terms of a Markov chain (see next section) built up
from a few elementary (stationary) states ¢, from Q*. However, in the case of the
hybrid systems described here that we have used over the last few years, we have not
observed any benefit in using multiple states per phone for the context-independent
phone models that we have generally used. In this particular case, there is a one-
to-one relation between states ¢;’s and phones. This is smpler to describe than
multi-density phone models and will be used for the theory presented here, without
loss of generality.

A specific word or sentence model M; isthen represented as a sequence of elementary
units m, of M and, consequently, as a sequence of L; discrete stationary states g,
of @*, with Z; < N (and, in general, I, # K). Of course, we can have multiple
instances of the same phone and state in AM;.

M;isdefinedfor: € 7 = {1,2, ..., [}, theset of possible Markov model indices; / is
the number of possible Markov models(i.e., inthe case of continuous speech, number
of possible sentences allowed by the grammar, though thisis generally infinite).

M,,, w; € I, isthe Markov model associated with a specific training sequence
X, 5=1,...,J.

The parameter set describing all models is defined as © = {Aq, ..., A, ..., A\v},
in which X, represents only the parameters present in m,. Of course, the different
m,, foru = 1,...,U can share some common parameters. In the hybrid systems
discussed in this paper, all HMMs will share the same set of parameters © through a
common neural network, which will be parameterized in terms of ©.

The set of parameters that are only present in M,,, will be denoted ©,,,, whichisa
subset of ©.

q" =the HMM-state at timen.
qr means that state ¢, has been occurred at time n.

A HMM state sequence of length N: Q@ = {¢%,...,q¢", ..., ¢V}, ¢" € Q*; aHMM
state subsequence: Q" = {¢™, ¢™*1. .., ¢"}.

I"; (I') apath of length N (associated with a specific Q) in M; (M).

P(-) will represent probabilities, while p(-) will represent probability density func-
tions (PDFs) and likelihoods.



Throughout much of this paper, the following two statistical properties (valid for both
probabilities and likelihoods) will be extensively used:

P(a,b) = P(alb)P(b) = P(bla)P(a) (1)
P(a)=3_P(a,b) @)

if events b, are mutually exclusiveand 3, P(b,) = 1.

4 Background

Whenever a new discovery is reported to the scientific world, they say first, ‘It is probably
not true.’ Thereafter, when the truth of the new proposition has been demonstrated beyond
question, they say, ‘Yes, it may be true, but it is not important.” Finally, when sufficient
time has elapsed fully to evidence its importance, they say, ‘ Yes, surely it isimportant, but
it is no longer new.’

— Michel Eyquem Montaigne, 1533 - 1592 —

4.1 Hidden Markov Models(HMMYs)

In this section we give ashort review of the classical HMM approach to speech recognition.
For a more complete explanation, see (Huang et al. 1990; Levinson et al. 1983; Rabiner
1989).

4.1.1 Brief Description

One of the greatest difficulties in speech recognition is to model the inherent statistical
variations in speaking rate and pronunciation. An efficient approach consists of modeling
each speech unit (e.g., words, phones, triphones, or syllables) by an HMM (Jelinek 1976;
Rabiner 1989). A number of large-vocabulary, speaker-independent, continuous speech
recognition systems have been based on this approach.

In order to implement practica systems based on HMMs, a number of ssmplifying
assumptions are typically made about the signal. For instance, athough speech is a non-
stationary process, HMMs model the sequence of feature vectors as a piecewise stationary
process. That is, an utterance X = {z1,...,z,,...,2x} iSmModeled as a successon L
discrete stationary states ¢, € Q*, with instantaneous transitions between these states. In
this case, aHMM is defined (and represented) as a stochastic finite state automaton with a
particular topology (generally strictly left-to-right, since speechissequential). Theapproach
defines two concurrent stochastic processes. the sequence of HMM states (modeling the
temporal structure of speech), and a set of state output processes (modeling the [locally]
stationary character of the speech signal). The HMM is called a*“hidden” Markov model
because there is an underlying stochastic process (i.e., the sequence of states) that is not
observable, but that affects the observed sequence of events. It iscalled “Markov” because
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the statistics of the current state are modeled as being dependent only on the current and
the previous state (for the first-order Markov case).

|dedlly, there should be a HMM for every possible utterance. However, thisis clearly
infeasible for all but extremely constrained tasks; generaly a hierarchica scheme must
be adopted to reduce the number of possible models. First, a sentence is modeled as a
sequence of words. To further reduce the number of parameters (and, consequently, the
required amount of training material) and to avoid the need of a new training each time a
new word is added to the lexicon, sub-word units are usually preferred to word models.
Although there are good linguistic arguments for choosing units such as syllables or demi-
syllables, the unit most commonly used is the phone (or context-dependent versions such
as the triphone). This is the unit that we have generally used in our work, resulting in
a selection of between 50 and 70 subword models. In this case, word models consist
of concatenations of phone models (constrained by pronunciations from a lexicon), and
sentence models consist of concatenations of word models (constrained by a grammar).

Once the topology of the HMMs has been defined (usually by an ad hoc procedure),
the HMM training and decoding criterionis based on the posterior probability P(M;| X, ©)
that the acoustic vector sequence X has been produced by M given the parameter set ©.
In the following, thiswill bereferred to as the Bayes or the Maximum A posteriori (MAP)
criterion. A

During training, we want to determine the set of parameters © that will maximize
P(M,,|X;,©) for al training utterances X;, j = 1,...,.J, associated with M, % i.e,

J
© = agmax HP(Mw]|X]76) (©)

i=1

During recognitionof an unknown utterance X', we have to find the best model A/;, ;5 €
7, that maximizes P(M;|X,0) given a fixed set of parameters © and an observation
sequence X. An utterance X will then be recognized as the word sequence associated with
model M; such that:
M; = argmax P(M;|X,0O) 4
|deally we thus want to optimize (3) during training, and this will be the main aim of
thiswork. However, in standard HMMSs, this problemisusualy smplified by using Bayes
rule which expresses P(M;| X, ©) as

p(X|M;, ©) P(M;|©)

POLIX.0) =777 Xle)

(5)

and separates the probability estimation process into two parts: (1) the language modeling
which does not depend on the acoustic data and (2) the acoustic modeling.

zij represents the model associated with the specific acoustic sequence X; that is known at training
time,



4.1.2 Language Modeling

The goal of the language model is to estimate prior probabilities of sentence models
P(M;|©). However, this language model is usually assumed to be independent of the
acoustic model parameters and is described in terms of an independent set of parameters
©*. At training time, ©* islearned separately, which is sub-optimal but convenient. These
language model parametersare commonly estimated fromlargetext corporaor fromagiven
finite state automaton from which N-grams (i.e., the probability of a word given the (N-1)
preceding words) are extracted. Typically, only bi-grams and tri-grams are currently used.

It has to be noted here that, according to what is trained and what M, represents, we
get adifferent meaning for the language model; in some cases that language model could
preferably be learned directly from the acoustic data. For more discussion about this see
Section 4.1.6 on “Priorsand HMM Topology”.

4.1.3 Acoustic Modeling

The goal of acoustic modeling is to estimate the data-dependent probability densities
p(;i }?fg)@). In mainstream approaches to this process, parameters from other models do
not affect the estimates for any particular model. In this case, since p(X|M;, ©) is condi-
tioned on M; it only depends on the parameters of M;. Therefore, it can be rewritten as

Given atranscription in terms of the speech units being trained, the acoustic parameter
set © estimation is trained according to

A

p(X;| M, , 0O,
e — argmax p( ]| 'y ])
0 p(X;[0©)

for all training utterances X ; known to be associated with a Markov model A7, obtained
by concatenating the elementary speech unit models associated with X ;. Since the models
are mutually exclusive and 3", P(M;|®©) = 1 (i.e,, what has been pronounced actually
corresponds to one of the models®), the denominator in (5) and (6) can be rewritten as:

(6)

I
p(X;]0) = > p(X;|M;, 0;)P(M;|6;) )
=1
where the summation extends over al possible (rival) sequences of elementary HMMs. In
practice, the second factor in (7) is defined by the language model P(M;|©*).4
At recognition time, p(X;|©) is a constant, since the model parameters are fixed.
However, at training time, the parameters of the models are being adapted by the training
algorithm; therefore (7) and (6) depend on the parameters of all models. Of course, thisis
also the case when one tries to optimize (3) directly (see Section 11).

3Thisis an issue when there can be utterances that are outside of the lexicon.
#In Section 11, we show that summing over al possible models or over al possiblerival models (i # )
isequivaent.



Maximization of (6) is equivalent to maximization of a related discriminant criterion
referred to as mutual information® (Cover & Thomas 1991)

2 p(X;[ My, Ou,)
© = agmax log 2 2
o p(X;|9)

(8)

Several agorithms have been developed to optimize (6) or (8) (Bahl et al. 1986; Brown
1987; Chow 1990; Normandin et al. 1994). See Section 11 for further discussion and
comparison with other discriminant algorithms or the work presented here.

Since optimization of (3), (6) or (8) inthewholeparameter space isnot easy, the problem
isusually smplified by disregarding the conditional dependence of X on © during training.
In this case, training according to (3), (6) or (8) isequivalent to

J
O = argrgax I p(X;IM.,,,0.,) (9)

i=1

When used for training, this is usualy caled the Maximum Likelihood (ML) criterion,
emphasizing that optimization (i.e, maximization of p(X;|M,,;,©,,)) is performed in the
parameter space of the Probability Density Function (PDF) or likelihood.

At recognitiontime, P(M;| X, 0) is estimated for all possible M; alowed by the lan-
guage model. In thiscase p(.X |®) isactually aconstant, since the parameters are fixed and
X given. Then solution to (4) isequivalent to

M; = agmax p(X|M;, ©;)P(M;|0") (10)
M.

k3

in which p(X|M;,0;) and P(M;|©*) are estimated separately from the acoustic and lan-
guage models.

414 Likeihood Estimation and Training

Both training and recognition thus require the estimation of the likelihood p( X |M;, ©;)
whichisgiven by:

p(X|M;,0:) = > p(X,T;|M;, ©;) (11)

{r:}

inwhich {I"; } representsthe set of all possiblepathsof length NV in M. If ¢; denotesthe state
q, Observed at timen € [1, V], itiseasy to show [see, e.g., (Bourlard & Morgan 1994)] that
p(X|M;, ©;) can be calculated by the forward recurrence of the popular forward-backward
algorithm (Baum et al. 1970; Baum 1972; Liporace 1982)

L;
p(vaq?|MﬂeZ) = Zp(Xf_:L,qg_l|MZ’7@i)p($n7q;|X{L—17qz—17M“@i) (12)

k=1

5See Section 11 for further discussion about this.
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in which p( X, ¢;'|M;, ©;) represents the likelihood that X is produced by M while asso-
ciating x,, with state ¢,; X7 stands for the partial sequence {1, 2, ..., z,} of acoustic
vectors.

Sometimes it is desirable to replace the full likelihood by a Viterbi approximation in
which only the most probable state sequence capable of producing X istaken into account.
In this case, the sum in (11) is replaced my a max operator and likelihood p( X'|M;, ©;) is
approximated by:

p(X|M;,0;) = rprai(P(Xa M| M;, ©;) (13)

which can be calculated by a Dynamic Programming (DP) recurrence (called the Viterbi
search or Viterbi algorithm):

F(va q;|Mi7 GZ) = mkax [p(X]T.L_lv qz_]-'Mia ei)p(xnv quf_la qg_lv Miv el)] (14)

For both “full” likelihood and Viterbi approximation, probabilities p(X|M;, ©;) and
p(X|M;,®;) can be expressed in terms of p(z,, ¢7| X771, ¢f~1, M;, ©;), where X7 isthe
partial acoustic vector sequence {zg, Tg41,-- ., Tp}-

Recapitulating, some of the features commonly associated with the estimation and
training of HMMs, include:

e Assumption of piecewise stationarity, i.e., that speech can be modeled by a Markov
state sequence, for which each state has stationary statistics,

e Optimizing the language model P(M;|©*) separately from the acoustic model,

¢ Disregarding the dependence of the estimate of p(.X') onthe model parametersduring
training. The acoustic models are then defined and trained on the basis of likelihoods
p(X|M;, ©;) (i.e., production-based models) instead of a posteriori probabilities(i.e.,
recognition-based models) or MMI criteria, which limits the discriminant properties
of the models.

Additionally, severa additional assumptions are usualy required to make the estimation
of p(X|M;,©;) [or its Viterbi approximation p(.X | M;, ©;)] tractable (Bourlard & Morgan
1994):

e Acoustic vectors are not correlated (i.e., observation independence). The current
acoustic vector z,, isassumed to be conditional ly independent of the previousacoustic
vectors (e.g., X7~1). To limit theimpact of this assumptions, acoustic vectors at time
n are usually complemented by their first and second time derivatives (Furui 1986;
Poritz & Richter 1986) computed over a span of afew frames, allowing very limited
acoustical context modeling. Another solution to limit this assumption isto consider
a few adjacent frames (typicaly 3-5 frames in total) on which linear discriminant
analysisis performedto reducethe dimension of the acoustic features (Haeb-Umbach
& Ney 1992).

11



e Markov models are first-order Markov chains, i.e., the probability that the Markov
chain isin state ¢, at time n depends only on the state of the Markov chain at time
n — 1, and is conditionally independent of the past (both the past acoustic vector
sequence and the states before the previous one).

Given these assumptions, p(X|M;,©;) and p(X|M,,O;) can be estimated (Bourlard &
Morgan 1994) by replacing p(z,, ¢7 | X771, ¢7~1, M;, ©;) in (12) and (14) by the product
of emission-on-transition probability densities p(z,|q}', q2~*, M;, ©;) and transition proba-
bilities p(q}|qr ", M;,©;). Often, emission-on-transition probability densities are further
simplified (to reduce the number of free parameters) by assuming that the current acoustic
vector z,, depends only on the current state of the process ¢, which reduces the former to
emission probability densitiesp(z,,|q:).

HMM training thenis simplified to be estimation of transition probabilitiesand emission
PDFs associated with each state (or with each transition, in the case of emission on transi-
tions). Additionaly, one has to make distributional assumptions about the emission PDF,
e.g., independence of discrete features or a mixture of multivariate Gaussian distributions
with diagonal-only covariances of continuous features.

The most popular approach to iteratively maximize

J
[ »(X;| M., , ©.,) (15)

i=1

has been described in a number of classic papers (Baum & Petrie 1966; Baum et al. 1970;
Baum 1972; Liporace 1982). Starting from initial guesses @°, the model parameters
are iteratively updated according to the “Forward-Backward” algorithm [or equivaently
the Expectation-Maximization (EM) algorithm (Dempster et al. 1977)] so that (15) is
maximized at each iteration. This kind of training algorithm, often referred to as Baum-
Welch training in the particular case of HMMs, can also be interpreted in terms of gradient
techniques (Levinson et al. 1983; Levinson 1985). Although thisalgorithm isnot described
here, we strongly recommend these references to readers who are not familiar with them
sincetheideas expressed therewill be extended to posterior probabilitiesand hybrid systems
in this paper. For recognition, powerful algorithms referred to as Stack-Decoding or A*
decoding have been developed to find the N-best models M, maximizing p(.X|M;) or
P(M;|X) if thereisagrammar [see, e.g., (Bahl et al. 1983)].

In the case of Viterbi criterion, the parameters of the models are optimized iteratively
to find the best parameters and the best state sequence (i.e., the best segmentation in terms
of the speech units used) maximizing

J
11 p(X;|M.,,O.,) (16)
7=1

Each training iteration consists of two steps. In the first step, we use the old parameter
values (or initial values) to determine the new best path matching the training sentences
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against the associated sequence of Markov models [by using (14)]. In the second step,
we use this path to re-estimate the new parameter values, backtracking of the optimal
paths provides us with the number of observed transitions between states (to update the
transition probabilities) and the acoustic vectors that have been observed on each state (to
update the parameters describing the emission probabilities). This process can be proved to
convergeto alocal minimum. For recognition, algorithmsbased on DP have been devel oped
to find the best word sequence model M; which maximizes p(.X |M;) (Vintsyuk 1971;
Ney 1984).

415 HMM Advantagesand Drawbacks

Standard HMM procedures, as defined above, have been very useful for speech recognition,
and a number of laboratories have demonstrated large-vocabulary (1,000-65,000 words),
speaker-independent, continuous speech recognition systems based on HMMs (Lee 1989;
Kubala et al. 1988). HMMs can ded efficiently with the tempora aspect of speech
(including temporal distortion or time warping) as well as with frequency distortion. There
are powerful training and decoding algorithms that permit efficient training on very large
databases, and recognition of isolated words as well as continuous speech. Given their
flexibletopology, HMMscan easily be extended toinclude phonol ogical rules(e.g., building
word modelsfrom phone models) or syntacticrules. For training, only alexical transcription
IS necessary (assuming a dictionary of phonological models); explicit ssgmentation of the
training material is not required.

However, the assumptions that permit HMM optimization and improve their efficiency
also, in practice, limit their generaity. As a consequence, although the theory of HMMs
can accommodate significant extensions (e.g., correlation of acoustic vectors, discrimi-
nant training, ...), practical considerations such as number of parameters and train-ability
limit their implementations to ssmple systems usually suffering from several drawbacks
including:

¢ Poor discrimination due to training algorithms that maximizes likelihoods instead of
a posteriori probabilities (i.e., the HMM associated with each speech unit is trained
independently of the other models). Discriminant learning algorithms do exist for
HMMs (Section 11), but in general they have not scaled well to large problems.

e A priori choice of model topology and statistical distributions, e.g., assuming that
the probability density functions associated with the HMM state can be described
as multivariate Gaussian densities or as mixtures of multivariate Gaussian densities,
each with a diagonal-only covariance matrix (i.e., possible correlation between the
components of the acoustic vectorsis disregarded).

¢ Assumption that the state sequences are first-order Markov chains.®

5This limitation remains valid for our hybrid HMM/MLP system, with the exception of the most recent
devel opments briefly described later in this report.
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e Typically, very limited acoustical context isused, so that possible correlation between
successive acoustic vectors is not modeled very well. As previousdy mentioned, a
solution that has been adopted in standard HMMs with relative success has been to
complement acoustic features by their first and second time derivatives (Furui 1986;
Poritz & Richter 1986) computed over a span of a few frames. Another solution
which sometimes leads to some improvements is to consider a few adjacent frames
(typically 3-5 framesin total) on which linear discriminant analysis is performed to
reduce the dimensionality of the acoustic features while minimizing the intra-class
varianceand maximizing theinter-classvariance (Hagb-Umbach & Ney 1992). Other
approaches of interest were the use of autoregressive HMMs, as described in (Juang
& Rabiner 1985; Poritz 1982), and the work of (Wellekens 1987), who explicitly
modeled the correlation across several frames with a multivariate, full covariance
matrix, Gaussian density defined over two consecutive acoustic vectors.” However,
these last two solutions apparently did not |ead to conclusive experimental resultsfor
reasons that have never been clearly identified.®

Much ANN-based ASR research has been motivated by these problems.

416 Priorsand HMM Topology

As shown in the previous section, the prior probabilities of models are not used during
likelihood training (or, in other words, are trained independently of the acoustic models
or fixed by a priori knowledge). It is usualy assumed that P(M;|©) in (5) and (7) can
be calculated separately (i.e., without acoustic data). In continuous speech recognition,
M; usually represents a sequence of word models for which the probability P(M;) can be
estimated from a language model, usually formulated in terms of a stochastic grammar.
Likewise, each word model is represented in terms of aHMM that combines phone models
according to the allowed pronunciations of that word; these multiple pronunciations can be
learned from thedata, from phonol ogical rules, or fromboth. Each phoneisal so represented
by aHMM for which the topology is usually chosen a priori independently of the data (or,
sometimes, in a very limited way, e.g., to reflect minimum or average durations of the
phones). Therefore, the grammar, the lexicon, and the phone model s together comprise the
language model, specifying prior probabilities for sentences [ P(M,)], words, phones, and
HMM states [ P(q¢x)]. These priors are encoded in the topology and associated transition
probabilitiesof the sentence, word and phoneHMMs. Usually, itispreferableto infer these
priorsfrom largetext corpora, dueto insufficient speech training material to derive so many
parameters from the speech data. However, as seen later (see Sections 5.4 and 11), neura
networks and discriminant training implicitly make use of these priors. As a consequence,

"This can be shown equival ent to estimating a multivariate autoregressive process (Wellekens 1987).

8Some plausi ble explanationsto thisdiscrepancy between theory and practical resultsinclude: (1) increase
of number of parameters, and (2) estimating autoregressive models implicitly assumes some “smoothness’
properties of the signal, which is not dways truein the case of speech (and, consequently, what is gained on
the one hand is lost on the other).
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if the priors observed on the training data are not the same as the priors that are given by
the HMM topology (and which have been a priori given or trained from an independent
knowledge source), there will be a mismatch that will impact the recognition performance
of the global level. Thus, it would be preferableto learn the topology of the HMMs directly
from the data. This has been done in alimited way in (Wooters 1993).

4.2 Artificial Neural Networks(ANNS)
4.2.1 Multilayer Perceptrons (MLPS)

In thispaper, our discussion of neural networksfor speech will be limited to the Multi-Layer
Perceptron (MLP), aformof ANN that iscommonly used for speech recognition. However,
the analyses that follow are generally extensible to other kinds of ANN, e.g., a recurrent
neural network (Robinson 1994).

MLPs have alayered feedforward architecture with an input layer, zero or more hidden
layers, and an output layer. Each layer computes a set of linear discriminant functions
(Duda & Hart 1973) (viaaweight matrix) followed by a nonlinear function, which is often

asigmoid function
1

As discussed in (Bourlard & Morgan 1994), this nonlinear function performs a different
role for the hidden and the output units. On the hidden units, it serves to generate high
order moments of the input; this can be done effectively by many nonlinear functions, not
only by sigmoids. On the output units, the nonlinearity can be viewed as a differentiable
approximation to the decision threshold of athreshold logic unit or perceptron (Rumelhart
etal. 1986), i.e., essentially to count errors. For this purpose, the output nonlinearity should
be asigmoid or sigmoid-like function. Alternatively, a function called the softmax can be
used. For an output layer of K units, this function would be defined as

(17)

exp(zi)
Zf:l exp(xn)

It can be proved that ML Pswith enough hidden unitscan (in principle) providearbitrary
mappings ¢(z) between input and output. The MLP parameter set © (the elements of the
weight matrices) aretrained to associate a“ desired” output vector with aninput vector. This
is generally achieved via the Error Back-Propagation (EBP) algorithm (Rumelhart et al.
1986) that uses a steepest descent procedure to iteratively minimize a cost functionin their
parameter space. Sincein our approach the HMMs will be described by the parameters of
the neural network, we also denote the MLP parameter space by ©.

Popular cost functions are, among others, the Mean Square Error (MSE) criterion:

flzi) = (18)

N
b= Z_:l I 9(x0,©) = d(z) || (19)
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or the relative entropy criterion®:

E, = fj i di(a,) In—2l0n)_ (20)
n=1k=1 9k (T, ©)

where ¢g(z,,0) = (g1(2,,9), ..., gx(7,,0), ..., 9K (z,,O))" represents the actua MLP
output vector (depending on the current input vector x,, and the MLP parameters ©),
d(z,) = (di(zy), ... di(xn), ..., dx(z,))" represents the desired output vector (as given
by the labeled training data), K the total number of classes, and N the total number of
training patterns.

MLPs, aswell asother neurally-inspired architectures, have been used for many speech-
related tasks. For instance, for some problems the entire tempora acoustic sequence is
processed as a spatia pattern by the MLP. For isolated word recognition, for instance, each
word can be associated with an output of the network. However, this approach has not been
useful for continuous speech recognition and will not be discussed further here.

422 Motivations

ANNSs have several advantages that make them particularly attractive for ASR, e.g.:

e They can provide discriminant learning between speech units or HMM states that
are represented by ANN output classes. That is, when trained for classification
(using common cost functions such as MSE or relative entropy), the parameters of
the ANN output classes are trained to minimize the error rate while maximizing the
discrimination between the correct output class and the rival ones. In other words,
ANNSs not only train and optimize the parameters of each class on the data belonging
to that class, but also attempt to reject databel onging to the other (rival) classes. This
isin contrast to the likelihood criterion, which does not lead to minimization of the
error rate.

e Because ANNSs can incorporate multiple constraintsand find optimal combinations of
constraints for classification, features do not need to be assumed independent. More
generdly, there is no need for strong assumptions about the statistical distributions
of the input features (asisusualy required in standard HMMSs).

e They have a very flexible architecture which easily accommodates contextual inputs
and feedback, and both binary and continuous inputs.

°In anumber of references, including (Bourlard & Morgan 1994), this criterion is defined differently. In
particular, the desired outputs are sometimes assumed to be independent, binary random variables and as a
result thiscriterion gets a different form (which is sometimes called the cross entropy (Richard & Lippmann
1991)). However, viewing the network outputs as a posterior distribution over the values of one random
variable (class conditioned on acoustic data), a discrete version of the classical definition of relative entropy
may be used, as given here.
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e ANNSs are typicaly highly paralel and regular structures, which makes them espe-
cially amenable to high-performance architectures and hardware implementations.

A genera formulation of statistical ASR can be summarized ssmply by aquestion: how
can an input sequence (e.g., a sequence of spectral vectors) be explained in terms of an
output sequence (e.g., a sequence of phones or words) when the two sequences are not
synchronous (since there are multiple acoustic vectors associated with each pronounced
word or phone)? Itistruethat neura networksare ableto learn complex mappings between
two vector variables. However, aconnectionist formalismisnot very well suited to solvethe
sequence-mapping problem. Most early applications of ANNS to speech recognition have
depended on severe smplifying assumptions (e.g., small vocabulary, isolated words, known
word or phone boundaries). We shall see herethat further structure (beyond asimple MLP)
isrequired to perform well on continuous speech recognition, and that HMMs provide one
solution to this problem. First, the relation between ANNs and HMMs must be explored.

43 MVLPsasStatistical Estimators

MLPs can be used to classify speech classes such as words. However, MLPs classifying
complete temporal sequences have not been successful for continuous speech recognition.
In fact, used as spatial pattern classifiers, they are not likely to work well for continuous
speech, since the number of possible word sequences in an utterance is generally infinite.
On the other hand, HMMSs provide a reasonable structure for representing sequences of
speech sounds or words. One good application for MLPs can be to provide the local
distance measure for HMMs, while alleviating some of their typical drawbacks (e.g., lack
of discrimination, assumptions of no correlation between acoustic vectors).

431 Posterior Probability Estimation

For statistical recognition systems, the role of the local estimator is to approximate prob-
abilities or probability density functions. In particular, given the basic HMM equations,
we would like to estimate something like p(z,|gx), which is the value of the probability
density function (pdf) of the observed data vector given the hypothesized HMM state. The
MLP can be trained to produce the posterior probability P(gx|z,) of the HMM state give
the acoustic data. This can be converted to emission probabilities density function values
using Bayes' rule.

Several authors (Bourlard & Wellekens 1989; Bourlard & Morgan 1994; Gish 1990;
Richard & Lippmann 1991) have shown that ANNS can be trained to estimate a posteriori
probabilities of output classes conditioned on the input pattern. Recently, this property has
been successfully used in HMM systems, referred to as hybrid HMM/ANN systems, in
which ANNSs are trained to estimate local probabilities P(gx|z,,) of HMM states given the
acoustic data (see, e.g., (Lubensky et al. 1994)).

Since MLPs required supervised training, all these systems have been used so far in the
framework of Viterbi training, which provided the segmentation of the training sentences
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intermsof ¢;,’sand, hence, MLP training targets. The principle of these systems are briefly
recalled here.

Let ¢, withk = 1,..., K, bethe output classes of an MLP. Since we will use the MLP
for probability estimation associated with each HMM state ¢, (kK = 1,..., K), thereisa
one-to-one equivalence between the ¢;’s and the ¢;’s that are associated with the discrete
stationary states of Q*. Also, we associate the parameter set © as defined for HMMs with
the MLP parameter set.

The output activation of the &£-th MLP output class for agiven set of parameters © and
aninput x,, isdenoted g (z,, ©). SinceMLP training is supervised we will also assumethe
training set consists of a sequence of NV acoustic vectors {z 1, z2,...,2,,..., 2y} labeled
in terms of ¢;’s. At time n, the input pattern of the MLP is acoustic vector =, and is
associated with a state ¢;'.

For these popular MLP cost functions, it can be proved [see, e.g., (Bourlard & Wellekens
1989; Bourlard & Morgan 1994; Gish 1990; Richard & Lippmann 1991)] that the optimal
MLP output values are estimates of the probability distribution over classes conditioned on
theinput P(gi|z,), i.e: i

9 (20, 07) = P(gg],) (21)

if:

1. the MLP contains enough parameters to be able to reasonably approximate the in-
put/output mapping function,

2. the network is not over-trained (which can be assured by stopping the training before
the decline of generalization performance on an independent cross-validation set),

3. thetraining does not get stuck at alocal minimum.

In (21), ©°?* represents the parameter set minimizing (19) or (20).

It has been experimentally observed that, for systems trained on a large speech corpus,
the outputs of a properly trained MLP do in fact approximate posterior probabilities, even
for error valuesthat are not precisely the global minimum.

This conclusion can easily be extended to other cases. For example, if we provide the
MLP input not only with the acoustic vector =, at time »n, but also with some acoustic
context X"*? = {z,_.,...,Tpn,...,Toyq}, theoutput vaues of the MLP will estimate

gi(2, @) = Plqi| X720, VI=1,.. K (22)

This iswhat has been used in our previous hybrid system (briefly summarized later in this
section) to take partial account of the correlation of the acoustic vectors.

If the previous class is adso provided to the input layer (leading to a quasi-recurrent
network), the MLP output values will be estimates of

ge(20, @7 = P(gf|XIFE qi7Y), Vhi(=1,... K (23)
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It will beshownin Section 5that thisisaform of thelocal probability the hybrid HMM/MLP
theory tellsusto use. Thiswill be referred to as “conditional transition probability” and
will be the mgjor thread throughout this paper.

Again, this conclusion remainsvalid for other kinds of networks, given similar training
conditions. For example, recurrent networks (Robinson 1994) and radial basis function
networks (Renas et al. 1991) can also be used to estimate posterior probabilities.

There is another important generalization of this property that will be essential later in
thisreport. If the ANNSs are trained with an estimate of the posterior probabilities of the
output states (as opposed to the “1-from-K” binary output targets used for a classification
mode training), then (21) remainsvalid. In other words, if the targets come from some in-
dependent “ expert”, the net will learn to produce posterior probabilitiesaswell.2° Although
this property ismentionedin, e.g., (Bourlard & Wellekens 1989; Bourlard & Morgan 1994,
Richard & Lippmann 1991), it has never been systematically used in hybrid HMM/MLP
systems because of the lack of afull algorithm for the convergence to better probabilities.
Such an algorithm has now been developed, and will be presented in this report.

4.3.2 EstimatingHMM Likelihoodswith MLP
Since the network outputs approximate Bayesian probabilities, ¢, (., ©) is an estimate of

P(gilzn) = W

(24)
which implicitly containsthe apriori class probability p(q¢x). It isthus possible to vary the
class priors during classification without retraining, since these probabilities occur only as
multiplicative termsin producing the network outputs. As aresult, class probabilities can
be adjusted during use of aclassifier to compensate for training data with class probabilities
that are not representative of actual use or test conditions (Richard & Lippmann 1991).

Thus, (scaled) likelihoods p( ., |gx) for use as emission probabilitiesin standard HMMs
can be obtained by dividing the network outputs g (x,) by the relative frequency of class
qx in the training set, which gives us an estimate of :

P(l’n|(1k) o5
p(zn) )

During recognition, the scaling factor p(z,,) isaconstant for all classes and will not change
the classification. It could be argued that, when dividing by the priors, we areusing ascaled
likelihood, which is no longer a discriminant criterion. However, this need not be true,
since the discriminant training has affected the parametric optimization for the system that
is used during recognition. Thus, this permits use of the standard HMM formalism, while
taking advantage of ANN characteristics.

©Actually, it is easy to prove that, for the popular MLP cost functions, g(z,) will be an estimate of
E{d(zp)|z,}, where E stands for the expected value.
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5 Discriminant HMM/MLP Hybrid

In this section we present an overview of aform of HMM that has discriminant properties.
The estimation properties of MLPs that were described in the previous section make them
useful for this part of the overal system. Much of this section is similar to previous
expositions on the subject, such as can be found in (Bourlard & Morgan 1994). However,
the reader may find it useful to see our current perspective on this older approach, as it
providesabasisfor understanding the new approach as described in the sections that follow.

5.1 Motivations

In earlier work, multilayer perceptrons (MLP) (Bourlard & Morgan 1994) and recurrent
neura networks (Robinson 1994) have been used to estimate local probabilities or likeli-
hoods for HMMs. The interest in this scheme was partially based on the availability of
locally discriminant training algorithms for the network, since according to the earlier the-
ory (Bourlard & Wellekens1989), globally discriminant systems(i.e., onestrained to accept
correct utterances and reject incorrect ones) could be derived from these local probability
estimators.

However, intheyearsfollowingthe origina theoretical formulations, simplified systems
were derived to benefit from the general character of the scheme (for instance, to reduce
the dependence on distributional assumptions for the observation space, and to make the
probability estimates more discriminant). These simplified approaches did not make use of
the full power of theinitial scheme. Nonetheless, for controlled tests they displayed some
significant strengths. The basic scheme consisted of training neural networks to estimate
probabilities of HMM states, and then using simple functions of these probabilities to
label the training data using Viterbi decoding (dynamic programming). This procedure
was repeated iteratively to train the system. The Viterbi procedure was then used with
probabilities from the trained networks during recognition.

The remainder of this section will describe the original theory, but with the benefit of
hindsight from our more recent developments.

5.2 Global Posterior Probability Estimation

If X = {z1,22,...,2zx} isasequence of acoustic vectors and M; a HMM, the optimal
training and recognition criterion (actually minimizing the probability of errors) should be
based on the posterior probabilities P(M;| X, ©).

In standard HMMs, using Bayes rule, P(M;|X,0) is usualy expressed in terms of
p(X JWZ', G)) as

p(X|M;, ©)P(M;|©)

p(X|©)
which, asdiscussed in Section 4.1, separatesthe probability estimation processinto language
modeling and acoustic modeling in one particular way.

(26)
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However, when one wants to use posterior probabilities for the “acoustic” decoding™* it
isnecessary to decompose P( M| X) differently. In (Bourlard & Morgan 1994) we showed
that it was possible to estimate P(M;| X, ©) according to

L; L;
P(M;|X,0) = > ... > P(q}l,...,qZV,MAX,@) (27)
=1 In=1

for all state sequences {qj}l, e qéfv} € I';, the set of al possible pathsin M;. Generally,
this probability is approximated by considering only the best path (Viterbi approximation),
inwhich case P(M;| X, ©) isapproximated by:

F(MAX,@) = [maz(N P(qé‘l,...,qg\],MAX,e) (28)

~~~~~~

However, it is shown in this paper [see Section 8] that it is actually possible to compute the
full posterior probability (27) by a new form of “forward-backward” algorithm [see, e.g.,
(Baum 1972) for likelihoods].

In both cases, the right hand side can be factored using

P(q,....q", Mi|X,0) = P(¢",....q"|X,0) P(Mi|X,¢",....¢".©)  (29)

which separates [in a different way than (26)] the a posteriori probability estimation into
two parts:

1. theacoustic model P(q,...,¢"|X,0),

2. the language model P(M;|X,q*,...,¢",©); as seen later on, according to what
we actually encode into the acoustic models, this factor will represent phonological,
lexical and/or syntactical information.

5.3 Acoustic Modd

Probability P(q,...,¢"| X, ®) of the acoustic modelsin (29) can be factored as follow:

P(¢h,...,q"|X,0) = P(¢'1X,0) P(¢°|X,¢",0)...
L PVIX gV 0) (30)

N
= I P"IX,Q17%,0) (31)
n=1

where ¢" representsthe state observed at timer and QY the state sequence associated with
XN, Probabilities P(q%,...,¢"|X,0®) can thus be calculated from “local” probabilities

1 Again, the distinction between “acoustic’ modeling and “language’” modeling is very ambiguous here
since this definition depends mainly on which priors one wants to learn from the acoustic data and which
priors one wants to learn independently of the acoustic data. Idedly, of course, we want to learn as much
as possible from the acoustic data, aslong as it generalizes well to the test data. See Section 11 for further
discussion about this.
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P(q"|X,Q771,©); these local probabilities may be simplified by relaxing the conditional
constraints, for example by assuming dependency only on the previous state (first-order
Markov model assumption) and on atemporal window X+ around the acoustic vector at
time n (acoustic correlation limited to the contextual window). We then can approximate
these local contributions by

P(q"X,q% ..., ¢"10) = P(q"| Xt q" 1, 0) (32)

where input contextual information is taken into account. These probabilities can be
estimated at the outputs of an MLP with contextual input and output feedback. If input
contextual information is neglected (¢ = d = 0), (32) becomes:

P(q" |20, """, O)

In (Bourlard & Morgan 1994) we showed that those probabilities could be estimated by an
MLP (as represented in Figure 1) with X"*+? asinput, complemented by a K -binary input
vector representing the state ¢7~* (V& € [1, K]) and K output units, one output for each
HMM state, generating estimates of

Pq| X7t g5, 0) (33)

in which ¢, stands the state hypothesized at the previous time step. Given an HMM
topology, probability (33) is estimated by running the neural network for each hypothesi zed
state g5, .

Since these probabilities cannot be split further into something equivalent to emission
and transition probabilities (as it is the case with likelihoods), we refer to these local
probabilities as conditional transition probabilities.

As a consequence, probabilities P(qt, ... ¢",...,¢"|X, ©) of paths QY given X, as
appearing in (27), (28) and (29) are given by

N
P(ql,...,q”,...,qN|X,@) = HP(q?n|;t:n,q?_l 0) (34)

n—17
n=1

Such probabilities should be useful for better models of the speech recognition process
since, as opposed to standard HMM emission and transition probabilities, they intrinsically
have the following properties:

e They model arecognition process instead of a production process,

e They can model non-stationary processes, since they are dependent on the previous
state, and on the current acoustic vector,

e They potentially put more emphasis on transitions.
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54 Priors, Trangtion Probabilitiesand Language M odel

The second factor in (29) represents a phonological and lexical step; once the sequence of
states is known, the model M; associated with X can be found from the state sequence
without an explicit dependence on X so that

P(Mi|X,q%...,q",0) = P(M|¢%,...,q",0) (35)

For example, if the states represent phonemes, this probability must be estimated from
phonological knowledge of the vocabulary in a separate process without any reference to
the input vector sequence. Neglecting this probability is equivalent to assuming that, given
a sequence of states, it is possible to recover the model that generated it.

However, that conclusion is too facile and, athough this factor has been neglected in
most of our previouswork, werecently realized that it actually contained all theinformation
about the language model and training/test transition probabilities. This second factor
P(M;|q%, ..., q",®) may indeed be rewritten as.

P(M;|¢t ..., ¢V, 0) = 36
W7 0) P(¢". 4" [0) %
and, using the same assumptions as for the acoustic models, we get:
~ Pg"g" Tt M; @)1
P(Mil¢h, ..., ¢V, 0 [ 2| P(M;|© 37
(Milq q",0) = };[1 Plgl1.0) (M;]©) (37)

Finaly, taking (37), (36), and (35) into account in (29) and (27) we get:

1 o Ple"lg" T My, ©)
n+d n 1 ) 9
M|X Z H [ Xn ¢4 76) P(qn|qn—l7@)

] P(M;[©)  (38)

inwhich

P(¢"| X2 4", ©) (39)
represents the acoustic contribution (using conditional transition probabilities obtained at
the output of the MLP),

P(q"1q",0) (40)
are the transition probabilities observed on the training data, independently of the model,
and

P(q"q"*, M;, ©) (41)

arethetransition probabilitiesas given by the Markov model sused during recognition. Note
that ignoring the dependence on the previous state yiel ds the approach that we implemented
inthepast, inwhichwedivided by theclasspriors(asgiven by therelative phonefrequencies
in the training data) and multiplied by the transition probabilities form our phonological
models. This use of scaled likelihoods compensated for a mismatch between the training
dataand the Markov model sused for recognition. Infact, (38) providesuswith aconvenient
way to split MAP probabilitiesinto acoustic and prior contributions depending on what we
want to learn from the “acoustic” training data.

23



55 MAP Constraints

It is thus possible to estimate the global posterior probability P(A1;|.X) of aMarkov model
M; given the acoustic vector sequence X asfollows:

~

i L;
P(M;|X) = P(qjl, .. .,qﬁ],MAX) (42)

1 Iy=1

=

1

= P(q?,MAX), Vn € [17 N] (43)
1

o
I

However, we also have:

Pgf, M., X) = P(g}, Mi|X)p(X) = P(X, g} M) P (a4
or (M.
Plag M1X) = S PG g1 (@)

which is nothing other than the likelihood used in standard HMMs multiplied by a scaling
factor. This kind of scaling was already used in (Devijver 1985; Levinson et al. 1983) to
avoid numerical problems (because of the product of probabilities), where it was shown
that this led to the same forward and backward recurrences of the standard Baum-Welch
algorithm (within a normalization factor).

Maximization of p(.X|M;) and of P(M;|.X) thus seems to lead to the same estimation
formulas. However, we should not conclude from this that the discriminant approach does
not change anything since, during training, re-estimation of the parameterswill haveto take
the following major constraint of the MAP approach into account:

EI: P(M]X) = 1 (46)

=1

where the sum over : represents the sum over al possible Markov models. Here lies the
difference between an ML and an MAP criterion. Any modification of the parameters of
amodel M; must be complemented by a modification of all the parameters of the other
models so as to preserve this constraint, thus making the MAP procedure discriminant.
Thus, even if the estimation formulas are the same, the re-estimation (maximization and
update) formulas will have to be different to take the constraint (46) into account. In the
following, we define the key parameters of such discriminant HMMs and we show which
constraint they must meet to guarantee (46). It isshown that this constraint is automatically
met when using MLPs to estimate these parameters.
It is aso important to show that, in this case, if the“local” constraint:

K

> plagp|n, ™) = 1 (47)

k=1
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is met (which will be the case, at least approximately, with sigmoidal MLP outputs'?), the
constraint (46) on the global MAP probabilitiesis also met. Indeed, if I' denotes the set of
al possible paths {¢%,...,¢",...,¢" } in al possible Markov models M;, we have:

SCP(MIX) = 323 P(Mi,T]X)
= ZF:ZP(MAX,F)P(HX)
= 2 P(TIX) X P(M;|X,T)

and, assuming > P(M;|X,I) =1

K K K
= > Plqg|r1) (Z P(¢2|x2,4,) - - (Z P(qZVIwN,qZVj)) )

/1=1 =1 =1
=1

It is however important to remember that this property is valid only if one considers all
possible paths through the models.

Besides the advantage of forcing discrimination, numerical problems that plague the
classca HMM are avoided when using discriminant models. namely, the lack of balance
between the transition probability values (which only depend on the topology of the model)
and the emission probability values (which decrease with the dimension of theinput feature

space).

5.6 MAP Estimation and Training

Most of the ideas in this section have already been presented in (Bourlard & Morgan
1994). When that book waswritten, however, we did not know how to perform “full” MAP
estimation and training (i.e., taking all possible paths into account). Thus, we proposed a
Viterbi-like algorithm using conditional transition probabilities as local probabilitiesin a
DP procedure taking the following form:

P(Q1.¢/1X7) = max [P(QF ™, i X7 ™) P(aflap ™ 20)] (48)

where the index & points to al possible states preceding ¢; and P(Q7, ¢7| X}') denotes the
cumulative best path probability of reaching state ¢; given the partial sequence X7'. Note
that this DP procedure finds the most likely acoustic moddl, i.e., the left factor of (29).
During training, this type of DP was used to get a segmentation of the training data and,
consequently, to provide us with targets for the training of the MLP. While preserving
local discrimination, it was clear that constraint (46) was no longer guaranteed. Also,

12This constraint is precisely met in the case of a softmax output layer, since the outputsare normalized to
sumto 1.
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discrimination was performed at the state level only. Still, many problemswere faced with
even this smplified approach, as briefly summarized in the next section, and so we were
not prepared at that time to face the more global difficulty.

However, while recently working on transition-based recognition systems, we realized
that the original discriminant HMM/MLP theory appeared to lead to the right formalism.
However, the results of some ssimple pilot experiments suggested that it was necessary
to be able to handle “full” MAP training and recognition of hybrid HMM/MLP systems
for transition-based to work (see Section 6). The development of this MAP estimation
procedure is the main point of thisreport, and is described in Section 8. Wefirst provide a
bit more necessary background in the next two Sections.

6 Early Experimentswith HMM/MLP Systems

6.1 Brief Description

In 1988, we attempted to directly use conditional transition probabilities (23) in a discrim-
inant HMM Viterbi training for the recognition of continuous speech. Unfortunately, our
early results were quite poor. As a consequence, we simplified our system significantly so
that we could begin to trace the sources of error. Over the next few years, we discovered
key practica points that are summarized in (Bourlard & Morgan 1994). These led to a
number of modificationsto the basic HMM/MLP system that wereinitialy required to get
acceptable recognition performance:

¢ No transition-based emission probabilitiesare used; i.e., probabilitieslike
P(gr| X7+ (49)
are estimated at the output of the MLP that are independent of the previous state.
¢ Division by the prior probabilities of the output classes to get scaled likelihood

Plae X3*8)  p(X* lax)
P(qx) p(X5td)

for usein standard likelihood recognizers. However, as predicted, thisdoesn’t seemto
be required if HMM topologies are trained to better fit the training data (which isthe
case, for instance, when using multiple pronunciations models that are learned from
the data (Stolcke & Omohundro 1993)). In this case, HMM topology is no longer
independent of the acoustics so the division by the priorsis not required (Wooters
1993).

e It wasnot clear how to use information about the language model (at the word level)
in discriminant HMMs. Once we divided the MLP outputs by the prior probabilities,
wewere estimating scaled likelihoods, for which standard statistical |language models

26



apply. In particular, the scaled likelihoods could be multiplied by language priorsin
order to get estimates of the global posterior probability, asis donein standard HMM
systems.

e Only Viterbi approximation of full posterior probabilities was used for training (and
recognition). Asshown later, thislimitation canlead to major problemswhenworking
with trangition-based systems. However, particularly given a good initialization of
the estimators, this approximation was most likely not a bad one for the smplified
system.

6.2 Some Reaults

Resultsof alargenumber of experimentsusing embedded Viterbi training of neural networks
(as probability estimators for HMMs) have been presented in the literature (Wooters 1993;
Renals et al. 1994) and we will not substantially repeat them here. In general, these results
have shown that for controlled conditions (i.e., ones in which the only system change
is the choice of estimator between a discriminant neural network approach and a more
conventiona estimator), estimators with relatively few parameters can provide significant
improvements. For instance, in a recent study by Nynex on connected digit recognition
(Lubensky et al. 1994), an MLP with 11,631 parameters provided equivalent results to a
Gaussian mixtureestimator with 112,640 parameters (about .8% word error onthe TI-Digits
database). Inthat same experiment, the Gaussian mixture estimator with 28,160 parameters
had roughly double the error rate of the MLP-based system.

For large-vocabulary continuous speech recognition, there are only a few controlled
experiments that we know of. However, in one that was done in a collaboration between
|CSI and SRI, we again found an equival ence between ML P-based performance and that of
mixture Gaussian systems with many more parameters, and a halving of error for the MLP
case when the number of parameters was equivalent (Renals et al. 1992).

Often, however, both researchers and users are smply interested in the best possible
performance, and are not concerned with controlled experiments. Given this motivation,
anumber of researchers have found that the blending of probabilities or log probabilities
from the two types of systems has given better results than were obtainable from either one
alone. For instance, in the Nynex experiment, mixing the log probabilities from the best
mixture Gaussian system (which had a.7% error rate) with the MLP system (which had a
.8% error rate) led to asystem with a significantly lower error rate (roughly .6% error).3

Bwhileall of these error rates may seem extremely low, this database was artificially generated and isfar
easier to recognize than similar sources obtained from natural tel ephonerecitationsof connected digit strings.
Additionally, many practical applicationsrequirethe correct recognition of long strings of digits, for instance
corresponding to a credit card number. A 15-digit string that is recognized with a .6% digit error rate will be
incorrect roughly 8% of thetime.
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6.3 Discussion

This brief survey of results suggests the utility of discriminant HMM hybrid systems, even
in the simplified form of our earlier HMM/MLP hybrid that:

e contained no transition information,
e wasonly locally discriminant,
e and used only Viterbi-liketraining.

However, the above limitations may have constrained our system performance when
comparing with unconstrained traditional systems, namely ones with detailed levels of
context and with huge numbers of parameters. It islikely that in order to show significant
performance advantages for discriminant HMMs we will need to conform better to the
original discriminant HMM theory. Recently we have developed agorithms which in
principle should permit usto do this, and their explanation is the major task for the rest of
thisreport.

7 Transition-based Recognition Systems

7.1 Motivations

In a series of experiments that were conducted at ICSI and elsewhere, it was shown that
approaches to feature extraction that emphasized transitions provided improved robustness
to some types of acoustical interference (Hermansky et al. 1992). However, we also some-
times observed degradations in recognition performance with these measures for tests that
were good matches to training conditions. Consequently, we began looking for statistical
model s that were more fundamentally based on transition information.

In an earlier study we showed that given accurate transition information we can sig-
nificantly improve the recognition performance (Konig & Morgan 1994). Specifically, we
studied a time-index model that explicitly conditions the emission probability of a state on
the time index, where time index is defined as the number of frames between entering a
state and the current frame.

In arecent study (Goldenthal 1994), Goldenthal got a consistent improvement in phone
recognition results when enhancing his statistical trajectory models with explicit transition
models. He used a set of 200 canonical transitions that were created by clustering al the
transitions in the training set. Each canonical transition modeled the trgjectory of a fixed
number of frames centered about the transition boundary.

The studies mentioned above indicate the importance of transition information and
transition modeling to an improved recognition performance. Segment-based models
have aso been used to attempt to model the non-stationarity of speech without explicit
dependence on trangition information. In segment-based models the basic unit is a se-
guence of acoustic vectors emitted in a given speech unit (a “segment”), as opposed to
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a single acoustic vector as used for HMMs (Digalakis 1992; Ostendorf & Roukos 1989;
Ghitza & Sondhi 1993).

Given this background, we began to experiment with smpleformsof statistical training
that modeled transitions. The rest of this section reports on some pilot experiments with
this motivation.

7.2 Early Experiments

Given the theoretical properties of the Discriminant HMM/MLP model described earlier,
we felt that empirical evaluations of this model would be a first good step in improving
our understanding of transition-based systems. In particular, we began to empirically
evaluate conditional transition probabilities as used in Discriminant HMM/MLP systems
on phoneme classification and phonemic frame classification tasks.

As presented in the initial theory (Bourlard & Morgan 1994) our paradigm for training
(and recognition) was to use the Viterbi approximation, i.e., to consider only the most
probable state sequence in assigning phonetic labels to acoustic frames. We chose to
estimate the local discriminant probabilities (23) by an MLP as represented in Figure 1.
In this case, the previous state is coded as additional binary inputs, one for each possible
previous state. For every hypothesized previous state we set the corresponding input to
one and the rest to zero. As aready discussed in Section 5.3, the set of possible previous
states (or the set of possible successor states for agiven ¢, at theinput) will be given by the
topology of the HMMs (and by the currently hypothesized states of the matching process).

In a Viterbi training (as used so far) we know the correct previous state (again by
considering only the most probable state sequence), either by having a hand-segmented
database such as TIMIT, or by running an automatic aignment (Forced-Viterbi) on the
training data. During recognition, the MLP outputs will have to be hypothesized for every
possible previous state (possibly constrained by a particular HMM topology or alanguage
mode).

We chose the TIMIT corpus (Garofolo 1988) for our experiments because it is pho-
netically balanced, and in addition there are time-aligned phonetic transcriptions of al the
sentences in the database. The experiments were done on a 200 sentence development set
that was selected from the official training set and was not used for the training. We used
3300 sentences for training and 396 sentences for cross-validation (where the 200 sentence
development set is a subset of the cross-validation set). No language model was used in
these experiments. All of our resultsareonthefull 61 TIMIT phone set. Our phone models
were ssimple one state per phone models.

The net that estimates the local discriminant probabilities (as shown in Figure 1) had
1000 hidden units, 61 outputs (the size of the phone set). There were 295 inputs to the
net, including 234 that consisted of 9 frames of 26 features each (PLP12 + log gain +
deltafeatures for each of these 13) (Hermansky 1990), and 61 binary inputs that represent
the possible previous state. With the exception of these binary inputs, this net was the
same as the hybrid HMM/MLP system as described in (Bourlard & Morgan 1994). Our
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Figure 1: Estimating L ocal Discriminant Probabilities

reference HMM/MLP system (Bourlard & Morgan 1994) had 36.3% phone error on this
task. When evaluating the Discriminant HMM on this task the error rate was 40.4%. This
was an intriguing negative result; increasing the input information led to a decrease in
generdization performance. Why should this be so? Although it is difficult to draw firm
conclusions from a negative result, it can at least inspire directions of inquiry. This result
motivated the error analysis as described in the following section.

7.3 Error Analysis

As shown in the following, error analysis suggests two potential reasons'* for the observed
performance lost: (1) poor transition detection, and (2) mismatch between the input space
distribution of the MLP during training and recognition.

The first potential problem is missing trangitions; i.e., implicitly the net is a transition
detector because when it determines that the current state is different from the previous
it signals a trangition, and transition detection between phonemes is known to be a hard
problem (see (Glass 1988)). In order to test this assumption we compared the performance
of the MLP described above on two kinds of acoustic frames: transition frames that start
anew segment, i.e., their phonetic label is different from the previous frame, and all other
frames, i.e., self-loop frames. While presenting the correct previous state, the frame level
performance on the development set was:

1. Sef-loop frames. 85.5% of correct phonemic classification.

140ther than bugs.
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2. Trangtion frames: 39.2% of correct transition detection and classification.

Transitions thus seems harder to detect and classify than “ steady-state” frames. However,
we suspect that this is not (only) due to the properties of transitions but to two problems
related to the training and testing procedure:

1. We have much less training data for transition frames that for “steady-state” frames
(less than one-sixth). Thusthe classifier will tend to focusits learning ability on the
steady-state phonetic classification.

2. Our training procedure assumesthat a single frameisthetransition and that its neigh-
borsare not transitions. This does not make sense in terms of the acoustic phonetics,
since many spectral transitions are gradual. This makes a difficult classification
function for a network to learn.

Additionally, we think that another possible source of the observed degradation of
performance is the potential disparity between training and recognition input populations.
During training we only present to the net “correct” pairs of acoustic vectors and correct
previous state, while in recognition we expect the net to generalize to al possible com-
binations of acoustic vectors and previous states. Some of these recognition inputs can
be completely meaningless, e.g., like the combination of the acoustics of a middle of a
vowel and a previous state that correspondsto aplosive. The net is not trained on anything
close to these “impossible” pairs, but through the vagaries of interpolation could end up
having the highest ML P outputs during recognition. This problemisoften referredto asthe
“lack of negativetraining example” and sometimes can be partially overcome by presenting
additional negative training examplesto the net (Zavaliagkos et al. 1994).

In order to test this hypothesis we computed the frame level performance of the net on
the development set for the following two cases:

1. Presenting the correct previous state, we got 79.4% frames correct.

2. Presenting all possible previous states and taking as the winner the output with the
highest activity, i.e., taking for every frame the maximum of 61 by 61 probabilities
(61 outputs for each possible previous state), and checking if it was the correct pair
of previous state and current state. In this case we got 15.9% correct, which was the
weighted average of 18.3% correct on self-loop framesand 0.4% correct on transition
frames.

These results seem to suggest that, even for “steady-state” frames, there is a problem of
mismatch between the space of training and testing for hypothesized inputs. Of course,
the performance is also hurt by the problems mentioned earlier (a difficult classification
problem with insufficient examples for many of the classes).

All the problems identified here motivated the REMAP training and recognition algo-
rithmfor HMM/MLP hybridsthat ispresented below. Specifically, from thefirst hypothesis
welearnedthat “ hard” transitionsaredifficult to detect. Aswewill see, thefull MAPtraining
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will provide the nets with soft targets and soft decisions, i.e., with conditional probabilities
of transitions. Furthermore, by considering all possible pathsand transitions, wewill reduce
the mismatch between training and recognition. A formalism will be introduced that auto-
matically considers negative training examples without the need for explicit enumeration
of impossible input combinations.

8 REMAP Training of HMM/MLP Hybrids

8.1 Motivations

The discriminant HMM/MLP theory as described above uses transition-based probabilities
asthekey building block for acoustic recognition. However, itiswell known that estimating
transitions accurately is a difficult problem (Glass 1988). Due to the inertia of the artic-
ulators, the boundaries between phones are blurred and overlapped in continuous speech
(Deng & Sun 1994). It isalso likely that some time variability exists in human perception
of the onset of a new phonetic region. Consequently, we would like to have a“window” of
possibletransitionsinstead of asingletransition. Ideally the width of the transition window
should depend on the specific bi-phone and on the speaker. Thus we need an automated
way of estimating the transition windows to be used as targets in the MLP training.

Targets are typically obtained using an automatic alignment procedure incorporating
a Viterbi approximation. However, this procedure yields rigid transition targets, and thus
suffers from the problems mentioned above. Furthermore, our preliminary experiments
with this procedure yielded poor transition detection performance.

Another related problem in our Viterbi-based MLP training procedure is a disparity
between the training input space of the MLP and the input space used in recognition.
Specifically, in training the network only processes input consisting of “correct” pairs
of acoustic vectors and correct previous state, while in recognition we expect the net to
generaize to al possible combinations of acoustic vectors and previous states. However,
some of the hypothesized inputs may correspond to an impossible condition that has thus
never been observed, such asthe acoustics of the temporal center of avowel in combination
with a previous state that corresponds to a plosive. It is unfortunately possible that the
interpolative capabilities of the network may not be sufficient to give these “impossible”
pairs a sufficiently low probability during recognition.

One possible solution to these problemsisto useafull MAP agorithm to find transition
probabilities at each frame for all possible transitions by a forward-backward (Dempster
et al. 1977) like algorithm taking all possible paths into account. Furthermore the MAP
algorithm increases the discriminant power of the model by increasing the a posteriori
probability of the correct model and reducing the posterior probabilitiesof all other models.
Thus, it might improve the approximation to an optimal Bayes classifier.

In therest of this section, we describe a set of procedures that we have derived in order
to train and use the desired discriminant probability estimatorsin a full MAP framework.
This comprises the heart of our new developments (from a mathematical perspective).
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8.2 Problem Formulation

Full MAP training of the discriminant HMM (as defined earlier) requires solution to the
following problem. Given atrained MLP at iteration ¢ providing a parameter set @' and,
consequently, estimates of P (¢ | X *?, ¢¢~*, ©'), how can we determine new MLP targets
which:

1. will be smooth estimates of the probability of atransition ¢/~ — ¢7, Vk, £ € [1, K]
andVn € [1, N,

2. when training the MLP for iteration ¢ + 1, will lead to new estimates of ©+! and
P(qp|Xr*d, gr~t ©F1) that are guaranteed to incrementally increase the global pos-
terior probability P(M;| X, ©)?

In Appendix A, we prove that are-estimate of MLP targets that guarantee convergence

to alocal maximum of s

P(M,,|X;,0) (50)
=1

J
is given by®:

PHqp | X028 7t M) = Pg7| X, 77, O, M) (51)
where we have restricted the targets to be a mapping from the previous state and the local
acoustic data to the current state, thus making the estimator realizable by an MLP with a
local acoustic window. Thus, wewill want to estimate thetransition probability conditioned
on the local data (as MLP targets) by using the transition probability conditioned on all of
the data, as determined by procedures to be shown bel ow.

InAppendix A, wefurther provethat alternating ML Ptarget estimation (the* estimation”
step) and MLP training (the "maximization” step) is guaranteed to incrementally increase
(50) over ¢.1

Since we know (see Section 4.3.1) how to train an MLP to lead to (good) estimates of
posterior probabilities (whatever the MLP targets are “1-from-K” binary vector or them-
selves estimates of posterior probabilities), the remaining problem is to find an efficient
algorithm to express P(q7| X, qr ™1, M) in terms of P(q}|X7t?, ¢~ 1) so that the next
iteration’stargets can be found.

By smple statistical rules[asrecaled in (1) and (2)], we have:

p(X, gt qp M)
p(X, ¢ M)

Pq}|X,qi7* M) (52)

51N most of the following, as well as in Appendix A, we consider only one particular training sequence
X associated with one particular model M. It is, however, easy to see that al of our conclusions remain
valid for the case of severa training sequences X;, j = 1,...,J. A simpleway to look at the problemis
to consider all training sequences as a single training sequence obtained by concatenating &l the X ;’s with
boundary conditions at every possible beginning and end point.

16Note here that one“iteration” does not stand for oneiteration of the MLP training but for one estimation-
maximization iteration for which a complete MLP training will be required.
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p(X, gt g, M)
S p(X.qpt g, M)

(53)

inwhich
P(X,qi7 g0, M) = 3o p(X, i g™ q) M) (54)

isequal to the sum of the probabilities of all possible pathsT; inaparticular M visiting g
attimen — 1 and ¢, a timen. Inasmilar way, the denominator represents the sum of the
probabilities of all possible pathsin M visiting ¢;. at timen — 1.

We can break the probability appearing in (53) into two factors as follows: *’

P(X,qia), M) = p(XT7h g™ M)p(X, qf | X7 g™t M)

n

an-1(k)Bn(k, €) (55

in which:
o o, 1(k) = p(X771, i1, M) isthe“forward” probability, defined asthe probability
of observing the partial acoustic sequence X7~* and beingin class ¢;, at timen — 1.

o Bu(k,0) = p(XN,qr| X771 qi~t, M) isthe “backward” probability, defined as the
probability of observing the rest of the sequence and starting from state ¢, at timen
given that we have already observed X}~! and that we werein class ¢, at timen — 1.

Since we cannot afford to compute and memorize all possible pathsin (54) to compute
P(q?|X, ¢, M), we need to find recursions to compute the forward and the backward
probabilities in terms of local probabilities P(q}| X *?, ¢i~1) generated by the MLP. As

done with standard HMMs, these loca probabiliti&e;/vill be assumed independent of M.
Also, in the following, to simplify notation, we will disregard the dependency on M,
keeping in mind that al the following «’s and 3’s will be computed using specific models
M,,, associated with training sentences X ;.
8.3 Forward Recursion
By applying smple statistical rules, we have:
anpa(l) = p(X7*h gt
= Z p(Xf7$n+17qI’rchq?+l)
k
= > (X7, q}) plents, XL, 1)
k
= Zan(k) P(qg+l|X{L7$n+laqg) p($n+1|X{L,qg)
k

> an(k) PgrHHXTEL af) cnsa(k) (56)
k

12

1"This probabilistic factorization and the resulting recurrence procedures were strongly inspired by the
alpha-beta factors of the forward-backward al gorithms used for data likelihood estimation. The new factor-
ization and procedures turns out to be quite different, however.
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wherec,1(k) = p(z.+1| X7, ¢i); the sum over k& extends over al possible previous states.
It will be shown later that this factor does not appear in the training procedure. Dur-
ing recognition, if not neglected, it could be estimated via a predictive neural net or an
autoregressive model.

Initialization of thisforward recursion is done according to

ao(t) = p(gp, wo) = 1 (57)
in which ¢; is the non-emitting initial state. Thisinitialization issimilar to what isused in
the case of the traditional forward-backward algorithm.

8.4 Backward Recursion
Inasimilar way, we have:
ﬂn(]a k) = p(Xévvqme_laqy_l)
= > plen, XD a7 X ¢
£
= Y (XN G TIXT @ a)) plen, i1 XD @)
£

if 1st order HMMs :

S Busalk, 0) P(gEIXT, q27Y) plaa] X771 g0 h)
14

plar| X022, a7 7Y en(5) D Buga(k, 0) (58)
¥

12

12

Note that the last simplification, i.e., P(qp|XT,q" ") ~ p(qp| X *2, ¢7~") isnot necessary

in the case that we use a recurrent net to estimate the conditional transition probabilities.
However, in practice it might not make a difference if we use an MLP to estimate the
conditional transition probabilities, i.e., to do the last simplification. Initialization of this
backward recursion can be done according to

/3N+1(L7 F) = p(X]]\\ff-}—lv qg+l|X{Vv q]LV) =1 (59)
inwhich ¢z isthe (non-emitting) final state and ¢;, represents any last emitting HMM state.

8.5 MLP Output Targets Update

Given (55) and the recursions for these two factors, at each time the complete probability
specified in (52) and (53) can be obtained by computing their product (for each permissible
value of current and previous state):

p(Xv qz_lv q(?) = an—l(k) ﬂn(kvg) (60)
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and
p(X,qi™h) = ZP(X, THEy
= Zan 1(k) Bk, 0)
— ana(k %: B (k, )

Using thisin (53), we get:

p(X, ¢t qp)
p(X,q} ™)
ﬁn(]v )
> Bal5:0)
>0 Buga(k, 1) P(Qk|Xn+d7q]n l) cn(7)
DY, 5n+1( 7€) ( |X:+c7q]n 1) cn(ﬂ)
S Busa(k, €) P(ap| X724 )

— o6l
0 T Bl ) PaRIXIF, ) D

This final form of the equation shows that the probabilities required to determine MLP
targets can be obtained from the previous ML P outputs and the betarecursions alone. Note
aso that we can compute P (¢~ X, @), i.e., the posterior probability of being in class ¢,

at timen — 1 to be used in the training of the MLP as specified below, according to the
following:

P(gp|X. ¢ =

P(q7t, X|©)
P(X10")
an—1(k) >y Ba(k, 1)
Yok no1(k) 3, Bulk, 1)

P(gp7Y1X, 0"

(62)

8.6 REMAP Training Algorithm

The genera scheme of the MAP Forward-Backward training of hybrid HMM/MLP systems
can be summarized as follow:

1. Start from someinitial net providing P(q}| X *?, qp 71, 0%, ¢ = 0, V possible (k, ¢)-
pairst®.

18Thiscan be done, for instance, by training up such anet from ahand-labeled database like TIMIT or from
some initia forward-backward estimator of equivalent local probabilities (usualy referred to as “gamma’
probabilitiesin the Baum-Welch procedure).
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2. Run backward recurrences to compute MLP targets P(q7| X, ¢f~*,©"), V possible
(k,0)-pairs. In Appendix A, we show that these new estimates of “local” posteriors
guarantee the increase of the global MAP. Also as part of the forward and backward
recurrences we compute P (¢t X, 0") (62), i.e., the posterior probability of being
inclassq; a timen — 1to be used in the training of the MLP as specified below.

3. Forevery z, (or X"+%)inthetraining databasechoose ¢y~ accordingto P(¢7 1| X, @),
trainthe MLPto minimizetherelative entropy between the outputsand targetsequal to
P(q?| X, qr™t,©). (See Appendix A for the theoretical explanation.) This provides
us with anew set of parameters ©?, fort = ¢ + 1.

4. lterate from 2 until convergence.

This procedure is thus composed of two steps. an Estimation (E) step, corresponding to
step 2 above, and a Maximization (M) step, corresponding to step 3 above. Inthisregards,
itisreminiscent of the EM algorithm originally introduced in (Dempster et al. 1977). This
latter agorithmis, however, an iterative approach to maximum likelihood estimation while
the approach proposed here is an iterative approach to maximum a posteriori probability
estimation. Also, inthestandard EM algorithm, theM step involvesthe actual maximization
of the likelihood function. In some instances of the EM agorithm, usually referred to as
Generadized EM (GEM) agorithm, the M step does not actually maximize the likelihood
but smply increases it (by using, e.g., agradient procedure). Similarly, REMAP increases
the global posterior function during the M step (in the direction of targets that actually
maximize that global function), rather than actualy maximizing it.

Although EM or GEM algorithms can also be applied to Hierarchica Mixtures of
Experts (HME) (Jordan & Jacobs 1994), we note here that the formalism and goals are
different for these approaches than for the methods proposed here.

8.7 Remark

From a practical point of view, it is worth noting that this discriminant training is more
convenient than Maximum Mutua Information (MMI) training (see Section 11). Indeed,
MMI requires maximization of

P(X,M,.,,0,,) )
| J J 63
o0 (zlepri,ei) (53)

where estimation of the denominator requires running severa forward recurrences of each
of the possiblerival models. A common approximation eval uates an estimate of the denom-
inator by running the forward recurrence through the N-best sentence models matching X ;
or through an ergodic word model containing all possible phonemes.
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8.8 REMAP Recognition

During recognition with full MAP models, we wish to evaluate the probability of each
contending model (e.g., Markov models for a sequence of words) given the new acoustic
data, so that we can choose the model with highest probability. This can be smply
determined from the final value of the apha recursion over the input data, as evaluated for
each possible model (for instance using an equivalent to the stack decoder algorithm for
searching the space of possible word sequences). This can be shown simply as follows,
using the notation of the previous sections:

p(M;, X)
p(X)
p(Mi, qp ", X)
p(X)
1 N+1 N+1 _
= mP(Xl » 4F, |M)P(M;)
= maNH(Fz)P(Mz) (64)

P(Mi|X) =

inwhich:
e F; isthe non-emitting fina state associated with A,
e aly,.(F;) representsthe results of the forward recursion ran through M; only,
e P(M;) isgiven by the language model.

As in the more common ML approach to this problem, the scaling factor P(.X') can be
ignored during recognition. Thus, the candidate models can be evaluated from a product
of their priors (which typically come from language models) and the fina value for the
alpha (forward) recursion. As done with standard likelihood-based recognizer, recognition
based on (64) can be performed by an A*-like algorithm (Paul & Necioglu 1993). In the
case of continuous speech recognition, and given the definition of the forward recursion,
the P(M;) factor will usually contain only information about the syntax at the word level
(usually N-grams) and the (state) transition probabilitiesintroduced in (38) can beincluded
in the « recursion.

During recognition, both (38) or (64) could be used. However, in our definition of the
« recursion (56) we implicitly ignore the effect of the model A on the conditional state
transition probabilities by assuming that

Pt Xt g, M) = P(g; X0 qf) (65)

c?
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8.9 Summary

I nthissection, we have described anew procedureto estimateand globally train discriminant
(posterior) probabilities of Markov models given a full utterance X, using local posterior
probabilities as obtained at the output of a neural network. In the particular instantiation
of this algorithm that is presented here, we used local conditional transition probabilities
to estimate global posterior probabilities. It is, however, clear that this algorithm can (in
principle) be realized in other ways. As with the venerable Baum-Welch procedure, we
have shown that thereis an efficient procedure to iteratively converge to local probabilities
that are guaranteed to maximize aglobal discriminant criterion (whichinour caseisMAP).
Also, thereis a convenient way to incorporate prior knowledge about the language.
The new algorithm presented here

1. canbeusedinanew formof hybrid HMM/ANN that retainsthe advantagesof standard
HMM/ANN hybrids (local discrimination, lack of distributional assumptions, etc.),
while using “full” posterior probabilitiesfor training and recognition;

2. dtill uses neural networks (in our case MLPs, although recurrent networks or TDNNs
could be used) to estimate local posterior probabilities (conditional transition proba-
bilities); but thenew networksaretrained with probabilistic targetsthat arethemselves
estimates of local posterior probabilities (conditioned on the acoustic data and the
previous state);

3. iteratively estimates these optimal targets using an algorithm that is similar in spirit
to the forward-backward recursions of the Baum-Welch algorithm; and

4. can be proved to iteratively increase the global posterior probability (thisisprovedin
Appendix A.)

We note in passing that the proposed agorithm differsfrom an approach in which local
likelihoods (or transition probabilities) would be computed from the standard forward-
backward a gorithms and then multiplied by the prior probabilities of statesto get posterior
targets for neura net training. Although such an agorithm could potentialy provide
the network with posterior probabilities estimated from full global probabilities, it is not
discriminant (in the sense that the training steps are not chosen to minimize a globally
discriminant criterion, resulting in different targets).

Section 9 generalizes the algorithm presented in this section to M-th order Markov
models. Since it is expected that this approach will prove most important for transition-
based recognition systems, Section 10 adapts the new agorithm to a particular kind of
transition-based recognition system that we have recently been studying.

We conclude this section with a discussion of the naming convention for the underlying
models used in REMAP. It could be argued that the new approach is smply an alternate
algorithm to compute parametersfor a particular kind of HMM. On the other hand, it could
be argued that our hidden Markov models are no longer “hidden”. We believe that both
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interpretations are valid. A “hidden” Markov process is usualy defined as two correlated
Markovian processes, where one corresponding to the state sequence that is not observed
directly, but that affectsthe second Markovian process associated with the observed acoustic
vector sequence. Although most early papers (Baum & Petrie 1966) referred to this kind
of model as a “probabilistic function of a Markov chain”, (a very precise but somewhat
cumbersome definition), L.P. Neuwirth (Neuwirth 1970; Poritz 1988) coined the popular
term “hidden Markov model”. If we limit the definition of “hidden Markov processes’ to
the initial definition it is clear that our new mode is still a hidden Markov chain. In fact,
p(q|xn, g¢ 1) can indeed be inverted with Bayes Rule to be a probabilistic function of a
Markov chain. If, however, we define hidden Markov models as modelsin which transition
probabilities of the underlying (hidden) state sequence can be expressed independently of
the observed acoustic vector sequence, then the MAP-based Markov model is no longer
hidden.

In any event, whatever the new stochastic models might be called, they are defined by
their topol ogies and by conditional transition probabilitiesthat can be estimated by an MLP.

9 M-th order REMAP Training

In the previous section, we developed procedures for training estimators of the posterior
probabilities of models of speech utterances. These procedures relied on the factorization
of (29) and (30) (factorizing the probability of a state sequence into the product of a series
of state probabilities conditioned on previous states). They further relied on an assumption
that the local state posteriors could be evaluated without any explicit dependence on states
earlier than the immediately preceding state. That is, we assume that

P(q"|X,Q17%,0) ~ P(¢"|X,¢"",0) (66)

While this first-order Markov assumption does not seem too bad, it is aso possible to
derive analogous procedures using explicit representations of higher order dependencies,
namely

P(¢"[X,Q17.0) ~ P(¢"|X,Q; . ©) (67)
Inthissection wewill ssimply givethefinal form of the recursionsand training procedure
of the M -th order case, without their derivation. Oncethe 1st order derivationisunderstood,
however, the Mth order case followsin a straightforward manner.*°
9.1 Forward Recursion
Defining the “forward” probability « as:

an(kiy ko, oo kar) = PXE,q0, ai b qp M) (68)

We leave it as an exercise for the reader to show that thisis so. We could have put the derivation in this
TR aso, but it was too large to fit in the margins.
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and, using similar methods to those shown previously, we can derive the recursion

ant1(ko, k1, ... kar—1)
n " n n— n—(M-1
— Z an(k07 k17 cee kM—l) P (qé +1|X1 y Tntl, Grg» le 17 Ty qu(—l ))
kar—1
n n n— n—(M-1
P (flfn+1|X1 y Doy iy 17 R qu(_l )) (69)

For thecase of M = 1, thisrecursion reduces to the relation that was derived previoudly.

9.2 Backward Recursion

Similarly, the “backward” probability 3 can be defined as
Ba(ko, b, - kar) = p(X Y, qi | X7 ai a2 i) (70)
Again, using similar methods to those shown in Section 8.4, we can derive the recursion

Brlkoy k1, ... k)
=~ E ﬂn+l(£7 kOa klv R kM—l)P(qchLo|X]T.L7 qgl—l’ qu_za cee 7qZ?LJ;M)
J4
Plaa XP7H gi i % g ™) (71)

in which the only approximation is due to an assumption of an M-th order model.
As with the forward recursion, for the case of M = 1, this recursion reduces to the
relation that was derived previoudly.

9.3 MLP Output Targets Update

Pluggingthe M — ¢k order relationsinto the expression of the desired posterior probability,
we can get the general case for the required recursion for the target values:

P(qi,| X, Q174 ©)
Xk Bura(lko ks kvt P XT gt 0% i)
Sko 2ot Bra(liko ko knroa) Plai | X, gt aiy o ai,™)

where the predictor terms drop away as they did in the 1st order case.

(72)

9.4 M-th order REMAP Training Algorithm

Using the same local acoustic input as described for the 1st order case, we summarize the
full procedure as follows:

1. Start from some initial net providing P(qgo|Xg+d,q§1‘1,q§2‘2, e ,q};};M,G)f), t=0,

—C

V possible (M + 1)-tuples (g, g7t a0 % - ap ™),
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2. Run backward recursions to compute MLP targets P(q | X, ¢i:7%, ..., qp M, ©F), V
n—M

possible (M + 1)-tuples (qf,, g s a2 aiy ™)

3. For every z, in the training database, train MLP with output targets equal to
Plap|X,ai b a2 a1, M, ©), V possible M-tuples (g7, , gi s a2, - i)
at the input or for alimited subset asimposed by the HMM topology. This provides
us with anew set of parameters©?, fort = ¢ + 1.

4. lterate from 2 until convergence.

The corresponding recognition algorithm is precisely the same as given for the 1st-order
case, with the exception that the a pha definition has changed.

9.5 Discussion

The 1st order REMAP algorithm, as defined earlier, turns out to be a convenient special
case of the general M-th order algorithm. However, in general it should be expected to be
much more difficult to implement higher order systems. While the recursions are not much
more complicated, each probabilistic estimate now is dependent on many more terms, so
that training may be difficult in general.

Nonetheless, the abstract M -th order case may be of some significance, because other
assumptions than the 1st order one may prove to be practical. In the following section, we
briefly discuss some perceptually oriented assumptions that could be made, and show the
effect they could have on the REMAP procedure.

10 Stochastic Perceptual Auditory-Event-Based M odels (SPAM s)

10.1 General Description

In (Morgan et al. 1994), we describe a statistical model of speech that is broadly based
on perceptua constraints. In this case, the model is constrained to consist of a sequence
of auditory events or avents, separated by relatively stationary periods (ca. 50-150 ms).
Avents correspond to times when the spectrum and amplitude are rapidly changing, which
are believed to be the most important regions for phonetic discrimination (Furui 1986).

In this new formalism, states receive observations rather than emit them. Each state
corresponds to an avent from the avent set Q* = {qo0, ¢1, - - -, gx }, in Which ¢o represents a
non-perceiving (or non-avent) state. Inthisframework, ¢; refersto avent ¢, being perceived
at timen. Inour current experiments, we are initially assuming that the avents occur during
times of significant spectral change, and as such probably correspond to something like
truncated diphones. In this approach, all of the stationary regions are tied to the same class
(g0). Markov-like recognition models can use avents as time-asynchronous observations.

A statistical model M; of aword or a sentence is then defined as a sequence of avent
states (¢x's, with & = 0), with no self-loop, with the non-avent state in between (including a
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self-loop). In amanner that is analogous to the discriminant HMMs of the earlier sections,
we can compute (Morgan et al. 1994) P(M;| X, ©) fromlocal probabilitieslike

n n n—A0A(n Vﬁzo,l,,f(
oo, {205 ] 73

in which A(n) represents the time difference between time frame » and the time that the
previous avent was observed. We note that a related variable frame-rate analysis method
was aready proposed in (Russall et al. 1990). In that method, when consecutive acoustic
frames were “too” similar, only the first frame and the length of the (dropped) sequence as
an additional input variable (our A(n)) were passed to the training and recognition process.
Thisideais similar to SPAMs except that, in our case, we are actually using a recognition
model. Also, the assignment of frames to “non-perceiving states’ ¢ (essentialy, which
frames to drop) is based on a global criterion and not on local decisions. However, both
approaches will emphasize dynamic portions of the speech signal, incorporate implicit
duration modelling, and remove correlation between successive frames. These effects
make the recognition process more consistent with HMM assumptions. In (Russell et al.
1990), this was shown to improve recognition performance.

Discriminant models can be trained to distinguish among all classes (including the non-
avent class). The training data can be automatically aligned using dynamic programming,
and the discriminant system (e.g., a neural network) can be iteratively trained towards the
optimal segmentation.

In addition to using a discriminant recognition model, this approach should focus
modeling power on the perceptually-dominant and information-rich portions of the speech
signal, which may also be the parts of the speech signa with a better chance to survive
in adverse environmental conditions (since timing between auditory events seems to be
an important aspect of robustness to noise). The tying of non-avent states also permits
statistical models that include dependencies on states long before the current one, without
exploding the parameter requirements.

10.2 REMAP for SPAMs

The SPAM assumptions can be considered as a special case of the M-th order models
described earlier, with a few modifications:

1. States are defined to be either an avent class or the single non-avent class that
corresponds to al “non-informative” or stationary states. With the exception of this
latter class, then, the states may be viewed as themselves representative of spectral
transitions.

2. All of the M predecessor states that are not avents provide no information about the
current state other than the time between the previous avent and the current state.
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3. If two aventsfall within the most recent M states, weignore the older one (assuming
that the effects from the more recent one will be more important).

Given these modifications, al of the recursions and relations given in the previous
section can be rewritten in aform that is more compact than the general M -th order case.
This compactness also is indicative of the reduced computation and difficulty in training,
since the dependency on past states isreduced to asingle state, asin the 1st order case. The
only additional complexity is the addition of explicit dependencies on duration between
avents. However, the details of the derivation are somewhat different from the earlier one,
and so will be provided here with some explanation.

We define

an1(B(n), 0) = p(X77Y "4 ™) (74)

where the subscript for the state at timen — 1 isleft unspecified, since it is either an avent
state (in which case it is state /), or a non-avent state (in which caseit is state 0).
We further define a backward factor

Bo(B(n), 5, k) = p(XY,qp| X3 Yq" 2 g0 o) (75)

And then we will compute MLP targets from aratio of terms that will be computed from
their product, as before.

10.2.1 Forward recursion

Keeping in mind that A(rn + 2) refersto the time difference between » 4 2 and the time that
the most recent avent was observed, we require aforward probability

n n n n+2—-A(n+2
an+l(A(n+2)7£) = p(Xl+17q£+17q 7"'7Qk+ (nt ))

= Y p(XIL gt gn, gt ity (76)

A(n+1),j
But if ¢"+!isan avent, then A(n + 2) = 1, and ¢/ T2 = ¢+l |f ¢"*+1 isnot an
avent, then A(n + 2) = A(n + 1) + 1, and ¢/ 72740+2) = n+1-80+D) | Therefore, we

can removethen + 2 term, and we get

n n n n+1-A(n+1
an1(B(n+2),0) = Y p(XIH gt g, gAY
A(n+1),j
n n n+l1-A(n+1 n n n n+l1-A(n+1
= Z P(leq 7"'7Qj+ (+))P($n+17Q£+l|Xlaq 7"'7qj+ (+))(77)
A(n+1),j



Thefirst termisjust the previous valuefor « , and in the second term we can omit explicit
mention of states other than ¢"+1-2("*+1) | replacing them by the dependence on A(n + 1),
as defined by the SPAM assumptions. This gives

Gt (B +2),0) = 3 onB(n+ 1), )p(wnrs, XD A + 1), g7 )
A(n+1),j
— E (A(n—l— 1) ) ( n+l|Xn-|—l A(TL—I— 1) n—l—l A(n-}—l))
A(n+1),j
P41 X7, B(n + 1), g7 780 (78)

in which the last step was a simple factorization that is the same step that is taken for the
1st order case of Section 8.
Notethat asin that case, X7+ can be approximated by X7+¢, and that the final termis

n—c!

an autoregressive factor that isa SPAM form of the earlier case. As before, thisfactor will
not appear in the training, but will (ideally) be used in the recognition.
10.2.2 Backward recursion
The backward recursion can be obtained as follows:
Ba(B(n), 3, k) = p(XN, qp| X772 ¢ 2 g o)
= Y Y (XN, gt D X g gAY

A(n+1),4 m
n n n — n—A(n
= Z ZP n+l7 +1|X17qm+l Al +1)q q" 17---7%‘ ())
A(n+1),4 m
n (n n— n— n—A(n
p($n7Qk7qm+l Alnt1) |X 17q 17"-7q]‘ ( )) (79)

However, it turnsout that m is entirely determined by A(n), 7, and &, since

)k ifAR+1) =1
| j otherwise

Thereforewe can removetheinner sum. Additionally, we can remove some other terms.
For the first factor, we can remove the dependence on ¢”~2("), since it is either identical
to or older than the other avent state, and we are assuming a dependence that only goes
back one avent into the past. For the second factor, the state q"t1-2("+1) provides no new
information, since it either corresponds to ¢™ or ¢”~2"), depending on whether or not an
avent occurs at time n.

Taking into account these points, we get

BuB(n), 5. k) = 3 p(XNa XY qf g gt
A(n+1),2
n n— n— n—A(n
p($n7Qk|X1 17q 17---7q]‘ ( ))
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= Y BuralBn+ 1), m, Op(qF XT gL
A(n+1) 0

n— n o n— n—A(n
p($n|X1 17qk7q 17"'7qj ())

= Y Buna(B(n + 1), m, O)p(q7]| X7, An), i)
A(n+1) 2

Pl X771 A(n), ;) (80)
where the second last step gave the factorization between posterior and predictor probabili-

ties, and the |l ast step summarized the non-avent states by their duration, which is consistent
with the SPAM assumptions .

10.3 MLP Output Targets Update
Plugging the SPAM recursionsinto the expression of the desired posterior probability, we
can get the required recursion for the SPAM MLP target values:
_ Bn(A(n), 7, k)
Dk ﬂn(A(n)ajv k)
_ Tapne Buena(B(n 4 1), m,0) P(g| XY, qf " Aln))
Ek EA(n—i—l),lZ ﬂn-}—l(A(n + 1)7 m, E) P(qmX{La q;L_A(n)aA(n))

where the predictor terms drop away as they did in the 1st order case, and where the
dependence on the data sequence can be approximated by a local window as before.

P(gp|X, ¢; 74", A(n))

(81)

10.4 Discussion

Unlike the genera M-th order case, the SPAM version of the REMAP estimations is
only expanded out by a factor corresponding to the range of permitted durations to the
most recent avent. Thus, in principle one can derive important correlations between the
states over a significant region of time (e.g., 100 msec) without a crippling increase in
computational or training data requirements. This simplicity is dependent, of course, on
the SPAM assumptions, which may not be good ones. However, this section provides an
aternate to the 1st-order approach. At this stage we have no way of knowing which will
provide the more useful model of speech nonstationarities for recognition. Nonetheless,
this section (and the M -th order case described previoudly) show that there are a number
of modifications and extensions to the basic 1st order REMAP procedure that can be
considered.

11 Related Discriminant Approaches
As briefly recaled at the beginning of this paper, there are two conceptua problems with

the maximum likelihood approach (apart from all the hypotheses that are usualy done in
systems based on standard HMMs):
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e Itisimplicitly assumed that themodel (with al itsassumptionsrelativeto itstopol ogy
and probability density functions) is accurate and reflects the structure of the data
(although the data might not adhere to the constraintsimposed by the HMMs). If we
had enough training data, it would probably be preferable to infer all the parameters
of the models (including topology and non-parametric probability density functions)
directly from the data. This can be seen asimplicitly using aBayes or MAP criterion
(i.e, maximizing P(M|X)) during training instead of ML. Since MAP includes the
effects of prior information, the language model would aso be inferred from the
training data. However, it appears that this would require a prohibitive amount of
training data.

e BytrainingwithML instead of MAP, westrongly reducethediscriminant propertiesof
HMMs. |deally, each HMM should betrained not only to generate high probabilities
for its own class, but also to discriminate against rival models.

Both of these two points (but particularly the second one) are related to the discussion that
follows on discriminant criteriafor HMM training.

The ML criterion can lead to optimal recognition performance only if the model is an
exact statistical model of the source. It hasindeed been shown that ML will givethe optimal
estimator under a certain set of conditions (Nadas 1983). However, these conditions are
rarely (if ever) satisfied in speech recognition. With an inaccurate model, the best we can
do is to optimize its ability to distinguish between the underlying source symbols, which
istypically achieved by replacing the ML criterion by a discriminant The source symbols
of alanguage model can be defined at many possible levels, including sentences, words,
phones or HMM-states, each of them leading to a different discriminant criterion.

In this section, we briefly discuss related discriminant approaches that have been pro-
posed for speech recognition and compare them with the approach described in this paper.

111 Maximum Mutual Information (MMI)

Initialy introduced in (Bahl et al. 1986; Brown 1987), this method aims at maximizing the
mutual information (Cover & Thomas 1991) between a set of (sentence) models M,,; and
the associated sequences of acoustic vectors X ;. This mutual information is then defined
as (Cover & Thomas 1991):

p(Mw 7X]|e)
I(M,,, X;|©) = p(Mu;, X;|@)log : >
( J| ) M%;XJ ( ]| ) P(Mw]|@)p(Xj|@)
B p(ijan|e)
= Ep(ijvXﬂle){log P(M,,|®)p(X;|©) >

where O is the whole parameter space (for all models) in which optimization is performed
and thesum over M,,; X; representsasum over al training utterances. £, Mo, X;|0) stands
for the expected value according to the mass function p(M.,,, X;|©).
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For one particular (M,,,, X;) set, wethen have:

p(Mw] 3 Xj |@)
(M., |©)p(X;|©)
p(X]‘ |Mw] ) @)
i1 p(X;|M;, ©) P(M;]©)

I(M,,;,X;|0) = IogP

(84)

= log

As aready mentioned in Section 4.1, the language model parameters ©* are often assumed
independent of the acoustics parameters © and are estimated independently from a (large)
text copra. Furthermore, the likelihoods p( X ;| M;, ©) depend only on the parameters ©;
present in M;. As aconsequence, (84) can be rewritten as

p(Xj |ijaew])

I(M,,,X;|0) = log
(M, X518) =108 o oA 0) PV ©)

(85)

in which the contribution of each term in the denominator is weighted according to the
prior probability of the associated sentence as given by the language model and which is
independent of the acoustic training data.

It isobviousthat (84) and (85) arediscriminant criteria. In (Bahl et al. 1986) it is shown
that it is possible to get some kind of re-estimation recursion of local probabilities but,
unfortunately, there is no proof that the recursion converges and there is no guarantee that
the new estimates of (e.g., transition) probabilities are positive. As a consequence, alocal
gradient ascent method is usually used for optimization and the standard (likelihood-based)
forward-backward recurrences are used to estimate the gradient. This is sSimilar to the
Alpha-Nets presented in (Bridle 1990)?° in which the gradient of the mutual information
criterion takes the form of the backward recurrence used in the Baum-Welch algorithm. In
the framework of hybrid HMM/ANN systems, thisMMI criterion has been used in (Bengio
et al. 1992), in which the ANN generates the sequence of acoustic vectors for the HMM
and is trained to optimize the (global) MMI. In that paper, it is shown that it is possible
to compute the gradient of the HMM training criterion (MMI or ML) with respect to the
parameters of the ANNS.

However, in additionto “theoretical” problems, thisalgorithm suffersfroma* practical”
problem for continuous speech recognition. Indeed, optimization of © to maximize (84)
requiresnot only aforward recurrencefor the numerator, but al so many forward recurrences
for the denominator to estimate the contribution of al possible rival model.

Several solutions have been proposed to alleviate this problem, including:

1. If phoneme models are trained, the use of a “looped” phonetic moddl, i.e., a word
model that allows any possible phoneme sequence (Merialdo 1988). This model
may generate all possible phoneme sequences and, by running the forward recursion
through it, may provide the summed probability in the denominator of (84).

20And which are not “regular” nets.
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2. Estimating the denominator in (84) by running an N-best algorithm providing the
N-best (rival) sentences through which we run the forward recursion.

With the agorithm we propose in this paper, in addition to all the advantages of
“standard” HMM/MLP hybrids (i.e., local nonlinear discrimination, time correlation and
no significant assumptions about probability density functions), we do not need to run
multipleforwardrecursions. Also, all probabilitieswill always be estimates of actual (local
and global) posterior probabilities, will be positive and will sum to one.

112 MAP Probability

Asdiscussed in Section 4.1 , theideal criterion to be maximized during training of HMMs
is the posterior probability P(M.,,, | X;) that a Markov model M., generates the acoustic
vector sequence X ;. According to Bayes' rule, this probability can be written as

p(X;|M,,,©)P(M,,|©)
p(X|09)

P(M,,|X;,0) = (86)

where O is the parameter set in which optimization is performed. As already mentioned
in Section 4.1, the language model parameters ©* are often assumed independent of the
acougtic parameters ©. Furthermore, the likelihoods p(X|M,,,,©) depend only on the
parameters ©,,; presentin M,,,. As aconsequence, (86) may be written as.

p(X; |Mw] , @w] )P(Mw] |©*)
Y1 p(X;|M;, ©,) P(M;]©7)

P(M,,|X;,0) = (87)

As shown in Section 4.1, redtricting maximization of P(M,,, | X;, ©) to the subspace of the
M,,, parameters |eads to the maximum likelihood criterion usually used in standard HMM
training.

On the other hand, maximization of (87) with respect to the whole parameter space is
equivalent to maximization of

1
Z#w] p(X;|M;,0;)P(M;|©*)
L+ S i, 6 )P0, 16

or maximization of
p(X;|M,,,0,,)P(M,,|0)

Ei;ewj p(X;|M;, ©;) P(M;[|©")
which leads to discriminant models since it implies that the contribution of the numerator
should be enhanced while the contribution of all possible rival models, represented by the
denominator, should be reduced.

If the parameters of the language model ©* are assumed independent (and estimated
independently) of the acoustic parameters, P(M,,,|©) is then a constant during acoustic

(88)
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training and can be disregarded in the maximization process. Maximization of (87) isthen
equivalent to maximization of

p(Xj |Mw] ) @w])

S (X[ M;, ©,)P(M;]07) (89)

which is nothing else than the exponentia of the mutual information criterion (see next
section). Given (88), the sum over : in (89) caninclude al models alowed by the grammar
(including the correct) or only the rival models.

In conclusion, if the parameters of the language mode are estimated independently of
the acoustic parameters, maximization of (86) isthen smply equivalent to maximization of
mutual information, and there is no advantage in optimizing posterior probabilities instead
of mutual information.?! However, in general the model priors (language model) not only
refers to syntactical information at the word level, but also to prior information at, for
instance, the word and phoneme levels. In those cases, one could attempt to optimize the
language model together with the acoustic model, which is exactly what the full MAP
optimization is doing.

11.3 Embedded Viterbi

A smple, frame-based, discriminative criterion is the Viterbi approximation of the “full”
MAP presented in this paper. In this case, each HMM-state is considered as a separate
source symbol and the training algorithm attempts to maximize the posterior probability of
detecting the correct state ¢ given z,,. The Viterbi agorithm will then minimize

N
log P(M|X) = log P(q"|z,) (90)

n=1
This is what has been used for severa years in standard hybrid HMM/MLP systems
(Wooters 1993; Renals et al. 1994; Renals et al. 1992; Robinson 1994). In this case,
the Markov models are only used to find state targets that are then used to estimate local
posterior probabilities, which can be done, e.g., by an MLP. This kind of agorithm is
very simple and basically performs discrimination between individua states, rather than
between phonemes, words or sentences. Although it is possible to prove (see Section 5.5
and (Bourlard & Morgan 1994)) that preserving the MAP congtraints at the local level aso
preserves the MAP constraint at the global (sentence) level, it isnot certain that improving
discrimination at the local level implies improving discrimination at the global level, i.e.,

iteratively increasing the global a posteriori probability.

114 Generalized Probabilistic Descent (GPD)

Generalized Probabilistic Descent (GPD) isanother discriminant approach that issometimes
used to train speech recognition systems. GPD is actually very close in spirit to MMI,

2 Apart, of course, from theadvantages of using an ML P and acoustic context to estimatelocal probabilities.
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although it permits generalization to different kinds of training criteria (Katagiri et al.
1991).

The general idea of GPD is actually smple and can be summarized as follows. Given
the whole set of parameters ©, define a discriminant function associated with each (word
or sentence) model M; as g;(X;©®). This discriminant function can be any differentiable
distance function or probability distribution. Severa instances of this are discussed in
(Katagiri et al. 1991), each of them leading to different interpretations (asis also the case
for MMI and MAP training). However, often the discriminant function is defined as:

gZ(X, @) = — |ng(X|lw“ @) (91)

Here again, (91) can be considered as the “full” (word or sentence) likelihood, the best-
path (Viterbi) approximation (referred to as* segmental GPD training”) or any intermediate
solution like a sum over the S-best matching path scores. Another solution could be to
define g;(X'; ©) astheMMI in (85). However, since thiswill then be used in adiscriminant
measure (as defined below) taking al the classes into account, it can be easily shown that
using MMI or full likelihoods as di scriminant functionsresultsin the same misclassification
measure.
Classification (i.e., recognition) will then be based on that discriminant function accord-
ing to the (usua) rule
X eM; if j= agmax g;(X;0) (92
2

Given this discriminant function, we can define a misclassification measure that will
measure the “distance” between one specific class and al the others. Here again, severa
measures can be used, each of them leading to different interpretations. However, one of
the most general onesgiven in (Katagiri et al. 1991) is:

1/n
4(X;0) = 4;(X,0) ~log | -+ > expl(n(X; ©)) (93
i3
inwhich I represents the total number of possible reference models. It iseasy to seethat if
n =1, (93) isthen equivalent to (85) in which all the priorsare assumed equal to 1/ /.

The error measure (93) could be used as the criterion for optimization by a gradient-like
procedure, which would result in something very similar to MMI training. However, the
goal of GPD is to minimize the actua misclassification rate, which can be achieved by
passing d;(.X; ©) through a nonlinear, nondecreasing, differentiable function ¥ (such asa
sigmoid function) and then minimizing

E©)=)_ > F(d(X;0) (94)

J XeM;

Other functions can be used to approximate the error rate. For example, we can also
assign zero cost when an input is correctly classified and a unit cost when it is not properly
classified, which isthen another formulation of the minimum Bayes risk.
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As briefly shown above, this approach is certainly very general and includes several
discriminant approaches as particular cases. For some problems such as continuous speech
recognition, however, this approach has the same potential difficulty asMMI, i.e., the need
to estimate “ scores’ (whatever they might be) of both the correct model and for all possible
rival models.

115 Discussion

A wide range of discriminant approaches to speech recognition have been studied by
researchers. A significant difficulty that has remained in applying these approaches to
continuous speech recognition has been the requirement to run computationally intensive
algorithms on al of the rival sentences. Since thisis not generaly feasible, compromises
must always be made in practice. For instance, estimates for al rival sentences can be
derived from alist of the“N-best” utterance hypotheses, or by using amodel of all possible
phonemes.

It may be that the fundamental potential practical advantage to REMAP isthat itisa
discriminant training algorithm that does not require the explicit enumeration of possible
rivalsin order to get a globally and locally discriminant training. In any event, it seems
that it is at least important to explore full MAP approaches, which actually appear to be
more straightforward than MMI (for continuous speech). Additionally, of course, weretain
the advantages that we have described about using MLPs for the local estimation (freedom
fromdistributional assumptions, and ability tolearn high order correl ationsbetween flexibly
chosen features).

12 Conclusions

The writing of a paper can have many purposes. One of the most important for us was to
write clearly in one place the sets of ideas that we have been working on these last few
months. In this sense we have by definition succeeded, since we now know where to ook
for theinformation that we held so clearly in our heads a few weeks ago.

Additionally, however, reports have a more social role; others may be aso interested
in learning about our work. Thus we wish to communicate our ideas to other readers as
well. Thisisamuch harder task. Thereis agreat dea of detail here, and it may be hard
for someone who is not working in an extremely similar areato easily follow al of it. Itis
unfortunately quite likely that many readers may have become lost in the detall.

Therefore, as a public service, we offer this brief summary of the maor conclusions
(we think) that we have reached concerning our recent work on recursive estimation and
maximization of a posteriori probabilities (for speech recognition):

¢ We have a method to estimate and train full MAPs (for sequences).

e This can be used in a new form of hybrid HMM/MLP in which, in addition to the
advantages of standard HMM/MLP hybrids, we use “full” posterior probabilitiesfor
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training and recognition.

We still use neural nets (in our case MLPs, though recurrent nets or TDNNSs could be
used) to estimate local posterior probabilities (conditional transition probabilities),
but our nets are trained with probabilistic targets that are themselves estimates of
local posterior probabilities (conditioned on the acoustic dataand the previous state).

We have a way, smilar in spirit to the forward-backward recursions of the Baum-
Welch algorithm, to estimate these optimal targets given a previously trained neural
network.

We have a convergence proof that guaranteesiterativeincrease of the global posterior
probability (see Appendix A).

This method is valid for any hybrid HMM/MLP system but, in this paper, was
developed in the framework of “Discriminant HMMS’ using conditional transition
probabilities.

It isexpected that this approach will prove most important for transition-based recog-
nition systems.

This approach can be generalized easily to other transition-based recognizers like
SPAMs.

We don’t have any major experimental results yet, but this should come soon...

It is however possible that this new approach (even just thetheory) opens several new
research paradigms (we may have just opened Pandora’s box...)
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A Convergence Proof of REMAP HMM/MLP Training

A.1 Introduction

Below we prove convergence (at least to alocal minimum) of the 1st order REMAP training
algorithm described in Section 8. We show that for any training sentence X 22, an iteration
consisting of

1. estimating new MLP training targets from a previously trained MLP via backward
recursion, and

2. training the MLP with the new targets

will increase the global MAP probability of the sentence model given the sequence of
acoustic vectors, i.e. P(M|X). Itiseasy to seethat thisproof can be generalized to severd
training sentences since thisis then smply equivalent to training on along sentence built
up by concatenating all training sentences (with additional start and end point constraints).
The proof has three main steps:

1. Defining an auxiliary function such that maximizing that function is equivalent to
maximizing the global posterior probability of the correct model and, (since such
probabilities must sum to 1 for the complete set of possible models) minimizing the
posterior probabilities of the rival models.

2. Finding new targets for training the MLP that maximize the auxiliary function.

3. Showing that training the MLP with those new targets (using a weighted relative
entropy error criterion) leads to an increase in the value of the auxiliary function.

Note that while this paper has largely assumed the use of an MLP for the required
probability estimation, other gradient-trained estimators (such as arecurrent network) could
also be used.

A.2 Definitions

Let usdefine an auxiliary function® R(wv1, v,) asafunction of two probability sets vy, v, €
Y, where Y is the set of all conditional transition probability sets that have been defined
in this paper as the set of probabilities P(q}|x,,q;~*) for all permitted values of k, ¢,
and »n. Each set thus contains the K?N possible condition transition probabilities, where
K is the number of states in the model, and N is the number of acoustic vectors. Note
that the probability sets can be a function of a probability estimator. In our case, these

22To simplify our notations, all thefollowingproofswill bedonefor only onetraining sentence X associated
with the Markov model M, but it iseasy to see that all the proofsremain valid in the case of severa training
sentences X; associated with M., ,, forj =1,...,J.

BThisauxiliary functionisusually denoted Q(-). However, to avoid any possibleambiguity withan HMM
state sequence, we denoteit R(-) in this paper.
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probabilities are estimated by an MLP with parameter (weight) set ©, in which case we
denotethe probabilitiesas P(q} | .., ¢f =, ©). Inthiscase, the probability set v also becomes
afunction of © and isthen denoted by v(0O).

The auxiliary function R(v1, v,) isthen defined as

1 > P(M.T|X,v1) log P(M,T|X,vy) (95)

flonv2) = SO, o) 2

where I is a lega path (state sequence) in model M and P(M, | X, v;) represents the
probability of a specific path I" in M given a probability set v,.

A.3 Theorem1l

Theorem 1.

IF R(v1,v2) > R(v1,v1)

THEN P(M|X,v2) > P(M|X,v1).

In other words, if we can find a new set of probabilities v, increasing R, the new set of
probabilities will aso increase the posterior probability of the model M.

Proof:

P(M|X,v7)
P(M|X,v1)
P(M,T|X,v1) P(M,T|X, v,
:Iog ZF: ((M|)|( Ul))PEM7r:X701;‘|
Z P(M,T|X,v1), [P(M,HX, vz)]
= P(M|X,v1) P(M,T|X,v1)
(because of Jensen’sinequality and concavity of log function)
= R(v1,v2) — R(v1,v1)

(Note that the random variable used for the Jensen’s inequality is a % whichisa

deterministic function of the random variable ). As aconsequence, we have:

P(M|X7 UZ)

%9 B MY, )

Z R(Ul, 1)2) — R(Ul, U]_) (96)

which proves the theorem. If a new set of probabilities v, that makes the right-hand side
of (96) positive can be found, then the model re-estimation algorithm can be guaranteed to
increase the posterior probability of the model to P(M| X, vy).
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A4 Theorem 2

The question that arises from the first theorem is how to find a new set of probabilities
vy that increases the value of the auxiliary function R(-) and, consequently, the posterior
probability of the correct model (and therefore also minimizes the posterior probability of
therival models).

Theorem 2:

Given v, afixed set of probabilitiesthat is estimated by an MLP with afixed set of weights
O, we show that R(v1,v2) attains its maximum value when the conditional transitional
probabilities P,, (g} |z, ¢¢ 1) € v, are defined as*

P,(q} |zn qp™ 1) = P(q}] X, ¢p~ " 01(©), M) (97)

Pr oof:

We now treat the conditional transitional probabilities P,,(-) as the variables for the opti-
mization. To maximize R(-) in that transition probability space we thus haveto solve K 2N
eguations of the form:

IR(v1(©), v)

2)__g (98)
IOP,(q} |z it

under the K N constraints

K
ZPUZ(qﬂxn,qg_l) =1L Vk=1,...,K;Vn=1....N (99)

i=1

Using Lagrange multipliers A = (A11,..., AN, .oy Ak, - -+ Arv)!, maximization of
R(-) as defined in (95) under the constraints specified in (99) is then equivalent to maxi-
mization of

K
R*(v1,v2,\) = R(v1,v2) + > Aim (1 =Y Poaq)|zn, qZ‘l)) (100)

kn j=1

So we have K2N unknowns that are the conditional transition probabilitiesin v, and K N
unknowns that are the Lagrange multipliers. Furthermore, we have the same number of
equations as we compute the partial derivative of R*(-) relative to each unknown and
equalize it to zero. Fortunately it turns out that we can solve each of the K 2N equations
described above independently and find solutions that satisfy the X' N congtraints.
Considering a specific transition (¢7 %, ¢7), we then have:
OR*(+)

— 101
Ok 0 (101)

d
c

240f course, al z,,’sin the following should be replaced by X7+
for arecurrent network.

if local contextual input is used, or X7
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which returns the constraint (99). For the partial derivative of 2*(-) with respect to P,,(-),
we first use the following decomposition:

P(M,T|X,v2) = P(I'X,v2) P(M|I", X, v2) (102)

According to (34), thefirst factor in (102) can be expressed as

N
P(T1X,v2) = [] Pua(d7len, i7" (103)
n=1
Also, the second factor in (102) can be assumed independent of the conditional transition
probabilities (i.e., given a state sequence, the probability of the model does not depend on
the transition probabilities), in which case we have:

P(MIT, X, v5) = P(M]T, X) (104

Taking partial derivatives, then, the second term in (102) has no effect, since it can be
assumed to have no dependenceon P, (¢} |z,., g~ *), and sinceit only appearsas an additive
term once the logarithmic function has been applied.

We then get
IR*(")
OPyy (g} | 2m, qi ")
:é Z P(M,Fkgn|X,vl) 1 1 _)‘k,n
P(M|X7 Ul) Metm v Pvz(nghjm q;cl )
=0 (105)

whererl ;. stands for those paths containing the transition (¢7*, ¢7). Solving (105) gives
us:

1 >in P(M,T | X, v1)
)\k,n P(M|X7 Ul)

Wenow havetofindthevalue(or “a’ value) of A ,, that guaranteesthat the new estimates
of P, (q}|x,, q¢p~") will meet the congtraint. It is possibleto find it without directly solving
the set of equations. It isindeed easy to show that:

Po(q}en, g™t =

(106)

Zk,é,n P(Mv rk,ﬁ,n |X7 Ul) _ ZVF P(Mv rv q?v q2_1|X7 Ul)
P(M|X7Ul) P(M|Xavl)
_ PM, g} g7 X v)
P(M|X7 Ul)

= P(q,q/ X, M, v1)
= P(q/lgi™" X, M, v1) P(qp X, M, v1) (107
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Since the second factor in (107) is a function of £ and » only we can set A;, to
P(q77Y| X, M, v1) which then gives us, according to (106):

Po(q|zn a™Y) = P(q)| X, g4 M, v1) (108)

Thisisavalid solution since the constraint

K
Z P(q;ﬂXv q]?_lv M7 Ul) - 1, Vk and Vn

=1

given in (99) is automatically met.?® In order to verify that we got a maximum point we
have to compute the Hessian matrix. It is easy to see by looking at (105) that all the non
diagonal elements are zero. In computing the diagonal elements we get

0?R*(")
OP2 (g7 |n, b7
1 1
= - P(M7 rk,ﬁ,n|X7 Ul) n—
P(M|X,Ul) r%;n PUz(Qﬂwn?qk l)

(109)

and it is obvious that for probabilities (i.e., positive numbers) we get negative diagonal
elements. Thus, wefound amaximum point. Thisproves Theorem 2which, briefly, saysthe
following. A trained MLP with afixed set of parameters (MLP weights) © providesuswith
estimates of conditional transition probabilities P(q} |z, ¢, v1(©)) (estimated on agiven
trainingdataset X = {z1,...,2,,...,2x})Vr=1... NandVk ¢ =1,..., K. Given
these estimates, obtained at the output of the MLP, it is possible to compute re-estimates of
the conditional transition probabilities P, (¢} |z, ¢ %) = P(q}| X, ¢f ™1, v1(©), M) by the
backward recursion given in (58) to increase the global posterior probability of the correct
model M over P(M|X, vq).

A5 Theorem 3

As opposed to the “standard” EM agorithm (Baum et al. 1970; Baum 1972), Theorems 1
and 2 are not enough to prove convergence of the training process for two reasons.

1. TheMLPtrainingisusually minimizing afunction (e.g., least mean square or relative
entropy) that isdifferent from thefunction optimized in Theorem 2. Asaconsequence,
we have to prove convergence through the same auxiliary function R(-).

2. Theorem2givesusnew (“optimal”) values(MLPtargets) for theconditional transition
probabilitieswhich are going to be used to train the MLP. If the cost function can be

25\We cannot prove that thisis a unique sol ution since most of the equations are nonlinear but we know this
isaleast onevalid solution.

64



trained to reach its optimal minimum, the MLP will just “learn” the targets and we
will have
(2, g7, 0) = p(g7| X, qi ™, M, v1) (110)

which, by Theorem 2, isknown to increase R(-) and, consequently, P(M|X). Inthis
case, of course, we proved that MLP training is increasing (M |.X') and we do not
need anything more. However, in general, the netswill not be trained to their optimal
minimum because of

e “overlapping” of input patterns(e.g., two instances of the same pattern with two
different classifications).

e useof cross-validation (early stopping) (Bourlard & Morgan 1994) to avoid over
fitting and to get better estimates of actual probabilities.

Below wedescribe atraining procedurefor the MLP and a corresponding error criterion.
We show that by minimizing this criterion we are maximizing the auxiliary function R(-).
Thus by Theorem 1 we increase the posterior probability of the correct sentence. By this
we show convergence (at least to alocal minimum) on the training set.

Specificaly, given a trained MLP with a set of weights ©* which provides a set of
conditional transition probabilities v1(©") and given a sequence of acoustic vectors X and
amodel M, we can compute (by using the Discriminant HMM backward recursion) a new
set of probabilities

T = {Pr(q}|zn, i) = P(q)| X, qf t v1(O), M);Vk,I=1,...,K;¥n=1,...,N}
(112)
which will be used astargetsto adapt further the MLP weightsto a new set of weights ©*+1
and, consequently, a new set of conditional transition probabilities v, (©+1).

In the following we prove this property in the case of a weighted relative entropy F.,
similar to a common cost function for MLP training.?® In this case, given a sequence of
acoustic vectors X and amodel M and the current set of parameters ©, the parameters
©'+1 of the MLP are trained to minimize

B (et-l—l) - & ip ( n| n—l) lo PT(q?umqg_l) (112)
e T CP(en,0p M, X 00 2 T\4e [Tn> 9k ggg(xmqg—ljeﬂ-l)

where g,(z,, ¢f~*, ©"*1) is the ¢-th output of the MLP given weight set @'+ and inputs
(25, qx). Notethat theexpectedvalue&p UM,X .00 istaken according to thedistribution
of the input variables that in the case of the Discriminant HMM are the concatenation of

26Relative entropy is a particularly common error criterion for classification and probability estimation
tasks, and we have used it for al of the speech training systems that we have developed over the last few
years. The new criterion will actually only differ in that the expectation leading to its formulation will be
taken with respect to the entire network input space, which includes a choice for the previous state.
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the acoustic input and the previous state. In this case (112) can also be expressed as.

K n—1
n n— P qn x"“ q
PO = % Plondi M X003 Prlallen.glog LE
o, qZ_l =1 9e(Tn, q; ", O

= ZEP M, X, z,,0)P(z,| X, M,0")
n=1k=1
K
_ PT((]HCUTL q
P n s n—1 lo ’
; r(q7 |0, 7) ggg(?:n,q” I o)

nl)

(113)

leenthatP( M, X, z,,0") = P(¢f M, X,0") andassumingthat P(z,,| X, M, ") =
, 1.e., sampling the acoustic vector sequence uniformly

1N K

B = =33 Plgi M, X, 0
n=1k=1
K n—1
- PT(q€|$n7q ) ]
Prq) |z, gt Hlo
LZ::l () |20, g1 ) ggz(:ﬁn,qk 1 o1
replacing Pr(-) with itsdefinition (111) we get :
1 N K
= 52 2 PlapTM, X, 0N P(qF|X, it va(©), M)
n=1k=1

Z|O QK |X qn ! Ul(@t>vM)
gﬁ(mm Qk 17 @H—l)

] (114)

It is easy to seethat the above criterion will reach its global minimum when the outputs
of the MLP will be equal to the targets ?’. Note that the relative entropy between two
probability mass functionsis alwaysgreater or equal to zero (Cover & Thomas 1991).Thus,
given that the targets are posterior probabilities, a network trained to the global minimum
of error criterion (114) will estimate the posteriors.

An important point is that previous state ¢7~* is not part of the features that are ex-
tracted from the speech waveform. Thusthescaling factor P(q7 1| X, M, v1(©")) isneeded
to compute the expected value over the “extended” input space. There are several ways
to implement this scaling, one is to choose the previous state uniformly and to scale the
error signal that is back propagated by thisfactor. An alternative way in stochastic gradient
descent training (onlinetraining) isto implement thiscriterion by first choosing the acoustic
frame z,, a random from the training test, and then choosing the previous state according
to P(qp= X, M, v1(O)).

2"Inthe casethat boththetarget probability and thenet output are zero, thisstill holdsgivenlim,_q ¢ log £ =
0
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Theorem 3

When we minimize the weighted rel ative entropy criterion (20) with thetarget set 7' (which
iscalculated from aprobability set v;) wemaximizetheauxiliary function R(-). Specifically
the new set of probabilities v,, implemented by the trained MLP satisfies the following:

E.(0") < E.(0") = R(v1(0), 02(0"1)) > R(v1(0"), v1(0")) (115)
Proof:
E. (0 - B (0) =

1 N
= Y P X M. (@)

n=1k=1
K n—1 +
,©)
"X, gt M, v1(0) lo ACII

2 PV di ™ M es( @109 et e
1 N gg(l’ qn let)

- = P(q}, ¢t Y X, M, v1(©")) lo L
R T

(116)

Below we show that the change in the auxiliary function R(-) is with the same magnitude
(within a scaling factor that isfixed for an utterance) but with the opposite sign.

R(01(©"), 02(0*) = R(1(@"), 13()) =
B P(M,F|X,'U1) P(M rXx, 'Uz)
= 2 B | [P(M I, m)]
_ ZP(M,HX,vl) l (M|, X, vp) P (F|X,vz)]
= P(M|X,v1) P(MII, X, v1)P(I' X, v1)

given a state sequence, the probability of the model does not depend on the transition
probabilities as stated in (104)
P(M,T|X,v1) [ Pl X, v, ]
= lo
2 P v | PFIX, v
following the same decomposition asin (103)

_ Z P(M7F|X7 vl) lo -HnNzlp(Qﬂxqu_lv@H-l)]

r P(M|X7 Ul) L HnNzlp(qﬂxmqg_lv@t)
I, P(Qﬂl‘mqg_lv@tﬂ)]
Iy P(7 |0, 42, ©)
rearrangi ng the terms in the summation

K K AP
- ZZZ Z rk,é,n|JW,X,Ul)|Ogg£($n7q @ )

1 t
n=1k=14=1T} 4, 9e(xn, 1., ©")

= > P(T'|M,X,v1)log [

67



whererl ;. ,,, standsfor those paths containing the transition (g7, ¢

N K K T, n—l’@H—l
LSS P M, X, 0y(0,) log L 4 O )
n=lk=1¢=1 T gg(:xn,qk 7@)
N K K n—=1 At+l
n— n ge\Tpn, g 7@
= Y Pl 1M, X, v3(0,)) log A Em g O
n=1k=1/=1 gﬁ(l’m @, 0 )

(117)

A closer look at the last equation shows the term that we got for the difference in
the auxiliary function R(-) is with opposite sign and proportional magnitudes (by %) to
the differencein £, in (116) Thus, minimizing the cost function £. (as part of the MLP
training) is equivalent to maximizing the auxiliary function R(-). Thus, we have proved
Theorem 3, and in fact showed that to minimize error criterion (114) is equivalent (within
a scaling factor) to maximizing the auxiliary function. In combination with the previous
Theorems, this confirms that a network trained using error criterion (114) and targets
defined by Theorem 2 will increase the auxiliary function. This in turn means that the
global probability of the correct model will be increased.

In practice we compute the change of the error measure on a cross-validation set to
guide the training schedule of the MLP, e.g., for deciding the learning rate and the stopping
point.

A.6 Summary and Discussion

Like the EM agorithm, REMAP training consists of two maor steps. estimation (which
in this case is estimating new targets for the MLP), and maximization (which here consists
of adapting the MLP weights to maximize performance on the new set of targets). Here
we have proved three theorems that together show that each iteration of REMAP training
increases the posterior probability of the training sentence. It is assumed that the training
set is a good sample of the overall input space, and cross-validation techniques could be
used to check that we have not over-fit to the training data, e.g., by computing the change
of the posterior probability on an independent set after every iteration of the REMAP
algorithm. In principle, REMAP should ultimately provide improved recognition accuracy
for practical systems. However, as with all other gradient-based optimization techniques,
we will be vulnerableto potential difficultieswith local minima. Further, in order to derive
the training and recognition a gorithms described here, we still have had to make a number
of simplifying assumptions. While we do not think that they will be serious limitations, it
will take experimentation to learn the practical tradeoffs. More generdly, “there’'s many a
dip twixt the cup and the lip.”
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