Approaching the
5/4—Approximation for
Rectilinear Steiner Trees

Piotr Berman' Ulrich FoBBmeier? Marek Karpinski®

Michael Kaufmann* Alexander Zelikovsky®

TR-94-041
August, 1994

Abstract

The rectilinear Steiner tree problem requires to find a shortest tree con-
necting a given set of terminal points in the plane with rectilinear distance.
We show that the performance ratios of Zelikovsky’s[17] heuristic is between
1.3 and 1.3125 (before it was only bounded from above by 1.375), while the
performance ratio of the heuristic of Berman and Ramaiyer[1] is at most 1.271
(while the previous bound was 1.347). Moreover, we provide O(n-log* n)-time
algorithms that satisfy these performance ratios.
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1 Introduction

Consider a metric space with distance function d. For any set of terminal points
S one can efficiently find MST(.S), a minimum spanning tree of S. Let mst(S,d)
be the cost of this tree in metric d. A Steiner tree is a spanning tree of a superset
of the terminal points (the extra points are called Steiner points). It was already
observed by Pierre Fermat that the cost of a Steiner tree of S may be smaller
than mst(S,d). Thus it is natural to look for the Steiner minimum tree, that is,
for the least cost Steiner tree. However, finding such a tree is NP-hard for almost
all interesting metrics, like Euclidean, rectilinear, Hamming distance, shortest-path
distance in a graph etc. [7, 12]. Because these problems have many applications,
they were subject of extensive research [3, 7, 8, 9, 15, 11].

In the last two decades many approximation algorithms for finding Steiner min-
imum trees appeared. The quality of an approximation algorithm is measured by
its performance ratio: an upper bound of the ratio between the achieved length and
the optimal length.

In the rectilinear metric, the distance between two points is the sum of the dif-
ferences of their t— and y—coordinates. The rectilinear Steiner tree problem (RSP)
got recently new importance in the development of techniques for VLSI routing

13, 14].

The most obvious heuristic for the Steiner tree problem approximates a Steiner
minimum tree of S with MST(.S). While in all metric spaces the performance ratio
of this heuristic is at most 2 [16], Hwang [10] proved that in the rectilinear plane
the performance ratio of this heuristic equals exactly 1.5.

Zelikovsky [17] and Berman/Ramaiyer [1] gave two better heuristics for RSP.
Now we give a more precise analysis of the performance ratio of these heuristics.
Our results are the following:

1. Zelikovsky’s algorithm has a performance ratio between 1.3 and 1.3125.

2. The Berman/Ramaiyer algorithm has a performance ratio of at most % ~

1.271.

3. The now best approximation of factor 1.271 can be found in time O(nlog®n)
considerably improving the previous approximation [1] not only in quality, but
also in efficiency. The previous time bound was O(n*?).



In the next section we provide a synopsis of the two approaches of Zelikovsky
and Berman/Ramaiyer. In Sections 3, 4 and 5, we derive new estimates for the
performance ratios. In particular, in Section 3 we introduce a new technical tool
to study those ratios, so called double covers. Section 4 provides upper and lower
bounds for approximations based on 3-restricted Steiner trees. Finally in Section 5,
we improve the approximation further by considering 4-restricted trees.

Section 6 and 7 show how to obtain these approximation efficiently. We prove
that for a heuristic that builds a 4-restricted tree it suffices to consider only linearly
many quadruples of terminal points and demonstrate how to find those quadruples
in time O(nlog?n). This improves the running time of the approximation algo-
rithm by a factor of O(n?) to O(n'?). Section 8 describes a slightly worse heuristic
which comes arbitrarily close to the new performance ratio and which runs in time
O(nlog®n). We conclude with some final remarks and directions for further research.

Note that many proofs in the text are omitted; the details can be found in [2].

2 Berman/ Ramaiyer’s and Zelikovsky’s Heuris-
tics

A Steiner tree T' of a set of terminals S is full if every internal node of 7" is a Steiner
point, i.e., not a terminal. If 7" is not full, it can be decomposed into full Steiner
trees for subsets of terminals that overlap only at leaves. Such subtrees are called
full Steiner components of T' [8]. T is called k-restricted if every full component of
T has at most k£ terminals. The length of the shortest k—restricted Steiner tree of
S is denoted by t; = tx(5), and s = t., denotes the length of the optimal Steiner
tree.

So, t3(5) is the length of the min. spanning tree of S. t; < %3 [10], t5 < gs [17]
and generally t; < gi—:;s [1]. These bounds are tight for & = 2,3 but in general
ty < %3 for & > 4. The main idea of the new heuristics is to obtain good
k—restricted Steiner trees and to show how they approximate a Steiner minimum

tree.

The method described here can be applied with an arbitrary metric d. Without
loss of generality, we may assume that the metric d on the set of terminals S is the
shortest-path distance for the weighted edges D connecting S. This way, MST(d)
is the minimum spanning tree of the graph < S, D >, we denote this tree with



MST(D), and its cost with mst(D). If we increase the set of edges D by some extra
edges, say forming a set F, the shortest-path distance will decrease; MST(D U F)
is the minimum spanning tree for the modified metric.

Let z be a triple of terminals. Let T'(z) be the Steiner minimum tree of z, d(z)
is the cost of T'(z) and Z(z) is a spanning tree of z consisting of zero-cost edges.

If we decide to use T'(z) as a part of that tree, the remaining part can be computed
optimally as MST(D U Z(z)), from which we remove zero-cost edges of Z(z). The
improvement of the tree cost due to this decision is the gain of z, denoted g(z, D).
It is easy to see that g(z, D) = mst(D)-mst(DU Z(z))-d(z). Now, if we have already
decided to use some set of triples, so that the zero-cost edges of their Z(z)’s form set
7, the gain of a subsequent triple zg can be expressed as ¢(zg, DUZ) = mst(S, DUZ)-
mst(S, DU Z U Z(z))-d(zo).

In Zelikovsky’s greedy approach (GA), Z is initially empty. In an iteration step,
we choose a triple z that maximizes the gain ¢g(z, DU Z). If this gain is positive, we
use T'(z) and replace Z with Z + Z(z); otherwise we exit the loop. At the end, we
remove zero-cost edges from MST(D U Z) and replace them with the chosen T'(z)’s.
The output of this heuristic has length of at most 3 [17].

Before we describe the Berman/Ramaiyer heuristic (BR) [1], we have to look
closer at the way how to obtain MST(DU Z(z)) from M = MST(D). Say that Z(z)
= {e1,e2}. When e; is inserted, the longest edge H(eq, D) in the path joining the
ends of e; with cost h(eq, D) is removed from M. Then we do the same with e,.

The idea of BR is to make the initial choices (performed in the Fvaluation Phase)
tentative, and to check later (in the Selection Phase) for better alternatives.

Evaluation Phase. Initially, M = MST(D). For every triple z considered, find
g =g(z,M). If ¢ <0, z is simply discarded. Otherwise we do the following for
every edge e of some spanning tree of z: find ¢’ = H(e, M) and ¢ = h(e, M), make
the cost of e equal to ¢ — ¢, replace in M edge ¢’ with e, put e in a set B, and ¢’ in
B,ig. Once this spanning tree of z is processed, we place the tuple < z, B,c, Boid >
on a Stack (for the future inspection in the second phase). Repeat this while there
are triples with positive gain. For later analysis, we define ¢ to be the length of M
at this point, continue the process with quadruples and get ¢} as the final length of

M.

Selection Phase. We initialize D = M. Then we repeatedly pop < z, Bew, Boig >
from the Stack, and insert Byqy to D. If B, CMST(D), then such z is a 'good’



one (i.e. we use T'(z) in the final output), otherwise we remove all edges of B,

from D.

All 'good’ quadruples and triples with the rest of MST-edges form the output
Steiner tree of the Berman/Ramaiyer heuristic. Its length is at most

ty 1t
—+ =4+ —. 1
2 + 6 i 3 (1)
We call this version of BR, that considers triples and quadruples, BR4, to dis-
tinguish from the shorter version, BR3, that considers only triples. It is easy to see
that any estimate for BR3 holds for GA. The length of the output of BR3 is at most

ty
—+ = 2
2 2 )
How can we bound the values (1) and (2)? Obviously t; < t3 and ¢} < t4. So
(1) and (2) is at most s and 2s, respectively [1]. In the next section we develop
tools that provide bounds for the linear combinations of t3,7; and ¢} that are far
better than the linear combinations of the bounds above. For example, while bounds

ty < %5, 13 < i and t4 < %5 are tight, we will show that t;+15 < %3 and t9+14 < gs.

3 Double Covers and Spanning Trees

Let C be a union of pairs C'2 of terminals (edges) and of triples C3 of terminals
respectively. We say that a set of edges £ is implied by (' if it contains all edges of
C2 and for each triple z € C3 it contains two distinct edges contained in z. Both
C3 and F are multisets, where some elements may belong “twice”. We say that C'
is a double cover of the set of terminals S if every set of edges implied by C is a
multiset union of two spanning trees of S (i.e., if an edge belongs to both trees, it
has to belong to F twice). The total length of C is d(C) = Y .cc d(x), where d(z)

denotes the length of the Steiner minimum tree of z.



0 ®

Fig. 1. Two shapes of a full Steiner component
Lemma 1 If C is a double cover of S, then d(C) > 2t5. [2]

Our next tool is a pair of sufficiently short spanning trees. Hwang [10] proved
that there is a Steiner minimum tree where every full component has one of the
shapes shown in Fig. 1. Let aq,...,a; and by = 0,b1,...,b; be the lengths of
horizontal and vertical lines of a full Steiner component K with terminals sg, ..., s.
The horizontal lines form a spine of K. Moreover, in case (i) by < br_3 holds. In
case (ii) assume that b, = 0. Consider the sequences by, b1, bs, ..., by41,... and

bojbg,...,bgi,... . Let

bh(o) - bo, bh(l)) ey bh(p—l—l) = bk (3)

be the sequence of local minima of these sequences, i.e. by(jy—2 = br(j) < bugjy42. If
h(p) = k — 1, we exclude the member by, from (3). For the case of A(j + 1) =
h(j) +1, (j = 1,...,p — 1), we exclude arbitrarily either by(;41) or by;). So, we
get h(j + 1) — h(y) > 3. The elements of the refined sequence (3) are called hooks.
Further we assume that a full Steiner tree K nontrivially contains at least 4 terminals
(k > 4). A Steiner segment K is a part of a full Steiner component bounded by two
sequential hook terminals sp(;), sp(j+1). So two neighbouring Steiner segments have
a common hook. K contains the two furthest terminals below and above the spine.

Denote the index of the first of them by f(7) and the last by I(j), (f(3) < I1(j7)).

Lemma 2 Let K; be a Steiner segment. For the terminals sp(jy, ..., Sp(j+1) there
are two spanning trees T'op; and Bot; such thal

d(TOpj) + d(BOtj) = 3d([&7]) — bh(j) — bh(j-}—l) — Restj; (4)

Rest; sums the lengths of the thin drawn Steiner tree edges of both trees in Fig. 2.



Proof. Equation (4) can be easily drawn from Fig. 2. The Steiner segment
edges are partitioned into three parts: the lengths of thick lines are counted twice,
thin lines are counted once, and some hooks (dashed) do not appear at all.
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Fig. 2. Two spanning trees

Lemma 3 For terminals sg, ..., sk, there are two spanning trees Top and Bot s.t.

d(Top) + d(Bot) < 3d(F Zp: Zp: Rest;. (5)

Proof. Since d(K) =31 d(K;) — X"_, by(jy (5) is satisfied.

Corollary 1 (Hwang [10]) For any instance of RSP, 2t; < 3s.

4 A Performance Ratio of BR3 and GA

Theorem 1 For any instance of the rectilinear Steiner tree problem,

6t + 815 < 18s. (6)

Proof. (Sketch.) It is sufficient to prove inequality (6) for a full Steiner tree K. We
will use three pairs of spanning trees T'op and Bot and construct four double covers
C* a=1,...,4 such that

3d(Top) + 3d(Bot) + 24: d(C*) < 18s. (7)

a=1
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Fig. 3. The double cover for a segment B;

At first we partition K into some other segments B;,7 = 0,...,r, each a union
of some Steiner segments. In this partition we must save the right hook of each
segment. The first segment By of K is bounded by s,0) = so and s,y which is
the first minimum at the same side of the spine as s,,0) = sf(), i.€. Sp(1) = ... =
Sg(1)=2 = Sg(1) < Sg(1)42- Similarly, let s,,(2) be the first furthest terminal after s,).
Then B, is bounded by s,(1) and s,(3) which is the first minimum at the same side
of the spine as s,,(3), and so on. Only the last time, if the first minimum at the
same side of the spine has index k& — 1, we bound the last segment B, by s; instead
of sg—1. So g(r + 1) = b. Note that g(j + 1) — m(y) is even for j =0,...,r.

If a set of triples and pairs C' has a cut terminal and both parts are double covers
of their terminal sets, then C' is a double cover of the whole terminal set. Therefore,
we may construct double covers C; for each segment B; separately. Moreover, a set
of three triples is a double cover of four terminals. Each C; consists of a set of three
triples for some four terminals, a set of doubled triples (i.e. pairs of the same triple)
and may be a double edge (s,(;), s4(j)+1) (if m(j) — ¢(j) is even).

The double cover ' is shown on Fig. 3. Dark triples are doubled and light triples
cover four terminals; thick Steiner tree edges are those which lengths participate in
d(Cy) three times, thin Steiner tree edges participate in d(C7) only twice and the
dashed hook does not participate in d(C) at all. The double cover C; differs only
in light triples: they have the common end in s,,(;—; instead of s,,(;). Similarly for
every B; we construct the next pair of double covers around the opposite furthest
terminal, called s,(;) of a Steiner segment which begins at the same terminal as B;.

The main point of the proof is that the sets of thick edges for different double
covers intersect in edges defining the term Rest; in (5). ¢



Corollary 2 For any instance of RSP, 8t; + 8t; <21s.
Corollary 3 The performance guarantee of GA and BR3 is at most % = 1.3125.%

To get a lower bound for the performance ratio, we construct a series of instances
of the rectilinear Steiner tree problem for which the approximation ratio comes
arbitrarily close to 1.3. The terminals are placed on the following coordinates:

a; =(4,0),1=0,....k; b= (2- 471, —471) ;= (3471 47 s =1,... .k
a;’ = (0742)7 i=0,...,k b; = (_4i_172 '4i_1)7 C;' = (4i_1,3 ‘4i_1), r=1,...,k.

The length of the Steiner minimum tree s(k) is ?(4]C — 1)+ 2, t2(k) = 144kT_1 +2
and the total gain obtained by GA is G(k) = $(4¥ —1). So, the length of the output
tree of GA is Gr(k) = t2(k) — G(k) = ?(4’“ — 1)+ 2 and limy_, Gr(k)/s(k) = 1.3.

Remark 1 The performance guarantee of GA and BR3 cannot be less than 1.3.

5 A Performance Ratio of BR4

()

Fig. 4. The 4-restricted tree F' for a segment B;

Theorem 2 For any instance of RSP, 2t; + 2t4 < 5s.

Proof.(Sketch.) It is sufficient to prove Theorem 2 for a full Steiner component
K. Similarly to the proof of Theorem 1, we construct two 4-restricted Steiner trees

F and L such that d(Top) + d(Bot) + d(F) + d(L) < 5d(K). We use the same

9
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partition of K into the segments B;,7 =0,...,r. Recall that ¢g(; + 1) ( ) i
~0,....p)

and the set of terminals {s,,(;,7 = 1,. r} is a subset of the set {sy(;)
of the first furthest termmals in Stemer segments.

The 4-restricted Steiner tree Fj is constructed for each segment B; (Fig. 4). It
consists of a quadruple for s,,(;), trlples and a possible edge at the left end. Dotted
lines denote the edges of F; and, as above, thick Steiner tree edges are counted twice
and thin Steiner tree edges only once in the length of F;. We are confident that the
right (dashed) hook is saved. Similarly, the tree L; has a quadruple for s,(;).

The crucial point of the proof is that the sets of thick edges for both trees F' and
L belong to Rest; from (5).$

Let quadruple mean a Steiner minimum tree for a set of four terminals. From
Fig. 1 we know that there are only two different shapes for quadruples:normal
(i) and cross (ii). Denote the terminals of the quadruple with u,v,w and z from
the left to the right. We call a cross quadruple long, if a2 > 2min{al, a3, a4, a5},
(short otherwise), where a2 is the rectilinear distance between the Steiner points
and al, a3, a4, ab are the distances between the terminals and their adjacent Steiner
points.

Lemma 4 [f a Steiner minimum tree for four points is a long cross quadruple, then

2t2 + 2t3 S 5s.

Proof. Let a; = min{al,a3,a4,a5}, then a Steiner tree for the set {u,w,z}
together with the edge (u,v) have the length s+ al < t3. Note, that ¢ < s+al+ a4
and t; < s+a3+ab . Therefore, 2t3+2t; = 2s+2al+2s+al+a3+ad+ad < 5s.

Let ¢, be the length of the shortest 4-restricted Steiner tree without any long
cross quadruples. Note that in the proof of Theorem 2 the quadruples of 4-restricted
trees are normal (Fig. 4). Therefore, a cross quadruple may appear only as a full
component. Thus, bound (1), Theorem 2, Corollary 2, and Lemma 4 imply

Theorem 3 BRJ without long cross quadruples has a performance ratio of 61 /48 ~
1.271.$

10



6 How Many Quadruples Have to be Considered?

To keep the time complexity small we have to restrict the number of candidates
where we look for our triples and quadruples. We show that it is sufficient to regard
only a linear number of each triples and quadruples. In [5] this fact is shown for
triples and there is given an algorithm to construct these triples in time O(n-log® n).
So it remains to show that a linear number of quadruples is enough for our algorithm.

For a point p, p.x and p.y denote its x- and y-coordinate respectively. At first
we only consider normal quadruples. The segment containing the Steiner points
is called Steiner chain, the unique terminal on the Steiner chain is the root of the
quadruple. A quadruple is called a left rooted quadruple, if the Steiner chain is
a horizontal line and the root is its left end. Otherwise we call a quadruple top-,
right- or bottom rooted. So we have eight kinds of normal stars: For each possible
root position there are two possibilities at which side of the Steiner chain is only
one point (w) and at which side are the other two (v,z). Since left- and right rooted
quadruples have the same length it suffices to consider only left rooted quadruples,
for which the condition v.z — u.x < z.x — w.z holds. For a left rooted quadruple,
v is called the top point, w the bottom point and z the right point. Also note that
z.y <wv.y (cf. Fig. 1).

A quadruple is called a tree quadruple if the following condition holds: An MST
for the point set V U {c1, c2} where ¢; and ¢; are the Steiner points of the quadruple,
contains the edges (u,c1), (v,¢1), (c1,¢2), (w,ca) and (z, ¢2). (From results in [1] and
[5] we know that we only have to consider tree quadruples where the rectangles
defined by the point sets {u,v}, {v,w} and {w,z} do not contain any other points.

Lemma 5 For a given left root uw and a top point v there is at most one bottom
point w. If the bottom point w is also given, there are at most two right points z. {

For a point v the union of the triangles 71, Ty and T3 is called butterfly(v), where
these triangles are defined in Fig. 5. Triangle Ty is the right wing of the butterfly.

\

T3

T1 T4

T2

c
'
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Fig. 5: The butterfly of the top point v

Lemma 6 There is a 4-restricted Steiner minimum tree T where at each used
quadruple the top point has an empty butterfly.

Proof. Let Ay be TYUT,, Ay =Ty UT5. Ay has to be empty, because otherwise
(v, ¢1) could not be part of an MST of V U {¢1, ¢c2}; so let p be a point in Ay\A,

(i.e. T5); let @ € {u,v,w, z} be the first point on the path from p to the quadruple
in 7. If v € {u,w, z} we can add the edge (v, p), delete the edge (v,c¢;) and get a
4-restricted Steiner tree with smaller cost, a contradiction to the optimality of T
So & = v: Case(i): z.x < v.z: Then dist(p,z) < dist(v,c;), because z does not lie
in A;. So we get a better 4-restricted Steiner tree by adding the edge (p,z) and
deleting (v, ¢1). Case(ii): z.x > v.z: Here we add a vertical edge from p down to the
Steiner chain, delete the edge (v,¢1) and again we get a better 4-restricted Steiner
tree. &

JFrom Lemma 5 follows that for given v and v the number of tree quadruples is
at most four. So we try to bound the number of top points with empty butterflies.
Let D, be the 45°-diagonal through u with positive gradient (Fig. 5).

Lemma 7 For a given u there is at most one top point v with empty butterfly at

the left side of D,.

Proof. Let v and v’ two such points with v.2 < v’.z. Then v’ has to lie below v,
because the rectangle defined by v and v' has to be empty. But then v’ lies in the
butterfly of v, so this butterfly is not empty.

So we can restrict our search for other top points to the region at the right side
of D,. Let v be the leftmost candidate, i.e. v is at the right side of D,,, the rectangle
defined by u and v, and the butterfly of v are empty and v is the leftmost point with
these characteristics. The tree star condition for quadruples implies that all other
candidates for top points have to be in the right wing of the butterfly of v.

Lemma 8 There are at most two possible top points in the right wing of the butterfly
of v.

12



So there are at most four top points for the left root u: one at the left of D,, and
at its right v, and two claimed in Lemma 8. For a given pair (u, v) the bottom point
is unique and we have at most two right points (Lemma 5), so we have eight tree
quadruples with root u of normal shape and since there are eight possibilities for the
state of the quadruple, the number of normal quadruples is at most 8 x 8n = 64n.

Lemma 9 At most 64n normal quadruples are necessary for the approximation
clatmed in Theorem 3.

The number of necessary cross quadruples can be bounded by 32n using similar
techniques and the tree star property [2].

Theorem 4 At most 96n quadruples are necessary for the approzimation clarmed
in Theorem 3.

7 Computation of Quadruples

To compute the normal quadruples we need a fast method to find top points v with
empty butterfly. But the size of the butterfly of a top point depends of its left root,
so checking the butterflies of all points for every root would require quadratic time.
Therefore we use the following construction: For every point v, let p, be the highest
point (maximal y-coordinate) in the region at the right of the vertical line through v
and at the left of the 45°-diagonal through v with negative gradient. The horizontal
line through p, together with this region defines the triangle A;. Let ¢, be the
point with smallest rectilinear distance to v lying right below v (i.e. v.z < ¢,.x
and v.y > ¢,.y). Then Ay, the triangle defined by the vertical and horizontal lines
through v and the 45°-diagonal through ¢, with positive gradient is empty and it
is maximal among all such triangles. The length of the leg of the smaller triangle
denotes the size of the largest empty butterfly of v.

Now we draw for every point v a vertical line segment, starting at v in the bottom
direction, with the length of the largest empty butterfly of v. Regarding a left root
u, we only have to compute intersections of the horizontal line through u with such
vertical line segments; the corresponding points are those having an empty butterfly
with respect to u.

13



With a similar construction we can handle empty rectangles. Following the proof
of Lemma 8, we can find the corresponding four top point candidates for a given
left root u. The implementation of these operations can be performed in a quite
standard way in time O(nlog®n) using priority search trees to find the maximal
empty butterflies and segment trees to compute the candidates for top points.

The necessary cross quadruples can be found in time O(nlog®n) [2]. After com-
puting the triples and quadruples, we can apply the algorithm of Berman/Ramaiyer
for 4-restricted Steiner trees and get an approximation as stated in Theorem 3.
The operations of the algorithm itselt are mainly update-operations on a minimum
spanning tree, which can be performed in time O(y/n) each [6]. We conclude:

Theorem 5 For any rectilinear Steiner tree problem an 1.271-approximation can
be found in time O(n®/?).

8 A Faster Approximation

In this section we give a generalization of the fast parameterized version of BR
presented in [5]. The main idea is, not to update the whole configuration after
each step, but to sort triples and later quadruples according to their gain, and to
evaluate those stars according to this sorting, even if it changed meanwhile. Stars
are considered to be good, if their gain lies close to the optimal gain (in the range
of m/(m+1)). We refuse to take triples (quadruples) with smaller gains, or if they
would destroy planarity or if they contain artificial edges.

We use the following notations: g¢; is the gain of a star (triple or quadruple) at
the beginning of a phase, a; its actual gain at the time of its treatment and a/ its
actual gain without using artificial edges, that means edges which were created in
the same phase. B,y and B,., are the sets of edges from Section 2. Importantly,
we have several possibilities to connect the terminals of a quadruple, i.e. e; and e,
are not strictly fixed. We choose these new edges such that the structure remains
planar.

The main difference to the algorithm described in [5] is that we now have to run
a Selection Phase which we could avoid in the case of considering only triples. For
the running time the only problem is maintaining an MST in the Selection Phase.

14



But since the structure always stays planar we can use the data structure introduced
in [4] that allows maintaining an MST in time O(logn) per step. So we run BR4
with an involved version of the Evaluation Phase:

Phase 1: (triple insertion)
E ={d(u,v):u,v € S}; M := MST(F);
Compute the triples 77 and store them;
repeat r - m - logn times:
Sort the triples due to their gains in decreasing order;
compute j: g; > ¢1747: 9j+1 < 1547
for 2:=1to j do
if ¢} > g1,/ and 77 is planar
thenM := M\ Byia(7?) U Brew(772);
push (72, Boa(77), Brew(7?)) on a stack;
Phase 2: (quadruple insertion)
Repeat Phase 1 for quadruples 7;
all edges in M at the beginning of Phase 2 are said to be original for this phase.

The rest of this section is devoted to the proof of

Theorem 6 The algorithm computes in time O(r - m -nlog®n) a Steiner tree for a

given set S of points, |S| = n. Its approximation ratio is at most $% + ﬁ + (2321T2)

Now we have to count how much we lose compared to the analysis of section 5

by

a) finishing the Evaluation Phases after O(logn) rounds, i.e. although there
might still be some stars with positive gain.

b) ignoring stars which would use artificial edges.

¢) ignoring non-planar stars.

Phase 1 is the same as in the algorithm in [5], so we only analyse Phase 2.
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The loss due to a) and b) is easily counted: With the same arguments as in the
proofs of Lemma 7 and 8 in [5] we can state that the total loss here can be bounded
by the fraction 963_2 + % of the total gain. The constant 3 comes from the fact that
every quadruple ignored because of artificial edges would decrease the total cost by
three times its gain by decreasing the length of three edges.

Let tuple mean a triple or a quadruple. The planarity restriction requires to
ignore every quadruple that would cross an original edge or a tuple already lying on
the stack. Two tuples 'cross’ or 'intersect’ each other if there is a crossing between
an artificial edge created by one tuple and an artificial edge created earlier by the
other, and the tuples have at most one common point. If a quadruple and a triple
have more than one point in common, we can avoid intersections by placing the new
edges in such a way that they do not cross artificial edges of the triple. This can
be done by never adding the ’diagonals’ of the quadruple which are the only edges
that may cross. Two quadruples having more than one point in common cause no
problems, because the second one always uses an artificial edge created by the other.

Lemma 10 There is a 4-restricted Steiner tree without intersections.

cl

" 3

P R P

Fig. 6. Proof of Lemma 10: Triples are better than crossing quadruples

So the gain of all the quadruples ignored because of non-planarity can be bounded
by the gains of all triples after the triple insertion phase.

Corollary 2 After the quadruple insertion phase all quadruples with positive gain

that were refused because of non-planarity together have a gain of at most 32}_2 + %.

Note that the planarity test can be done in time O(log n) by maintaining a planar
map of the actual edge set where the edges incident to the same point are ordered in
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lists according to their direction. Since every pair of edges that ever appear in the
course of the algorithm has no crossing, we can maintain an MST in the Selection
Phase in time O(log n) per step [4]. Thus the time bound of Theorem 6 is proved.

The total gain that could be realized is
ty 5ty ] 1 4 1 3

(2 6 3)(_(32?+E+96r—2+ﬁ)

and the performance ratio is at least

61 ty 13ty T 2 61 7 1
(23— S R
5T 5 Ie T S Rm T T

Corollary 3 We can achieve in time O(nlog®n) an approzimation ratio 61/48 +
loglogn/logn and in time O(nlog®n) a ratio 61/48 + ¢ for any & > 0.

9 Conclusion

In this paper refined analysis of the new approximation algorithms for rectilinear
Steiner trees of Zelikovsky and Berman/Ramaiyer were presented. The introduc-
tion of new techniques for estimating the length of different classes of Steiner trees
enables to considerably improve the best known approximation factors. Somewhat
surprisingly, the same time bounds of O(nlog?n) can be achieved as before [5],
although we have to use much more involved methods.

This paper almost closes the first approach to improve the approximation ratio
for rectilinear Steiner trees, bringing the ratio down from 3/2 [10], via 11/8 [17, 1]
now to 61/48, which is very close to 5/4. The next task is to jump below the
5/4-barrier.
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