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Abstract
Consider the Gaussian Elimination algorithm with the well-known Partial Pivoting
strategy for improving numerical stability (GEPP). Vavasis proved that the problem
of determining the pivot sequence used by GEPP is log space-complete for P, and
thus inherently sequential. Assuming P # NC, we prove here that either the latter
problem cannot be solved in parallel time O(N'/27¢) or all the problems in P admit
polynomial speedup. Here N is the order of the input matrix and € is any positive
constant. This strengthens the P-completeness result mentioned above. We conjec-
ture that the result proved in this paper holds for the stronger bound O(N'~¢) as
well, and provide supporting evidence to the conjecture. Note that this is equivalent

to assert the asymptotic optimality of the naive parallel algorithm for GEPP (modulo
P # NC).
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1 Introduction

A fundamental research goal in the area of fast synchronous parallel algorithms is to obtain
superpolynomial speedups in the time sufficient to solve given problems in P. Given a
computational problem II € P, the most ambitious aim is to put it in the complexity class
NC, that is to find a parallel algorithm for II whose running time is a polylogarithmic
function of the input size on, e. g., a PRAM with polynomially many processors. There
is now a rich literature on the complexity class NC (see [5, 14] for surveys and [15] for a
general critique).

Recently, there has been much interest in identifying problems that, though probably not
in NC, admit at least polynomial speedup. Vitter and Simons [18] identified a number of such
problems (see also [15]). In addition, finding parallel algorithms that achieve only polynomial
speedup can be interesting even for problems in NC. The reason is that polynomial speedup
can usually be obtained with a limited number of processors (say, a linear or quadratic
function of the input size), while the figures required to obtain superpolynomial speedups
are in many cases not practical.

Together with the algorithmic interest, there is an obvious interest in finding complexity
results. Assuming P # NC, one could try to classify problems in P — NC with respect to
the achievable speedup. For instance, [18] consider the class PC of problems that can be
sped up by more than a constant factor. On the other hand, [15] focus on the problems
that admit polynomial speedup, and classify these further with respect to their inefficiency’.
They introduce the class EP, of problems solvable with constant inefficiency, and the class
SP, of problems solvable with polynomial inefficiency.

We clearly do not know whether these new classes of problems actually differ from NC.
However, [3] proves that there are P-complete problems that appear to have a bound on
the amount of achievable speedup. Such problems are said strictly T(n)-complete for P,
for some complexity function 7'(n). More precisely, to say that a problem II is strictly
T(n)-complete amounts to saying that: (1) there is a parallel algorithm solving II in time
T(n), and (2) either there is not a parallel algorithm for II running in time O(7T(n)'~¢),
for any positive €, or all the problems in P admit polynomial speedup. If only (2) can be
proved, then Il is at most T(n)-complete. For all practical purposes (i.e. unless P # NC),
proving that a certain problem is strictly 7'(n)-complete implies that its 7T'(n)-time parallel
algorithm is optimal.

The first problem complete for P in the stricter sense outlined above is the Square
Circuit Value Problems, with T(n) = n'/? [3]. The technique used to prove this result is a
generic reduction from an arbitrary RAM computation. However, one difficulty in finding
other complete problems through the reduction argument is that a polynomial blowup in
the size of the instances may not be acceptable (while clearly this is not the case in the
proofs of P-completeness).

In this paper we consider the well-known Gaussian Elimination method for the compu-
tation of the LU decomposition of a square matrix. Actual implementations of this method
adopt a simple strategy for row interchange, known as Partial Pivoting. The so modified
algorithm is known as Gaussian Elimination with Partial Pivoting (hereafter referred to

!The inefficiency of an algorithm is the ratio pT,/T, where T is the sequential running time, p is the
number of processors and 7}, is the parallel time with p processors.



as GEPP), and it is of fundamental importance in computational linear algebra and in the
broad field of scientific computing [13]. In fact, when the LU decomposition is known, many
problems can be solved with little additional cost. These include linear system solution,
determinant and (with some special care) rank computation. It is well-know that, for ma-
trices of order n, the parallel arithmetic complexity of the latter problems is O(log® n) (see
[8, 1,2, 12]). However, the algorithms that achieve this bound are not regarded as practical
ones by the numerical analysis community. The reason lies in part in the large number of
processors required, but mostly because they are considered numerically unstable.

Achieving numerical accuracy in finite precision computations seems to require a lot
more of control than that provided by NC algorithms. Such control must be implemented
using conditional statements which are in general hard to parallelize. Vavasis [17] proved
that answering simple questions about the behavior of GEPP, such as whether a certain row
¢ will be used to eliminate a given column 7, is a log space-complete problem for the class
P, and thus hardly in NC. Vavasis’ reduction is from a version of the classical monotone
circuit value problem, and holds for either exact rational arithmetic or decimal arithmetic
rounded to a fixed number of decimal places. The latter model is clearly more realistic for
practical numerical computations.

Here we prove that the decision version of GEPP addressed by Vavasis is at most n'/2-
complete for P. Our result holds for both the fixed and floating-point models of arithmetic.
The result is a simple consequence of the following main Lemma, where we use the notation
M € GEPP to state that the matrix M is one for which the question on the elimination
order mentioned above is affirmative (GEPP as a decision problem is the set of all such
matrices).

Main Lemma. Lett(n) and s(n) be constructible functions, and let A be any RAM decision
algorithm running in time t(n) and using s(n) memory registers. Then we can effectively
build a square matriz M of order k(n) = O(t(n)s(n)) such that M € GEPP if and only if
A accepts the input. The construction is NC' computable.

In the construction of the matrix M in the Main Lemma, we observe a blowup in the
input size? which is polynomial (with respect to the running time of A) when the number
of registers used by A is O(((¢#(n))). This is the reason why we are currently unable to
prove the optimality (modulo P # NC) of the naive parallel algorithm for GEPP.

The rest of this paper is organized as follows. In Section 2 we give some preliminary
definitions and discuss the computation models, sequential and parallel, adopted in this
paper. In Section 3 we introduce a restricted model suitable for the simulation of Section
4 and study its relationships with the RAM. In Section 4 we prove that the computations
of the restricted model can be encoded as instances of the Gaussian Elimination process
with Partial Pivoting. Using this fact we prove our Main Lemma in Section 5. Finally, in
Section 6 we report some concluding remarks.

2 Computation models

In this paper we predicate a lower bound on the parallel time required to solve a certain
problem modulo the impossibility of obtaining polynomial speedup for the whole class of

In case of GEPP we may take the order of the input matrix as the measure of size.



polynomial time solvable decision problems. This calls for a great deal of accuracy in
the choice of the sequential computation model of reference, because the very notion of
polynomial speedup is model sensitive. Let us therefore precisely nail down what we mean
by speedup and polynomial speedup. Our definition is centered on the computations models
involved, but it is not exclusively concerned with the gain in speed due to parallelism. Both
models can very well be sequential models.

Definition 1 Let P be a (decision) problem, and let M and M’ be two computation models.
Let A and A’ be the fastest known algorithms for P running on M and M’, respectively.
Finally, let t(n) and t'(n) denote the running times of A and A’, respectively. Assume that
t(n) = Q(t'(n)). Then we call the ratio S(n) = t(n)/t'(n) the speedup observed for P on
M’ over M. The inverse ratio 1/5(n) is the slowdown observed for P on M with respect to
M’. We observe polynomial speedup when S(n) is a polynomial function in t(n), i.e. when
S(n) = Q(t(n)), for some positive c.

When M’ in Definition 1 is a parallel computation model, it is also to be intended that
the amount of hardware resources available to M’ (such as number of processors or circuit
gates) is a polynomially bounded function of the input size n.

Clearly, the notion of polynomial speedup is not sensitive to polylogarithmic factors. In
fact if there exists a positive € such that #(n)/t'(n) = Q(¢(n)), then for sufficiently large n,

t(n)
t'(n) (log t’(n))o(l) > o (t(n))é 7

for any positive § less than € and some positive §. From this fact we obtain a large degree of
freedom in the choice of the parallel computation model. In fact, it is well-known (see, e.g.,
[14]) that the running times on the various PRAMs are related by polylogarithmic factors.
The same is true for PRAMs and uniform boolean circuits. In this paper we will adopt the
(say, CREW) PRAM as our parallel computation model.

The choice of the sequential computation model requires a more careful handling. While
the class P can be defined with respect to one of many reasonable sequential computation
models, whether or not a problem exhibits polynomial speedup when solved on the PRAM
will depend on the particular sequential model of reference. If M and M’ are two sequential
models, we might observe polynomial speedup on the PRAM over M but not over M’. Or
we might observe polynomial speedup in both cases, but we very different polynomials.
It follows that the computation model must not be too weak, for otherwise it would be
possible that the speedup would be determined by such a weakness rather than by the power
of parallelism. For instance, if M were the Turing Machine, then to observe polynomial
speedup it would be sufficient in many cases just to pick a PRAM with a single processor.

The sequential model we will use is the classic RAM introduced by Cook and Reckhow
[6]. This is a natural model of computation, and one widely adopted in the study of concrete
algorithms. In this latter setting, one often assumes that the cost of performing an operation
is a fixed constant, independent of the length of the operand(s) involved. This is the well-
known wunit cost criterion. However, for complexity-theoretic investigations, the logarithmic
cost criterion (which is the one adopted in [6]) is usually regarded as more precise than the
unit cost criterion.



The instruction set of the RAM is showed in Table 1. The table also shows the execution
times charged to each instruction under the logarithmic cost criterion. The function [(-) is

defined as follows (see [6]):
(i) = { [log, i1 if |i] > 2

1 otherwise.

Instruction Execution time
R, — «a 1
R; — R; I(R;)
R; — Rj + R Z(R]‘) + I(Rk)
R; — RRJ Z(R]‘)—I—Z(RR])
Rp, — R; [(RR;) + (R;)
goto L 1

if R; <0 then inst. | [(R;)(+ cost of inst. if R; <0)

Table 1: RAM instructions and execution times.

As for the space, which will play an important role in our reduction, the RAM introduced
in [6] adopted a logarithmic cost criterion as well. According to such criterion, a cost is
charged only to those registers that are accessed at some point during the computation. The
amount charged to a register R; is the maximum value of /(z), over all integers z stored in
R;, and the overall space cost is the sum of all the costs charged to the used registers.

3 A restricted RAM model

There are two aspects that make it difficult for the computations generated by the RAM
model discussed above to be encoded as instances of the Gaussian Elimination process.
These are the (possible) lack of locality in the instruction flow and the use of indirect
storage accesses.

Indirect addressing capabilities appear to be one of the features that should not be
given up in a concrete (as well as reasonable) computation model. Here, however, we
are not interested in concrete algorithm design. Our sole concern is to understand how
exactly we loose if we eliminate the indirect addressing instructions from the set of Table
1. This is an interesting question per se, but unfortunately one that has not yet received
a satisfying answer. Dymond [9] studied thoroughly this problem. He introduced the
Augmented Counter Machine (ACM) model and studied its relationships with the RAM
(among the others). An ACM, with k registers, can be viewed as a RAM without indirect
addressing capabilities, but further restricted to add and subtract small amounts only.
As a consequence of this last restriction, the values in the ACM registers change by at
most a constant each step. Dymond proved that these ACMs could be simulated with
polynomial speedup by log cost RAMs. The polynomial depends on the number of registers.
For k registers and time #(n) on the ACM, the RAM can accomplish the simulation in
time (#(n))5+1)/(++2) . Therefore, no fast simulation of the RAM by an ACM is possible.
There must always be polynomial slowdown in view of the above result and the RAM time
hierarchy proved by Cook and Reckhow.



Extending the simulation above to ACMs with full addition and subtraction seems
possible [10]. If we accept this, we also accept that there must be polynomial slowdown in
the simulation of unrestricted RAMs by RAMs without indirection capabilities.

In the rest of this section we introduce a model, that we call restricted RAM, or rRAM
for short, that will be suitable for the simulation of Section 4, and study the slowdown
incurred by such model with respect to the RAM. The result we obtain is an easy one.
However, it appears to be difficult to obtain stronger bounds [4, 10].

Definition 2 A wuniform family My, Mo, ... of ACMs with full addition and subtraction is
a restricted RAM if: (1) M,, accepts inputs of length n only, (2) the computations generated
by each M, are oblivious of the actual inputs.

To say that the computations generated by a machine are oblivious amounts to saying

that the sequence of instructions executed by the nth

control program is fixed (i.e. it doesn’t
depend on the actual input). The uniformity condition that we place on the family is simply
that the n'" machine (i.e. the program and the number k of registers used) can be NC
computable. The time charging criterion for our rRAM will be the customary logarithmic
measure. As for the space, this will be the number k = k(n) of registers used.

In order to determine the slowdown incurred by RAM simulations on the TRAM model,

we begin with a lemma on memory compaction which is an easy adaptation of a result in

[3].

Lemma 1 A RAM with space demand s(n) can be restricted to access only cells whose
addresses are O(s(n)) on input of length n, with only a loss of a factor O(logs(n)) in the
running time.

Note that Cook and Reckhow proved that the the maximum number that can be gener-
ated (and thus the maximum address that can be referenced) by a #(n) time bounded RAM

is as large as 200VH(")  As will be evident in the following lemma, the result of Lemma
1 implies a substantial improvement in the number of registers required for a TRAM to
simulate RAM computations. Also, this improvement will turn in a substantial saving in
the simulation time. In the next lemma we forget, for the moment, the requirement on the
obliviousness of the TRAM computations.

Lemma 2 A RAM with running time t(n) and space demand s(n) can be simulated with
only polylogarithmic slowdown by an rRAM M’: M{, M}, ... such that the length of the
program of M, (and therefore also the number of registers it uses) is O(s(n)).

Proof By Lemma 1 we may assume that the original RAM only accesses the first S =
O(s(n)) registers. We replace each indirect addressing instruction (i.e. indirect load or
store) with a macro statement performing a binary search in the set of the first 5 registers.
Figures 1 and 2 show the macros for the instruction R; < RR, for § < 2 and § < 4,
respectively. In the cited figures, the instruction Ry < R; — k, where k is a constant, is a
shorthand for the sequence Ry — k, Ry — R; — R;, where R; is a register not otherwise
used by the program. We also assume that Rg is never used by the program (but otherwise
we can use any register not used by the original RAM program).



Ro — RJ' -1
if Rg < 0 then goto L1
RZ' — R2
goto EXIT
L1 RZ — R1
goto EXIT
EXIT

Figure 1: Macro for R; «— RR, and S <2

Ro — R]' -2
if Rg < 0 then goto 1.2
Ro — R]' -3
if Rg < 0 then goto L3
RZ' — R4
goto EXIT
goto EXIT
L2 Ry — R; -1
if Rg < 0 then goto L1
RZ' — R2
goto EXIT
L1 RZ — R1
goto EXIT
EXIT

Figure 2: Macro for R; «— RR, and S <4

Note that the macro for the case § < 2F is actually a couple of macro for the case
S < 281 stuck together, plus a couple of leading instructions. It is then easy to see that,
for § > 2, the length of the macro statement is 211985142 _ 9 which is clearly O(s(n)).
It is also easy to see that the generation of the macro statement can be performed in space
O(log(s(n))), provided that s(n) (or an upper bound S = O(s(n)) to s(n)) can be computed
within this time bound. Since the length of the (original) program, and thus the number
of indirect addressing instructions, is independent of n, the length of the rRAM program is
O(s(n)).

As for the running time of the macro statement this is given by the cost of the simulated
instruction (essentially, by the contents of the register Rpg;) plus the cost of the binary
search. The latter is certainly O(log? s(n)) because at most O(logs(n)) instructions are
executed, each one having cost O(log s(n)). Clearly this implies an O(log® s(n)) slowdown
in the running time of the rRAM program with respect to the original RAM program. =



The last step consists in forcing the computations to be oblivious. Condon [3] proves
the following result.

Lemma 3 Any RAM with running time t(n) can be simulated by an oblivious RAM with
running time O(t(n)).

The simulation does not make use of the indirect addressing instructions, and thus holds
also in case of our TRAM. Also, the generation of the simulating (oblivious) program is NC
computable. The constant hidden in the asymptotic notation in Lemma 3 contains the
length of the program being simulated. Unfortunately, in our case this is not independent
of n. In fact, by Lemma 2, it is O(s(n)).

Combining Lemmas 1, 2, and 3, and the last observation we get the following result.

Theorem 4 Let M be any RAM that runs in time t(n) using s(n) space. Then there is
a restricted RAM M’: M{, M}, ..., such that the following hold: (i) M and M’ accept the
same language, (ii) the length of the program of M) is O(s(n)), (iii) M} has running time
O(t(n)s(n)), (iv) M! can be generated in parallel time O(log s(n)).

The TRAM M’ in Theorem 4 makes only use of the following instructions:
1. R; «— a;

2. R; — Rj;

3. R, — R, £ Rj;

4. if Ry <0 then R; — R; £ R;.

4 Simulating rRAM computations by means of Gaussian
Elimination

Let P = {P,},cn be a decision problem in P. Here P, are the instances of P of size n.
Let A be a restricted RAM algorithm that solves P. A is actually a family of programs,
A= {An}new such that A, solves the instances in P,. Assume that the running time of
A, is t(n) > n. Given a positive integer n and an input I = I(n) for A,, we describe how
to build a square matrix M(A,,I) of order O(#(n)) such that the execution of Gaussian
Elimination with Partial Pivoting on M (A, I') simulates the execution of A,, on input I.

Arithmetic model

No definition of the behavior of GEPP is possible without a precise description of the arith-

metic model. The reduction described in this section is from a generic TRAM computation

to an instance of (the decision version of ) “GEPP on the fixed point arithmetic model with

truncation”. A similar reduction, however, holds in case of a floating point system as well.
The set of numbers represented in a fixed point number system are

F,LL,I = {—lu,—(l— 1):“7"-7_/%07:“7"'7(1_ 1):“}7



for some positive i and some positive integer [. p is the machine precision. When the
representation base is the usual binary one, with f bits before and d after the point (plus
one sign bit), then u = 2=% and | = 27+, Tt is also customary to assume f = d.

Let m be the minimum positive number in F),; that has a multiplicative inverse in £}, ;.
For instance, in the binary system outlined in the above paragraph m would be 2u. We will

require that
m?L3t(n) < p, (1)

where I, = L(#(n)) is the largest positive integer that can be generated by a #(n) time
bounded RAM. Clearly, in view of (1) and the fact that u is the machine precision, the
number m?L3t(n) is a “machine zero”. Equation (1) has implications on the word length.
As already pointed out in Section 3, Cook and Reckhow [6] proved that the largest integer

that can be generated by a t(n) time bounded RAM has magnitude 2°(V#"). This implies
that a word length polynomial in the input size is sufficient. We observe, however, that this
bound can be greatly improved by using the following result, due to Wiedermann.

Lemma 5 [19] A RAM R working within time t(n) can be simulated, with only constant
slowdown, by a RAM R’ that uses integers of length O(logt(n)) and addresses of value

O(t*(n)).

Even if R’ in the above Lemma can generate addresses of value O(#*(n)), which is not good
for our purposes, we can still apply the compression result of Lemma 1 to R’. By virtue of
this result, even a word length logarithmic in the input size would be sufficient.

We will use the notation ® to denote the machine operation corresponding to the exact
operation -, where - € {+,—,%,/}. It holds z - y = trn(z - y). Among the others, the
following properties hold in the machine arithmetic outlined here.

1. trn(zm?) = 0, for any = generated by the TRAM computation.

2. trn((1 — zm)™1) = trn(1 + zm + (zm)? 4+ ...) = 1 + rm, for any z generated by the
rRAM computation.

3. trn(pz) = 0,if z < 1.

Construction of the matric M(A,,I)

We shall view the matrix M(A,,I) as a two dimensional program, and GEPP as the
interpreter for it. Using this viewpoint, we will show how any given statement of the
restricted RAM can be translated into a corresponding “statement” in M(A,,I). The
matrix we will obtain is essentially block diagonal, having 0s almost everywhere outside the
main (block) diagonal. See Figure 3.

Let N = N(n) be the number of statements executed by the program A,. Then, there
will be N 4 1 blocks along the main diagonal, numbered 0 to N. Blocks 1 through N will
correspond to the instructions executed by A,. The order of these blocks is either 2 or 9,
the latter being the case of a block corresponding to an if statement. The order of block 0 is
1 plus the number of inputs (not to be confused with the length n of the input). The input
conventions are that the number ¢ of inputs is stored in register Ry, with the actual input
stored in Ry through R;. The order of the matrix is thus at most 9N +¢+ 1. Since N < #(n)



Memory contents columns

!
2
«
p

™ R N—

!
2
o
p

Figure 3: Structure of the matrix M(A,,I).

(each instruction costs at least 1 under the logarithmic cost criterion), and i < n < #(n),
the order of M(A,,I)is certainly O(¢(n)).

In the lower triangular part of M (A, I') there is a 1 somewhere in block (k, k) if and only
if, for some register R;, the hth and kth instructions of A,, use R; (with no other intruction in
the middle using this register). Such 1s implement the logical pipes between two consecutive
intructions that make use of the same RAM register. In the upper triangular part of
M(A,,I),there are nonzero entries only in those blocks (0, 7) such that the jth instruction
executed by A, is a conditional statement, 1 < 7 < N. Such nonzero entries contain, from
top to bottom, the number of input registers and the actual input (2, a, and § in the
example of Figure 3). The columns corresponding to these entries will be called memory
contents columns. In fact, during the execution of the Gaussian Elimination algorithm,
certain entries in these columns will represent the tRAM storage. Observe that there is one
memory contents column only if the corresponding diagonal block is a conditional statement
block (these are the largest diagonal blocks in Figure 3). This depends on the fact that
only the conditional statements need to peek at the storage.

The figures 4 to 7 show, enclosed in boxes, the diagonal blocks corresponding to the
initialization phase (first diagonal block) and to the different statements of our restricted
RAM. We use the notation 0(X) to indicate that one entry in a memory contents column
contains 0 initially and X by the time the simulation of the corresponding instruction
begins. For the instructions whose behavior does not depend on the values stored in the
rRAM registers (i.e. all the instructions, except the conditional statement) we only show



one memory contents column. In case of the conditional statement, we show two such
columns.

Ro -1 o 0]... 2
Ry 0 -1 0 o
Ry 0 0 -1 8
Ry 0 0 1 ... 0
Ro 1 0 0 ... 0
Ry 0 1 0 ... 0

R; -1 0(&)
R -1 0 0(@) R; 0 -1 0(f)
8 0 -1 E ;
: R, 01 0
R; 0 1 0 :
: R; 0 1 0

Figure 5: Assignments R; «— @ and R; — R;

R, =1 o] 0B
Ri | ... |41 —1]... 0(a)
R, 1 0

R; 0 1 0()

Figure 6: Assignment R; — R; + R;

Behavior of GEPP applied to M(A,,I)

Proving that the execution of GEPP, on input the matrix M(A,, I) constructed according
the above rules, does indeed simulate the execution of A, on I amounts essentially to
performing error analysis. However, we must be able to view into the elimination process

10



Dy 0 0 M 1 0 0 0 0 0 0
Ry -1 0 0% 0 0 0 0 0 0 0(%)
R; 0 -1 0@&a o 0 0 0 0 0 0(&)
Ry 1 0 0 1 0 p o0 0 0 0
R; o 1 0 0 -1 0 0 —p 0 0
R; 0 0 0F) 0 1 0 0 0o -1 0(3)
Ds 0 0 0 —1 1 pu 0 0 0 0
Ds o 0 0 1 1 0 g 0 0 0
Ds 0 0 0 0 0 0 g M-—p O 0
Ry 1 0 0 0 0 0 0 0 0 0
R; 0o 0 0 0 0 0 0 0 1 0
R; o 1 0 0 0 0 0 0 0 0

Figure 7: Initial configuration for: if Ry <0 then R; — R; + R;

and spell out the similarities with the rRAM computation. To this end, we first introduce
some basic terminology and recall the fundamental ideas behind Gaussian Elimination with
Partial Pivoting (for more details on the latter, we refer the reader to the classic reference

[13]).

e Forh=1,...,N+1, welet M) stand for the the matrix resulting from the execution
of the first h — 1 pivot steps. Thus M) = M(A,,I), while MN+1) is the final

(triangular) matrix. Moreover, we use al(»?) for the i,jth entry of M),

e The Gaussian Elimination algorithm with Partial Pivoting consists of a sequence of
N pivot steps. Each consists of three phases.

1. Pivot row selection. The pivot row for the pth step is the one whose index ¢
satisfies

i=min{j > h: |ay}z)| < |a§}};)|,l: h,h+1,...}.

Note that we adopt the usual strategy of choosing the lowest indexed row among
those with entries of maximum absolute value in column A 3.

2. Row exchange. Once the pivot row has been selected, the algorithm exchanges
it with row h. This is usually done by simply exchanging the row indexes, kept
in a separate array.

3This is by no means a loss of generality, as long as we will restrict to deterministic strategies for pivot
selection. On the other hand, our simulation will not work in case of a randomized strategy for breaking
ties.

11



3. Submatriz update. The last phase consists of updating the submatrix made of the
i, 7™th entries, for i > h and j > h. As is well-known, this is done by means of
linear combinations with the pivot row, in such a way that the entries in position
(i,h), for i > h, are set to zero.

o Fork=1,...,N,welet 53 denote the k' instruction executed by A,,. The simulation
of S will be accomplished by the execution of a set of pivot steps. The pivot elements
for the simulation of S will always be taken from the diagonal block number k. We
will regard this set of pivot steps as the kth stage of the simulation. This definition
makes sense, since, as we will see, stage k£ will be completed before stage k4 1 begins,
k=1,...,N—1. We W}ilﬂ also regard the elimination process performed on the first

Ot

diagonal block as the stage of the simulation, even if this does not correspond to

any program statement.

o Let {hr},_, , be the set of indexes corresponding to the first rows (and columns) of
the diagonaf blocks. For instance, hg = 1, hy = 24 2, while hy through hy depend on
the program A,. For k = 0,..., N, we classify the rows of the matrix M) according
to their role in the elimination process.

— A row that has been used as the pivot row in a step s < hy is dead at stage k.

— A non-dead row that has already been modified by a previous pivot operation
is living at stage k. Initially, we assume that all the rows that form block 0 are
living.

— A non-dead and non-living row is unborn at stage k.

The idea behind the simulation is that certain rows of the matrix correspond to the
TRAM registers. In general, there is more than one row corresponding to a given register.
This is required by the fact that, as soon as is selected in a pivot step, a row will not be
used any more (i.e. it becomes dead). Therefore, another row corresponding to the same
register must somehow come into play.

For any k € {0,1,..., N}, there are two invariant conditions that hold before the exe-
cution of stage k of the simulation.

1. For any register R; of the simulated TRAM there is at most one living row correspond-
ing to it in the matrix M ("), all the others being unborn or dead.

2. Let R; be any register of the TRAM, and let [ be the index of the living row cor-
responding to R; in M ("), Let the movalue of R; at stage k, or simply mv(R;) if
the stage is understood, denote the (common) value in the entries at the intersection
between row [ and the memory contents columns with index > hi. The invariant
condition states that

mo(R;) = (14 Cppm)z;,

where z; is the value in R; before the execution of the & instruction of the program,

and |C), x| < kL. Note that C), ; is a quantity that depends on the program A, the
stage number k, but not the index register 1.
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Before stage 0 begins, the two invariant conditions are satisfied by the initial matrix
MO with C, 0= 0.

Below we describe the behavior of GEPP with respect to the different blocks that cor-
respond to the instructions in the set of the rRAM. We assume that the registers used are
R;, R;, and Ry, and that the values stored in these registers before the execution of the Eth
instruction are a, 3, and T, respectively. We assume that the corresponding mvalues are
a=a(l+Cupm), f=p(1+C,pm), and 7 = 7(1 + C,, pm), and prove that the invariant
conditions continue to hold after the execution of stage k.

e Initialization (refer to Figure 4). Performing the Gaussian Elimination on the first
diagonal block will cause the mvalues of the registers Ry through R; to be copied
where they are first needed, i.e. into the next lowest indexed rows corresponding to
those registers. As a consequence of this, the first rows corresponding to Ry, ..., R;
become dead, while the others change their status from unborn to living. The two
invariant conditions are thus easily met. In particular, C),; = Cy 0 = 0.

e R; — 3 (refer to Figure 5). The first step has the only purpose of killing the currently
living row corresponding to R; (whose contents will be overridden by ). The second
step makes 3 to be the new mvalue of R;. The two conditions are met with (), z41 =

Ch k.

o R; — R; (see Figure 5). As in the case of constant assignment, the first step has the
only purpose of killing the currently living row corresponding to R;. The second step
copies the mvalue of R; into the next lowest indexed rows corresponding to R; (to get
the assignment done) and to R; (to save it for another operation involving R;). Also
in this case the two invariant conditions are easily met, again with C}, 141 = Cy k.

e R, — R; £ R; (see Figure 6). As the result of the first step, the mvalue B of R; is:
(1) copied to the first unborn row corresponding to R;, and (2) added to (subtracted
from) the mvalue & of R;. The second pivot operation copies the mvalue a + 8 of
R; into the first unborn row corresponding to the same register. The first invariant
condition is clearly met. The second is also satisfied. In fact

a®f = (1+Coxm)ad (1+ Cppm)s
= trn((14 Cppm)(a+ )
= (14 Chrm)(a+p),

and therefore C), 141 = Cy 1. One would be tempted here to replace the second row
corresponding to R; with the first, and remove the occurrence of the first. In this
way the simulation would require just one single step. For uniformity of description,
however, this is not advisable. In fact, with our solution, the generation of the portion
of the matrix corresponding to any given instruction that uses the register R; only
requires to know the first next instruction that uses R;. This would not be the case
with the second solution.

o if R <0 then R; — R; 4+ R;. The simulation of the conditional statement is per-
formed by means of 9 pivot steps. Among the rows involved, there are four that do not
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correspond to any TRAM register. In the figures, these rows have labels Dq,..., Dy.
Initially (see Figure 7), the mvalue of Ry is copied to the first two unborn rows for
the same register. The first copy will be used during the simulation of the conditional
statement. The second copy is to transmit the value of Ry (which is not to be changed
by the execution of the conditional) to the next row where it’s needed. This latter
will be the only living row corresponding to Ry by the end of stage k. The purpose
of the second steps is similar (with R; instead of Rj). The matrix resulting after the
first two steps have been performed is depicted in Figure 8. The largest number in
the column being eliminated (a memory contents column) is M. In fact, using the
invariant condition on C), ; and the assumption on M, we easily see that, for any

index 1,
[mu(R)| = |Ri|(1+ |Crg|m)
< L(14kLm)
< 2L
< M.

Applying the pivot step to the matrix of Figure 8 leads to the matrix of Figure 9. The
only modified entries are those in column h; + 3. For instance, the entry in position
hr + 3, hr + 3 is determined using the machine arithmetic as follows:

1el(tTe(loM)) 181@ ((t+7Chm) Q@ m)

161® trn(tm + TC'mka)
161®(rm)

= 1-m™m.

There are two possible choice for the pivot element in the matrix of Figure 9, and the
choice depends on the value 7 contained in register Rj before the execution of the
conditional statement.

Assume first that 7 > 0 (i.e. that the test condition is not satisfied). In this case the
pivot is taken from the row with label Ds in Figure 9. Applying the pivot step leads
to the matrix of Figure 10, and a further step to the matrix of Figure 11. The next 3
pivot steps applied to the matrix of Figure 11 do not result in the execution of linear
combinations because the only non zero element in the columns being eliminated is the
pivot itself. The last pivot step simply copies the mvalue of R; (which is unchanged)
to the next place where it is needed, and leads to the final matrix M (7#+1)  depicted
in Figure 12. The overall sequence of elimination is thus

Rka Ria Dla D27 D37 Rk7 D47 Ria R]
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Ry -1 0 F# 0 0 0 0 0 0 7
Ri 0 -1 & 0 0 0 0 0 0 &
Dy 0 0 M 1 0 0 0 0 0 0
D, 0 0 0 -1 1 pu O 0 0 0
D 0 0 0 0 2 u u 0 0 0
Ry 0 0 0 0 0 p O 0 0 7
Dy 0 0 0 0 0 0 u M—p 0 0
Ri 0 0 0 0 0 0 0 —pu 0 &
R, 0 0 0 0 0 0 0 0 —1 8
Ry 0 0 0 0 0 0 O 0 0 7
R; 0 0 0 0 0 0 0 0 0 8
R; 0 0 0 0 0 0 O 0 0 &

Figure 12: Simulation of conditionals: final matrix (Ry > 0)

Now we backup to the matrix of Figure 9, and assume that the test condition is
satisfied, i.e. that 7 < 0. In this case the pivot is taken from the row with label Rp.
Applying the pivot step leads to the matrix of Figure 13. The entries denoted by X
are of no interest to us (they do not affect the simulation process). It is easy to see,
however, that they satisfy | X| < 4L. The important fact here is the way the mvalues
of the registers change. Using the machine equality 1@ (1 — 7m) = 1 4+ 7m, we have,
in case, e.g., of register R;

mo(R;)) — as7®(—am® (1+7mm))

= (a+aC,m) 6 (1 + 70, m) @ trn(—am — arm?)
(a+aCym)e (T +7C,km) @ (—am)
(a+ aC, m) & trn(—arm — arC, m?)
(a+aCp,pm) 6 (—atm)
trn((a + aCy pm) + atm)
a(l+ (Cpi+7)m)

= a(l+Chpy1m),

where C, py1 = Cp ik + 7. Note that |7| < L, hence |C), p41| <

Corl+ L <(k+1)L.

The Figures 14 through 18 illustrate the rest of the elimination process in the case
of successful test. The entries in position Ay + 6,hr + 5 and hr + 7, hr + 5 may have
one of two values depending on whether 7 is zero or strictly less than zero. However,
this does not affect the order of elimination. The pivot step performed on the matrix
depicted in Figure 16 is potentially very dangerous, because it involves the row already
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containing the updated mvalue of R;. However, since |X| < 8L, the value actually
added to this row is a machine 0. The elimination order for the case 7 < 0 is thus

RkaRiaDlaRkaRiaD27D37D4aRj'

Ry —1 0 T 0 0 0 0 0 0 T
R; 0 -1 a 0 0 0 0 0 0 o
D1 0 0 M 1 0 0 0 0 0 0
Ry 0 0 0 1—mm 0 u 0 0 0 T
R 0 0 0 0 0 0 —p 0 a(1+ Cyp gp1m)
R, 0 0 0 0 1 o 0o 0 -1 B(1 + Criprm)
D, 0 0 0 0 1 w/2 0 0 0 X
Ds 0 0 0 0 1 0/—u pu O 0 X
D, 0 0 0 0 0 0 u M-—pu 0 0
Ri 0 0 0 0 0 0 0 0 0 7(1 4 Cprg1m)
R; 0 0 0 0 0 0 0 0 1 0
R; 0 0 0 0 0 0o 0 0 0 a(1 + Cpgp1m)
Figure 13: Simulation of conditionals: step 5 (Rj < 0)
—1 0 T 0 0 0 0 0 0 T
0 -1 & 0 0 0 0 0 0 o
0 0 M 1 0 0 0 0 0 0
0 0 0 1—mm O u 0 0 0 T
0 0 0 0 -1 0 0 —u 0 a(1 + Crxp1m)
0 0 0 0 0 0 0 —p -1 (o + B)(1 + Cprg1m)
0 0 0 0 0 |p/2ul 0 —u 0 X
0 0 0 0 0 0/—p p —p 0 X
0 0 0 0 0 0 u M—pu 0 0
0 0 0 0 0 0 0 0 0 (14 Cnxg1m)
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 o0 0 a(1 + Crxp1m)

Figure 14: Simulation of conditionals: step 6 (Rj < 0)
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0 M 1 0 0 0 0 0 0
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0 0 0 -1 0 0 —p 0 a(1 4 Cprq1m)
0 0 0 0 p/f2p O —u 0o ... X
0 0 0 0 0 0 —p =1 ... (a+p)(1+Curi1im)
0 0 0 0 0 —u 0 ... X
0 0 0 0 0 u M-p 0 .. 0
0 0 0 0o 0 0 0 0 ... (14 Cnrsm)
0 0 0 0 0 0 0 1 0
0 0 0 0o 0 0 0 0 ... a(l4Curpim)
Figure 15: Simulation of conditionals: step 7 (Ry < 0)
1 0 T 0 0 0 0 0 0 T
-1 a 0 0 0 0 0 0 o
0 M 1 0 0 0 0 0 0
0 0 1—mm O I 0 0 0 T
0 0 0 -1 0 0 —p O a(1 4 Cprq1m)
0 0 0 0 u/f2p 0 —p O X
0 0 0 0 0 p —u 0O .. X
0 0 0 0 0 0 —pu =1 ... (a+B)(1+Crrsr1m)
0 0 0 0 o o0 [mM] o X
0 0 0 0 0 0 0 0 T(l +C’n7k+1m)
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 ... a(l+Curpim)

Figure 16: Simulation of conditionals: step 8 (Ry < 0)
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T 0 0 0 0 0 0 7
-1 0 0 0 0 0 0 &
0 M 1 0 0 0 0 0 0
0 0 1—mm O I 0 0 0 T
0 0 0 -1 0 0 —p 0 a(1 + Cpp1m)
0 0 0 0 w/20 0 —p O X
0 0 0 0 0 g —p 0 X
0 0 0 0 0 0 M 0 X
0 0 0 0 0 0 0 oo (a4 B+ Crryrm)
0 0 0 0 0 0 0 0 ... (14 Crrsm)
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0!(1+Cn7k+1m)
Figure 17: Simulation of conditionals: step 9 (Rj < 0)
1 0 T 0 0 0 0 0 0 T
-1 0 0 0 0 0 0 %
0 M 1 0 0 0 0 0 0
0 0 1—7m O I 0 0 0 T
0 0 0 -1 0 0 —p 0 a(1+ Cnpp1m)
0 0 0 0 u/2p 0 —p O X
0 0 0 0 0 u —p 0 X
0 0 0 0 0 0 M 0 X
0 0 0 0 0 0 0 -1 ... (a+B)(1+Crrpim)
0 0 0 0 0 0 0 0 ... 7(14Cursm)
0 0 0 0 0 0 0 0 ... (¢+B)1+Cnrpim)
0 0 0 0 0 0 0 0 ... a(l+Curpim)

Figure 18: Simulation of conditionals: final matrix (Ry < 0)
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5 A hardness result for Gaussian elimination

Using the simulation of Section 4, we are now ready to prove our main Lemma. According to
[17], we formulate Gaussian Elimination as a language recognition problem in the following
way:

Given a matrix A and indexes ¢ and j, will the Gaussian Elimination algorithm with
Partial Pivoting use the pivot in (initial) row ¢ to eliminate column 3?7

Lemma 6 (Main Lemma) Let t(n) and s(n) be space constructible functions bounded by
some polynomials in n, and let A be any RAM decision algorithm running in time t(n) > n
and using s(n) memory registers. Finally, let I be an input for A, such that |I| = n. Then
we can effectively build a matriz M of order O(t(n)s(n)), with O(t(n)) bit entries, such that
M € GEPP if and only if A accepts the input. The construction can be accomplished in
space O(log s(n)) and thus is in NC.

Proof We first convert the program A into a restricted RAM program A/ that accepts
inputs of size n and that does not make use of indirect addressing instructions. From
Theorem 4, we know that the length of A/ is O(s(n)) and that the slowdown in the running
time is polylogarithmic. Also, according to Lemma 2, the work space required for the
construction of A/, is O(logs(n)).

Since Al is restricted, the sequence of instructions executed is oblivious of the actual
input. Assume that the output bit of A, (indicating acceptance or rejection) is stored in
register Ry at the end of Al s execution. We now modify the program A, in the following
way. Let R; be any register that has been written to by the program. Then we insert, as the
new last instruction, the conditional statement “if By < 0 then R; «— R;”. In this way, the
question of acceptance by A can be restated as a question on whether the test expression
Ry < 0 is satisfied. Call the resulting program A!. Observe also that the running time of
A" is within a constant factor from the running time of A .

From A! we build the matrix M = M (A}, I) according to the rules of Section 4. The
construction can be computed in space O(logs(n)). Actually, each diagonal block can be
generated in constant space. The only problem is to put the 1s in the lower triangular part
of the matrix. To do this, during the generation of the kth diagonal block it is necessary to
determine, for any register R; used by that instruction, the sequence number of the next
instruction using R; and the index of the first row of the block corresponding to it. This
information can be easily gathered by a linear search through the input program A”.

Clearly, the construction of M cannot be accomplished, as suggested above, in two
distinct steps, because the programs A/, and Al require space O(s(n)) simply to be stored.
However, M(A) can still be generated in O(log s(n)) space, since the log space reduction is
transitive.

Since each instruction can be simulated by a constant number of pivot operations, the
order of M is at most a constant times the running time of A”. By Theorem4 this is
O(t(n)s(n)). Using the simulation of Section 4, we conclude that the program A”, and thus
A, accepts I if and only if to eliminate, e.g., column N — 2 the GEPP algorithm uses row
N. u
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Theorem 7 Let N denote the order of the input matrices. Then Gaussian Elimination
with Partial Pivoting is at most N'/? complete for P.

Proof Let Il be any problem in P, and let A be a RAM decision algorithm for II running in
time #(n), on inputs of size n. By Lemma 6 the question of acceptance by A is NC-reducible
to Gaussian Elimination with Partial Pivoting on a matrix of size O(t*(n)) and entries of
length O(#(n)). Therefore, any algorithm solving the Gaussian Elimination problem in time
0(1\71/2_5), would provide, combined with the reduction algorithm, a decision procedure for
I running in parallel time O(¢172¢), thus giving polynomial speedup. "

6 Concluding remarks

The result provided in this paper is not the tightest possible. It could be still possible to
devise a parallel algorithm for GEPP running in time, say, N2/3 without having dramatic
consequences on the whole class P. We conjecture that this is not the case and thus that the
existing “gap” depends on our current inability to prove the optimality (assuming P # NC)
of the naive parallel implementation of Gaussian Elimination with Partial Pivoting.

One reason for believing this is that our Main Lemma says a little more than the at-most
N2 completeness of GEPP. To see this, consider a sequential algorithm A that solves a
P-complete problem II. Suppose that A achieves the best running time #(n) known for II
and, moreover, that A uses substantially less space than t(n), say s(n) = (t(n))'~¢, for
some positive €. In this case, we would obtain polynomial speedup over A if we were able
to exhibit a decision procedure for GEPP running in parallel time O(N;%Z). For instance,
for € = 1/2, O(N?/3) parallel time would be sufficient (although, obviously, not sufficient to
conclude that IT admits polynomial speedup, because A might not be the fastest sequential
algorithm for A).

One computational problem with the above mentioned properties seems to be the deci-
sion version of the maximum flow in sparse graphs with n nodes. To the best of author’s
knowledge, there is currently no parallel algorithm running in time O(n%=¢) for this prob-
lem. However, we have sequential algorithms running in time O(n?) and using O(n) space,
provided that the number m of edges is O(n) and the capacities on the edges are small size
integers (see, e.g. the textbook [7]). Therefore we have s(n) = (t(n))l_%, ie. €=1/2in
the argument of the above paragraph.
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