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Abstract

Recent work in the field of artificial intelligence has shown that many problems can be
represented as a set of constraints on a set of variables, i.e., as a constraint satisfaction
problem. Unfortunately, real world problems tend to be inconsistent, and therefore
the corresponding constraint satisfaction problems don’t have solutions. A way to
circumvent inconsistent constraint satisfaction problems is to make them fuzzy. The
idea is to associate fuzzy values with the elements of the constraints, and to combine
these fuzzy values in a reasonable way, i.e., a way that directly corresponds to the
way how crisp constraint problems are handled.
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1 Introduction

Constraint satisfaction is a valuable technique for solving problems that can be stated in

the following way: Given variables {Vi,...,V,,} over some domains {Dy,...,D,,} and
constraints {C4,...,C,} with variables in {V1,...,V,,} (i.e., each C; is a pair consisting of
a subset of the variables {Vi,...,V,,} and a relation on this subset), find a tuple of values

(dy,...,dp) € Dy X -+- X Dy, such that all constraints are satisfied if d; is assigned to V;,
1=1,...,m.

A real world problem is likely to be inconsistent, i.e., the corresponding constraint satisfac-
tion problem (CSP) does not have a solution. If this is the case, one cannot satisfy the entire
set of constraints but has to “weaken” some of the constraints in order to find a solution.
Weakening constraints is usually achieved by replacing the relations of the constraints with
supersets of their relations, hoping that the resulting, new CSP has a solution, which in
turn might be viewed as an approximate solution or quasi-solution of the original problem.
This process is called constraint relaxation.

There are several approaches to constraint relaxation. In [12, 7], some theoretical formula-
tions of constraint relaxation are presented. [2, 5] describe practical applications in which
constraint relaxation is used. All these approaches have in common that they attack a given
CSP by finding a solution of a relaxed CSP that differs only minimally from the original
CSP. The difference is expressed in terms of a metric.

There are various ways to define a metric on a given CSPs, i.e., to state how far a relaxed
CSP is from the original CSP and with this how far away the approximate solution is from
the ideal one. In [9], for example, we have used the concept of penalties: Values not being
in the original constraint relations are marked by natural numbers greater than 0. More
recently, fuzzy set theory has been used to capture the idea of constraint relaxation [3].

The main idea of [3] is to switch off constraints, i.e., to ignore them in the constraint
networks, if they can’t be satisfied. Some constraints can be ignored more easily than
others. To express how easy it is to ignore a constraint, each constraint C' is associated
with a priority degree a¢ ranging in the scale [0,1]. 1 — a¢ then indicates to what extend
it is possible to violate C'.

Given a network of constraints with priorities, an assignment of values (dy,...,d) to the
variables {Vi,...,V,,} of the constraint network can be associated with some fuzzy mem-
bership grade. This membership grade is computed from the priorities of the constraints.
If a constraint C' is not satisfied by (dy,...,dy), then 1 — a¢ limits the membership grade
of the solution.

The approach presented in this paper is very close to the one in [3]. The main difference
is that we don’t associate a fixed priority with each constraint of the network but define a
constraint as being more or less satisfied by some given assignment of values. For example,
instead of stating The color of the object is supposed to be red with priority 0.75 and then
returning a membership grade of 1 if the object is indeed red or 1 — 0.75 = 0.25 if the
object is not red, we proceed as follows: There is a constraint The color of the object must
be red which has the same priority as the other constraints in the networks. However, this



constraint may be more or less satisfied. If the color of the object is red, then the constraint
is satisfied with degree 1; if the color of the object is burgundy, then the constraint might
be satisfied with degree 0.75, if the color is pink, then with degree 0.5; and so on.

In other words, we are assigning membership grades to the elements of the extended con-
straint relation, each membership grade specifying how far away this element is from the
intended relation. A value of 1 means that the element has been in the original relation; a
value of 0 means that the element is not admissible as an approximation. The question, of
course, is how to combine the different membership grades into a single membership grade.
This question is discussed in the next section.

2 Combining Membership Grades

The main operations performed on the relations represented by a constraint network are
union and intersection: A constraint may be viewed as union of one-element sets, each ele-
ment in such a set representing a possible choice of values for the variables of the constraint,
i.e., an assignment that satisfies the constraint. A constraint network, on the other hand,
may be viewed as intersection of the relations represented by the constraints of the network.
Therefore, we have to look at the operations of union and intersection in the light of fuzzy
set theory.

Several combination schemes have been introduced in the literature on fuzzy set theory for
computing the union and intersection of fuzzy sets (for example, [13, 14, 1, 4]). The original
min/max combination scheme introduced by Zadeh [15] seems to be the most adequate for
fuzzy constraints, as it satisfies the following requirements:

No multiple reduction of grades
Suppose there are constraints in the network with identical variables and relations.
Then the result of combining these constraints is supposed to be the same as the
result obtained if there were only one of the constraints in the network. This means
we don’t want to accumulate membership grades.

No accumulation of grades

If an element occurs twice in a relation of a constraint, then the combination rule
applied to this constraint should yield the same result as if the element occurs only
once, i.e, we don’t want to accumulate membership grades. This is certainly not an
issue from the set-theoretical point of view, but may play a role in practical applica-
tions. For example, the constraint satisfaction system CONSAT [8] allows relations
to be specified by patterns, where a relation element may be specified by more than
one pattern.

Free choice of distributing relations
If a given relation is distributed over two different sets of constraints, then the combi-
nation rules should produce identical results for both sets of constraints. This means
that it doesn’t matter how a relation is represented in a constraint network.



With these requirements in mind, we can now define a formal framework for fuzzy con-
straints.

3 A Formal Framework

The main idea of fuzzy sets is: Given a classical set of elements, D, instead of specifying
whether an element d belongs to a set D’ C D or not, we assign a membership grade to d.
Formally, this is captured in the following definition:

Definition 1 (Fuzzy Set)
Let D be a classical (crisp) set, i.e., a collection of elements d, then a fuzzy set D in D is
a set of ordered pairs

D= {{d,up(d))|d € D)

p(d) is called the membership function or membership grade of d in D. It maps D to the
membership space M C RY, the supremum of M being finite:

p:de D—meM
If M =[0,1], then pup(d) is called normalized.

The membership function replaces the characteristic function of classical sets, which map
a given set D to {0,1} and thereby indicating whether an element belongs to D (indicated
by 1) or not (indicated by 0). If M = {0,1}, D is nonfuzzy and zi5(d) is identical to the
characteristic function of a nonfuzzy set.

To handle constraints with arbitrary arity, we have to extend this definition to fuzzy re-
lations. The first idea might be to define a fuzzy relation just as a simple fuzzy set in
the product space of the underlying sets. However, this isn’t sufficient, since we want to
guarantee that the membership grade of an element of the relation does not exceed the
membership grade of each component of the element. We therefore define:

Definition 2 (Fuzzy Relation)
Let Dy,...,Dy C D be classical sets and Dy, ..., Dy fuzzy sets in Dy, ..., Dy, respectively.
Then

R={{(dr,...,dg),pp(di,...,dp)) | (d1y...,dr) € Dy X -+ x Dy}
is a fuzzy relation on Dy,..., Dy in the product space Dy X - x Dy if ¥(dy,...,dy) €
Dy Xx---x Dy andVie {1,...,k}

ppldi, . de) < pp(ds)

A constraint is usually defined as a pair consisting of a set of variables and a relation on
these variables. To adopt this definition for fuzzy constraints, we have to define the notion
of a fuzzy variable:



Definition 3 (Fuzzy Variable)
A fuzzy variable V in D is a variable that may range over any fuzzy set D in D. D is called
the domain of V.

With the above definitions, we can now define the notion of a fuzzy constraint in a straight-
forward way. Actually, it is the direct analog of how classical (crisp) constraints are defined:

Definition 4 (Fuzzy Constraint)
A k-ary fuzzy constraint C' is a pair ((V4,..., V%), R) for which the following holds:

1. Vi,...,Vy are fuzzy variables in some given domains D1, ..., Dy, respectively.

2. R is a fuzzy relation in the product space Dy X -+ X Dy.

Usually, we are dealing with a set of variables and a set of constraints on subsets of the
variables. The constraints may interfere with each other in that they are using variables
in common. As a result, we get a constraint network, or in the case of fuzzy sets, a fuzzy
constraint network:

Definition 5 (Fuzzy Constraint Network)
An fuzzy constraint network N is a pair consisting of a set of fuzzy variables {Vy,...,V,,}
and a set of fuzzy constraints {Cy,...,C,}, the variables of each C; being a subset of

Vi,..., V).

With these definitions we have the means to express noncrisp knowledge in a fuzzy con-
straint network. The question is how do we perform inferences on such a network of fuzzy
constraints. This question will be addressed in the following.

Classical constraint satisfaction algorithms are mainly based on the operations of union and
intersection of relations. To be able to apply the classical constraint satisfaction algorithms
to fuzzy constraint networks, we must define these operations for fuzzy relations:

Definition 6 (Union and Intersection)
Let R and R’ be two fuzzy relations in the same product space Dy X - - -X D,,, then the union
and intersection of R with R' are defined by

taop(diy . ydm) = max{up(dy,...,dp), pp(di, ... dn)}
'u]%ﬁ]%’(dh sy dm) = mm{,ué(dl, .. .,dm),,ué,(dl, ceay dm)}

where (dy,...,dpn) € Dy X -+ X Dy,

The underlying principles in the above definition are the following. If an element shall be
in two fuzzy relations (intersection), then we take the weakest link in the chain, i.e., we
compute the minimum of the membership grades. However, if we have the choice between



two relations (union), we make the best out of it and take the maximum of the membership
grades. We admit that this is a sloppy justification for the above definition; please refer to
the fuzzy literature for a more precise justification (e.g., [16]).

In the literature about fuzzy sets, you can also find alternative ways of defining the in-
tersection and union of fuzzy sets. The different definitions are based on different set of
axioms that are expected to hold for the intersection and union, and thus each of them is
valuable from some certain point of view. In our opinion, the definitions we have chosen
here are adequate for our purposes, as they are based on simple and intuitive principles, and
they have the advantage of ensuring that we don’t end up with indefinite small membership
grades.

Beside union and intersection, two more operations are required: projection and cylindrical
extension. The reason why these operations are useful for fuzzy constraint networks is that
the relations of the constraints in the network may have different product spaces. In order
to combine the relations, we must inject them into a bigger product space that subsumes
all product spaces occurring in the network (cylindrical extension). To reverse this process,
we must project from the all-subsuming product space on to the individual product spaces
(projection). Formally, this can be expressed as follows:

Definition 7 (Projection)
Let R be a fuzzy relation in the product space Dy X - -+ X D,,, then the i-th projection of R,
i€{l,...,m}, is defined as

RY = {{d;, ppii(di)) | di € D;}

with
ppi(di) =
max{pp(dy,....d, )| (d},....d,) € Dy X ---X Dy, Ad!: = d;}
In general, the projection of R on Diy X +-+X D, i1,...,0, € {1,...,m}, is defined as

Rlil’m’ik = {<(di17' --adik)alu]%lﬁ »»»»» ig (diu' . 7d2k)> | (di17' . '7dik) € Di1 X e X le}

with

Pptin, g (diy ooy dsy) =
maX{’uR( Il"' ;’I’L)|( )EDlX XDmAV]E{llaalk}d;:d]}

Definition 8 (Cylindrical Extension)

Let R be a fuzzy relation in the product space D; x --- x D;, with {D;,...,D;} C
{Dy,...,D,}, then the cylindrical extension R'™ of R in Dy X --- X D,, is the largest
fuzzy relation in Dy X -+ - X Dy, whose projection on D;; X -+-X D;, is R.

Definitions 6—8 provide us with the necessary means for solving a fuzzy CSP, i.e., de-
termining the fuzzy relation R represented by a fuzzy constraint network N. If N =
({Vi,..., V2, {C1,...,C}), where V; is a fuzzy variable in some domain D; for each



i € {1,...,m}, then R is a fuzzy relation in the product space D; X - -- X D,, such that for
each C’j, j=1,...,n, the following holds: Let ff;-l, .. -aVik be the variables of (jj and f{j its
relation, then RV1+ix = Rj. From the more constructive viewpoint, R can be defined as
the intersection of relations R;, j=1,...,n, where f% is the cylindrical extension of fij in

Dy X+ X Dy, e, R = RV,

In most cases, we are not interested in an arbitrary element of the fuzzy relation given by
the network, but want to obtain an element whose membership grade is beyond a certain
threshold. (Such an element is called quasi-solution of the crisp constraint network from
which the fuzzy constraint network was derived.) We therefore define:

Definition 9 ((Strong) a-Level Sets)

Let R be a fuzzy relation in the product space Dy X -+ X Dy, then the (crisp) set of elements
that belong to the fuzzy relation R at least to the degree o is called the a-level relation of R.
If the degree of the elements is greater than o, the set is called the strong a-level relation of

R:

Ry ={di,...,dp, € Dy X -+ X Dy | pup(di,...,dn) > a} (a-level relation)
Ry ={dy,...,dp, € Dy X -+ X Dy, | pup(dy,...,dn) > a} (strong a-level relation)

Taking this definition as a basis, we define an a-solution of a given fuzzy CSP as follows:

Definition 10 ((Strong) a-Solution)
Let N = ({Vi,..., Vi },{C1,...,C}) be a fuzzy constraint network, where V; is a fuzzy
variable in some domain D;, 1 = 1,...,m. Further, let R be the relation given by N, i.e.,

the intersection of the cylindric extensions of the fuzzy relations given by Cy,...,C,. Then
(dl,---,dm)EDl XX D, is

e an a-solution of N if (dy,...,dy) € R,

e a strong a-solution of N if (dy,...,d,) € Ry

Of course, knowing what an a-solution of a constraint network means is only part of the
story. The other part is to implement an efflicient algorithm for finding such a solution.
Although this part depends on the underlying domains, there are some techniques that can
be used in general to obtain such an algorithm. We will discuss these techniques in the next
section.

4 Algorithms

There are two classes of algorithms for fuzzy constraint satisfaction:

1. Algorithms that find an a-solution for a given fuzzy constraint network if such a
solution exists.



2. Algorithms that preprocess a given fuzzy constraint network and transform it into a
network that is (hopefully) easier to solve.

The fuzzy constraint satisfaction algorithms of class 1 are NP-complete. Usually, their
purpose is finding the best solution, i.e., a solution with maximal «. Since the maximal «
is unknown in most cases, the task almost always turns into an optimization problem. For
this type of constraint satisfaction problems, various approaches have been suggested in the
constraint literature. An example is the Boltzmann machine described in [11]. It can be
adopted to fuzzy constraint networks in a straightforward way.

The idea of [11] is to associate penalties with the elements of the constraint relations and
to transform the resulting network into a Boltzmann machine. The penalties denote how
acceptable the relation elements are. Penalties are usually integers greater than or equal to
0, where 0 is associated with optimal relation elements. In most cases, membership grade
can easily be transformed into penalties as follows:

p=lo(1-u)]
In this formula, ¢ denotes a suitable stretching factor, usually some big integer.

The algorithms that are in class 2 are usually of polynomial time complexity. Examples of
such algorithms are F-AC3 for computing arc consistency and F-PC2 for computing path
consistency [3].

5 Conclusion

Real world problems (CSPs, in particular) are often inconsistent and therefore require some
means of representing fuzziness. The approach introduced in this paper provides such
means. As opposed to other approaches, we do not assign fuzzy values to the constraints of
a given constraint network but to the elements of the constraint relation. A result is greater
flexibility and applicability.

The testbed for our approach is the domain of spatiotemporal reasoning. There is evidence
that, when reasoning about space and time, one has to deal with imprecise and uncertain
spatial and temporal relations [6], and that fuzzy constraints are a plausible approach to

this [10].
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