INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

On the Relationship between
Synthesizing and Tagging

Hans Werner Guesgen*
TR-94-022

May 1994

Abstract

During recent years, various constraint satisfaction algorithms have been developed.
Among them are Freuder’s synthesizing algorithm and our tagging method. We will
compare the two approaches in this paper and work out commonalities and differences.

The purpose of this paper is to give a deeper insight into existing methods (rather
than introducing new ones). Although the algorithms we chose for our investigation
might not be the most valuable ones from the viewpoint of applications, they illustrate
important and interesting principles of constraint satisfaction.

*On leave from the Computer Science Department at the University of Auckland, Private Bag
92019, Awuckland, New Zealand, email: hans@cs.auckland.ac.nz. The author has been supported by
the University of Auckland Research Fund under the grant numbers A18/XXXXX/62090/3414014 and
A18/XXXXX/62090/F3414025.



i



1 Introduction

Unlike many other papers in the area of constraint satisfaction, this paper does not in-
troduce any new method, technique, or algorithm. On the contrary, it takes two existing
constraint satisfaction algorithms and discusses their common aspects and differences. The
two algorithms are:

Synthesizing Algorithm
In [2], Freuder introduced an approach to constraint satisfaction based on generating
higher order constraints. The algorithm starts with a binary constraint network. It
successively computes 3-ary, 4-ary, etc. constraints and adds them to the network until
a n-ary constraint is computed, where n is the number of variables in the network. This
n-ary constraint represents the solution of the problem represented by the constraint
network.

Tagging Method
In [7], we suggested a method which extends a standard filtering algorithm like the
Waltz algorithm (i.e., an algorithm usually computing arc consistency) such that it
can be used to compute globally consistent solutions. The idea is to associate tags
with the values propagated in the network. The tags maintain the global relationships
among the values.

We assume that Freuder’s synthesizing algorithm is well-known in the constraint satisfaction
community, and therefore, only a short review of this algorithm is given in this paper. The
tagging method, on the other hand, might not be as well-known as Freuder’s algorithm.
Therefore, we will give a more detailed (but not exhaustive) description of the tagging
method in the following.

The paper is organized as follows. We will start with a brief clarification of the terminology
and notation used in this paper. Then we will sketch Freuder’s synthesizing algorithm and
illustrate it by a small coloring problem. We will continue with an introduction to the
tagging method and show how the example is handled by this approach. We will finish the
paper with a comparison of the two algorithms.

2 Terminology and Notation

Throughout this paper, we will view a constraint as consisting of a set of variables and a
relation on these variables. Networks of constraints are obtained by sharing variables among
constraints. A constraint satisfaction problem (CSP) can be defined as follows: Given a
constraint network and an initial assignment of possible values to its variables, find one
or more tuples of values that satisfy the constraint network, i.e., that are elements of the
relation represented by the network.

We denote variables by z, y, z, etc. and constraints by C(z,y), C(z,y,z), etc. Where it
does not cause confusion, we use the same notation for a constraint and its relation.



C(z,z) @ C(y,z)

-

Ca) (v

Figure 1: Graph of the constraint network N. The variables are represented by circles and
the constraints by rectangles. An edge between a circle and a rectangle means that the
corresponding variable belongs to the constraint represented by the rectangle.

For example, let us consider the following coloring problem. A fully-connected graph with
three nodes z, y, and z is to be colored such that the following requirements are fulfilled:

1. The only colors available are red, yellow, and green.
2. z must be red.

3. Two adjacent nodes must not have the same color.

This problem can be represented by a constraint network N as shown in figure 1.

The constraint network consists of constraints Cz), C'(z,y), C(z, 2), and C(y,2) on vari-
ables z, y, and z, each variable ranging over the domain D = {red, yellow, green}. The
constraint relations are as follows:

1. The binary constraints, C(z,y), C(z, ), and C(y, ), have identical relations equal to

{(red, yellow), (red, green),
(yellow, red), (yellow, green),
(green, red), (green,yellow)}

2. The relation of the unary constraint C'(z) is equal to {red}

The corresponding CSP has two solutions:

(z,y,2) = (red, green, yellow)
(z,y,2) = (red, yellow, green)

Since finding a solution for a given CSP is NP-hard in general, we can expect a complete
constraint satisfaction algorithm to be exponential. This is also the case for the algorithms
we are discussing in this paper: Freuder’s synthesizing algorithm and our tagging method.
The synthesizing algorithm, for example, suffers from exponential complexity because it
successively adds constraints to the network. The following two sections provide an intro-
duction to the synthesizing algorithm, respectively the tagging method.



3 The Synthesizing Algorithm

The idea of Freuder’s algorithm is to add higher-order constraints to a network of binary
constraints. These higher-order constraints are computed from constraints with a lesser
arity. For example, if there are constraints C(z,y) and C(y, 2) in the initial network, we
can generate a constraint C'(z,y, z) whose relation is the join of the relations of C'(z,y) and
C(y,z). Yor the coloring problem represented by the constraint network N, the relation
of the resulting constraint C'(z,y, z) contains the solutions of the corresponding CSP (and
nothing else), i.e.:

C(z,y,z) = {(red, green, yellow), (red, yellow, green)}

In general, Freuder’s synthesizing algorithm computes not only 3-ary constraints but also 4-
ary, b-ary, etc. constraints until it reaches an arity that is equal to the number of variables
in the network. Since our example network contains only three variables, the algorithm
terminates in this case after reaching the arity of three.

Before we discuss further details of the synthesizing algorithm, we will switch to another
algorithm which uses the tagging method to compute the solutions of a given CSP. The
next section is dedicated to this algorithm.

4 The Tagging Method

The tagging method is supposed to be embedded in an algorithm that is based on local
propagation: A constraint of the given constraint network is evaluated and the result is
propagated to its direct neighbors in the network. Examples of local propagation algorithms
are the well-known AC-x algorithms [11, 12], (massively) parallel versions of which can be
found in [1, 10, 13, 14].

The basic idea of tagging is to provide the domain values with tags and to apply the
local propagation algorithm to the tagged values. The tags, which are tuples of indices
in the serial and parallel case and G6édel numbers or bit vectors in the massively parallel
one, maintain the information that is usually lost during local propagation, i.e., the global
relationships among the values. We will focus on the tuple variant in the following; details
of the Gédel number variant can be found in [5].

We distinguish between two types of tags: Those that are assigned to the values when single
constraints are evaluated and those that are used in constraint networks. The tags that are
assigned when a constraint is evaluated are called subtags, and we use integers to represent
them. The tags used on the level of constraint networks for propagation purposes are called
full tags. They are represented by tuples of subtags.

Suppose the network consists of n constraints. Then, every full tag is an n-tuple where the
tth value in the tuple is the tag assigned by the ¢th constraint. For example, assuming the
order C'(z,y) < C(y,z) < C(z,2) < C(x) among the constraints of network N, red(y 461
means that C(z,y), C(y,2), C(z,z),and C(z) assigned the tags 2, 4, 6, and 1, respectively.



The advantage of using tuples as full tags is obvious: Fach subtag in the tuple can be
uniquely mapped to a constraint of the network which facilitates their handling.

Before a constraint is evaluated, the full tags of the values of its variables are simplified.
Suppose that the ¢th constraint of the network is to be evaluated, then the the full tag of
each value is replaced with its ¢th subtag, as this is the only subtag of interest when the
ith constraint is evaluated. For example, the value red(, 4 1) is simplified to redy when the
second constraint, C(y, z), is to be evaluated.

After the tags have been simplified, a standard algorithm for constraint evaluation is applied.
Such an algorithm can be formulated as follows:! Compute the Cartesian product of the
constraint variables and intersect this set with the constraint relation. In addition to such
an evaluation algorithm, the tagging algorithm matches the subtags of each tuple of the
Cartesian product by first computing the common subtag and then either replacing each
subtag in the tuple by the common subtag, if the common subtag exist, or deleting the
tuple from the Cartesian product, otherwise. The common subtag is a new tag if all values
of the tuple are untagged. If some values are already provided with subtags, and if all of
them are identical, then the common subtag is determined by this subtag; otherwise it is
undefined. For example, the common subtag of red; and green is 2, whereas the common
subtag of red; and greens is undefined.

After the evaluation of a constraint, the projection procedure described above is executed
in the opposite way. For that purpose, the subtags resulting from the evaluation process
are merged with the original full tags. After that, full tags which are merged with the same
subtag are unified. Unification in this context means that the common subtag is computed
for each component of the full tags. If a common subtag exists for each component, the full
tags are updated by the common subtags; otherwise, the corresponding values are deleted.

For example, let green(y 4 _) be a value for the variable y and yellow(_7_767_ be a value for
the variable z. When the second constraint, C'(y, 2), is evaluated, the tuple (greeny, yellow_)
is matched with the constraint relation, resulting in the (green,, yellow,). The subtags are
then merged with the original ones:

greeny
gf‘een(2747_7_)
yellow,

yellow(_7_767_) :I——) yellow(_74767_)

:I‘_> gf‘een(2747_7_)

Since the subtags with which the full tags have been merged are identical, the resulting full
tags must be unified:

greeng 4 _ _y = greeng gy

yellow_ 46_y +— yellowy 44

To summarize: Tagging during local propagation successively fills positions in initially
empty full tags until all positions are filled and incompatible values are removed. In the
case of the example network N, the algorithm has to fill four positions in each full tag.

'In [4], a more efficient way to evaluate constraints is discussed. However, we do not apply it here for
reasons of simplicity and clarity.



Assuming that subtags are generated in increasing order and that the constraint C(z) is
evaluated first, followed by an evaluation of the constraints C(z,y), C(y, z), and C(z, 2),
the result would be:

z € {redz,46,1), Ted(3,57,1)}

ye {97“@@"(2,4,6,1)7 yellow(3757771)}

EAS {Z/6”0w(2,4,6,1)7 97“66”(3,5,7,1)}

Values with identical full tags represent a solution of N. There are two solutions for N,
namely (red, green, yellow) and (red, yellow, green).

5 Comparison of the Algorithms

This section will look at some of the commonalities and differences of the synthesizing
algorithm and the tagging method. The selection of issues discussed here is somewhat
arbitrary and not exhaustive. It should be viewed as a basis for further research rather
than a complete analysis. Let us start with the complexity of the algorithms:

Complexity
Both algorithms are exponential in the worst case (which is what we expect from a
complete constraint satisfaction algorithm). The synthesizing algorithm constructs
higher-order constraints until it gets to a constraint whose arity is identical with the
number of variables in the network. In the worst case, this may take exponential time.

The tagging method avoids the construction of higher-order constraints, but has to
cope with the problem of reproducing values. When a constraint is evaluated, values
matching several relation elements must be duplicated, because for each match a
different subtag is assigned. This means that the algorithm results in an exponential
number of values in the worst case.

The previous observation leads us to an interesting duality between the two algorithms:

Value—Constraint Duality
Freuder’s synthesizing algorithm maintains global information in the form of addi-
tional constraints. These constraints are of a higher order, since binary constraints
are, in a certain sense, too weak to carry such information. The highest order needed
is identical with the number of variables in the constraint network.

The tagging method maintains the global information in the form of full tags. Here
the values rather than the constraint are extended, as they alone are not capable of
carrying the global information. The dimension of the extension, i.e., the positions in
each full tag, is identical with the number of variables in the constraint network.

Although the algorithms differ in how the solutions of a given CSP are computed, they
don’t differ in how many solutions they compute:



Exhaustive Search
Usually, a backtracking algorithm leaves it open how many solutions are to be com-
puted. It may terminate after the first solution has been computed, or it may continue
until all solutions have been determined. As opposed to backtracking, synthesizing
and tagging always produce all solutions of a given CSP, even if one solution is suffi-
cient. Although this is a disadvantage in general, there are many situations in which
all solutions are requested, for example:

1. The CSP is expected to be inconsistent. In this case, it doesn’t matter if the
algorithm seeks one, a few, or all solutions of a given CSP, as there isn’t any
solution at all.

2. The CSP is an optimization problem. In this case, the optimal solution is to
be computed for a given CSP. A straightforward (although often not efficient)
approach to finding the best solution is first generating all solutions and then
selecting the best one.

We will now turn to issues that are more in favor of the two algorithms than the issues
above. After all, why should one be interested in synthesizing or tagging when at the same
time a simple backtracking approach may be even more efficient. The answer lies in the
following:

Parallel Implementation

Although it is possible to implement backtracking on a parallel computer, the imple-
mentation isn’t as straightforward as the parallel implementation of synthesizing and
tagging. The latter, for example, can be implemented in a straightforward way on
a parallel computer by using the optimistic discrete relaxation scheme described in
[8]. The idea of this scheme is to organize the full tags in a lattice structure. Parallel
tagging can proceed as long as full tags are filled according to the lattice structure.
Whenever the lattice structure is violated (which actually doesn’t occur very often),
certain computation steps must be repeated.

See [9] for details of how the synthesizing algorithms can be implemented in parallel.

Let us now look at the arity of the constraints in the network. So far, we have assumed
that a binary constraint network be given, i.e., a network whose constraints have at most
an arity of two. This assumption is not necessary:

Non-Binary Constraint Networks
Although originally designed for binary constraint networks, there is no reason why
the synthesizing algorithm can’t be applied to networks of constraints of any arity. The
same holds for the tagging method. This method even works for hierarchical constraint
networks, i.e., constraint networks whose components may be other (hierarchical)
constraint networks [3].

Last but not least, a remark is in order regarding finite versus infinite relations:



Infinite Constraints

Both algorithms work with networks of finite constraints, i.e., constraints whose re-
lations have a finite number of elements. The tagging method can also be used with
infinite relations or, to be more precise, with a certain type of infinite relations, called
pattern-characterizable relations. A pattern-characterizable relation is a possibly in-
finite relation whose elements can be specified by a finite number of patterns. We
implemented pattern-characterizable relations in the constraint satisfaction system
CONSAT [3], and we incorporated them into the tagging method.

6 Conclusion

Although the synthesizing algorithm and the tagging method were developed at different
places, at different times, and independently of each other, they have many things in com-
mon. Even features like adding constraints versus adding values, that on first sight seem
to be different, can be interpreted as commonality by focusing on the kind of information
rather than the location where it is stored: To compute the solution of a constraint network
with n variables, n-tuples are required, may they be n-ary constraints or n-ary full tags.

To make this point even stronger, neglect for a moment that there is a difference between
variables and constraints. This can be achieved by using the concept of dynamic constraints
as introduced in [6]. Dynamic constraints play the role of both variables and constraints.
When formulating a given CSP as a dynamic CSP, the difference between synthesizing and
tagging almost boils down to a syntactic difference only.

The paper certainly doesn’t provide an exhaustive comparison of synthesizing and tagging.
For example, we haven’t compared synthesizing and tagging when applied to identical test
data (like the test data used in [8] to evaluate the performance of tagging in parallel). This
might give further insights into the two approaches and is certainly worth to be investigated
in future research.

References

[1] P.R. Cooper and M.J. Swain. Parallelism and domain dependence in constraint satis-
faction. Technical Report 255, University of Rochester, Computer Science Department,
Rochester, New York, 1988.

[2] E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21:958-966, 1978.

[3] H.W. Guesgen. CONSAT: A System for Constraint Satisfaction. Research Notes in
Artificial Intelligence. Morgan Kaufmann, San Mateo, California, 1989.

[4] H-W. Guesgen. A universal constraint programming language. In Proc. IJCAI-89,
pages 60-65, Detroit, Michigan, 1989.



[5] H.W. Guesgen. Relational connectionist networks. In Proc. ANNFES-93, pages 23-28,
Dunedin, New Zealand, 1993.

[6] H.W. Guesgen and J. Hertzberg. A Perspective of Constraint-Based Reasoning. Lecture
Notes in Artificial Intelligence 597. Springer, Berlin, Germany, 1992.

[7] H.W. Guesgen, K. Ho, and P.N. Hilfinger. A tagging method for parallel constraint
satisfaction. Journal of Parallel and Distributed Computing, 16:72-75, 1992.

[8] K. Ho, P.N. Hilfinger, and H.W. Guesgen. Optimistic parallel discrete relaxation. In
Proc. IJCAI-93, pages 268-273, Chambéry, France, 1993.

[9] W. Hower. Constraint satisfaction via partially parallel propagation steps. In
B. Fronh&fer and G. Wrightson, editors, Parallelization in Inference Systems, pages
234-242. Springer Verlag, Berlin, Germany, 1992.

[10] S. Kasif. Parallel solutions to constraint satisfaction problems. In Proc. KR-89, pages
180-188, Toronto, Canada, 1989.

[11] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99-118,
1977.

[12] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelli-
gence, 28:225-233, 1986.

[13] A. Rosenfeld. Networks of automata: Some applications. IEEFE Transactions on Sys-
tems, Man, and Cybernetics, 5:380-383, 1975.

[14] A. Samal and T.C. Henderson. Parallel consistent labeling algorithms. International
Journal of Parallel Programming, 16:341-364, 1987.



