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Abstract

This paper deals with the problems of grasp planning and force computation that occur when ob-
jects have to be manipulated with dextrous multi-finger robot hands. Assuming that the initial con-
tact points at the object surface are pre-selected, the joint motions to perform a desired operation ac-
cording to a given object trajectory are determined. This is done under the consideration of the ef-
fect of rolling and slipping of the fingertips. Another point is the computation of appropriate grasp
forces (internal forces) according to given object forces/moments needed to ensure a stable and se-
cure grip configuration from which the joint torques are derived. This leads to an optimization pro-
blem that can be solved with two different approaches based on search procedures for finding the
maximum (best fitting value). As major result, the force optimization problem could be generalized
for the case of arbitrary robot hands and contact situations that are specified by the following para-
meters: number of fingers fno, number of joints per finger jnoi, chosen contact models cmodi and
null space dimension ndim. Especially, the resulting object motions and contact forces are demon-
strated at a simulated example of a peg-in-hole insertion task with the Karlsruhe Dextrous Hand.

1. Introduction

Compared with a conventional two-jaw gripper, multi-finger hands have inherent advantages: first,
they have a higher grip stability due to three and more contact points at the object, and second, it is
possible to impart movements onto the gripped object by exerting adequate finger forces. An ad-
equate built-in sensor equipment permits easy data processing and information gathering which en-
ables the use of robot grippers as exploration tool in unstructured environments. Another kind of
application for dextrous hands is found in well-structured working areas of industrial manufactu-
ring systems: to perform complex assembly tasks, insertion operations and object manipulations.

Dextrous multi-finger hands represent an interesting multi-disciplinary research area. The deve-
lopment of such a hand is a technological and scientific challenge, and before obtaining a fully ope-
rational gripper for the application in manufacturing systems, a lot of problems are to be solved. Up
to the present time a number of multi-finger hands have been developed, but there is only little work
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dealing with the problem of determining efficiently all parameters required for object handling ope-
rations with articulated robot hands. A survey of past gripper developments was presented in [1].

Especially, at the Institute for Real-Time Computer Control Systems and Robotics of the University
of Karlsruhe a modular three-

 

finger hand with 9 degrees of freedom, the Karlsruhe Dextrous Hand
(Fig. 1), has been in development since 1988 [2], [3], [4]. Because the main goals of this project
are to investigate dextrous grasping and manipulation, the research efforts are focused on the topics
mechanical design, sensor integration, intelligent hand control, programming and grasp planning.

Fig. 1 : The Karlsruhe Dextrous Hand

Therefore, the realized framework consists of a distributed real-time control system in combination
with a graphical programming and simulation system [5] that permit reliable operation of the multi-
finger gripper. Also, a sophisticated approach to automated grasp planning [6] has been developed.
To do this, the task parameterization problem (described here) - the determination of the motion and
especially the force parameters required to perform a specific object manipulation - has to be solved.

2. Grasp planning and fine manipulation

One of the first developments was a three-fingered robot hand from Okada [7], [8]. Okada has defi-
ned a symbolic notation for the fundamental finger motions. The possible operation modes which
can be performed are simple bending or extending, pressing inside or outside, adduction and abduc-
tion. Complex motions can be programmed by joining several finger operations together, but this is
a difficult and cumbersome task because the exact location of each finger has to be known a-priori.

To avoid the specification of stereotype finger motion sequences with a large number of repeating
parameters, the four-fingered human-like Utah/MIT Dextrous Hand [9], [10] is programmed by hand
motion primitives like close-hand, grasp-object, spread-fingers. These hand primitives [11] together
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with the free, guarded and compliant motion types presented later in this section, represent an ele-
gant way to describe a desired hand action schemata with respect to a subset of fingers and joints. A
LISP-based programming environment for the three-fingered Salisbury Hand is described in [12].

Attempts have also been made to synthesize grasps to perform specific parts mating operations or
assembly tasks. In [13] an algorithm based on geometric-mechanic calculations has been developed
to generate stable, force-closure grasps. The authors of [14], [15], [16] have analyzed the human ob-
ject handling behaviour to derive grasp strategies for articulated hands. Here, the problems arise from
the different kinematic hand/finger structure and the difficulties to support force control strategies.

To perform a dextrous manipulation with a robot hand, the object has (1) to be grasped at the con-
tact points with sufficient internal forces and (2) to be moved under the presence of external forces
and moments acting onto it. To increase flexibility and to decrease complexity, three basic motion ty-
pes are introduced consisting of a motion, a force and an optional sensor or stiffness specification:

• The simplest motion is realized as free move by which the execution of an object motion in the wor-
king space of the hand is totally unconstrained. Because a collision with other components in the
environment is not expected, there is no need of a sensor-guided control strategy. This motion ty-
pe is normally used as coarse operation for both hand positioning (reaching) and object handling.

FREE_MOVE ::= <motion_spec> <force_spec>

• The guarded move is a motion in the free space that is executed under sensor supervision and in-
terrupted when a termination condition is fulfilled which depends on the actual sensor configura-
tion and the way the sensor information is interpreted. This motion type is mostly used to control
grasp operations, transfer motions and dextrous manipulations after an initial contact has occurred.

GUARDED_MOVE ::= <motion_spec> <force_spec> <sensor_spec>

• The most complex motion is realized as compliant move by which the execution of the object moti-
on is not pre-computed but depends on an active stiffness control strategy under sensor-guidance
to perform a compliant behaviour of the hand/finger system. This motion type is normally used to
perform parts mating operations like peg-in-hole insertion or light-bulb/screw turning tasks where
the parameters are constrained by environmental constraints and uncertainties of the object location.

COMPLIANT_MOVE ::= <motion_spec> <force_spec> <stiffness_spec>

Because all motions and forces are specified in terms of the manipulation object, the control system
has to perform the transformation from object- into gripper-based commands to provide the trajecto-
ry generation and interpolation routines with the parameter values required for command execution.

Starting from a given object trajectory in hand coordinates and considering rolling and slipping of
the fingertips, the contact velocities and joint velocities are computed from which the required joint
angles are determined. The mathematics of manipulation - the geometry, kinematics and static for-
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ces - is described according to the work of [16], [17], [18], [19], [20]. Starting from external object
forces and moments, the optimization problem for the computation of internal grip forces can be sol-
ved with two different approaches from which the contact forces and the joint torques are derived.

3. Motion computation

Because the motion planner should be well-suited for off-line programming and simulation of dex-
trous manipulations with multi-fingered robot hands, several assumptions have to be made to com-
pute an object motion: (1) especially the object and fingertip geometry has to be given in analytical
form, (2) the hand/finger kinematics has to be known and (3) the initial contact points of the finger-
tips at the object surface have to be pre-selected. From all this information, its possible to determine
the corresponding finger motions which perform the desired operation in form of joint coordinates.

3.1 Description of the object-trajectory

The manipulation object is represented by the frame Co  fixed at the center of mass while the robot
hand is represented by the frame Ch  fixed at the hand base. The location of the object with respect
to the frame Ch  is described by the (3 ×1)  translation vector hro,h  and the (3 × 3) rotation matrix
Ao,h . Through an elementary motion of the object, like a translation, a rotation or a screw motion,
the actual frame Co  can be transformed into the frame ′Co . The new location of the object with re-
spect to the frame Ch  is then described by the translation vector h ′ro,h  and the rotation matrix ′Ao,h .

Ch

Co

′Co

hro,h

h ′ro,h
Ao,h

′Ao,h

a

φges

sges ⋅or

Fig. 2 : Object motion with respect to hand base

A screw motion (Fig. 2) is composed of a rotation around an arbitrary axis a: ox = 
op + u ⋅ 

or  with
angle φ (maximal angle φges) and a translation along the unit direction-vector or  of a with length s
(maximal length sges). Thus, if the temporal relationship of s(t) and φ(t) are both known, the exact
location of the object can be pre-computed at each timestep t. The translational and rotational part of
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the motion is given in the following form whereby the parameters are determined with the functions
t and R (sφ = sinφ, cφ = cosφ, vφ = 1-cosφ; the r's and p's are the cartesian components of or , op):

h ′ro,h = hro,h + Ao,h⋅ t a,φ( ) + Ao,h s  ⋅ 

or( ) ′Ao,h = Ao,h ⋅ R a,φ( )

t a,φ( ) =

rzpy− rypz( )sφ − rxrzpz− rz
2px+ rxrypy− ry

2px( )vφ

rxpz− rzpx( )sφ − ryrzpz− rz
2py+ rxrypx− rx

2py( )vφ

rxpy− rypx( )sφ − − ryrzpy+ ry
2pz− rxrzpx+ rx

2pz( )vφ

















R a,φ( ) =

ry
2+ rz

2( )cφ + rx
2 − rzsφ + rxry vφ rysφ − rxrz vφ

rzsφ + rxry vφ rx
2+ rz

2( )cφ + ry
2 − rxsφ + ryrz vφ

− rysφ − rxrz vφ rxsφ + ryrz vφ rx
2+ ry

2( )cφ + rz
2

















3.2 Geometry of the manipulation system

The hand kinematics is needed to describe a given object trajectory in finger coordinates. Therefore,
the relationship between the base frames Cb i

 of the finger chains and the hand frame Ch  are defined
by transformation matrices (hrb i,h

,Ab i,h
) which are constant for a given hand configuration (the in-

dex i counts the fingers, the total number of fingers is fno and the number of joints per finger is
jnoi). To describe the finger motions, the relationship between the fingertip frames Cf i

  and the ba-
se frames Cb i

 is defined by transformation matrices (b i rf i,b i
,Af i,b i

), the so-called direct kinematics.

So, the positions hrf i,h
 and orientations Af i,h

 of the fingertips (see Fig. 3 for a finger with jnoi = 3
joints) with respect to the hand base can be determined if the actual set of joint angles θi is known:

hrf i,h
=hrb i,h

+ Ab i,h
b irf i,b i

θi( ) Af i,h
= Ab i,h

Af i,b i
θi( ) ,  θi = θ1, � , θ jno i( )T

i = 1, � , fno

z

x
y

x

x

y

y

z

z

C1

C2
Cf i

= C3

l2

l3

x

yz

Cbi
= C0

l1

θ2

θ3

θ1

Fig. 3 : Fingertip location with respect to finger base
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In the inverse direction, the kinematic problem can be solved directly if the above described relati-
ons are invertible. In this case, the joint angles θi can be computed from the actual finger positions
hrf i,h

 which is very fast, but will fail if the effect of rolling or slipping occurs because the exact po-
sitions hrt i,h

 of the contact points at the fingertips are not known. Nevertheless, for given points of
contact, this simple method can be used to determine the initial parameter values of a finger motion.

A more sophisticated computation method, described in [19], [20], starts with the generalized velo-
city (hvo,h ,h wo,h)T

 (linear and angular velocity) of the object to determine the velocity parameters
(hvo i,h

,h wo i,h
)T

 of the contact points (the components of the contact velocity vi). According to the
contact model, represented by the contact matrix Qi (see section 4.1), the respective velocity para-
meters (hvt i,h

,h wt i,h
)T

 of the fingertips are derived, from which the generalized finger velocities
(hvf i,h

,h wf i,h
)T

 are determined. Their relation to the resulting joint velocities is given by a Jacobian:

hvt i,h
hwt i,h









 =

hvo i,h
hwo i,h









 = Qi ⋅ υi,  

hvf i,h
hwf i,h









 =

hJvi
hJw i









 θ̇i   ⇒   θ̇i = hJvi( )−1

⋅ 

hvf i,h

for  Qi = QPF = I3 0( )T
  ⇒   hwt i,h

= 

hwo i,h
= 0  and  vi = 

hvt i,h
= 

hvo i,h

hvt i,h
hwt i,h









 = I3 -Af i,h

S f irt i,f i( )
0 I3







⋅

hvf i,h
hwf i,h









 +

Af i,h
 

f ivt i,f i

Af i,h
 

f iwt i,f i











hvo i,h
hwo i,h









 = I3 -Ao,hS oro i,o( )

0 I3







⋅

hvo,h
hwo,h







+

Ao,h  

ovo i,o

Ao,h  

owo i,o











,  S r( ) =
0 −rz ry
rz 0 −rx

−ry rx 0















The transformations of generalized velocities given in different coordinate systems are performed
by above matrix equations (using the skew symmetric matrix S as operator for the cross-product)
which include the translation vectors r and rotation matrices A that describe the geometric relation-
ships of the object-finger motion. The computation of rolling finger motions is shown in the follo-
wing where the contact model is assumed to be point contact with friction (PF), so that only linear
and no angular velocity components can be transferred through the fingertip contacts with the object.

3.3 The problem of rolling fingertips

The positions and orientations of the contact points (tip contacts) can be described with respect to
the object frame Co as (oroi,o

,Aoi,o
)  or with respect to the finger frames Cfi as (f irt i,f i

,At i,f i
) . These

vectors and matrices (given as rotations along the directions d of the z-axes with rotation angles δ)
can be parameterized as functions of two variables (see Fig. 4). Thus, due to rolling of the finger-
tips, not only the joint angles θi but also the contact parameter sets ηi and ξi have to be computed.

f irt i,f i
=

rx ηi1
,ηi2( )

ry ηi1
,ηi2( )

rz ηi1
,ηi2( )

















= f irt i,f i
ηi( ) with ηi =

ηi1

ηi2






, oro i,o

=

rx ξi1
,ξi2( )

ry ξi1
,ξi2( )

rz ξi1
,ξi2( )

















= oro i,o
ξi( ) with ξi =

ξi1

ξi2
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At i,f i
= R df i

,δf i( ) with  df i
= 1 sinδf i

(0,0,1)T × 

f in̂t i,f i( ) and  δf i
= cos-1 (0,0,1) ⋅ 

f in̂t i,f i( )
Aoi,o

= R do i
,δo i( ) with  do i

= 1 sinδo i
(0,0,1)T × 

on̂o i,o( ) and  δo i
= cos-1 (0,0,1) ⋅ 

on̂o i,o( )
One of the relations is given by the fact that the generalized velocities of the contact points at time t
(constant during manipulation) must be the same with respect to the object and the fingertips. The
second relationship is given by the fact that both the object and the fingertips must stay in contact,
or equivalent, that the position vectors to the actual points of contact must be the same. Splitted into
components, differentiated and subtracted from the first relationship, the following equations arise:

hvt i,h
= hvo i,h

⇒ hvf i,h
− Af i,h

S f irt i,f i( )( )hwf i,h
= hvo,h − Ao,hS oro i,o( )( )hwo,h

hrt i,h
= hro i,h

⇒ Af i,h
f ivt i,f i

= Ao,h
ovo i,o

The equations for the contact points at time t together with the continual change of the contact points
during manipulation (expressed in form of the two velocity terms f ivt i,f i

 and ovo i,o
) describe the re-

sulting motions of the actual contact points. This yields the so-called tangential constraint of motion:

f irt i,f i

oroi,o

hro,h hroi,h

hrf i,h

Ch

Co

Cf i

f i n̂ ti,f i

o n̂oi,o

Fig. 4 : Point of contact with respect to object and fingertip

Another constraint for the motion parameters is given by the fact that the tangential planes must co-
incide, or equivalent, that the normal vectors (h n̂o i,o

= Ao,h
on̂o i,o

)  of the object at the contact points
must point diametrically opposite to the corresponding normal vectors (h n̂t i,f i

= Af i,h
f in̂t i,f i

)  of the
fingertips at the contact points. Differentiating yields then the so-called normal constraint of motion:

hn̂t i,f i
= −h n̂o i,o

⇒ Af i,h
f i ˆ̇nt i,f i

− Af i,h
S f in̂t i,f i( )( )hwf i,h

= −Ao,h
o ˆ̇no i,o

+ Ao,h S on̂o i,o( )( )hwo,h
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The velocities and all other motion parameters in above equations can be expressed by their corres-
ponding Jacobian matrices that depend on the derivations of the joint angles and contact parameters:

vi ηi( ) = ṙi ηi1
,ηi2( ) = Jri

η̇i   ⇒   
hvf i,h

=  

hJvi
θ̇i

f ivt i,f i
=  

f iJri
η̇i

ovo i,o
= 

oJri
ξ̇i

hwf i,h
= 

hJw i
θ̇i

f i ˆ̇nt i,f i
=  

f iJn i
η̇i

o ˆ̇no i,o
= 

oJn i
ξ̇i

Substituting these parameters through the Jacobians of ̇θi , η̇i  and ξ̇i  results in the following system:

hJvi
− Af i,h

S f irt i,f i( )( ) 

hJw i( )θ̇i = 

hvo,h − Ao,hS oro i,o( )( ) 

hwo,h

Af i,h
 

f iJri( ) η̇i − Ao,h  

oJri( )ξ̇i = 0,  0,  0( )T

− Af i,h
S f in̂t i,f i( )( ) 

hJw i
θ̇i + Af i,h

 

f iJn i( ) η̇i + Ao,h  

oJn i( )ξ̇i = Ao,hS on̂o i,o( )( ) 

hwo,h

Out of this, a matrix equation with the (9 × 7) matrix ′Mi  and the (9 × 6) matrix ′Ri  can be obtained:

′Mi =

hJvi
− Af i,h

S f irt i,f i( )( ) 

hJw i
0 0

0 Af i,h
 

f iJri
−Ao,h  

oJri

− Af i,h
S f in̂t i,f i( )( ) 

hJw i
Af i,h

 

f iJn i
Ao,h  

oJn i

















′Ri =
I3 −Ao,hS oro i,o( )
0 0

0 Ao,hS on̂o i,o( )

















A left hand multiplication of ′Ri  with the left generalized inverse 
∗ ′Mi  of ′Mi  yields the required ve-

locity vector (three components for the joint velocities, two for each of the contact parameters) as re-
sult of the specified object motion. In this case nine equations in seven variables have to be solved:

′Mi ⋅
θ̇i

η̇i

ξ̇i















= ′Ri ⋅
hvo,h
hwo,h







   ⇒    

θ̇i

η̇i

ξ̇i















= ∗ ′Mi ′Ri ⋅
hvo,h
hwo,h








The single parameter values for each finger are then calculated by solving the equation system with
the Gaußian (elimination) algorithm. To determine the final (integrated) values of θi , ηi  and ξi  with
the Runge-Kutta-algorithm above calculation has to be performed four times for each motion step.

3.4 The problem of slipping fingertips

Because the relative orientation of the contact frames Ct i
 and Co i  

is changing during object handling
due to slipping of the fingertips, the contact angle γ i between them has to be computed continually.
The corresponding frames are fixed at the contact points on the fingertips and the object in such a
way, that their x- and y-axes span a tangential plane and their z-axes point into the direction of the
surface normal (see Fig. 5). The resulting contact angle γ i  between the x-axes of the two frames Ct i
and Co i

 is thereafter used to determine the rotation matrix Ao i,t i
 which describes the relative orien-

tation of the two contact coordinate systems and is needed in the next chapter for force computation:
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Ao i,t i
=

cosγ i sinγ i 0
sinγ i −cosγ i 0

0 0 −1













   with   γ i = cos-1
hxt i

⋅ 

hxo i

hxt i
⋅ hxo i









    

hxt i
= Af i,h

At i,f i
1 0 0( )T

hxo i
= Ao,hAo i,o

1 0 0( )T

γ i

f irt i,f i

oroi,o

hro,h

hrf i,h

Ch

Co

Coi

Ct i

Cf i

Fig. 5 : Relation between the two contact coordinate systems

4. Computation of forces

Additional to the computation of pure geometric motion parameters (joint angles) needed to manipu-
late a grasped object with the fingers of a robot hand, appropriate mechanic force parameters (joint
torques) to be exerted by the fingertips must be determined to hold the object in a stable grasp confi-
guration. The finger forces that can be applied depend mainly on the contact model which has to be
incorporated into the force transformation process from generalized object forces (of o, omo)T  over
contact specific forces f i  to the required joint torques τi . The dimensions of the involved matrices
relate to the previously introduced numbers fno, jnoi  and the number cmodi  of applicable forces.

4.1 Contact models and contact forces

The components of the generalized forces (o i f o i
, o imo i

)T  that can be exerted by the fingers as con-
tact forces o i fo i

 in the contact points with the object are characterized by the contact matrix Qi. For
this, the matrices and equations that perform the contact specific transformation are described for the
case of frictionless point contacts (P), point contacts with friction (PF) and softfinger contacts (SF):

o if o i
o imo i









 = Qi ⋅ 

o ifo i
  ,  Qi:  (6 × cmodi) , 

o ifo i
:  (cmodi ×1) ,  Qi ∈{QP,QPF,QSF}
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In the case of a frictionless point contact (P) only single forces can be exerted in the contact points
into the normal direction towards the object surface (the force has to be negative) to avoid a loss of
contact; also, the force must not exceed a specific maximal value in order to prevent object damage.

QP = 0 0 1 0 0 0( )T ,  cmodi = 1  ⇒   o i fo i( ) ≤ 0 ,  o i fo i( ) ≤ f imax

In the case of point contact with friction (PF) the fingers can exert any forces pointing into the de-
fined friction cones at the contact points. This means, the tangential forces must stay inside of the
friction cones (determined by the tangential coefficients of friction µ t) to avoid slipping of the fin-
gertips on the tangential plane of the object surface (they are free to rotate about the contact points).

QPF =

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0























 ,  cmodi = 3  ⇒   

o i fo i( )
z

≤ 0 ,  o i fo i( )
z

≤ f imax

o i fo i( )
x

2
+ o i fo i( )

y

2
≤ µ t i

o i fo i( )
z

2

In the case of softfinger contact (SF) the friction over the area of contact allows the fingers to exert
single torques in addition to the pure forces pointing into the defined friction cones. The torques can
be exerted in both directions about the normal axis such that the object is constrained with the given
contacts (normal coefficients of friction µn) and can only break the contacts by sliding downward.

QSF =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1























 ,  cmodi = 4  ⇒   

o i fo i( )
z

≤ 0 ,  o i fo i( )
z

≤ f imax

o i fo i( )
x

2
+ o i fo i( )

y

2
≤ µ t i

o i fo i( )
z

2

o i fo i( )
r

≤ µn i

o i fo i( )
z

4.2 Static forces considering rolling and slipping

Starting from generalized forces acting onto the object during manipulation the computation of cor-
responding finger forces is described in the presence of rolling and slipping. Therefore, the contact
forces and moments (o i f o i

, o imo i
)T

 are converted into (of o i
, omo i

)T
 which is performed by transfor-

mation matrices To i,o
; the result is then summed up to compensate the object forces and moments

(of o, omo)T
. According to the chosen contact models represented by contact matrices Qi, the respec-

tive object contact forces 
o ifo i

 are converted into the contact forces and moments (of o i
, omo i

)T
 which

is performed by transformations matrices T̃o i,o
 and leads to the definition of grip submatrices Gi :

of o
omo







=
of o i
omo i











i=1

fno
∑ = To i,o

o if o i
o imo i





















i=1

fno
∑ = To i,o

⋅ Qi ⋅ 

o ifo i[ ]
i=1

fno
∑ = T̃o i,o

⋅ 

o ifo i[ ]
i=1

fno
∑ = Gi ⋅ f i[ ]

i=1

fno
∑ = G ⋅ f
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in general: 

Ta i,b i
 :  (6 × 6)  with  

b if ci
b imci









 = Ta i,b i

a if ci
a imci









  ,  Ta i,b i

=
Aa i,b i

0

S b ira i,b i( )Aa i,b i
Aa i,b i











T̃a i,b i
= Ta i,b i

⋅ Qi  :  (6 × cmodi)  with  
b if ci
b imci









 = T̃a i,b i

⋅a if ci
  , a if ci

 :  (cmodi×1)

For a robot hand with fno (eventually totally different) fingers and chosen contact models cmodi,
the grip matrix G for the transformation of contact forces f  that are composed from the force com-
ponents f i  in each contact point into the object forces and moments (of o, omo)T is given as follows:

Gi  = T̃o i,o
= To i,o

⋅ Qi  :  (6 × cmodi)  with  
of o i
omo i









 = Gi ⋅ f i   and  f i = 

o ifo i
  :  (cmodi×1)

G = G1
� Gfno( ) :  (6 × cmodi

i=1

fno
∑ )  with 

of o
omo







= G ⋅ f ,  f = f1, � , f fno( )T
 :  ( cmodi

i=1

fno
∑ ×1)

and  
of o
omo







=
of o i
omo i











i=1

fno
∑ = Gi ⋅ f i[ ]

i=1

fno
∑ = G1 ⋅ f1 +  �  + Gfno ⋅ f fno 

A robot hand with fno = 3 identical fingers and contact models cmodi = 3 (point contact with fric-
tion) has following grip matrix G (only forces and no moments can be exerted at the contact points):

G = G1 G2 G3( ) =
I3

S oro1,o( )
I3

S oro2,o( )
I3

S oro3,o( )






⋅
Ao1,o

0 0
0 Ao2,o 0
0 0 Ao3,o















 ,  f =

o1fo1
o2 fo2
o3 fo3

















To determine the joint torques τi  for each finger, that depend on the forces and moments acting at
the contact points, the vectors (f i f o i

, f imo i
)T

 are computed out of the contact force components o ifo i
by transformation matrices T̃o i,f i

. This is done according to the contact model specific force trans-
formations from the frames Co i

 into the frames Ct i
 (both have the same contact points as origins, so

that the position vectors t iro i,t i
 are equal to zero) and the force transformations into the frames Cf i

:

f if o i
f imo i









 = Tt i,f i

⋅ To i,t i
⋅ Qi ⋅

o ifo i
=

Tt i,f i
⋅ T̃o i,t i

⋅o ifo i
= T̃o i,f i

⋅o ifo i
  ,  or

Tt i,f i
⋅ To i,t i

⋅
o if o i

o imo i









 = To i,f i

⋅
o if o i

o imo i




















 ,  T̃o i,f i
 :  (6 × cmodi)

Using the principle of virtual work [18], the joint torques τi  can be computed from the finger force
components f i  with the help of the matrices Di  (see [17]) that are a concatenation of the transfor-
mation matrices ̃To i,f i

 (depending on (t i ro i,t i
= 0,Ao i,t i

) and (t i rt i,f i
,At i,f i

)) and the finger Jacobians
f iJT . Since the Jacobians f iJ  (used in the transposed form) are the derivations of the direct kinema-
tics (b i rf i,b i

,Af i,b i
), their dimensions are determined by the jnoi  finger parameters (joint angles θi ):
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τi = 

f iJT ⋅ T̃o i,f i
⋅o ifo i

=   

f iJvi

T
 

f iJw i

T( ) ⋅
f if o i

f imo i









 = Di ⋅ f i  , 

f iJT =   

f iJvi

T
 

f iJw i

T( ) ,  τi  :  ( jnoi ×1)

with  Di = 

f iJT ⋅ T̃o i,f i
 :  ( jnoi × 6) * (6 × cmodi) = ( jnoi × cmodi)

Before this relation will be used to deal with the implied force constraints of the chosen contact mo-
dels cmodi (see section 6.1), it is presented for the general case of an arbitrary robot hand with fno
(not necessary identical) fingers. Thus, the set of joint torques τ can be computed from the total fin-
ger forces f  with the help of the matrix D that describes all required finger force transformations:

τ = 

f JT ⋅ T̃o,f ⋅ f = D ⋅ f  and  (of o, 
omo)T = G ⋅ f 

f JT = diag f1JT, � , 

f fnoJT( ) ,  T̃o,f = diag T̃o1,f1
, � ,T̃ofno,f fno( ) ,  τ = τ1, � ,τfno( )T

 :  ( jnoi ×1
i=1

fno
∑ )

with  D = f JT ⋅ T̃o,f = diag D1, � ,Dfno( ) :  ( jnoi × 6
i=1

fno
∑ ) * (6 × cmodi

i=1

fno
∑ ) = ( jnoi ×

i=1

fno
∑ cmodi

i=1

fno
∑ )

4.3 Decomposition of contact forces

Given the external forces and moments (of ext, 
omext)

T acting on a grasped object during manipula-
tion the problem is to compensate the resulting object forces (of o, omo)T  in negative direction with
appropriate contact forces f ; the transformation between them is performed by the grip matrix G.
Because the space of contact forces (the dimension is cmodi∑ , depending on the contact types) is
described by maximal six independent equations, there exists in general (if the dimension is greater
than six) more than one solution for the force compensation problem [19]. Thus, all contact forces
can be combined of the partial solution f p  and one solution of the homogeneous equation G ⋅ f h = 0:

−
of ext

omext







=
of o
omo







= G ⋅ f p + f h( )  with  f p = G* ⋅
of o
omo







  and  0 = G ⋅ f h  ⇒  f h = N ⋅ λ

The partial solution f p  is computed by the right generalized inverse G*
 of the grip matrix G, whe-

reas the homogeneous solution f h  consists of a linear combination of the base vectors of the n-di-
mensional null space of G which is described by the null matrix N. Thus, the n-dimensional vector
λ  represents the internal grip forces (forces acting crosswise between the contact points) that must
be exerted in addition to the contact forces f p  (which compensate the external forces and moments):

G ⋅ N ⋅ λ = G1
� Gfno( ) ⋅ N1

� Nfno( )T ⋅ λ = Gi ⋅ Ni[ ]
i=1

fno
∑ ⋅ λ = G1 ⋅ N1 +  �  + Gfno ⋅ Nfno( ) ⋅ λ

with  N = N1
� Nfno( )T

 :  ( cmodi
i=1

fno
∑ × ndim) ,  λ = λ1, � ,λndim( )T

 :  (ndim ×1)

Because of the linearity of G that defines a dependency between all contact force transformations,
the dimension of the null matrix N has to be determined with respect to the whole matrix G and not
independently for the submatrices Gi . Nevertheless, the result of the null space computation can be
applied to partition the matrix N into fno submatrices Ni  which then depend on the dimension ndim.
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5. Grasp force planning

In this chapter, a planning method for the computation of all force parameters required for manipu-
lation of a grasped object with pre-selected contact points is presented [6]. Compared to the general
formulation, the special case fno = 3 (jnoi  = 3), cmodi  = 3 and ndim = 3 is handled. It is assumed
that a range of external forces and moments (of ext, 

omext)
T is given or known for a certain type of

operation, like a peg-in-hole insertion task, for which appropriate internal forces λ have to be deter-
mined. This is realized as knowledge-based approach with rules and criteria (stability and security)
that must be satisfied. Here, a major step is the transformation of the problem from the object space
with object forces and moments (of o, omo)T

 into the contact space with contact forces f (divided into
manipulation and grasp forces f p , f h ) which is done with the grip matrix G and the null matrix N.

For the compensation of manipulation forces all applicable grasp forces staying in the friction cones
of the ( cmodi∑ = 9)-dimensional finger force space must be enumerated. The mapping of the force
components onto the contact plane generates a triangle with parameters α, β, γ that are the linear fac-
tors of the base vectors of the (n-dim = 3)-dimensional grasp force subspace. The applicable grasp
forces are computed from α-parameters determining the β- and γ1-intervals, β-parameters determi-
ning the γ2-intervals and intersecting γ-parameters that are enumerated from a convex hull algorithm.

Rule 1 : [Applicable grasp forces]
The grasp forces must lie in the intersection of the friction cones with the contact point plane.

Algorithm: [Applicable grasp forces]

Determine αL,αU[ ] 
FOR α0 ∈ αL,αU[ ] DO (* enumerate α - interval *)

Determine βL,βU[ ] α0( ),  γ1L
,γ1U[ ] α0( )

FOR β0 ∈ βL,βU[ ] α0( ) DO (* enumerate β - interval *)

Determine γ 2L,γ 2U[ ] α0,β0( ),  γ S,γ E[ ] ← γ1L
,γ1U[ ] α0( ) ∩ γ 2L

,γ 2U[ ] α0,β0( )
FOR γ 0 ∈ γ L,γ U[ ] α0,β0( ) DO (* enumerate γ - interval *)

f h ← α0h1 + β0h2 + γ 0h3

RETURN f h

The determination of suitable grasp forces f h  with respect to the assembly task can be divided into
successive steps for the compensation of a single manipulation force through a stability search with
minimum security or a security search with minimum stability. Starting from the task area EA that
describes s range of external forces and moments, the most stable and most secure grasp forces for
the corresponding range MA of manipulation forces are computed from search procedures, such
that the mean value σ of the resulting range HA of grasp forces is the desired optimal solution f hopt

.

To ensure this, two quality measures for the optimization of grasp forces in form of criteria for the
object stability Ψ and the grip security Ω (robustness) [22] are introduced; they are based on side
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and bottom face projections Π of the object contact forces f  to the surface of the friction cones FC:

Ψ f( ) := Min
i=1

3
 Ψi( f i)  with  Ψi( f i) = Min f i − Πs( f i) , f i − Πb( f i)( ) f i ∈FC

0 f i ∉FC





Ω f h( ) := Ωmax − f h i
i=1

3

∑   and  Ωmax  := µ t i
f imax( )2

+ f imax( )2

i=1

3

∑  maximal length

Rule 2 : [Single compensating grasp force]
Each grasp force must compensate a corresponding manipulation force of a given force area.
Rule 3 : [Range compensating grasp force]
A particular grasp force value must compensate all manipulation forces of a given force area.

Algorithm: [Stability search with minimum security]
Input: grip matrix G,  null matrix N,  manipulation force f p,  minimum security ω0

Output: f p  for minimum security ω0 most stable compensating grasp force f h res

ψmax ← 0

f h ← Applicable grasp force(α0,β0,γ 0)

IF Ψ f p + f h( ) > ψmax[ ] ∧ Ω f h( ) > ω0[ ] THEN f h res
← f h;  ψmax ← Ψ f p + f h( )

RETURN f h res

Algorithm: [Security search with minimum stability]
Input: grip matrix G,  null matrix N,  manipulation force f p,  minimum stability ψ0

Output: f p  for minimum stability ψ0 most secure compensating grasp force f h res

ωmax ← 0

f h ← Applicable grasp force(α0,β0,γ 0)

IF Ω f h( ) > ωmax[ ] ∧ Ψ f p + f h( ) > ψ0[ ] THEN f h res
← f h;  ωmax ← Ω f h( )

RETURN f h res

Definition:
The six-dimensional task force area EA modeled as task-polyeder is the convex combination of for-
ce vectors which are computed from the range set ES of external object forces and moments (descri-
bes the specific force spectrum as set of vectors) by the six-dimensional convex hull operator CH:

ES ⊂ EA  with  ES,  EA ⊂ ℜ6:  EAPoly ES( ) := CH ES( )  and  ES := −
of ext

omext







k









k=1

eset

The mean value σ of the range set HS of grasp forces compensating the range set MS of manipula-
tion forces derived from the force spectrum ES, or fully equivalent, the center of gravity of the cor-
responding grasp force area HA computed by the three-dimensional convex hull operator CH, is a
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best compensating grasp force f hbest
 that can be transformed into the range set IS of internal forces:

∃f h ∈HS : Ψ f p
k + f h( ) > 0  ∀k ∈ 1, � ,eset{ }  with  MA := CH(MS)  and  MS = G* ES( )

f hbest
= σ HS( ) = σ f h

k{ }k=1

eset



  := 1

eset
f h

k

k=1

eset

∑   with  HA := CH(HS)  and  N* σ HS( )( ) = σ IS( )

Rule 4 : [Grasp forces for stable grips]
The grasp forces must have a certain stability factor relating to rolling and slipping motions.
Rule 5 : [Grasp forces for secure grips]
The grasp forces must have a certain security factor relating to tolerances of the force areas.

Algorithm: [Most stable grasp force with respect to MA]
Input: grip matrix G,  null matrix N,  manipulation force area MA,  minimum security ω0

Output: MA for minimum security ω0 most stable compensating grasp force f hbest

FOR k ∈ 1, � ,eset{ } DO

f h
k ← Stability search with minimum security[ ] G,N, f p

k,  ω0( )
f hbest

← σ f h
k{ }k=1

eset





IF ∀k ∈ 1, � ,eset{ }: Ψ f p
k + f hbest( ) > 0( ) THEN Success ← TRUE 

ELSE Success ← FALSE

RETURN f hbest
,Success( )

Algorithm: [Most secure grasp force with respect to MA]
Input: grip matrix G,  null matrix N,  manipulation force area MA,  minimum stability ψ0

Output: MA for minimum stability ψ0 most secure compensating grasp force f hbest

FOR k ∈ 1, � ,eset{ } DO

f h
k ← Security search with minimum stability[ ] G,N, f p

k,ψ0( )
 f hbest

← σ f h
k{ }k=1

eset





IF ∀k ∈ 1, � ,eset{ }: Ψ f p
k +  f hbest( ) > ψ0( ) THEN Success ← TRUE 

ELSE Success ← FALSE

RETURN  f hbest
,Success( )

The main difficulty is the determination of the smallest minimum stability parameter ψ
0
 for the al-

gorithm searching the most secure grasp force in contact space. The lower bound is normally zero
whereas the upper bound can be computed from the algorithm searching the most stable grasp force
with minimum security zero (pure stability search). Building a stability interval of them, an interval
search procedure based on the security search with minimum stability and termination condition (de-
sired accuracy) computes the optimal grasp force f hopt

 compensating all given manipulation forces.
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lower bound: ψmin = 0 ,  upper bound: ψmax < µ tf max  for stability interval  Iψ:= ψmin,ψmax[ ]
with  ψmax := ψ f h best

 and  f hbest
= Most stable grasp force wrt.  MA[ ] G,N,MA,ω0 = 0( )

Algorithm (interval search): [Optimal grasp force with respect to MA]
Input: grip matrix G,  null matrix N,  manip.  force area MA,  desired search accuracy ε0

Output: MA for stability interval most stable and secure compensating grasp force f hopt

f hopt
,Success( ) ← Most stable grasp force wrt.  MA[ ] G,N,MA,ω0 = 0( )

IF Success THEN

ψmax ← ψ f h opt

;  ψmin ← 0; Iψ ← ψmin,ψmax[ ]
REPEAT

ψ
0

← (ψmax + ψmin) / 2;  

f hbest
,Success0( ) ← Most secure grasp force wrt.  MA[ ] G,N,MA,ψ0( )

IF Success0 THEN ψmax ← ψ0;  f hopt
← f hbest

 ELSE ψmin ← ψ0

Iψ ← ψmin,ψmax[ ]
UNTIL ψmax − ψmin < ε0

RETURN f hopt
,Success( )

General rule : [Grasp parameter optimization]
The parameters must be chosen, such that the contact point dependent grasp forces f h  in the contact
space are optimal and the resulting grip of is both stable and secure with respect to the specific task.

Algorithm: [Optimal internal force with respect to EA]
Input: grip matrix G,  null matrix N,  task force area EA,  desired search accuracy ε0

Output: EA optimal (regarding stability and security) compensating internal force λopt

FOR k ∈ 1, � ,eset{ } DO

f p
k ← G* −

of ext
omext







k







 (* mapping forward into contact force space *)

f hopt
← Optimal grasp force wrt.  MA[ ] G,N,MA,ε0( )

λopt ← N* f hopt( ) (* mapping backward back into object force space *)

RETURN λopt

The determined optimal grasp force f hopt
 in the contact space is transformed into the optimal inter-

nal force λopt  in the object space which is performed by the right generalized inverse N* of the null
matrix N. Summarizing, Fig. 6 shows the search process for optimal contact forces that starts from
external forces and moments mapped to the contact space where all manipulation forces are compen-
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sated by one suitable grasp force which is mapped to the object space as the resulting internal force.
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Fig. 6 : Schematic process of contact force searching

6. Grasp force optimization

In this chapter, another planning method for the determination of the required grasp force parame-
ters is presented which is formulated as an optimization problem over given or imposed constraints.
Therefore, it incorporates explicitly the contact force constraints (indirectly defined in the previous
described method by object stability and grip security criteria) into the process of force computation.
The approach chosen here is based on work for the normal case fno = 3 (jnoi  = 3), cmodi  = 3 and
ndim = 3 (see [17]) which is generalized for the case of an arbitrary robot hand and all kinds of pos-
sible contact models. For the final solution of the optimization problem several algorithms can be
applied, but preference is given to an algorithm that searches for maxima in n-dimensional spaces.

6.1 Constraints on contact forces

In order to keep the force computation simple and fast, the non-linear equations describing the con-
tact forces inside of the contact model depending friction cones are approximated linearly: the gene-
ralized friction cones are replaced by generalized friction pyramids whose sides touch the borders
of the cones. By this procedure, additional (not applicable) contact force regions are defined which
can be avoided by reducing the friction coefficients proportionally (for example, as shown in Fig. 7
from µ t i

 to ′µ t i
= µ t i

2 ). Rewriting of the force constraints mentioned in section 4.1 leads to an
inequality system-like formulation of the possible contact forces o i fo i

 which are described through
friction matrices Fi  and constraint vectors ci. Again, the respective equations are considered for the
case of frictionless point contacts (P), point contacts with friction (PF) and softfinger contacts (SF):

Fi ⋅  

o ifo i
≥ ci   with  Fi  :  (2 * cmodi × cmodi) ,  ci  :  (2 * cmodi ×1) ,  cmodi = {1,3,4}
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In the case of frictionless point contact (P) the constraint vector considers only the direction of the
contact forces and the maximal possible contact forces that can be applied by the finger of the hand:

o i fo i( ) ≤ 0 ⇒  - o i fo i( ) ≥ 0 ,  o i fo i( ) ≤ f imax
 ⇒  o i fo i( ) ≥ −f imax

⇒  FP ⋅  

o ifo i
≥ cP   with  FP =

−1
1





  ,  cP =

0
−f imax







 ,  cmodi = 1

In the case of point contact with friction (PF), additionally to the consideration of the maximal con-
tact forces, the contact force components within the tangential plane of the corresponding friction co-
nes are linearized and adapted to the resulting friction pyramid by a reduced friction coefficient ′µ t i

:

o i fo i( )
x

+ o i fo i( )
y

≤ µ t i

o i fo i( )
z

 ⇒  

o i fo i( )
x

≤ ′µ t i

o i fo i( )
z

o i fo i( )
y

≤ ′µ t i

o i fo i( )
z

 ⇒  
± o i fo i( )

x
− ′µ t i

o i fo i( )
z

≥ ±0

± o i fo i( )
y

− ′µ t i

o i fo i( )
z

≥ ±0

⇒  FPF ⋅  

o ifo i
≥ cPF   with  FPF =

0 0 −1
±1 0 − ′µ t i

0 ±1 − ′µ t i

0 0 1

















 ,  cPF =

0
±0
±0

−f imax

















 ,  cmodi = 3

µ t i

µ t i

2µ t i

′µ t i

′µ t i

µ t i

=
! µt i

2µ t i

=
1
2

Fig. 7 : Linearization of a friction cone (friction pyramid)

In the case of softfinger contact (SF), additionally to above described restrictions on the contact for-
ces, the contact torque in normal direction is constrained by the friction conditions along the z-axis:

o i fo i( )
r

≤ µn i

o i fo i( )
z
 ⇒  µn i

o i fo i( )
z

+ o i fo i( )
r

≥ 0  and − µn i

o i fo i( )
z

+ o i fo i( )
r

≥ 0

⇒  FSF ⋅  

o ifo i
≥ cSF   with  FSF =

0 0 −1 0
±1 0 − ′µ t i

0
0 ±1 − ′µ t i

0
0 0 ±µn i

1
0 0 1 0



















 ,  cSF =

0
±0
±0
±0

−f imax





















 ,  cmodi = 4
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Another set of constraints is introduced by the fact that the joint torque values τi  of each finger of a
robot hand must not exceed the constructional limits to avoid damage of the motors and/or the gears:

τimin
≤ τi ≤ τimax

  with  τi = Di ⋅ 

o ifo i
   and  τimin

,  τimax
 :  ( jnoi ×1)

⇒  Di ⋅ 

o ifo i
≥ τimin

  and  − Di ⋅ 

o ifo i
≥ −τimax

6.2 Force computation: solving of inequality systems

The restrictions imposed onto the contact forces and joint torques that are described by friction ma-
trices Fi , constraint vectors ci  and motion dependent matrices Di  (rolling and slipping of the finger-
tips at the object surface) can be expressed in matrix form as systems of linear inequalities. These in-
equality systems are based on the matrices Hi and vectors gi  that are composed from above descri-
bed components and lead to optimization problems for the optimal choice of the contact forces f i .

Hi =
Fi

Di

−Di













 :  ([2 * cmodi + 2 * jnoi] × cmodi) ,  gi =
ci

τimin

−τimax















 :  ([2 * cmodi + 2 * jnoi] ×1)

⇒  inequality system in f i   :   Hi ⋅ f i ≥ gi   with  f i =  

o ifo i
  :  (cmodi ×1)

To compute appropriate solutions, the submatrices Di  of the matrices Hi have to be actualized con-
tinually in each motion step during object manipulation, because they contain all information about
the changing parameter values of the contact points and the joint angles. Generalized for the case of
a robot hand with fno (not necessary identical) fingers, the resulting inequality system is described
by the matrix H and the vector g that are composed from the finger specific matrices Hi  and gi . The
optimization problem is then defined as search for the optimal choice of the total contact force f .

H = diag H1, � ,Hfno( ) :  ( [2 * cmodi + 2 * jnoi]
i=1

fno
∑ × cmodi

i=1

fno
∑ ) ,  formula for general case

g = g1, � ,gfno( )T
 :  ( [2 * cmodi + 2 * jnoi]

i=1

fno
∑ ×1) ,  f = f1, � , f fno( )T

 :  ( cmodi
i=1

fno
∑ ×1)

⇒  inequality system in f  :   H ⋅ f ≥ g ⇔  Hi ⋅ f i ≥ gi  ∀i ∈{1, � , fno}

Rearranging above inequality system and applying the subdivision of the forces f  in the contact spa-
ce into manipulation forces f p  and grasp forces f h , the optimization problem can be rewritten as
problem of finding the optimal internal forces λ  in the object space using the null matrix N. If there
is a way to split this matrix into submatrices Ni , the force search process could be done in parallel:

H ⋅ f ≥ g ⇔  H ⋅ f p + f h( ) ≥ g ⇔  H ⋅ f h ≥ g − H ⋅ f p ⇔  H ⋅ N ⋅ λ ≥ g − H ⋅ G* ⋅(of o, omo)T 

with  H ⋅ N = H1 ⋅ N1 � Hfno ⋅ Nfno( ) :  ( [2 * cmodi + 2 * jnoi]
i=1

fno
∑ × ndim)

⇒  Hi ⋅ Ni ⋅ λ ≥ gi − Hi ⋅ Gi
* ⋅(of o i

, omo i
)T   ∀i ∈{1, � , fno}



20

6.3 Optimization of internal (grip) forces

To compute the best internal force λ, a distance measure dk  for evaluating the distances between all
defined force constraints (rows of the matrices and vectors) and the resulting hyper-planes (genera-
lized volumes) that are splitted into "allowed" and "forbidden" half-spaces is introduced (see [17]).
The optimal selection of λ is the one which has the greatest value of the minimal distance to all given
constraints (hyper-planes). In the three-dimensional case this is the center of the biggest hemisphere
fitting into the "allowed" polyhedra. Therefore, the following optimization problem has to be solved:

H ⋅ N( ) ⋅ λ ≥ g + H ⋅ G* ⋅
of ext

omext







 ⇒  dk = H ⋅ N( ) row=k
⋅ λ − g + H ⋅ G* ⋅

of ext
omext













row=k

≥ 0

 maximize the function : d(λ) = min (dk) with :  dk ≥ 0  ∀k = 1, � , [2 * cmodi + 2 * jnoi]
i=1

fno
∑

The goal function d(λ) which has to be maximized, is a continual, non-linear and non-differentiable
function in ℜndim  that is composed of linear functions dk . Hence, for finding the optimal value of
λ both the simplex-method (goal function not linear) and the gradient-descend method (goal func-
tion not differentiable) will fail. This means, that in order to compute the optimal force parameters,
an algorithm considering the non-linearity and non-differentiability of the goal function is required.

To solve the optimization problem, the Hooke-Jeeves algorithm [17], [23], [24] for finding maxima
in ℜn  can be used which steps from an arbitrary point (start point must not lay within the allowed
space) to the point with the greatest distance to each constraint. After an optimal solution is found,
the internal forces λ together with the external object forces and moments (of ext, 

omext)
T

 are used to
compute the total contact force f  and finally the corresponding joint torques τ for the motor drives:

τ = D ⋅ f = D ⋅ f p + f h( ) = D ⋅ −G* ⋅
of ext
omext







+ N ⋅ λ







Thus, the optimization problem for internal forces could be generalized for the case of a robot hand
with fno (arbitrary) fingers with jnoi  joints per finger, applying forces according to the contact mo-
dels cmodi  and the n-dimensional null space of the grip matrix. Summarizing, the force computa-
tion process can be fully characterized by the parameters (dimensions) fno, jnoi , cmodi  and ndim.

7. Example manipulation

Here, the result of a concrete object manipulation (a peg-in-hole insertion task) with the Karlsruhe
Dextrous Hand [2], [3], [4] is presented in graphical visualized form. This robot hand consists of
three identical fingers whose bases are fixed at the edges of an equal-sided triangle. The hand frame
Ch  is fixed at the center of this triangle, so that the transformations between the finger base frames
Cb i

 and this coordinate frame are given by following translation vectors r and rotation matrices A:

hrb1,h
=

0
50

−80













 , hrb2,h =
−50 cos30°
−50 sin30°

−80













 , hrb3,h =
50 cos30°
−50 sin30°

−80
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b1,h
=

0 −1 0
0 0 1
−1 0 0













 ,  Ab2,h =
0 sin30° −cos30°
0 −cos30° −sin30°
−1 0 0













 ,  Ab3,h =
0 sin30° cos30°
0 cos30° −sin30°
−1 0 0













Each of the three finger modules of the hand consists of a two-link structure mounted on a revolute
base and connected via rotational joints which is the minimal configuration needed to perform a desi-
red object manipulation in space. The length of the links are (link one is closest to the finger base):

l1 = 20 mm l2 = 55mm l3 = 54 mm

At the end of link three, a half-sphere formed fingertip with radius r = 10 mm is fastened. By defi-
ning frames at each joint in a way that the x-axes point in direction of the respective link and the z-
axes point in direction of the rotation axis (Fig. 3), the transformations from the finger frames Cf i
fixed at the end of link three into the finger base frames are obtained by (c j = cosθi j

 and s j = sinθi j
):

b irf i,b i
=

c1 l3 c2c3 − s2s3( ) + l2 c2 + l1( )
s1 l3 c2c3 − s2s3( ) + l2 c2 + l1( )

l3 c2s3 + s2c3( ) + l2s2

















Af i,b i
=

c1 c2c3 − s2s3( ) −c1 c2s3 + s2c3( ) s1

s1 c2c3 − s2s3( ) −s1 c2s3 + s2c3( ) −c1

c2s3 + s2c3( ) c2c3 − s2s3 0















From them, all other transformations, especially the corresponding Jacobians b iJ  can be obtained.

Now, the computation process of all force parameters required for dextrous manipulation of a gras-
ped object with pre-selected contact points is shown on the base of the grasp planning approach pre-
sented in chapter 5 that deals with the standard case of fno = 3 ( jnoi  = 3), cmodi  = 3 and ndim = 3.

The planning process of parameter determination for a peg-in-hole insertion task [25] uses a specific
force area that describes the external forces and moments (of ext, 

omext)
T acting onto the object du-

ring manipulation to determine appropriate contact forces f for the fingers of the hand. According to
positional and orientational tolerances between peg and hole, several simulation runs are performed
to compute the external forces in x- and z-direction and the external moment in y-direction. The re-
sulting force area EA is represented as task polyeder formed by 26  = 64 (or 23 = 8) force vectors.

Tolerances of peg location [mm] : 

oxpeg( )
x
, oxpeg( )

y
, oxpeg( )

z





 = −5,5[ ], 0,0[ ], −3,3[ ]{ }

oxpeg( )φx
, oxpeg( )φy

, oxpeg( )φz





 = 0,0[ ], −7,7[ ], −0,0[ ]{ }

External forces and moments [mN] : 

of ext( )
x
, of ext( )

y
, of ext( )

z





 = 0,550[ ], 0,0[ ], 0,320[ ]{ }

omext( )
x
, omext( )

y
, omext( )

z





 = 0,0[ ], 0,−33000[ ], 0,0[ ]{ }

The determination of a stability interval is done with the help of a search procedure that computes in
a first run the most stable grasp force with minimum security (= 0) and the maximum stability para-
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meter (= 1100). Because this step fails on the strength of the defined friction conditions, an interval
search (most secure grasp force with minimum stability) is performed over the stability interval [0,
1100] to compute the best compensating grasp force for the manipulation force area MA. This leads
after an appropriate number of iterations (desired accuracy = 0.01) to the optimal internal force λ.

Resulting internal (grip) force [mN] : λ1,λ2,λ3( ) = 5400,6300,5200( )

Each compensating grasp force in the contact space that is determined with respect to a single mani-
pulation force or a range of manipulation forces can be graphically visualized by the simulation sy-
stem. For that purpose, perpendicular projections of the friction cones in the contact points are dis-
played together with the tangential forces in the yz-plane and the normal forces along the x-direction.

Fig. 8 : Computation of stable and secure grasp forces

In Fig. 8, the exterior circles represent the borders of the friction cones at the height of the maximal
contact force whereas the interior circles lie on the borders of the friction cones at the height of the
superposition of manipulation and compensating grasp forces. The diagrams of the computed con-
tact forces point out very clearly that the stability search shown on the left hand side maximizes the
length of the grasp forces. Consequently, the distances between the interior and exterior circles are
relatively small. In contrary, the security search shown on the right hand side minimizes the length
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of the grasp forces, so that the distances between the interior and exterior circles are relatively large.

The simulation of reaction forces and moments occurring during part mating operations according
to positional and/or rotational uncertainties of object motions and their effect on the world model are
also considered at the example of the peg-in-hole insertion problem. The force simulator is a pro-
gram package based on a stiffness control model of the insertion process [26] which has the ability
to modify the compliance parameters and to analyze the finger-object interactions at the defined con-
tact points. This permits testing of manipulation strategies for specific assembly tasks by taking into
account the object forces and moments, contact forces and stability conditions of the grasped object.

Fig. 9 : Visualization of a peg-in-hole insertion process

Fig. 9 shows the graphical visualization of a peg-in-hole insertion operation with the three-fingered
Karlsruhe Dextrous Hand. This is basis for the comparison of different grasp configurations accor-
ding to their robustness against external influences (disturbances) and allows also the verification of
the planned force parameters. Therefore, the grasp planning process must ensure that the computed
contact forces stay inside of the friction cones what results in a stable and secure grip of the object.

8. Conclusions und future work

This paper describes the fundamentals of object manipulation and grasp planning for dextrous robot
hands considering both rolling and slipping of the fingertips on the object surface. The process of
force computation and evaluation of suitable grasp configurations is shown for two different appro-
aches. As major result, the force optimization problem could be generalized for the case of arbitrary
robot hands and contact models which are specified by the parameters fno, jnoi , cmodi  and ndim.
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The computation methods with their combination of matrix multiplications, matrix inversions, solu-
tion of equation systems and search for optimal force parameters are well-suited for the application
and execution on parallel machines. Since the presented algorithms, like the maximum search algo-
rithm, are formulated in a way that supports rather their realization on a serial or distributed compu-
ter, their transformation and implementation on a parallel computer is an interesting new approach.
Especially, because the parallelization of algorithms and their adaptation to massive parallel machi-
nes with lots of processor nodes is actually an underdeveloped area in the field of robotics research.

One major problem arises hereby from the nature of the contact forces and therefore for the internal
grip forces λ  itself: they are crosswise depending on each other, so that they cannot be treated inde-
pendently. This is expressed in the additive nature of the grip submatrices Gi  which form altogether
the grip matrix G that describes both the contact points and contact models, and characterizes the
resulting contact forces that can be applied with respect to given external forces and moments. This
means, that the computational effort required for solving the optimization problem cannot easily be
subdivided upon independent processes which would improve the search procedure tremendously.

Nevertheless, it is possible to use parallelism to speed up the search procedure that tries to optimize
the force parameters by fitting them into the biggest volume in ℜndim  that has the greatest distance
to all given constraints. This could be done by splitting the whole search space into several regular
shaped areas from which independent working processes could start their parameter search; because
there are no restrictions on the choice of the start points, the convergence of the algorithm to the re-
sulting end points which are possible (optimal) solutions is always ensured. Thus, research will in
the future be more concentrated on questions of parallelizing the search and optimization algorithm.

Acknowledgment

Part of this research work was performed at the Institute for Real-Time Computer Control Systems
and Robotics, Prof. Dr.-Ing. Ulrich Rembold and Prof. Dr.-Ing. Rüdiger Dillmann, Faculty of In-
formatics, University of Karlsruhe, 76128 Karlsruhe, Federal Republic of Germany. The continu-
ation of the work and extension of the theory was performed during my post-doctoral research stay
at the International Computer Science Institute, Prof. Jerome Feldman, Berkeley 94704 CA, USA.

References

[1] Hollerbach, J.M.: "Robot Hands and Tactile Sensing", AI in the 1980s and Beyond, Grim-
son, W.E.L.; Patil, R.S.; MIT Press, 1987.

[2] Wöhlke, G.: "Development of the Karlsruhe Dextrous Hand", Proc. of the 3rd Int. Conf. on
New Actuators (ACTUATOR), 1992.

[3] Doll, Th.; Schneebeli, H.J.: "Framework of the Karlsruhe Dextrous Hand", Proc. of the
Symp. on Robot Control (SYROCO 88), 1988.

[4] Doll, Th.: "Development and Programming of a Robot Hand", PhD thesis (in German),
University of Karlsruhe, 1989.

[5] Wöhlke, G.: "A Programming and Simulation Environment for the Karlsruhe Dextrous Hand",
Jour. of Robotics and Autonomous Systems, North-Holland, vol. 6(3), pp. 243-263, 1990.



25

[6] Wöhlke, G.: "Automatic Grasp Planning for Multifingered Robot Hands", Jour. of Intelligent
Manufacturing, vol. 3(5), pp. 297-316, 1992.

[7] Okada, T.; Tsuchiya, S. : "On a Versatile Finger System", Proc. of the 7th Int. Symp. of In-
dustrial Robots, 1977.

[8] Okada, T.: "Computer Control of Multijoined Finger System for Precise Object Handling",
IEEE Trans. on Systems, Man and Cybernetics,  vol. 12 (3), May/June 1982.

[9] Jacobson, S.C.; Wood, J.E.; Knutti, D.F.; Biggers, K.B.: "The Utah/MIT Dextrous Hand:
Work in Progress", First Int. Conf. on Robotics Research, MIT Press, 1984.

[10] Jacobson, S.C. et.al.: "Design of the Utah/MIT Dextrous Hand", Proc. of the IEEE Int. Conf.
on Robotics and Automation, 1986.

[11] Narasiham, S.: "Dextrous Robotic Hands: Kinematics and Control", Master thesis, Depart-
ment of Electrical Engineering and Computer Science, MIT, 1988.

[12] Salisbury, K.; Brock, D.; Chiu, S.: "Integrated Language, Sensing and Control for a Robot
Hand", Proc. of Int. Symp. on Robotics Research, MIT Press, 1986.

[13] Nguyen, V.: "Constructing Stable, Force-Closure Grasps", Master Thesis, Department of
Electrical Engineering and Computer Science, MIT, 1986.

[14] Arbib, M.A.; Iberall, T.; Lyons, D.: "Coordinated Control Programs for Movements of the
Hand", Center of Systems Neuroscience and Laboratory for Perceptual Robotics, COINS
Technical Report 83-25, Massachusetts, 1983.

[15] Lyons, D.M.: "A simple Set of Grasps for a Dextrous Hand", Proc. of the IEEE Int. Conf.
on Robotics and Automation, 1985.

[16] Iberall, T.: "Grasp Planning for Human Prehension", Proc. of the Int. Joint Conf. on Artifi-
cial Intelligence, 1987.

[17] Härtl, H.: "Analysis of Manipulation Processes with Multifinger Gripper Systems under the
Consideration of Rolling and Slipping of the Fingertip", Master thesis (in German), Univer-
sity of Karlsruhe, 1992.

[18] Craig, J.J.: "Introduction to Robotics: Mechanic and Control". Addison-Wesley, 1986.
[19] Kerr, J.; Roth, B.: "Analysis of Multifingered Hands", Int. Jour. of Robotics Research, vol.

4(4), pp. 3-17, Winter 1986.
[20] Cole, A.; Hauser, J.; Sastry, S.: "Kinematics and Control of Multifingered Hands with Rol-

ling Contact". Proc. of the IEEE Int. Conf. on Robotics and Automation, 1988.
[21] Hsu, P.; Li, Z.; Sastry, S.: "On Grasping and Coordinated Manipulation by a Multifingered

Robot Hand". Proc. of the IEEE Int. Conf. on Robotics and Automation, 1988.
[22] Vogelgesang, V.: "Development of a planning component for the determination of stable grip

configurations to do parts assembly with multi-finger grippers", Master thesis (in German),
University of Karlsruhe, 1990.

[23] Bronshtein, I.N.; Semendyayev, K.A.: "Taschenbuch der Mathematik", Harri Deutsch Ver-
lag, 1987.

[24] Bronshtein, I.N.; Semendyayev, K.A.:  "Ergänzende Kapitel zum Taschenbuch der Mathema-
tik", Harri Deutsch Verlag, 1991.

[25] Wöhlke, G.: "Knowledge-Based Grasp Planning for Multi-Finger Robot Hands", PhD these
(in German), University of Karlsruhe, 1991.

[26] Whitney, D.E.: "Quasi-static Assembly of Compliantly Supported Rigid Parts", ASME
Transactions on Dynamic Systems, Measurement, and Control, vol. 104(1), 1982.


