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Abstract

Active and selective perception seeks regions of interest in an image in order to re-
duce the computational complexity associated with time—consuming processes such as
object recognition. We describe in this paper a visual attention system that extracts
regions of interest by integrating multiple image cues. Bottom—up cues are detected
by decomposing the image into a number of feature and conspicuity maps, while
a—priori knowledge (i.e. models) about objects is used to generate top—down atten-
tion cues. Bottom—up and top—down information is combined through a non-linear
relaxation process using energy minimization—like procedures. The functionality of
the attention system is expanded by the introduction of an alerting (motion—based)
system able to explore and avoid obstacles. Experimental results are reported, using
cluttered and noisy scenes.
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Abstract

Active and selective perception seeks regions of in-
terest in an image in order to reduce the computational
complezity associated with time—consuming processes
such as object recognition. We describe in this paper a
visual attention system that extracts regions of interest
by integrating multiple image cues. Bottom—up cues
are detected by decomposing the image into a num-
ber of feature and conspicuity maps, while a—priori
knowledge (i.e. models) about objects is used to gen-
erate top—down attention cues. Bottom-up and top—
down information is combined through o non—linear
relaxzation process using energy minimization—like pro-
cedures. The functionality of the attention system is
expanded by the introduction of an alerting (motion—
based) system able to explore and avoid obstacles. Ei-
perimental results are reported, using cluttered and
n01sYy scenes.

1 Introduction

Visual attention is the capability of biological vi-
sual systems to rapidly detect interesting parts of the
visual input, in order to reduce the amount of data for
complex processing tasks such as feature binding and
object recognition [2] [6]. Low-level features such as
color, orientation, and curvature are computed by spe-
cialized areas of the cortex, and allow to detect regions
of interest according to bottom—up, data—driven cri-
teria [6]. High—level features providing integrated, in-
variant representations for object recognition are com-
puted by higher cortical areas, providing top—down
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cues for attention [2]. An additional, alerting strategy
for the extraction of attention regions is represented
by the collicular pathway, which detects moving ob-
jects entering the subject’s field of view [6] [4].

The definition of a computational model of human
attention has received considerable interest [5] [1] [11].
Some biologically—plausible systems have been pro-
posed, which can be applied to synthetic images, or
other simple images containing alphabetical charac-
ters [7] [10] [8] [3]. In most of these systems the se-
lection of “locations” of interests is based on simple
features, such as corners and edges. This paper pro-
poses a strategy to extend the capabilities of previous
models by extracting and integrating more complex
information. This makes it suitable for applications
to real images, containing noisy, textured objects.

Figure 1 outlines the main system components and
their relations. Both cases of a static image and of a
dynamic image sequence have been considered. In the
static case, the current RGB color frame is first an-
alyzed by the bottom—up subsystem, which extracts
salient regions according to data—driven criteria. This
is done in two stages: by extracting a number of fea-
ture maps Ff’y k=1,..,K (e.g. orientation, curva-
ture, color contrast), and a corresponding number of
conspicuity maps (C-maps) C:’j,y, which enhance re-
gions of pixels largely differing from their surround.

The next stage is represented by the integration
process which merges the C-maps into a single saliency
map. This is obtained through a relaxation process,
which modifies the values of the C-maps, until they
identify a small number of convex regions of inter-
est. An additional, source of information is generated
by the top—down subsystem. An object recognition
technique based on a distributed associative memory
(DAM) is used to detect regions of the image which
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Figure 1: Overview of the attention system.
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match with some stored models. The output of the
DAM, called the top—down attention map, represents
an additional input to the relaxation process which
defines the saliency map.

In the time—varying case, the image sequence is an-
alyzed by the alerting subsystem, which uses a pyra-
midal representation of the input to provide a fast,
rough detection of objects moving against a static
background. This pathway is normally ineffective, un-
til an object eventually enters the field of view. In this
case, it takes the control over the rest of the system
and it directly elicits an attention/camera movement.

2 The bottom—up subsystem

Psychophysical experiments have shown that hu-
man subjects rapidly detect interesting regions accord-
ing to multiple bottom—up criteria. For this reason,
several feature maps are extracted. Two feature maps
are obtained by color—opponency filters and are spa-
tially defined by a 2-D Gaussian profile: Fmi/ green —
R, . —a, . and Fblue/yellow -B,, - R'z y+G’zy
where R'G'B’ are the normalized RGB components
of the image, convolved with a Gaussian.

The achromatic component of the image, i.e.
the intensity plane I = R+ G+ B, represents
an additional information pathway for the atten-
tion system, and is convolved with a bank of
oriented band—pass filters called the Gaussian 1st

derivative: GD,(z,y,9) = —A . zeosttysind |

exp [ —(z cos ;9;—21; sin 9)* -exp [ —(—z sin;i—gy cos 9)? ’ where
x Y

A = 1/2nogzoy). This filter approximates

the receptive field profile of a large class of
V1 cells [6], and is used at 16 different ori-
entations to provide the local orientation feature
map: Fge™ = argmaxy (Ip,x GDi(z,y,9)),
and the edge magnitude feature map: F/9" =
maxy (Iyy * GD1(z,y,9)).

An additional achromatic map representing high—
frequency information is the local curvature, computed
by considering the intensity image I as a surface, and
by applying the divergence operator to the normal-

ized gradient of I: F%" = div [”V I”] (z,y). Finally,

when no color informatlon is available, the intensity
image I is also used as a further achromatic feature
map.

The feature maps described above are analyzed by a
“conspicuity” operator to assign a bottom—up measure
of interest to each location. This measure compares
local values of the feature maps to their surround. To
this end, another bank of multiple-scale, difference
of oriented Gaussians (DOOrG) filters is used. Both
Gaussians are elliptic rather than isotropic, with an
eccentricity factor ro = Z—: This property defines a
preferential direction ¢ for the filter which allows to
better detect oriented blob-like regions from the fea-
ture maps. The scale ratio of the two Gaussians is
also fixed: r = ‘2’”. Each DOOrG filter is com-
puted at 8 orientaticn);ls, i.e. half the number of orien-
tations defined for the GD; filters. For a certain orien-
tation ¢ this corresponds to: DOOrGy y(r1,72,9,0) =
B1®, y(0,07r2,9) — Bo®y (071, 07r172,9), where each
function @, ,(0s,0y,9) is a 2-D oriented Gaussian,
and the constants B; and B> are defined so that the
sum of the coefficients of each component is normal-
ized to 1. This also implies that the DOOrG filter
has zero dc component, yielding zero response to a
constant feature map.

To get rid of the sign of the response, and to in-
crease the contrast, the results of convolution are rec-
tified and squared. This corresponds to computing
a bank of multiscale conspicuity maps, for 3 values
of the scale parameter o; and eight orientations ¥J;:
Cy ,(04,9;) = (FF,*DOO0rGy,y(0:,9;))?. In order to
obtain a unique consplculty map for each feature, the



0;,¥; parameters are factored out by taking the local
maximum: Cf , = max; ; (C§ (0:,7;)).

3 The integration process

In order to combine the C-maps into a single
saliency map S, their average value can be used:
Sey = % Z,{;l Cy - However, in virtually all practi-
cal cases, this provides noisy, and ambiguous results.
For this reason, a relaxation process is applied to the
C-maps, so that S will finally approach a binary map,
containing a limited number of convex regions.

The relaxation process is defined by a non-linear
updating rule: C¥ (t+1) = CF (t)+~5 (1) Ak (1),
for each element: z,y = 1,..,W, k = 1,.., K. The
quantity A';,y, representing the most important part
of the increment, is obtained by minimizing an energy
functional E through a gradient—descent procedure.
The term fyfj’y is a scaling coefficient depending on the
values of both Cj,y and A’;’y, and is described below.

The energy function E is the linear combination
of four different functions: E = Z?:l M E;, each
representing a measure of “incoherence” of the con-
figuration of the C-maps. FE; represents the lo-
cal inter-map incoherence, i.e. the fact that the
C-maps enhance different, conflicting regions of the
image. This is computed through the sum of lo-
cal “variances” across different C-maps: E; = A; -
Dey 2k (Ck,— %2, Chk)?, where A;,i = 1.4 are
scaling constants. The second energy component rep-
resents the intra—map incoherence, i.e. the inade-
quacy of each C-map as a representation of a few con-
vex regions of attention. This is evaluated through
the overall response of the Laplacian operator: Ey =
Ay Yy (VQCg’j,y)Q. To avoid that the regions of
attention grow to include an excessive portion of the
image, the third energy component penalizes a config-
uration of C-maps whose overall activity is too high.
This forces the C-maps to share a limited amount of
global activity. This is obtained through a compet-
itive relation between the each local value Cﬁ’y and
the average value of all pixels which are located out-
side a local neighborhood N (z,y) centered on (z,y):
E; = A3 'Zk Zm,y(cﬁ,y _m) 'Z(u,v) ZN(z,y) (Cﬁ,v _m)7
where m, M are the minimum and maximum values of
all the C-maps. The fourth energy measure is intro-
duced to force the values of the C-maps to either one
of the extrema of the range [m, M]. E, is thus propor-
tional to the distance of each Cﬁ,y to both extrema:
Ey=Ay- Em,y(cﬁ,y - m) : (M - Calcc,y)‘

The values of the constants A; are chosen so that

| 2248 |< 1, Vi. In addition, \; € [0,1], and 3, \; =

1. To obtain the actual increment to Ck  (t), A% is
multiplied by the scaling coefficient fyf,y, defined as:
M —Cf, if Ak >0, and by Cf, — m otherwise.
This guarantees that the new value C£ (¢ + 1) will
remain in the allowed range [0, 1].

The convergence criterion for the relaxation process
is defined by: max, . | 74, (t) - Ak (t) |< e, where e
is an appropriately small constant. For most images,
a value of ¢ = 0.01 requires about a dozen iterations.
At convergence, the binary attention map is obtained
by thresholding the saliency map S(t) in the middle
of the range [m, M].

Figure 2: Results on some synthetic images.

Figure 2 shows the results on some synthetic images
defining visual search problems. The selected regions
allow to reproduce well-known pop—out phenomena.
Figure 3 shows the results on some real images. The
attention regions are correctly located at some of the
major foreground objects. It should be noticed that
the limited number of regions is a by—product of the
3rd energy component, which penalizes high amounts
of global activity.

4 The alerting subsystem

Data—driven attention regions are also produced by
the alerting subsystem, which detects the shape of ob-
jects moving on a still background through a low—pass
pyramidal representation, built for each image frame
by using a set of f—splines basis functions [4]. At each
level | of the pyramid (I = 0,...,log, W), first esti-
mates of motions are obtained by computing temporal
image differences D, (t) = I} (t) — I. ,(t — 1). Lo-
cal differences Di’y(t) provide two motion parameters,



Figure 3: Results on some real images.

through their magnitude, and through the locations of
sign changes. These two factors are locally combined
together to form the first motion estimates E. , (cf.
figure 4.b). Highest-resolution levels have a better
spatial localization, but may only yield information at
the object boundaries. Lower-resolution levels help
solve the aperture problem, by filling in the interior of
moving objects having constant grey level.

Multiple-resolutions motion estimates Eé,y are
combined through a coarse-to—fine pyramidal relax-
ation process. Its goal is to locally propagate the pixel
values horizontally within each level as well as verti-
cally, across contiguous levels of the pyramid. The
“vertical” component of the relaxation process com-
bines information at location (x,y) of level [ with that
at locations (2z + 1,2y + 5), 4,j € {0,1} at the higher
resolution level [—1. The “horizontal” component con-
sists of a diffusion process within each pyramid level,
to fill in gaps and reduce noise.

In a similar way to the relaxation process of the
C-maps, the updating rule of the vertical component
is defined by a term fylm,y . Aé,y, where *yi,y is a scaling
coefficient. The increment Alm’y is defined as a func-

tion of D!+, If D?/'é,yp is smaller than a threshold &

(proportional the estimated image noise), then Afw is
the quadratic function —k - (D5 — 5)2. Otherwise,
AL, = g (DG} —ky-€), where g(-) is a sigmoidal
function, and k; and ke are two positive constants.
This algorithm corresponds to pushing the values of
the estimates Eiy further towards either 0 or 1.

At the end of this algorithm the full-resolution im-
age at the bottom of the pyramid contains a binary
alerting map of the moving objects. Thanks to the dif-
fusion component of the relaxation process, the shape
of these regions tends to be “convex”, and to adapt to

Figure 4: The alerting system. (a) second frame; (b)
motion estimates E°; (c) final alerting map D°.

the shape of the underlying objects. Figure 4 shows
the results obtained when a persons is walking through
a corridor.

5 The top—down subsystem

Distributed associative memories (DAM) are a sim-
ple but effective technique to learn object categories
from training samples. During the recognition phase,
a DAM can be used to recognize target objects, and
hence, to generate top—down measures of interest.
However, a preprocessing step is required to provide
some degree of invariance to the representation of the
input image.

This preprocessing step is based on the complex—
log (or log—polar) transform of the input image
[9]. Given a center point represented by a com-
plex number zg = x¢ + jyo, this transform maps
a point (z,y) of the image into the coordinates
z = log(y/(z — z0)% + (y — y0)?) + jatan(¥=42). This
transformation allows to simulate the focal /peripheral
fields of an image, and maps scalings and rotations
into translations in the real and imaginary axes. These
shifts can be factored out by considering the energy
spectrum | F(u,v) | of the complex—log image.

The components of | F(u,v) | are ordered in a vec-
tor x representing the input stimulus to the DAM.
During the learning phase, the DAM finds an asso-
ciation matrix M between a set of input stimuli xj,
and their class y,. If all stimulus and response vec-
tors are written in two matrices X and Y, M is
defined by Y = MX, and is solved by minimizing
IMX — Y||2. This corresponds to M = YX*, where
X+ = (XTX)1X7 is the Moore—Penrose generalized
inverse of the matrix X.

During the recognition phase, an unknown stimu-
lus vector x’ is presented to the memory matrix M,
and the estimated class can be recovered from the out-
put vector y’. Through a statistical interpretation of
DAMs in terms of multiple linear regression, a coeffi-



cient of determination R? = (var(x') — RSS) /var(x'),
is obtained for each association produced by the DAM
on an unknown stimulus x’, where RSS is the residual
sum of squares [9]. The value of R? € [0, 1] evaluates
the quality of the association: it is 1 for a perfect asso-
ciation, and 0 when no correlation exists between the
stimulus and the produced response.

The top—down measure of interest is given by the
R? measure, representing the “quality” of the recog-
nition. In order to avoid the application of the DAM
to all vectors x,, centered at each location (u,v)
of the input image, a number of relevant “indexing”
points is required. These points are given by the
bottom—up subsystem, and are obtained by detect-
ing a limited number of peaks {(x;,v:),7 = 1,...,Q}
in the saliency map S, after just two iterations of
the relaxation process. In order to spread the re-
sults of the R? measures over a neighborhood cen-
tered on each point (z;, y;), and to obtain a distributed
representation for the top—down map 7', the values
R?(x;,y;) are convolved with an isotropic Gaussian fil-

ter: Ty, = Z?:l R?(z;,y;) - exp [—%]

The top—down map T can directly be integrated
with the bottom—up system by modifying the updat-
ing rule of the relaxation process (cf. sect. 3). The
modified rule is given by: Cf (t +1) = CF (1) +
vk, @) - [aAk (t) + (1 —a)(2T;4(t) —1)] . The pa-
rameter o € [0,1] determines the relative importance
assigned to the bottom—up and top—down subsystems.

Figure 5 shows the results obtained for a DAM
trained to recognize instances of the pen and the
white—ink bottle. The top—down map shows a very low
R? value at one peak of the saliency map, correspond-
ing to an unknown object (the cup). The final saliency
map obtained by integrating the top—down map with
the relaxation process is shown in fig. 5.d. For compar-
ison, the saliency map obtained from the bottom—up
system alone is shown in 5.e. The top—down infor-
mation forces the relaxation process to suppress the
region containing the unknown object, although this
would have been selected by the bottom—up process,
to the expense of the white—ink bottle.
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