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Abstract

Here, we introduce an alternative to the Hidden Markov Model (HMM) as the underlying
representation of speech production. HMMs suffer from well known limitations, such as
the unrealistic assumption that the observations generated in a given state are independent
and identically distributed (i.i.d). We propose a time index model that explicitly conditions
the emission probability of a state on the time index, i.e., on the number of “visits” in
the current state of the Markov chain in a sequence. Thus, the proposed model does not
require an i.i.d. assumption. The connectionist framework enables us to represent the
dependence on the time index as a non-parametric distribution and to share parameters
between different speech unit models. Furthermore, we discuss an extension to the basic
time index model by incorporating information about the duration of the phone segments.
Our initial results show that given the position of the boundaries between basic speech units,
e.g., phones, we can improve our current connectionist system performance significantly
by using this model. However, we still do not know whether these boundaries can be
estimated reliably, nor do we know how much benefit we can obtain from this method given
less accurate boundary information. Currently we are experimenting with two possible
approaches: trying to learn smooth probability densities for the boundaries, and getting
a set of reasonable segmentations from an N-Best search. In both cases we will need to
consider the effect of incorrect boundaries, since they will undoubtedly occur.



1 Introduction

1.1 Introduction to Stochastic Speech Modeling

Human speech production is usually modeled in statistical recognition systems by two
stochastic processes: the state process, and the observation process. The state process
is used to represent the underlying sequence of speech sounds that were said, which in
principle could be viewed as a crude representation of possible configurations of the vocal
tract and the articulators during the production of the phones. The observation process
models the generated time-series of the feature vectors (one feature vector for every short
segment of speech, typically around 10ms). The realizations of the state process are hidden
from us, and we have to estimate them through the realizations of the observation process.

The goal of speech recognition is to find the most likely word sequence, which sometimes
is mediated (for practical reasons) by first finding the hidden realization of the state process.
Specifically, we want to find the most likely word sequence given a sequence of feature
vectors, i.e., to maximize the probability

������� �	�
over all legal word sequences, where�

stands for the word sequence (model), and
�

denotes the feature vector sequence. This
probability is commonly decomposed using Bayes’ law:

max
 ������� ���� �������������������
�����	� (1)

�������
is typically estimated by a separate language model (assuming no interaction between

the acoustic and language models), and
�����	�

is generally ignored since it is constant over
all hypothesized models during recognition and thus does not influence the selection of the
recognized word sequence.������� ���

can be computed by summing over the set of all the possible state sequences
Γ that are valid for a particular word sequence

�
as given in the following equation:

�
���

Γ

���������������
(2)

Where
�

is a valid state sequence for the word sequence
�

. Given the heavy computation
needed by the above equation (and the need to determine a state sequence) the following
approximation known as the Viterbi assumption is often used:

�����������! 
max"�#

1 $ "�# 2 $�%�%�% $ "�#�&
�������('*)

1

�('+)
2

�
� � �

�('*) & � ���
(3)

Where
'*)

1

�,'*)
2

�
� � �

�('+) & is a valid state sequence for the given word sequence
�

.
In the following section we describe the traditional HMM and the related assumptions

about the state and observation processes. Relaxing some of these assumptions will then
motivate a statistical model that explicitly incorporates the time index for each phonetic
segment.
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Figure 1: An HMM example

1.2 What is wrong with traditional HMMs?

In this section we give a brief introduction to HMMs that are used in current speech
recognition systems and point out their limitations. For a more detailed description see
[Lee89, XH90]. By using standard HMMs, we assume that the possible values for the state
process at every time step are the basic speech units, usually phones. Specifically, let us
consider a Markov chain with

�
states,

� ��� '
1
�('

2
�
� � �

�(' 
�� , and associated transition
probability matrix ���	� where �
��� is the probability of taking a transition from state � to state
, i.e., ����� ���������+��' � ��' � � , and

� � ��� � the output probability set - the probability of emitting
the feature vector

�
while in state � . Note that these probabilities are not dependent on the

time within a state.
A Hidden Markov Model (HMM) based on this Markov chain generates a random

sequence of observation vectors
� � � �

1
���

2
�
� � �

����� � . These vectors depend on the
unobserved random sequence of states

� � � '
1
�('

2
�
� � �

�('�� � according to the Markov
chain. In most implementations of HMMs in speech recognition it is assumed that the
probability that observation

���
was generated at time instance � depends only on the state' �

(in which
�!�

is generated). Hence the observations generated in a given state (phone) are
independent and identically distributed (i.i.d). Therefore, given that the underlying process
has remained in state

' � from " to "$#&% , the probability that it has generated a sequence of
observation

� � � � � �'� �)( 1
�
� � �

�'� �)(+* � is:

�����-, (�*, ��' � � �
, (+*.
�)/ ,

� ��� � � ' � � (4)

(See Figure 1 for an example.) The assumption that speech observation vectors are
identically distributed might be reasonable for a short enough segment of (20-30ms) in
certain situations, for example in the middle of a relatively steady-state vowel. However,
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when the state represents parts of sounds that are changing significantly, (which is more
like the rule than the exception for natural speech), associated observation vectors have
statistics that are dependent on position in the segment. Furthermore, the independence
assumption is inaccurate for all segments of speech, as there is strong correlation between
nearby observation vectors.

1.3 Preview

In the following section we describe related work in stochastic modeling that addresses some
of the problems mentioned above. In section 3 we introduce our time index model, and give
its formal definition. We describe our particular implementation and initial experiments
in section 4. We conclude with a discussion of the problem of finding the boundaries
between phones (segmentation) that arise from our model. Two possible solutions to the
segmentation problem are suggested: explicit segmentation, and the N-best paradigm.

2 Related Work

2.1 Introduction to Non-stationary Modeling

In this section we discuss a number of models that have been proposed to remedy some of
the shortcomings of HMMs. A quick solution might be to represent each unit of speech by
enough different states to approximate its non-stationary nature in a stepwise fashion. For
instance, a vowel could be represented by ten different states. This solution has two major
limitations:

� There are too many free and independent model parameters. This necessitates more
training data, and also might be more prone to capture irrelevant sources of variance
in the data than a simpler model.

� Such a model does not capture the correlation and dependence between the different
states. For states with a short duration, this would be even more pronounced, since the
change between two states in a sequence would correspond to only a small movement
of articulators for a given speaker.

Several extensions to the basic HMM have been proposed in order to overcome some of
these deficiencies. For example, autoregressive HMMs condition the emission probability
of a given state on previous observations [JR85]. However, none of these extensions have
explicitly modeled the emission in a given phone as a non-stationary process. In general
this is too difficult to handle with a practical number of parameters.

A number of HMM alternatives model the sequence of frames emitted in a given sub-
word unit as correlated and dependent on each other. The models differ in their assumptions
about the nature of the correlation between the frames in the sequence. For instance, some
assume that only consecutive frames are correlated, while others assume that all the frames
in the sequence are dependent on each other. In general these models do not require the
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HMM assumption of independent and identically distributed observations . In the following
section we survey segment-based approaches that are in this family.

2.2 Segment-Based Approaches

2.2.1 Introduction

In segment-based models the basic unit is a sequence of acoustic vectors emitted in a given
speech unit (a “segment”), as opposed to a single acoustic vector as used for HMMs. The
production of the acoustic vectors in a segment may be described as a three step procedure
[Dig92]:

1. Select the length of the segment according to
����� � �
�*�

, where
�

is the random variable
that denotes the length of the segment, and

� �
is a particular speech unit.

2. A fixed length segment
�

is generated according to the distribution
�����

1
���

2
�
� � �

��� 
 � � � � .
The distribution models the trajectory of the sound in the feature vector space.

�
is

chosen to be greater than all the possible values of
�

. � ���
1
���

2
�
� � �

��� 
 is called
the hidden sequence of acoustic vectors.

3. Down-sample � using the time-warping transformation %
	 and output the observed
sequence of acoustic vectors

� � � �
1
���

2
�
� � �

��� 	 � . This transformation can be
either linear or non-linear depending on the specific segmental model.

2.2.2 Segmental Models

To briefly illustrate the range of stochastic segment models, we review some specific
examples and their implementations. These models differ in the form of the distribution� � ��� �*� and in the time-warping transformation %�	 . Ostendorf and Roukos [OR89] have used
(among a number of methods) linear time sampling in their study, i.e., sampling � in equal
intervals along the time axis as their time warping procedure. Their specific implementation
had ten 14-dimensional vectors of cepstral coefficients. They used a multivariate Gaussian
to represent the entire segment, which can require a 140 by 140 full covariance matrix for
each phone (assuming that feature dependence is accounted for).

Ghitza and Sondhi developed a model [GS93] that can also be viewed as a stochastic
segment model with the following distinctions:

� Their warping procedure is a dynamic time warping technique, instead of the linear
time warping method used by Ostendorf and Roukos.

� They used diphones as their sub word units, as opposed to to the phones in Ostendorf
and Roukos’ stochastic segment model [OR89].

� They maintained the HMM framework and assumed a semi-hidden Markov chain,
i.e., each state has an explicit duration distribution.
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These stochastic segment models are not inherently subject to the constraints of the i.i.d.
assumptions discussed earlier. However, there are some practical difficulties:

1. There are many free parameters that must be estimated reliably from the data, e.g.,
large covariance matrixes. As a result, independence assumptions are often made,
leading to less powerful models.

2. These methods explicitly assume a particular parametric form for the observation dis-
tributions, e.g., multivariate Gaussian. This assumption is already faulty for standard
HMMs, but may be even a worse approximation once observation interdependencies
are taken into account. (Nonetheless, it is a sensible place to start).

3. All the models assume a given segmentation, e.g., the knowledge of the boundaries
between the basic speech units, which is known to be a difficult task. One solution is
to do an exhaustive search of all the reasonable segmentations as discussed in section
5.

4. Warping the data to a fixed length segment may delete or obscure relevant information.

2.2.3 A Stochastic Dynamic System Approach

This model assumes a stochastic dynamic system with a continuous state process as the
source for the observation process. To model an underlying dynamic system, some assump-
tions are required. For example, Digalakis has proposed two possible model constraints:

1. Trajectory invariance: It is assumed that the same sequence of states of the stochastic
dynamic system is the source for all the possible realizations of the speech segment.
The observed speech segment is a down-sampled version of the underlying trajectory
of the feature vectors created by the system. Thus, long observation sequences have
higher correlation between successive frames than short observation sequences.

2. Correlation invariance: It is assumed that the correlation between two observations
depends only on the relative location of the observations in the segment, i.e., is
invariant under the time-warping transformation. Thus, the sequence of the of the
underlying model depends on the observed segment length.

In his study, Digalakis assumes that the observed segment of speech is the output of a
piecewise time-invariant linear dynamical system. He uses up to five invariant regions for
each model. The models based on the correlation invariance assumption outperformed the
models based on the trajectory invariance assumption for the task of phone classification.
For more details see [Dig92, DRO93]. The stochastic dynamic system approach appears
to have more modeling power than an HMM, and can potentially capture the dynamics of
acoustic vectors within a segment of speech. However, there are still open issues about the
structure of the dynamic system.
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Figure 2: Time-index

2.3 Related Work in Stochastic Modeling

In this section we review stochastic models that try to capture the dynamics of speech, and
that have also influenced the time index model that is the main topic of this report.

2.3.1 Deng’s Trended HMM

Deng described a model that explicitly conditioned the emission probability of a state on
the time index, i.e., on the number of “visits” in the current state in a sequence in the chain.
For example, if the Markov chain has two states and we assume a specific realization that
alternates every two time steps between the states, the time index for a given state will
be � � � 1,2,0,0,1,2, � � � as described in Figure 2 (note that the figure does not show all the
“machinery” of the HMM). Deng has coined his model the “trended HMM” [Den92]. In
this model, a sequence of observation vectors generated in a given state is a combination
of a stationary process and a deterministic function of time, as illustrated in the following
equation for the multivariate normal distribution:

� ��� , ��� " �
" � � " ��� 1�
2 � ���2 ��� � " Σ � 0 % 5

� �
� ��� ��� , �	��
 ,� ,�� � " � � * � Σ ��� 1 ��� , �	��
 ,� ,� � " � � � (5)
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Where " is the time index as defined above,
� 
 ,� ,� � � is a deterministic function of the

time index and has parameters which may differ from state to state. In this simplified
example

��
 ,� ,� � � shifts the mean vector of distribution as a function of the time index, while
the stationary part is the variance-covariance matrix Σ. In principle this model explicitly
conditions the emission probability on the time index, and a sequence of observations
emitted from a given state are no longer assumed i.i.d. However, we don’t know the optimal
form of

��
 ,� ,� � � for each unit of speech; For example, one would expect a different time
index dependence in vowels than in stops. Overall, the idea of changing the emission
probability as a function of time index seemed to be innovative and potentially useful. We
have incorporated this idea in a connectionist context.

2.3.2 Hidden Control Neural Architecture

Esther Levin suggested the idea of changing the mapping that is implemented by a multi-
layered neural network as a function of additional control signals [Lev93]. Her model is
called a “Hidden Control Neural Network” (HCNN). The advantage of the HCNN over a
static neural network is that it can model signals generated by nonlinear dynamic systems
with time variability, i.e., the mapping is a function of the state of the system. Before we
can make use of this model we have to uncover the the hidden part of the model. In order
to estimate the values of the hidden control input in training and recognition we must make
assumptions about the nature of the system to be modeled. It is not clear what assumptions
are suitable for the speech signal. Levin used her model for prediction of time series, and
took the common assumption of modeling the prediction error as a white Gaussian noise.
While Levin used her model in a non-discriminant model, hidden control can also be used
in a discriminant fashion. This leads to a connectionist time index method.

3 The Time Index Model

3.1 Introduction

We are proposing a time index model that differs from an HMM in that the observations
emitted in a given phone are no longer i.i.d.; and that differs from the Deng model and
others by its use of posterior probabilities as estimated with a connectionist network. In the
time-index model, the realizations of the state process are no longer sequences of values
taken from the phone set, but are rather chosen from a set of pairs consisting of a phone
and a time index. The time index is the number of “visits” in the current state in a sequence
in the chain. For this model, the probability of generating a sequence of observations� � � � � �'� �)( 1

�
� � �

�'� �)(�* � in a given phone
� � ��� � � is:

����� , (+*, � � � ��� � � � �
, (+*.
� / ,

� � � � � � � � ��� � � �+� � � " # 1
� � �

(6)
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We can see that the
' � �

in the HMM equation 4 are replaced by a phone and time index
pair, as the state process is defined differently.

3.2 Definition and an Example

The time index model is defined as follows:

� The state at each time step is the ordered tuple
' � ��� � " � ��� ∆ � % , where ∆ is the set

of basic language units and % is a random variable from the set � 1
�
2
�
� � �

��� � , where�
is the maximum allowable duration. Then let

� , (�* � 1, represent the following state
sequence: � � � � � � � � � 1 �(�*� � � ��� � � � 2 �(� � � � �*� � � ��� � � � % �

1
� �
�

� Represent the sequence of acoustic vectors emitted between time step " and " #-% �
1

as
� , (+* � 1, . Then define a conditional probability for the observation sequence

given the state sequence corresponding to each
� � ��� � � (Assuming output conditional

independence)

����� , (+* � 1, ��� , (+* � 1, � � ��� % � � � ��� � � �
, (+* � 1.
�)/ ,

� � � � � � � � � � � �*� � � " # 1
� �

Figure 3 shows the topology of a basic unit of speech. Only the last state in the model has
a self loop. For states with indices smaller than the minimum duration for that phone, only
a transition to the next state (corresponding to a time-index increment of one) is permitted.
For all other states, transitions are permitted either to the next state or to the exit state. This
model primarily differs from a traditional HMM (assuming a similar representation for
duration) in that the emission probability for each state (i.e., for each time associated with
a phone or subphone unit type) is not constrained to be equal. Specifically, the emission
probability of a state in the Markov chain is

����� � � � � ��� � � � " � � � , where " � is the time index.
Note phones are used here as the basic speech unit. Similar equations could be used for
multi-state HMMs that are also commonly used, in which the basic speech unit is smaller
than a phone. While certainly one could define a standard HMM with the kind of model
shown in figure 3, and with a separate emission probability for each state, the basic problem
is how to share parameters between the estimates for the separate densities. One solution
would be to assume a parametric form for the trajectory, as was done by Deng. In our case,
we have chosen to use a multi-layer perceptron (MLP) approach, which in our previous
work at ICSI has proved useful for such estimates [BM94].

4 The Time Index Model - Implementation and Experiments

We present here a specific implementation of the time index model and discuss initial
experiments with the Resource Management Task [PFBP88].
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Figure 3: The topology of the time-index model

4.1 An Implementation of the Time Index Model

In section 2, we described the emission probability of a state as
����� � � � � � � � � " � � . While

such a quantity can always be defined, the important question is how to estimate it. We can
use the following decomposition according to Bayes’ law:

� � � � � � ��� � � � " � ���� � � � ��� � � � � � � � " � ��� ����� " � � � ���� " � ��� � ��� � � � (7)

Where " � is the value of the time index,
�

is the acoustic vector, and
� � ��� � � is a specific

phone. Alternatively, we can decompose as follows:
� � � � � � ��� � � � " � ���� � � � � � " � � � � ��� � � �'� ��� � � � ��� � � � � ���� " � ��� � ��� � � � (8)

Each of the the terms conditioned on
�

can be estimated by an MLP with an acoustic
vector (or a local neighborhood of acoustic vectors) at the input, as well as any additional
conditioning terms at the input (for instance, an input representing time index " � in order to
estimate

��� � � ��� � � � " � �'� � ); the targets correspond to a discrete binary coding of the class
identity that is to the left of the condition bar (e.g.,

� � � � � � for estimating
��� � � ��� � � � " � �'� � ,

or " � for estimating
��� " � � � � ). We have currently chosen to represent the " � inputs with a

continuous-valued input as a smoother representation that requires fewer parameters. The
first form of the equations given above requires the estimation of

��� � � ��� � � � " � �'� � , and this
can be done with the MLP shown in Figure 4.��� " � ��� � ��� � � � can be estimated by counting the relative frequencies in the training
set. The most difficult probability to estimate is

��� " � � � � since this implicitly requires an
estimate of the phone boundaries. Given the inertia of the articulators and the effects of co-
articulation, these boundaries between adjacent phones are blurred. As a result, a reliable
estimation of this probability is a still an open challenge. In the experiments reported
below we have used pre-segmented data, so we could test the other parts of our model
independently of the task of boundary detection. However, practical use of the time-index
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Figure 4: The time index net
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model will require good estimates of the probabilities of boundary positions. Some possible
solutions are discussed later in this report (section 5 ).

4.1.1 Experiments

We used the Resource Management speaker independent task [PFBP88] for initial exper-
iments. Training data consisted of 3990 read continuous sentences, and the 300 sentence
Feb89 test set for development and cross-validation for the network training. The time
index net (as shown in Figure 4) had 1000 hidden units, 61 outputs (the size of phone set).
There were 235 inputs to the net, including 234 that consisted of 9 frames of 26 features
each (PLP12 + log gain + delta features for each of these 13), and a final time index input.
With the exception of this final input feature, this net was the same as the hybrid HMM/MLP
system as described in [BM94]. For the preliminary tests, we assumed knowledge of the
boundaries between the phones as produced by an automatic alignment (Viterbi) procedure
on the known word string. These initial time-index results serve as a lower bound on error,
as we can expect little improvement over the boundary detection found by Viterbi procedure
with a known word sequence. Note that this side information about the word sequence is
only used to generate boundaries, and that no explicit phonetic information is preserved.

Without the time-index input, the standard MLP system had 4.8% word errors on
this task (including insertions, deletions, and substitutions), while the incorporation of
the knowledge of phoneme boundaries in the time-index network reduced the error to
1.1%. This suggests that the time-index approach can greatly reduce error if we have
good information about the phoneme boundary location. This was a necessary result for the
time-index approach to be ultimately useful; but it is certainly not sufficient. We are still left
with the difficult and currently unsolved problem of either specifically locating boundaries,
or getting reliable estimates of the probabilities of an acoustic observation corresponding
to a particular temporal region of a segment. In the following section we discuss possible
ways to address this problem, and also suggest several extensions to the basic time index
model.

5 Discussion and Future Work

5.1 Segmentation - How to Find Transitions?

If we could explicitly and reliably find the boundaries between phonetic segments, the
preliminary result from the previous section would seem to indicate that we can greatly
reduce errors. However, this problem does not have an easy solution, see for example
[Gla88]. We consider two possible styles of approach: first, try to learn smooth probability
densities for the boundaries, as per the equations from the previous section; and second,
use the time-index model as a second pass, where a previous pass will generate possible
alternate segmentations to be considered using the new model.

11



5.1.1 Explicit Segmentation

To estimate probabilities such as
��� " � � � � ��� � � ��� � or

��� " � � � � , we must train an MLP classifier
to discriminate between different temporal regions of each segment, for instance between
frames that are boundary and non-boundary frames. A critical issue here is the features
used for this discrimination, both in terms of the signal analysis chosen and the frame rate
and window size used. In a comparative study of signal representations[LCG93] it has
been found that Bark auditory cepstral coefficients (BASC) achieved the lowest deletion
error rate(the percentage of the transcription boundaries not found by a boundary detector)
when used with a frame rate of 5ms and the size of the analysis window of 28.5 ms. We
are currently experimenting with these features to see how well we can get the required
temporal probabilities. We may also try to use RASTA-PLP features for a similar reason.
Another idea currently being considered is the use of broad phone categories for estimating
quantities like

��� " � � � � ��� � � �'� � , since the temporal effects are likely to be fairly similar for
broad classes of phones, such as the one used by Leung and colleagues [LHZ91] to find
transitions between vowels, nasals, liquids, fricatives, stops, and silence.

Using an unconstrained temporal estimation probability estimator has several inherent
problems:

� Due to inertia of the articulators, the boundaries between phones are blurred and
ambiguous in continuous speech.

� Getting accurate targets for training an MLP through automatic procedures is difficult.

� Other sites that have been successful at nearly eliminating boundary deletions have
done so at the expense of many insertions; this suggests that the temporal probability
estimates may risk being too inaccurate to be useful in our model. (However, global
constraints may be used to eliminate at least some of the spurious boundaries).

However, if we can overcome these problems, the potential payoff is high (as noted in
our preliminary experiment), and computational considerations may make such a method
preferable over the N-best approaches described below. Furthermore, an explicit single-
pass approach may find some correct segmentations that a 2-pass N-best approach with
finite N may eliminate.

5.1.2 The N-Best Paradigm

Considering all possible segmentations is computationally infeasible. However, as many
researchers have noted, recognizers that are already fairly good can yield a list of the most
likely segmentations, such that all other segmentations are highly improbable. If only these
reasonable segmentations are considered, a recognition score can be obtaine for each one
using the time-index model and the boundary information from the segmentation. Defining
a segmentation

�
as follows:

� def� � � " 1
� " 2
�,�*� " 2 # 1

� " 3
�(�*� "�� � 1 # 1

� "�� � � (9)
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where

1
� " 1

� " 2
� " 3

�
� � �

� "�� ��� �
Given a segmentation we can compute the exact time index for each frame, and by this

bypass the need to estimate probabilities such as
��� " � � � � explicitly. The goal of the N-best

search is to generate a list of N candidate hypotheses, as well as the segmentations, i.e., the
boundaries between the phones for each hypothesis. R. Schwartz and Y. Chow describe an
exact algorithm for finding the N mostly likely sentence hypotheses in [SC90]. The main
idea was to keep separate records for paths with different word sequences histories, adding
the probabilities for multiple paths with the same history that transition into the same state.
An approximation of this algorithm is to keep only the previous word as the history of the
path (as described in [SA91]). Typically the N-Best paradigm is used in the following way:

1. Find the N-best sentence hypotheses with a relatively simple and fast system.

2. Rescore the sentences with a more powerful system.

3. Combine the scores of the two systems, and output the sentence with the best score.

See [ea91] for more details.
Chapter 3 in [BM94] describes statistical speech recognition in terms of a series of

assumptions that lead to the standard HMM formulation. Here we describe the potential
use of the N-Best procedure as a modification of the derivation given in that chapter, as a
result of the knowledge of the segmentation and the time-index model. We can now rewrite
equation 1 in the following way:

max
 � ����� �� �
max
 �

� �
Θ

��� � �,��� ��
(10)

Where Θ is the set of the segmentations obtained from the recognized N-best sentences,
and where we assume that the

��� � �(��� �	�
terms are negligible for

����
Θ. This equation

can be approximated in the following way:

max
 �
�
� � � �(��� �	�� 

max

$ �
� � � �(��� �	�

(11)

Using Bayes law we use the following decomposition:

� � � �(��� �	��� � ����� � � � � ��� � � ��� �������
������ (12)

As before we assume that
� �����

is estimated by a separate language model, and that
������

is constant during recognition.
��� � � ���

can be computed by:

��� � ��� � � �
)
1 $
)
2 $�%�%�% $
)
� � Γ ��� 	

� ��'*)
1

�('*)
2

�
� � �

�,'*) & � ���
(13)

13



where Γ 
 $ � is the set of the all the valid state sequences given the model
�

and the seg-
mentation

�
. A reasonable approximation for the above sum is the Viterbi approximation,

i.e., the sum becomes a max as shown below:

��� � ��� � �
max)

1 $
)
2 $�%�%�% $
)
� � Γ ��� 	

� ��' )
1

�(' )
2

�
� � �

�,' ) & � ���
(14)

The probability
��������� � � �

is calculated using the forward recursion of the Forward-
Backward algorithm [Bau72] as described in chapter 3 in [BM94] with the following set of
assumptions:

� H1: The transition probabilities are independent of the observation vectors as de-
scribed in the following equation:

����' �) ��' � � 1� � � � � 1
1

� � �(� � � � ��' �) ��' � � 1� � � �(� �
(15)

Note that in the case of the phone models as described above, using single pronuncia-
tion word models, the state sequence becomes deterministic given the model and the
segmentation. In the case of multi-pronunciation word models, the transition between
phones is still stochastic, with probabilities given as part of the word models.

� H2: Taking the observation-independence assumption we get:

� � �
�
� ' �) �(' � � 1� � � � � 1

1
�(� � � � � �����

�
��' �) �(� � � �

(16)

Note that our definition of the states is different from the standard HMM, as described
above. Also note that in the estimation of the emission probability, as described
below, we incorporate some dependence between observations by using multiple
feature vectors as an input to the estimation network.

� H3: Assuming that the emission probability is context independent we get:

�����
�
��' �) �,� � � � � �����

�
��' �) � � � (17)

We estimate
��� �

�
��' �) � � � using Bayes law:

�����
�
��' �) � � � � � ��' �) � �

�
� � � ��� � � �

�
�

� � �
�
� (18)

Writing the
'

as a pair of two random variables we get:

����� � � � ��� � � " � � � � �
��� � � ��� � � " � � � ��� ����� " � � ��� � ��� � � � � � ����� ���� � � ��� � � " � � � � (19)

We estimate
��� � � ��� � � " � � � �'� � by the net described in figure 5. Note that we provide as

an extra input to the time index net described above the duration of the segment that the
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P(phone | acoustics, time−index, segmentation)

Acoustic VectorsDuration Time−index

Figure 5: The time index net with a duration input

current acoustic vector (the center of the temporal window) belongs, as this in addition
to the time-index input provides the relevant local information about the segmentation as
implied by the conditioning on

�
. The duration of the adjacent segments could also be used

as an input. The term
��� " � � ��� � � becomes a deterministic term, a the correct time index is

just the distance in frames from the previous boundary. The following can also be assumed:

��� � � ��� � � " � � � � � ��� � � ��� � � " � � (20)

And can be computed from the relative frequencies in the training set. The probability��� � � � �
is independent of the model and only influences the likelihood score. Currently we

assume uniform priors for all segmentations independent of the acoustic vectors. However,
we will be experimenting with plausible data dependent segmentation probabilities, such
as the score of the recognized sentence from the first pass.
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5.2 Summary

This report describes an early stage in our research on time index models as potential
representations of speech production that can be used for speech recognition. Our initial
results on pre-segmented data are encouraging, showing that strong knowledge of the
phonetic boundaries is almost as powerful as knowing the phonetic identities themselves.
However, we still face the problem of either explicitly or implicitly finding the boundaries
between the phones. We have discussed two possible solutions: estimating temporal
probabilities (which implicitly requires learning where the boundaries are), and using the
boundaries obtained from a first pass with a simpler recognizer using an N-best search.
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