A Customisable Memory
Management Framework

Giuseppe Attardi *
Tito Flagella

TR-94-010

February 1994

Abstract

Memory management is a critical issue for many large object-oriented applications,
but in C++ only explicit memory reclamation through the delete operator is gen-
erally available. We analyse different possibilities for memory management in C++
and present a dynamic memory management framework which can be customised
to the need of specific applications. The framework allows full integration and co-
existence of different memory management techniques. The Customisable Memory
Management (CMM) is based on a primary collector which exploits an evolution of
Bartlett’s mostly copying garbage collector. Specialised collectors can be built for
separate memory heaps. A Heap class encapsulates the allocation strategy for each
heap. We show how to emulate different garbage collection styles or user-specific
memory management techniques. The CMM is implemented in C+4 without any
special support in the language or the compiler. The techniques used in the CMM
are general enough to be applicable also to other languages.

*Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, I-56125 Pisa, Italy. Net: attardi@di.unipi.it.
tDipartimento di Informatica, Universita di Pisa, Corso Italia 40, I-56125 Pisa, Italy. Net: tito@di.unipi.it.
This paper appeared in the USENIX C++4 Conference Proceedings 1994.
The research described here has been funded in part by the ESPRIT Basic Research Action, project PoSSo.
Part of this work has been done while the first author was visiting the International Computer Science Institute,
Berkeley, California.

1 Introduction

As an alternative to explicit reclamation of heap memory, automatic recovery of unused memory can
be performed through the technique of garbage collection. The garbage collector’s function is to find
data objects that are no longer in use and make their space available for further use by the program.
An object is considered garbage, and therefore subject to reclamation, if it is not reachable by the
program via any path of pointer traversal. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never follow a “dangling pointer” leading to a deallocated
object.

There are good reasons to prefer automatic memory management: safety, avoiding the risk of
deallocating an object too soon; accuracy, avoiding to forget to deallocate unused memory; simplicity,
assuming a computational model with unlimited memory; modularity, the program does not have to
be interspersed with bookkeeping code not related to the application; reduced burden on programmers
who are relieved from taking care of memory management. Nevertheless garbage collection has not
yet come into general use, sometimes for fears of losing efficiency but mostly for the lack of availability
of the technique.

Recent research has proved that many of the limitations of traditional garbage collection tech-
niques can be alleviated. Some experiments have even shown that explicit memory deallocation
(using primitives like free or delete) is not necessarily faster than automatic reclamation of free
memory [Breuel 92]. Techniques like generational garbage collection have been developed to min-
imise latency during garbage collection.

While these experiences have proved that garbage collection is a valuable technique, the variety
of proposals is in itself an indication that the ideal garbage collector is impossible to achieve. A
good design is one that strikes the appropriate tradeoff among many conflicting goals.

We faced the task of developing memory management facilities for a large research project: the
ESPRIT BRA PoSSo aims at building a sophisticate symbolic algebra system for solving polynomial
systems. Researchers working on different parts of the system have different requirements on the
memory management. Some users prefer a copying garbage collector in order to maintain locality
of their data. Others prefer a mark-and-sweep approach because of the fixed size of their data. The
core algorithms of PoSSo required a special kind of memory management due to the particular FIFO
dynamics of memory usage exhibited in certain portions of the Buchberger algorithm for computing
a Grobner basis [Buchberger 85].

These requirements led us to design a framework whereby users can select among different garbage
collection strategies, ranging from manual management to fully automatic garbage collection, and
can also implement their own specialised memory management as appropriate for their task. Without
the support provided by our framework, if memory management were left to each programmer:

1. each user would have to introduce support for memory management in his code. This means
adding extra fields to data and providing code for basic memory management operations, like
computing the size of objects, the address ofthe next object in the heap, etc.

2. in large applications where different memory management facilities are required, different in-
terfaces would be present for each memory manager (MM).

3. it would be impossible to mix data under different MM’s. If an object under control of one
MM contains a reference to an object controlled by another MM, such reference may not be
noticed by the first MM, leading to incorrect memory reclamation.

When an intensive use of such facilities is required and a variety of memory management tech-
niques are needed, the programs become very difficult to write and maintain, and subtle “memory
leak” bugs may arise which are nearly impossible to find.

The Customisable Memory Management (CMM) addresses these issues by providing a general
framework within which several policies can coexist. The framework takes full advantage of the
object oriented paradigm of C4++, and provides a consistent and simple interface for programmers.

The CMM is a memory management facility supporting complex memory intensive applications
in C++4. It consists of:

1. a general purpose garbage collector for C++; this collector is called primary garbage collector
and is a variant of Bartlett’s mostly copying collector [Bartlett 89];

2. a user interface: this is the interface used by programmers to access the CMM;

3. aprogrammer interface: a set of facilities used by CMM programmers to define specific memory
management policies as appropriate for their applications.

With CMM users can select among several predefined memory management facilities, define their
own, or customise those provided in the framework.

For instance it is conceivable a situation like in the following figure, where three different memory
management policies are available or even used together in the same application: a traditional
stop-and-copy collector, a specialised stack allocator for portions of the algorithm with controlled
behaviour or a generational collector for real-time tasks such as user interfaces. The first two
mechanisms are already available in the CMM, while a generational collector has been implemented
by Bartlett [Bartlett 89].

Stop & Copy Stack Generationa

Erom To Genl Gen2 Gen3

top

The mechanism to implement these alternative policies is the Heap abstraction which we develop
in this paper. Specific algorithms are used and particular data structures are maintained by each
Heap to ensure its proper behaviour. A critical question is what to do with pointers which cross the
boundaries of Heaps. If no such pointers are allowed, then a Heap need only to be concerned with
objects it has allocated and on which it has some control. We considered this solution too restrictive,
since it would not allow portions of applications built separetely by different people to freely exchange
data. We took therefore special care to design the mechanism of Heaps to ensure that different Heaps
can coexist and data of different sources can be mixed. The amount of coordination necessary to
achieve this goal, has been kept to a minimum, and consists of a few simple functions that each
class of collectable objects must provide and which it would be possible to generate automatically.
To achieve coordination in a simple and effective way, we exploit the object oriented features of
C++. In practice, all the operations of the collector are performed through member functions of
the class of each object. However, the action of the collector on an object may vary also depending
on the Heap where the collection started, not just on the Heap to which the object belongs. For
instance if the collection starts in the Stop&Copy Heap, it applies its methods to mark and traverse
the object in that zone, but if a pointer leads into a StackZone, those objects are unobtrusively
traversed without modifying them. Only if such traversal leads back into the original Heap, the full
collector operation resumes.

2 Requirements
In designing the CMM we tried to achieve the following goals:

e portability: the CMM is simply a library of C procedures and C++ classes, which can be used
with any C++ compiler. Alternative solutions rely on changes to the underlying language or
compiler.

o coezistance: code and objects built with the CMM can be exchanged with traditional code
and libraries. No restriction exist on whether a collected object can point to a non collected
object and viceversa. We wanted to be able to pass collected objects to programs unaware
of garbage collection, allowing them to store such objects in data structures, without special
burden on the programmer or risk that the object would be garbage collected. Alternative
solutions require the programmer to put an object in an “escape list” before passing it to an
external procedure.

e algorithm specific customisation: the allocation policy can be customised to the particular
needs of an algorithm. This is different from other solutions, where the allocation policy is
associated to the type of an object. For instance, in the proposal by Ellis and Detlefs [Ellis 93],
it is possible to specify whether an instance or a class is allocated in the collected heap, rather
than in the non collected heap. For the purpose of our applications, it is necessary to allocate
the same type of object sometimes with one policy and sometimes with another. For example,
in PoSSo there is only one class of polynomials, but sometimes a polynomial is allocated in
a zone which can be freed quickly once a certain portion of the simplification algorithm is
complete; some other time the lifetime of the polynomial cannot be predicted, so it must be
allocated in the general heap zone.

o multiple logical heaps: at least two heaps are necessary, one for collectable objects and one
for traditional objects. However two is not enough: for instance collectable objects containing
data which cannot be relocated for some reasons must be handled differently from other objects
which are copied by the collector. For this reason the CMM provides multiple logical heaps,
called Heap.

e usability: only minimal burden is placed on the programmer who wants to use the collector.
When collectable objects are required the programmer needs to define their class as inheriting
from the base class GeObject and supply a method for traversing them, a task which could be
automated.

e separation of concerns: memory management code needs not to be included within algorithms,
and it is possibile to change the memory policy just by selecting which heap is employed by
the algorithm.

e cfficiency: the implementation is efficient enough to be as good and sometimes better that
hand tuned allocation.

The CMM allows customisation of the collector and provides a few pre-built variants. One could
argue whether a single general strategy could fit all the needs. For instance a generational garbage
collector ensures that memory is reclaimed quickly. However not even a generational garbage collec-
tion is good enough for applications like PoSSo where one must prevent or delay garbage collection as
much as possible, not just make its duration shorter. For the vast majority of applications a general
purpose strategy is adequate, and the CMM provides a good one by default. But for research or
applications that need to push the limits of technology, the CMM provides a solution with limited
effort on the user.

In the rest of the paper, we recall the general principles of memory management, then present
our primary collection algorithm, then discuss the CMM, its implementation and its usage. Fi-
nally we illustrate how to emulate different garbage collector styles and application specific memory
management policies.

3 Dynamic Memory Management: Concepts and Termi-
nology

A garbage collector in principle could reclaim the space occupied by all objects that the running
program will no longer access. Unfortunately this is an undecidable property; therefore garbage
collectors must adopt a simpler criterion based on the notion of potentially accessible or live object.
A garbage collection mechanism basically consists of two parts [Wilson 92]:

1. distinguishing the live objects from the garbage in some way, or garbage detection;

2. reclaiming the garbage objects’ storage, so that the running program can reuse it.

The formal criterion to identify live objects is expressed in terms of a root set and reachability
from these roots. The root set consists of the global and local variables, and any registers used by
active procedures. Heap objects directly reachable from any of these variables can potentially be
accessed by the running program, so they are live objects which must be preserved. In addition,
since the program might traverse pointers from these objects to reach other objects, any object
reachable from a live object is also live. Thus the live set is the set of objects in some way reachable
from the roots. Any object not in the live set is garbage and can be safely reclaimed.

Several variations are possible on this general working schema, depending on:

1. how to identify the roots (conservative, explicit registration, smart pointers, etc);

2. how to identify internal pointers pointing to other GC objects (compiler support, user support,
conservative, etc);

3. how the GC distinguishes live objects from garbage (marking or copying, with their many
variants).

Quite different implementations result from different combinations of the above techniques. We
can characterise as follows, according to these criteria, some of the most recent implementations of
garbage collectors for C++:

Identify internal Distinguish live
Identify roots pointers objects
Boehm Conservative Conservative Mark
FEdelson | Smart Pointers User assisted Copying
Bartlett Conservative User assisted Promotion & Copying

Depending on the kind of information available during the traversal of objects from the root set, a
tracing collector can be conservative, type-accurate or both.

A conservative garbage collector does not require cooperation from the compiler and assumes
that anything that might be a pointer actually is a pointer. In this case an integer (or any other
value) is assumed to be a pointer by the collector if it corresponds to an address inside the current

heap range: any such value is called an ambiguous root. A garbage collector is type-accurate when it
is able to distinguish which values are genuine pointers to objects. Some garbage collectors adopt a
combination of these two techniques: some pointers are dealt conservatively, while others are treated
in a type accurate way.

The main limitations of a purely conservative collector are memory fragmentation in applications
handling objects of many different sizes, arising from the inability to move objects, and the risk that
a significant amount of memory might not be reclaimed in applications with densely populated
address spaces of strongly connected objects [Wentworth 90].

The alternative approach which is type-accurate in identifying objects faces some non trivial
problems with hidden pointers. One such case is the this pointer in C++: whenever a method is
invoked on an object, a pointer to that object is passed to the method via the stack as the implicit
local variable this, but only the compiler knows where such variable is actually located. The only
compiler-independent way to catch such pointers is to examine the stack conservatively. Failing
to trace this pointer is dangerous: the object might be reclaimed or moved without updating the
pointer. In both cases a dangling pointer is generated with serious consequences for the integrity of
the program.

Both these limitations are avoided in the partially conservative approach proposed by Bartlett
for his mostly copying garbage collector. We chose this technique as the basis for developing our
customisable collector.

4 The Primary Collector

The Customisable Memory Management relies on an underlying general mechanisms for identifying
objects, moving them and recovering memory. These mechanisms constitute the primary collector
of the CMM and are based on Bartlett’s technique. We illustrate here the technique and how we
improved it for our needs.

4.1 Bartlett’s mostly copying collector

A mostly-copying garbage collector performs compacting collection in the presence of ambiguous
pointers in the root set. Bartlett’s implementation (BGC) is an evolution of the classical stop-and-
copy collector which combines copying and conservative collection. BGC does not copy those objects
which are referenced by ambiguous roots, while most other live objects are copied.

The heap used by BGC is a non necessarily contiguous region of storage, divided into a number of
equal size pages, each with its own space-identifier (either From or Toin the simplest non generational
version). The FromSpace consists of all pages whose identifier is From, and similarly for ToSpace.
The collector conservatively scans the stack and global variables looking for potential pointers.
Objects referenced by ambiguous roots are not copied, while most other live objects are copied. If
an object is referenced from a root, it must be scavenged to survive collection. Since the object
cannot be moved, the whole page to which it belongs is saved. This is done by promoting the page
into ToSpace by simply changing its page space-identifier to To. At the end of this promoting phase,
all objects belonging to pages in FromSpace can be copied and compacted into new pages belonging
to ToSpace. Root reachable objects are traversed with the help of information provided by the
application programmer: the programmer is required to add a few simple declarations which enable
the collector to locate the internal pointers within objects.

- - - - —
- - - - —

ri
[SR
SN
_
I%I
=

Before Collection After Page Promotion After Compaction

|
: FromSpace page ToSpace page

4.2 Revised Algorithm

Experimenting with the original implementation of Bartlett’s mostly copying algorithm, we noticed
that for some of our programs the amount of garbage not reclaimed was too high. The main reason
for this was that a whole page was promoted when it contained just a single object reachable from a
root: all objects in that same page will be preserved as well as their descendants, thereby missing to
reclaim significant amounts of memory. This is illustrated in the following figure, where the object
in the rightmost heap page is retained since it is pointed from within the leftmost page which has
been promoted.

— R e .
[]
page 1 page 2 page 3

1

Roots Heap

To improve the ability to reclaim storage of Bartlett’s algorithm we keep a record of those objects
actually reachable within a page being promoted during the first phase. This allows us to identify
reachable objects in promoted pages. This information is contained in a bit table called LiveMap.

Here is our revised version of Bartlett’s algorithm, which in most cases is still iterative:

1. Clear the LiveMap bitmap

2. Scan the root set to determine objects which cannot be moved. Any directly reachable object
is marked as live setting a bit in the LiveMap bitmap and the page to which it belongs is
promoted.

3. Scan each promoted page linearly, looking for live objects. Traverse each live object by applying
the following procedure to each pointer it contains:

(a) if the pointer lays outside the heap do nothing;

(b) if it points to an object not yet reached: scavenge the object if it is in a non promoted
page, i.e. copy it, mark the copy as live, set a forwarding pointer within the object to the
copy. Otherwise mark the object live and, in case it is past the current scanning position,
recursively traverse it.

(c) if it points to a live object in a non promoted page update the pointer to the forward
position.

All new pages allocated for copying reachable objects belong to ToSpace, therefore the algorithm
does not need to traverse copied objects. A copied object is traversed when the collector examines
its page, so traversal is rarely recursive.

This algorithm does not require a forward bit as used in Bartlett’s implementation: we can
determine that an object has been forwarded if it is marked as live and contained in a non-promoted
page. We also do not need to store in each object its size which Bartlett requires in order to scan
through the objects in a promoted page. And finally, since we can determine the heap to which
an object belong from its address, we can completely get rid of the one word of header required in
Bartlett’s algorithm, therefore eliminating any space overhead for collected objects.

Our experiments with the new algorithm show improvements up to 50% in the amount of space
reclaimed with the new algorithm.

5 Multiple Heaps

Bartlett’s algorithm creates and manages a heap of objects which are collected by copying. The
traditional uncollected heap is still available through the primitives malloc or new on uncollected
classes. The uncollected heap cannot be eliminated since there are programs and libraries which
may use uncollected object in an unsafe way for the collector [Ellis 93], and there are objects that
can’t be relocated. It must be possible however that objects in the uncollected heap point to objects
in the collected heap and viceversa.

Pointers across heaps must be dealt carefully. The original Bartlett’s implementation requires
that pointers to collected objects be registered as roots. This is not practical, since it would entail
registering as root any collected object which is passed to a library which might store it internally.
This can be cumbersome to do and may be accidentally forgotten.

Therefore we need to extend the collector algorithm so that it is capable of discovering such point-
ers. The solution will later be generalized to deal with other logical heaps, created and maintained
by users.

The uncollected heap should be considered as part of the root set. An obvious solution would
then be to scan conservatively the entire uncollected heap searching for pointers to collected objects.
This would be too expensive and would posit as live also objects pointed from unreachable locations
in the heap. Alternatively one could perform a first complete scan from the root set to identify
cross-pointers from uncollected to collected objects, in order to promote the pages where the latter
reside, and then the mostly-copying algorithm would be applied. This is also a costly alternative,
since it requires traversing twice the objects.

If we examine where Bartlett’s algorithm fails, we can figure out an alternative solution. In the
following figure, object ¢ is pointed both from b, in the copy collected heap, and from g, in the
uncolleted heap.

Global Roots

Copy Collected
H []
ey =
System Stack
[c]
Static Area
(1 {g"]
- Uncollected
Registers Heap [

If we apply the mostly-copying algorithm, the pages where b and f will be promoted since they
are pointed from roots. In the copy phase object ¢ would be copied to a new page and the pointer
in b will be updated. However, when later we reach ¢ from g, we discover that its page should have
been promoted. We could in fact promote it now, if only b had not been updated. This in fact
suggests a solution: we do not update pointers when an object is copied, but we just record the
location to be updated, using a temporary bitmap. If we discover that the object should not have
been moved, we restore all the objects in its page from their copies. The updates to pointers are
performed only at the end of the algorithm, using the bitmap and the forwarding pointer stored in
the objects. This technique is similar to the one suggested by Detlefs [Detlefs 92] to handle C/C++
unions of pointers and non-pointers.

5.1 User Collected Heaps

With the algorithm described so far, two heaps are available: an uncollected heap for non garbage
collected objects and a collected heap.

Our goal is to allow users to build their own heaps with specific allocations strategies for their
applications.

We must however fulfill some essential requirements for the solution to be consistent and practical:

e allow pointers across heaps: restricting the range of pointers is difficult and inconvenient.

e transitivity of liveness: if an object is pointed by a live object it is live as well. We must ensure
that a pointer crossing heap boundaries does not go unnoticed by the collector.

e independence of collectors: it must be possible to write a collector for a particular heap,
without relying on the collectors for other heaps, provided the root set for such heap is known.

e coordination among heaps: a simple set of conventions is established to ensure that pointers
across heaps can be properly traversed.

In the following figure three heaps are present: the uncollected, the copy collected, and one user
collected heap.

Global Roots

Copy Collected
Heap D
(& b]| | E]
System Stack " U
User Root rc ! rd |
E User Collected
Heap D
. 20N =="2
Static Area Ty i
39] 0]
Uncollected
Registers Heap H

All six possible cross-heap pointers are shown. The user heap is maintained by the user, who
keeps a record of the roots into his heap, so that he can perform a collection relative to that heap
when appropriate, without involving the general collector. However the general collector must be
capable of identifying for instance object e as live, even though this requires to cut across several
heaps.

5.2 Customising the GC

The basic operations of a copying tracing collector are traversal and scavenging. The traverse
procedure is used in the first phase of the collector to identify live object, the scavenge procedure
is used to copy an object or perform whatever action is needed to preserve it.

Supporting multiple heaps requires to specialise these operations along two dimensions: according
to the type of the object for traversal; and according to the heap where the object is located for
scavenging.

One way to customise these operations is to use the mechanism of callbacks, used for instance
in programming window based user interfaces. With this schema, a user would register a specific
callback routine with the general garbage collector, for use on specific type of objects. So when the
garbage collector recognises one of these objects during traversal, it applies the appropriate callback
to collect the object.

Callbacks can be different for each individual object, but this is not necessary for our purposes, so
we preferred to replace callbacks with member functions. This makes these functions more convenient
to define and to retrieve by the collector through the standard mechanism of C++. Moreover the
traverse function could actually be generated automatically and no registration has to be added
in the application programs. A version of our algorithm for C would still exploit callbacks.

5.8 Coordination

To achieve coordination among collectors for the various heaps, one has to agree to a mechanism
that allows traversing objects in different heaps on behalf of the collector for another heap. While
traversing a foreign heap, a collector should not be allowed to make changes to the objects it visits,
except to recognized pointers to an object in his heap, when the object is moved.

So it is important that the traversal mechanism is uniform but capable to distinguish by whom
it was initiated. This is achieved supplying a Heap parameter to traverse and making scavenge a
member function of a Heap. Consider for instance the following situation:

B1

[

HeapZone B

= I

HeapZone A HeapZone C

Suppose a garbage collection is started in Heap A which uses a copy collector. While traversing
object Al, the garbage collector identifies a pointer to the object B1, belonging to Heap B. Object
B1 is scavenged by the scavenge function of the Heap A. This function recognizes object Bl as
external to Heap A, so it does not copy the object, as it would if it were internal to the zone, but
only traverses the object to determine whether further objects in Heap A can be reached from it.
The behaviour of scavenge changes again when object A2 is reached which belongs to Heap A.
Applying the scavenge function of Heap A has the effect of copying object A2.

6 The CMM Run Time

Heap memory is divided into pages of equal size. The allocator for each Heap requests pages from
the low level page allocator, where to allocate its objects. Each page is tagged with the Heap to
which it belongs.

The CMM provides a malloc routine which uses such pages to allocate objects, implementing
the traditional uncollected heap. malloc actually creates an instance of class CmmObject, which
contains an array of the required size, and returns a pointer to such array, as expected by calling
programs. This is in fact an interior pointer inside an object, and we exploit the ability of the CMM
to map such pointers to their base. This allows us to traverse also CmmObjects by means of its
member function traverse, defined as follows:

void CmmObject::traverse(Heap* heap) {
for (int i = 0; i < this->size(); i++)
promote_page(block[i]);

so that it promotes pages which are pointed from within the block. The only essential information
that CmmObject must provide is the size of the block.

In all other collected heaps, the objects allocated are instances of class GeObject or its derivatives,
which have their specialised version of traverse. No space overhead is present in GcObject except
for what C4++4 must supply for the support of virtual functions.

A bitmap is used to deal with internal pointers to objects. Whenever a CMM object is created,
the bit corresponding to its first word is set. Using this information, a pointer inside that object

10

can be normalized to the beginning of the object, simply scanning the bitmap backward until the
first set bit.

When an object has been moved, its first word is replaced by a forwarding pointer to the new
object. As already mentioned, this happens only during garbage collection and the collector can
determine this situation from the fact that the object is marked live and it is in a page in FromSpace.

6.1 The GcObject class

The run time support required for collectable objects is provided by the class GeObject. Every class
of collectable objects is derived from GcObject.

Users access the services of the CMM mainly by using GecObject member functions. The most
notable function of GeObject is the overloaded new operator which takes care of allocating the object
in a specific heap. The other functions are used by the primary collector or by user defined collectors.

Here is the public interface for this class.

class GcObject
{
public:

void#* operator new(size_t, Heap* = (Heap #*)heap);
virtual void traverse(Heap* zomne);

GcObject #*next(); // returns the next adjacent object

int forwarded(); // tells whether the object has been forwarded
void SetForward(GcObject *ptr); // sets the forwarding pointer

GcObject *GetForward(); // returns the forward location of the object
Heap *zomne(); // returns the zone to which the object belongs
void mark(); // marking primitives

bool IsMarked();
void SetLiveMap();
};

7 CMM User Interface

A collected class must derived from the class GeObject provided by the CMM. The default collector
calls the method traverse on collected objects to identify their internal pointers to other objects.
Users have to provide traverse methods for each class whose data members contain pointers.
traverse must be defined according to well defined rules presented below, because it implements
the interface between the CMM and user defined collected objects.

These rules ensure that superclasses or class objects contained in the class are correctly handled.
The following example illustrates the rules, which are a generalisation of those in [Bartlett 89].
Suppose the following collected classes were defined:

class BigNum: public GcObject

{
long data;
BigNum *next; // Rule (a) applies here
void traverse(Heap *zone);

}

class monomial: BigNum // Rule (c) applies here

11

{
PowerProduct pp; // Rule (b) applies here
void traverse(Heap *zone);

3

A BigNum stores in next a pointer to a collected object which needs to be scavenged, so traverse
becomes:

void BigNum::traverse(Heap *zomne)
{

zone->scavenge(&next) ; // Applying rule (a)
}

Because monomial inherits from BigNum, the method traverse for this base class must be invoked;
finally, since a monomial contains a BigNum in pp, this object must be traversed as well:

void monomial::traverse(Heap *zone)
{
BigNum: :traverse(zone); // Appling rule (c)
pp-traverse(zone); // Applying rule (b)
}

Finally, to deal with multiple base classes, we must identify the hidden pointer to the base class
present inside an object. This cannot be done in a compiler independent way, so the CMM provides
a macro VirtualBase which is compiler specific. For instance, its definition for the GNU C++
compiler is:

#define VirtualBase(A) & (_vb$ # A4)

In summary the rules are:

(a) for a class containing a pointer, say class C { type *x; }, the method C::traverse must
contain zone->scavenge (&x)

(b) for a class containing an instance of a collected object, say class C { GcClass x; }, the
method C: :traverse must contain x.traverse(zone)

(c) for a class derived from another collected class, say class C:GcClass {. ..}, the method
C::traverse must contain GcClass: :traverse(zone).

(d) for a class deriving from a virtual base class, say class C: virtual GecClass {. ..}, the method
C::traverse must contain zone->scavenge(VirtualBase(GcClass));

Preprocessing [Edelson 92] or compiler support [Samples 92] could be adopted to avoid hand
coding of these functions and risks of subtle errors in programs. We plan to address this issue in the
future.

7.1 Object Creation

When creating a collected object one can specify in which Heap to allocate it. The parameter zone
can be supplied in the standard C++ placement syntax for the new operator:

p = new(zone) Person(name, age);

If the user does not specify any Heap, the default Heap heap is used:

12

p = new Person(name, age);
which is equivalent to:
p = new(heap) Person(name, age);

where heap is a global variable initialised to the system Heap.
When creating collected objects, the programmer can decide case by case where to allocate them.
In summary, the following are the alternatives for object allocation:

Heap Classes Creation
uncollected uncollected new / malloc
copy collected collected new
user collected collected new(zone)

where we call collected those classes which inherit from GeObject and uncollected all others.

With the CMM, object allocation is not tied to the type of an object as in other proposals, so a
programmer can design his classes without committing to a particular memory policy. The policy
can be decided later, or even be different in different portions of an application. For instance, in the
PoSSo solver, one sets the variable heap to the heap implementing the stack policy before starting
the simplification. Throughout the simplification, all objects (monomial, polynomial, large precision
integers, lists and so on) are allocated in this heap and freed in a single step at the end of the
simplification. After simplification, one reverts to the normal heap. It is essential that this can be
done without changing a single line in the user code.

8 Heap Classes

To manage a heap one normally has to maintain the set of roots for the objects in the heap, manage
the pages where objects are allocated and implement the memory allocation and recovery primitives.
A suitable encapsulation for these functionalities is provided by the Heap class.

8.1 The Heap Class

A class implementing a heap must supply definitions for the following pure virtual functions:
allocate and reclaim, implementing the memory allocation strategy, collect to perform col-
lection, and scavenge, the action required to preserve live objects encountered during traversal.
Heap classes are derived from the abstract class Heap, defined as follows:

class Heap;

{

public:
int Index(); // identifies the Heap
Heap(); // initializer

virtual GecObject* allocate(int ObjSize) = 0;
virtual void reclaim(GcObject* ObjPtr) = 0;
virtual void scavenge(GcObject **ptr) = 0;

13

virtual void collect() = 0;

// Operations on the Root Set:

void register(GcObject *); // add an element

void register(GcObject **);

void deregister(GecObject *); // remove an element

void deregister(GcObject **);

void ScanRoots(Heap *zone); // scan the roots

bool outside(GcObject *ptr); // checks if pointer is outside this Heap

void visit(GcObject *ptr) {
if (! ptr->IsMarked()) {
ptr—>mark();
ptr—>traverse(this);

private:
int index;
RootSet *roots;

};

roots is a pointer to an instance of class RootSet, used for registering potential roots. Depending
on the particular type of RootSet used, the collector can be conservative, type-accurate or both.
The simplest RootSet considers as possible roots only the objects explicitly registered by the user.
The derived class ConservativeRootSet scans also the system stack, the process static data area,
and registers for possible roots.

8.2 The Bartlett Heap

The Heap Bartlett encapsulates the primary collector of the CMM. The function gcalloc, gcmove
and gccollect are the primitive functions provided by Bartlett’s implementation of the collector.

class Bartlett: public Heap
{
public:
Bartlett() {
roots = new ConservativeRootSet();

}

GcObject* allocate(int ObjSize) {
return (GcObject *)gcalloc(GCBYTEStoWORDS(0bjSize));
}

void scavenge(GcObject **ptr) {
if (OutsideHeap((int *)*ptr))
return;
GcObject *p = GetBeginning((int #*)*ptr);
if (outside(p))
visit(p);
else {
*p->SetForward(gcmove(p));

14

ToBeForwarded(ptr);
}
}

void reclaim(GcObject* 0bjPtr) {}; // delete does nothing

void collect() {
gccollect(); // the actual Bartlett’s collector
}
}

Bartlett’s collector starts scanning the set of possible roots to identify live objects. Because it is
a conservative collector, roots is an instance of ConservativeRootSet. The objects it contains are
traversed to identify other live objects. Objects are traversed in a type-accurate way by applying
the user supplied function traverse. traverse applies in turn the Heap member function scavenge
to each reachable object. For each object in the Bartlett Heap, Bartlett’s original gcmove primitive
is used to copy it and compact memory; otherwise the object is visited using the function visit,
which marks the object if necessary and then traverses it.

8.3 The Uncollected Heap

The uncollected heap is available through the default new operator or the functions of the malloc
library. Objects not inheriting from GcObject are allocated in this heap.

8.4 The root set

Many heap zones require the user to explicitly register the possible roots. To support that, the class
Heap contains an instance of the class RootSet supporting the following operations:

void set(GcObject *);
void unset(GcObject *);
void setp(GcObject **);
void unsetp(GcObject **);

setp and unsetp are used to (un)register pointers to GC objects as roots. set and unset are
used to (un)register GC objects as roots. Consider the following example:

cell GlobalRoot; // Define a cell variable

main()

{
cell #LocalRoot = new cell; // Define a cell pointer
HeapStack #*MyHeap = new HeapStack(10000); // Create a new heap zone
MyHeap->roots.setp((GcObject #*)&LocalRoot); // Register the pointer as a root
MyHeap—>roots.set(&GlobalRoot); // Register the cell as a root
LocalRoot->next = new(MyHeap) cell; // Allocates some new cells
GlobalRoot.next = new(MyHeap) cell;
MyHeap->collect(); // The collector will identify

// any allocated cell, starting

// traversing from cell LocalRoot

// and GlobalRoot
MyHeap->roots.unsetp((GcObject **)&LocalRoot); // Deregister the local root.

15

9 Implementing Heaps

This section illustrates the CMM programmer interface for implementing new Heaps. We describe
the mechanism through an example, which is a simplified version of the actual Heap used in PoSSo.

9.1 The HeapStack

A foremost algorithm in the PoSSo algebra system is the one for computing of the Grobner basis of a
set of polynomials. Dependencies between temporaries and persistent data make the use of explicit
memory allocation/deallocation nearly impossible, so use of a garbage collector was essential. The
main step of the Buchberger algorithm [Buchberger 85] consists in the simplification of a polynomial
which involves many operations creating a lot of intermediate polynomials of which only the last
one is relevant and is inserted into the basis. Once this polynomial has been computed, all the
temporary structures allocated can be removed.

The peculiar dynamics of the problem offers an opportunity to try out the CMM facilities to
implement a specific memory management. We created a Heap in which the allocation is stack-like
(and thus fast), and the garbage collector called synchronously after each step.

We present a simplified solution in which the size of the stack is fixed, and a copying collector
which uses two areas. The real solution we adopted for the problem is more complex and uses a list
of areas, and a copying collector.

9.2 The HeapStack

First we define the HeapStack class as a Heap consisting of two areas which implement the FromSpace
and the ToSpace of the collector, and a RootSet to register the roots to use for the collection:

class HeapStack: public Heap
{
public:
void scavenge(GcObject *#*ptr);
GcObject* allocate(int words);
void reclaim(GcObject* ObjPtr) {};
void collect();
HeapStack(int size = 100000);

private:
pages FromSpace, ToSpace;
int FromTop, ToTop;
+;

HeapStack: :HeapStack(int StackSize)

{
FromSpace = allocate_pages(StackSize, index);
ToSpace = allocate_pages(StackSize, index);

}

inline GcObject* HeapStack::allocate(int size)
{
int words = BYTEStoWORDS(size);
int *object = FromSpace + FromTop;
if (words <= (FromSize - FromTop)) {
FromTop += words;

16

return (GcObject *)object;

}
else return (GecObject *)NULL;

The collector uses the root set to traverse the roots using its traversing strategy. After having
moved to ToSpace all the objects reachable from the roots, it traverses those objects in order to
move all further reachable objects. The specific action required for scavenging objects is as follows:

void HeapStack::scavenge(GcObject **ptr)

{
GcObject **01dPtr = ptr;

if (OutsideHeap((int *)*ptr))
return;
GcObject *p = GetBeginning((int #*)*ptr) ;
if (outside(p))
visit(p);
else if (#ptr->forwarded())
ToBeForwarded(ptr);
else {
*ptr = moveTo(ToSpace, *ptr);
01dPtr->SetForward (*ptr);

This code relies on support provided by classes GeObject and HeapStack. As the final step the
collector exchanges the roles of FromSpace and ToSpace

void HeapStack::collect()
{
pages *TmpSpace;
GcObject *0bjPtr;
// First traverse the objects registered as roots, applying our scavenge
ScanRoots(this);
// Now traverse the objects already moved into ToSpace
ObjPtr = ToSpace;
while (ObjPtr < ToSpaceEnd) {
ObjPtr->traverse(this);
0bjPtr = 0bjPtr->next();
b
// swap FromSpace and ToSpace
TmpSpace = FromSpace; FromSpace = ToSpace; ToSpace = TmpSpace;
FromTop = ToTop; ToTop = O0;

The roots for HeapStack can be set or deleted using the Heap member function register and
unregister. In the case of the Buchberger algorithm we register two global variables containing the
Base of polynomials and the list of polynomial pairs which are the only objects which need to be
preserved after each simplification step:

HeapStack BBStack;

17

Base b;
Pairs p;

main() {
BBStack.register(b);
BBStack.register(p);

BBStack.collect()

BBStack.deregister(b);
BBStack.deregister(p);
}

10 Related Work

The Boehm-Wiser collector [Boehm 88] is a well known collector for C++ which is convenient to
use since it is totally conservative. However is not customisable and is subject to unduly retention
of space and memory fragmentation since it cannot compact memory. Our copying collector has
some advantage in performance not having to reconstruct a free list after collection and being more
accurate in tracing live objects.

Work on adding garbage collection to C++ has been done by Dain Samples and Daniel Edelson.
Samples [Samples 92] proposes modifying C++, to include a garbage collection environment as part
of the language. This may be a good long term approach for garbage collection in C++ but is
not suitable for a project like PoSSo which needs portable garbage collection facilities as soon as
possible. Our feeling is that this work demonstrates how the flexibility of object oriented languages
can be used to implement a very complex environment, like CMM, without requiring modifications
to the language.

Edelson [Edelson 92] has been experimenting with the coexistance of different garbage collection
techniques. The flexibility of the solutions he adopts in his approach allows the coexistance of
different garbage collectors, but he does not provide any interface to the user to customise and/or
define his own memory management facilities.

Ellis and Detlefs [Ellis 93] propose some extensions to the C++ language to allow for collectable
object. The major change is the addition of the type specifier gc to specify which heap to use in
allocating the object or a class. They also propose to change the operator new T to call the collector
allocator when T is a gc type, and as a consequence of this, the overloading of new and delete oper-
ators for gc classes is forbidden. While the gc keyword is compatible with our solution of inheriting
from the base class GeObject, the constraint on new needs to be relaxed to allow overloading of new
when additional arguments are present. Otherwise this constraint will block the possibility of using
different zones for the same kind of objects in different portions of a program. Other suggestions
from the Ellis-Detlefs proposals are quite valuable, for instance making the compiler aware of the
garbage collection presence and avoid producing code where a pointer to an object (which may be
the last one) is overwritten. This can happen for instance in optimizing code for accessing structure
members.

11 Conclusion

The CMM offers to programmers garbage collection facilities without significant compromises. They
can use a generic collector, a specific collector or no collector at all, according to the need of each
algorithm. The algorithm can be in control when necessary of its memory requirement and does not
have to adapt to a fixed memory management policy.

18

The CMM is implemented as a C++ library, produced with extensive revisions from the original
Bartlett’s code. It is being heavily used in the implementation of high demanding computer algebra
algorithms in the PoSSo project. The CMM provides the required flexibility without degradation in
performance as compared to versions of the same algorithms performing manual allocation.

The next challenge would be to incorporate in the compiler the minimal facilities required for
CMM support: the addition of the gc keyword, proposed by Ellis and Detlefs, could facilitate this.

12 Availability

The sources for CMM are available for anonymous ftp from site ftp.di.unipi.it in the directory
/pub/project/posso. Please address comments, suggestions, bug reports to cmm@di.unipi.it.

13 Acknowledgements

Carlo Traverso and John Abbott participated in several meetings and provided valuable feedback on
the design. Joachim Hollman provided useful comments on the first implementation. J.C. Faugere
provided the idea for this work, adopting a specific memory management in his implementation
of the Buchberger algorithm. Discussions with J. Ellis where useful to ensure compatibilty of his
proposal with our framework.

References

[Bartlett 88] Joel F. Bartlett “Compacting garbage collection with ambiguous roots” Tech.
Rep. 88/2, DEC Western Research Laboratory, Palo Alto, California, February
1988.

[Bartlett 89] Joel F. Bartlett “Mostly-copying collection picks up generations and C++", Tech.
Rep. TN-12, DEC Western Research Laboratory, Palo Alto, California, October
1989.

[Boehm 88] H.-J. Boehm and M. Wiser “Garbage collection in an uncooperative environment”,

Software Practice and Experience, 18(9), 1988, 807-820.
[Breuel 92] Thomas M. Breuel “Personal communication”, October 1992.

[Buchberger 85] B. Buchberger, “Grobner bases: an algorithmic method in polynomial ideal theo-
ry”, Recent trends in multidimensional systems theory, N. K. Bose, ed., D. Reidel

Publ. Comp. 1985, 184-232.

[Detlefs 92] D. L. Detlefs, “Concurrent garbage collection for C++”, CMU-CS-90-119, School
of Computer Science, Carnegie Mellon University, 1990.

[Edelson 92] D.R. Edelson “Precompiling C++ for garbage collection”, in Memory Manage-
ment, Y. Bekkers and J. Cohen (Eds.), Lecture Notes in Computer Science, n.
637, Springer-Verlag, 1992, 299-314.

[Edelson 92b] D.R. Edelson “A mark-and-sweep collector for C++”, Proc. of ACM Conference
on Principle of Programming Languages, 1992.

[Ellis 93] J.R. Ellis and D.L. Detlefs “Safe, efficient garbage collection for C++7, Xerox
PARC report CSL-93-4, 1993.

19

[Samples 92] A.D. Samples “GC-cooperative C++”, Lecture Notes in Computer Science, n.
637, Springer-Verlag, 1992, 315-329.

[Wentworth 90] E. P. Wentworth “Pitfalls of conservative garbage collection”, Software Practice
and Experience, 20(7), 1990, 719-727.

[Wilson 92] P.R. Wilson “Uniprocessor garbage collection techniques”, in Memory Manage-
ment, Y. Bekkers and J. Cohen (Eds.), Lecture Notes in Computer Science, n.
637, Springer-Verlag, 1992, 1-42.

20

