On Variable Ordering of Ordered
Functional Decision Diagrams

Bernd Becker* Rolf Drechslerf
Michael Theobald?

TR-94-006

Abstract
In this paper methods for finding good variable orderings for ordered functional decision diagrams
(OFDDs) are investigated. We present an algorithm for exact minimization of OFDDs that is
applicable for functions up to n = 14 variables. We present an upper bound for the size of
OFDDs representing tree-like circuits. Various methods for dynamic variable ordering based on
the exchange of variables are presented. Experimental results are given to show the efficiency of
our approaches.

*Fachbereich 20 - Informatik, J.W.Goethe-Universitat, D-60054 Frankfurt, and International Computer Science Institute, Berkeley,
CA 94707; email: becker@informatik.uni-frankfurt.de

tFachbereich 20 - Informatik, J.W.Goethe-Universitat, D-60054 Frankfurt; email: <name>@informatik.uni-frankfurt.de
This work was supported by DFG grant Be 1176/4-1.

i

1 Introduction

Graph based data structures are often used in CAD systems for efficient representation and manipulation of
Boolean functions. The most popular data structures are ordered binary decision diagrams (OBDDs), that
were introduced by Bryant [Bry86] and in the meantime are used for the solution of numerous tasks in design
automation [Bry92].

In recent years synthesis based on AND/EXOR realizations gains more and more interst [Ber68, Sau92, BDT93],
since AND/EXOR based graphs often allow more succinct representation for classes of Boolean functions than
OBDDs [BDW93]. Thus, in many applications Reed-Muller expansions (RMEs) are used.

In this paper we focus on a special class of restricted RMEs, called ordered functional decision diagrams (OFDDs).
OFDDs are also applied to problems in logic synthesis, e.g. technology mapping [SKR92] and design for testability
[BD93b].

In [BD93a] it has been proven that the size of an OFDD representing a Boolean function largely depends on the
chosen variable ordering, i.e. the size of an OFDD varies from linear to exponential.

In this paper we present an algorithm for exact minimization of OFDDs based on the ideas presented in [FS87]
and [ISY91], where similar algorithms were applied to OBDDs. We prove that tree-like circuits can be repre-
sented efficiently using OFDDs. A method for exchanging adjacent variables (including complemented edges)
is introduced that is the basic operation for dynamic variable ordering. Various methods for dynamic variable
ordering are presented. We performed experimental results that show that OFDDs are often more succinct than
OBDDs. We compare our heuristics with the heuristics presented in [SKR93]. We constructed OFDDs for some
of the ISCAS89 [BBK89] and some of the MCNC91 benchmarks. Thus, we show for the first time that OFDDs

are also applicable for representation of large circuits.

The paper is structured as follows: In Section 2 OFDDs are defined. The method for exact minimization is pre-
sented in Section 3 and heuristical methods based on exchange of adjacent variables are introduced. Experimental
results are given in Section 4. We finish with a resume of the results in Section 5.

2 Ordered Functional Decision Diagrams

In this section we define OFDDs. The core of the data structures is a decision diagram (DD), which is a directed
acyclic graph with some additional properties. We start with general definitions. Then we introduce further
restrictions. Based on these definitions it is possible to generalize the data structure to more powerful ones (see

[BD93a]).

Definition 1 A decision diagram (DD) over X,, := {x1, 2, ..., 2, } is a rooted directed acyclic graph G = (V, E)
with vertex set V containing two types of vertices, non-terminal and terminal vertices. A non-terminal vertex v
is labeled with a variable from X, , called the decision variable for v, and has exactly two successors denoted by
low(v), high(v) € V. A terminal vertex v is labeled with 0 or 1 and has no successors.

The size of a DD, denoted with |DD|, is given by the number of internal nodes. If DDs are used as a data
structure in design automation, further restrictions on the structure of DDs turn out to be necessary.

1. A DD is free, if each variable is encountered at most once on each path in the DD from the root to a terminal
vertex.

2. A DD is ordered, if it is free and the variables are encountered in the same order on each path in the DD
from the root to a terminal vertex.

Since we want to work with small representations of Boolean functions, we define methods to reduce decision
diagrams. For this we introduce two reduction types, that can be combined [BDT93].

Type 1: Identify two nodes v, v’ in the DD, where the sub-DDs rooted by v, v’ are isomorphic.

Type 2: Delete all nodes v whose successor high(v) points to the terminal 0 and connect the incoming edges of
the deleted node to the corresponding sucessor.

Figure 1: OFDD for f = z122 4+ z3

Definition 2 A DD is reduced, if no reductions of type 1 and type 2 are applicable to the DD.
A careful analysis of the proofs in [Bry86, SW92, GM92] shows that the following lemma is valid for DDs:

Lemma 1 The reduction of a free DD G is uniquely determined and can be computed in linear time in the size

of G.

Until now we have not defined how DDs can be related to Boolean functions. To do this, the following notions
are helpful. Let f : B® — B be a Boolean function over the variable set X,,. Then f? denotes the cofactor
of f with respect to z; = 0, defined by f?(a) := f(a1,..,ai-1,0,ai41,..,a,) for a = (a1,as,...,a,) € B".
Analogously, f! denotes the cofactor for z; = 1. Finally, we define f? by f? := f? @ f!. (Notice, that the three
functions f7, f}, f? can naturally be interpreted as Boolean functions from B"~! to B defined over the variables
Z1,..., %1, &i41, ..., &y.) Using the definitions above it is an easy exercise to prove the following decomposition
equation for an arbitrary Boolean function f:

f = Reouff (1)
OFDDs are constructed by application of equation (1). More formally we obtain:

Definition 3 Each ordered DD over X, is an OFDD over X, . Nothing else is an OFDD. The function fg :
B” — B represented by an OFDD G over X, is defined as follows:

1. If G consists of a single node labeled with 0 (1), then G is an OFDD for f =0 (f = 1).

2. If G has a root v with label z;, then G is an OFDD for fou(v) i fhigh(v), Where fiow () (fhigh(v)) are the
functions represented by the OFDD rooted at low(v) (high(v)).

It follows that an arbitrary Boolean function can be represented by an OFDD and vice versa that each ordered
DD defines an OFDD computing a Boolean function. From Lemma 1 and Definition 3 we conclude:

Lemma 2 Reduced OFDDs are a canonical representation for Boolean functions.

The size of an OFDD can be further reduced, if complemented edges (CEs) are used [Ake78, BRB90, BDT93].
Then a node represents a function and the complement of the function at the same time. The representation is
further canonical. Experiments show that CEs reduce the OFDD-size by 10 % on average.

Example 1 In Figure 1 an OFDD for the function f = 222 + 3 is shown. A dot on an edge symbolizes a CE.

3 Ordering Methods

The size of an OFDD largely depends on the chosen variable ordering [BD93a], i.e. the size of an OFDD varies
from linear to exponential. In this section ordering methods are presented.

3.1 Exact Minimization

We start with an algorithm for determining the ordering minimizing the overall size of an OFDD. The algorithms
presented in [FS87] and [ISY91] can directly be applied, since reduced OFDDs fulfill all needed prerequisites,
i.e. the number of nodes at level i are constant if the ordering of the variables in the upper and the lower part
are changed.

But the corresponding algorithm has exponential worst case behavior. Our experiments have shown (see Section
4) that it is only applicable for OFDDs with up to n = 14 variables. For OFDDs representing Boolean functions
depending on more variables heuristic methods are needed.

3.2 OFDDs for Tree-like Circuits

Most often OFDDs are constructed from the circuit description of a Boolean function. It is well-known that tree-
like circuits have OBDD size O(n), when n denotes the number of inputs and the ordering from the description is
used. Some heuristics use this fact for finding a good ordering for benchmark circuits. In the following we show
that tree-like circuits can also be represented efficiently by OFDDs.

In this subsection we use OFDDs without CEs for simplicity of the proof. Obviously, OFDDs with and without
CEs differ in size at most by a factor of 2.

For tree-like circuits defined on basic gates with two inputs (i.e. AND, OR, XOR, NAND, NOR, EQUIV) the

following lemma holds:

Lemma 3 Each tree-like circuit SK with n inputs can be represented by an OFDD of size
< n-depth(SK).

Proof: Due to page limitation only a sketch of the proof is given:

Let F' and G be two OFDDs with disjoint support for the functions f and g, respectively. We have to consider
the basic operations and have to prove that the synthesis can not increase the number of nodes too much. We
give the general principle how to do this and apply this principle to AND and XOR.

Assume that * is any of the binary operations given above and that v, labeled with #; (the first variable of F') is
the root of the OFDD for f xg. Then we recursively compute the OFDDs rooted at low(v) and high(v). These
are OFDDs for the functions fy * ¢ and (fo * g) @ (f1 * ¢). (Notice that g is independent of #;!)

If we do this for the AND operation, we obtain (f-¢g)o = fo-g and (f-¢9)2 = (fo-9)® (f1-9) = f2 - g, respectively.
We conclude, that the OFDD for f g can be constructed as follows: We only have to redirect the incoming edges
of the terminal 1-node from the OFDD F' to the root node of G.

For the XOR operation it holds (f @ ¢)o = fo® g and (f P g)2 = (o B 9) ® (/1 B 9) = f2. Thus, we obtain an
OFDD for f @ g in the following way: If 1 is an element of the 2-level RME of f (Case 1), then the path in F
corresponding to this element (1-path) has to be isolated and an OFDD for § has to be rooted at the endpoint
of this path. If 1 is not an element of the 2-level RME of f (Case 2), again the 1-path in F' has to be isolated
and an OFDD for ¢ has to be rooted at the endpoint of this path. It is easy to see that isolation of a path costs
at most £ additional nodes, if k is the number of different variables. Computation of § = 1 4 ¢ can be done by
adding the 1-path (if non-existent in G) or deleting the 1-path (if existent in G). This again has the same costs
as isolation of a path. Similarly OR can be realized.

We obtain the cost for the realization of the negated operations by observing that negation, as pointed out before,
can be done by adding or deleting a path. If negation is performed at a node of level 7 in the circuit, we conclude
that at most 2¢~! nodes (one for each of < 2/~1 variables) have to be added. Since there are at most n/2% nodes
in a level, there can be added at most n/2 nodes per level because of negation. This finally results in the factor

of depth(SK). O

Often the representation is much better, but in the case of a balanced NAND-tree the given bound is asymp-
totically optimal. An analogous lemma is valid for operations with more than two inputs. In this case we need
< 2-n-depth(SK) nodes, but we skip the proof for shortness of the paper.

D D D D
fi fa f3 fa 1 f3 f2 fa

Figure 2: Exchange of i-th and adjacent variable

exchange_var_fdd(F,m) {
do{
recompute number of saved nodes for needed
permutations of m variables
perform best exchange of m variables;
} while (optimization possible);

}

Figure 3: Algorithm for exchange of variables

3.3 Dynamic Variable Ordering

For general circuits such polynomial upper bounds can not be given [BDW93]. In the following we present
methods that are based on the exchange of adjacent variables. (Similar methods have been applied to OBDDs in
[FMK91, ISY91, Rud93].)

The size is optimized without a complete reconstruction of the OFDD. Only local transformations for the two
variables are performed. This is due to the observation that OFDDs are a canonical form. Thus, the exchange
of variable i and i 4+ 1 does not change the sub-OFDDs corresponding to the variables from 1st to (¢ — 1)-th and
from (i 4+ 2)-th to the n-th position.

The general case for the exchange of variable ¢ and an adjacent variable j is shown in Figure 2. All other cases
can be reduced to this one. The exchange is performed very fast in our OFDD-package [BDT93], since only edges
must be redirected. In contrast to the method presented in [FMK91] our approach also uses CEs.

One disadvantage of the method presented above is that it might easily be captured by local minima. But this
method can be extended to the exchange of adjacent m variables (m > 2). Then, it is more time consuming but
leads to better results, analogously to OBDDs [ISY91].

For this we construct a cyclic exchange of variables based on transpositions that visits all permutations of m
variables. For m = 3 the sequence can be chosen as

abc — bac — bca — cba — cab — ach.

This can directly be extented to arbitrary m [RND77]. The corresponding algorithm is shown in Figure 3. The
experimental results in Section 4 show the results of this method for increasing m. This method is also called
window permutation [Rud93].

Finally, we present the sifting algorithm [Rud93] for OFDDs. There one variable is exchanged while all others are
left stable. The variable is positioned at the location minimizing the overall size of the OFDD. This procedure,
that also uses the exchange of adjacent variables, is applied to all variables.

adr4
dist

f51m
life
mlp4

radd
rd53
rd73
sqré
sym10 o .
74 B minimal OBDD size

z5xpl] minimal OFDD size
z9sym

add6 é
addm4

50 100 50

nodes

Figure 4: Minimal OFDD size vs. minimal OBDD size

4 Experimental Results

In this section we present experimental results concerning the algorithms presented in Section 3.

4.1 Exact Minimization

We performed exact minimization of arithmetical benchmark circuits [BHMS84], since AND/EXOR based data
structures are especially applicable to these types of circuits. The results are presented in Figure 4, where the
minimal OFDDs are also compared with the minimal OBDDs. It turns out that for 11 of the considered 15
benchmarks OFDDs allow more succinct representation.

4.2 Dynamic Variable Ordering

In this subsection we present the results obtained by dynamic variable ordering of OFDDs, i.e. for window
permutation with increasing m and the sifting algorithm. The results including a comparison with the optimal
OFDD size sizen, for the arithmetical benchmarks are given in Figure 5.

Since sifting guaranteed the best results we also applied it to larger examples, i.e. ISCAS89 benchmarks [BBK89].
We started with the initial ordering and a node limit of 70000 nodes. The dynamic reordering was performed
when no more nodes were available. The results in comparison to OBDDs that are also constructed using sifting
[Rud93] are presented in Figure 6.

Finally, we compared the results obtained by our sifting method with the heuristics presented in [SKR93] for
some of the MCNC91 benchmarks. We compared sifting with the best results obtained in [SKR93], where an
other reduction method was used. The corresponding OFDD-sizes are shown in Figure 7.

5 Conclusions

In this paper ordering methods for OFDDs have been presented. We succeeded in minimizing OFDDs for up
to n = 14 variables. For OFDDs representing tree-like circuits we proved an upper bound for the number of
nodes. For general circuits we applied dynamic variable ordering and thus were able to construct OFDDs for
large benchmark circuits. We presented experimental results and showed that our approach is much more succinct
than previously published methods.

Since OFDDs are more succinct than OBDDs at least for some classes of functions they might partially be an
alternative data structure. It is also possible to mix OBDDs and OFDDs level by level. This hybrid approach is
currently implemented and first results can be found in [DST*93].

| name || $12€min | m=2 | m=3 | m=4 | siﬂ|

add6 23 58 59 57 45
addm4 132 133 132 132 132
adrd 15 15 15 15 15
dist 159 172 172 171 159
f51m 35 35 35 35 35
life 24 38 25 25 25
mlp4 107 107 107 107 107
radd 15 27 27 26 20
rdb3 13 13 13 13 13
rd73 21 21 21 21 21
sqr6 50 50 50 50 50
sym10 36 36 36 36 36
74 13 13 13 13 13
z5xpl 45 45 45 45 45
z9sym 26 26 26 26 26

Figure 5: OFDD size for dynamic variable ordering

| name || OBDD | OFDD |

s27 9 9
s2908 86 71
s344 103 115
s349 103 115
s382 121 122
s1196 631 734
s1423 2725 2044
51488 385 386
51494 385 386

Figure 6: OFDD-size for ISCAS benchmarks

| name || [SKR93] | sift |

b12 292 61
cordic 233 41
cps 4922 1293
exh 901 272
rd53 34 13
rd73 64 21
rd84 86 29
sao?2 154 98
t481 54 20
vg2 1912 245
Z5Hxpl 54 45
Z9sym 40 20

Figure 7: Comparison with [SKR93]

References

[Ake78]
[BBK89]

[BD93a]

[BD93b]

[BDT93]

[BDW93]

[Ber68]
[BHMS84]

[BRBYO]

[Bry86]

[Bry92]

[DST+93]

[FMK91]

[FS87]

[GM92]

[1SY91]

[RND77]

[Rud93]

[Sau92]

S.B. Akers. Binary decision diagrams. IEFEE Trans. on Comp., C-27:509-516, 1978.

F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential benchmark circuits. In
Int’l Symp. Circ. and Systems, pages 1929-1934, 1989.

B. Becker and R. Drechsler. On the computational power of functional decision diagrams. 20. Work-
shop uwber Komplexitatstheorie, Datenstrukturen und effiziente Algorithmen, Berlin, 1993.

B. Becker and R. Drechsler. Testability of circuits derived from functional decision diagrams. Technical
report, Universitat Frankfurt, 13/93, Fachbereich Informatik, 1993.

B. Becker, R. Drechsler, and M. Theobald. On the implementation of a package for efficient represen-
tation and manipulation of functional decision diagrams. IFIP WG 10.5 Workshop on Applications
of the Reed-Muller Expansion in Circuit Design, Hamburg, 1993.

B. Becker, R. Drechsler, and R. Werchner. On the relation between bdds and fdds. Technical report,
Universitat Frankfurt, 12/93, Fachbereich Informatik, 1993.

E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Book Company, 1968.

R.K. Brayton, G.D. Hachtel, C. McMullen, and A.L. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Cluwer Academic Publishers, 1984.

K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a BDD package. In Design
Automation Conf., pages 40-45, 1990.

R.E. Bryant. Graph - based algorithms for Boolean function manipulation. ITEEE Trans. on Comp.,
8:677-691, 1986.

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM, Comp.
Surveys, 24:293-318, 1992.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski. Efficient representation and
manipulation of switching functions based on ordered kronecker functional decision diagrams. Tech-
nical report, J.W.Goethe-University, Frankfurt 14/93, October, 1993.

M. Fujita, Y. Matsunga, and T. Kakuda. On variable ordering of binary decision diagrams for the
application of multi-level synthesis. In EFuropean Conf. on Design Automation, pages 50-54, 1991.

Steven J. Friedman and Kenneth J. Supowit. Finding the optimal variable ordering for binary decision
diagrams. In Design Automation Conf., pages 348-356, 1987.

J. Gergov and C. Meinel. Efficient analysis and manipulation of obdds can be extended to read-once-

only branching programs. In WG’92, LNCS, 1992.

N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision diagrams based on exchange

of variables. In Proceedings of ICCAD, pages 472-475, 1991.

E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms - Theory and Practice. Prentice-
Hall, Inc., 1977.

Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Int’l Workshop
on Logic Synth., pages 3a:1-12, 1993.

J. Saul. Logic synthesis for arithmetic circuits using the reed-muller representation. In Proceedings of

EDAC’92, pages 109-113, 1992.

[SKR92] E. Schubert, U. Kebschull, and W. Rosenstiel. FDD based technology mapping for FPGA. In Pro-
ceedings of FUROASIC, pages 14-18, 1992.

[SKR93] E. Schubert, U. Kebschull, and W. Rosenstiel. Some optimizations for functional decision diagrams.

IFIP WG 10.5 Workshop on Applications of the Reed-Muller Ezpansion in Circuit Design, Hamburg,
1993.

[SW92] D. Sieling and I. Wegener. Reduction of BDDs in linear time. Technical report, Universitat Dortmund,
1992.

