INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center Street @ Suite 600 ® Berkeley, California 94704 e 1-510-642-4274 e FAX 1-510-643-7684

All-to-all Broadcast on the
CNS-1*

Silvia M. Miillert
TR-93-082

December 1993

Abstract
This study deals with the all-to-all broadcast on the CNS-1. We determine a
lower bound for the run time and present an algorithm meeting this bound. Since
this study points out a bottleneck in the network interface, we also analyze the
performance of alternative interface designs. Qur analyses are based on a run time
model of the network.

*The CNS-1 (Connectionist Network Supercomputer) project is a collaboration of the University of
California at Berkeley and the International Computer Science Institute

'1CSI and CS Department, University of Saarland, Germany. E-mail smueller@icsi.berkeley.edu or
smueller@cs.uni-sb.de

1 Introduction

Some neural network algorithms for sparsely connected networks require an all-to-all
broadcast described as follows:

A vector of n data elements is spread equally over the p nodes of a multicomputer.
FEach node stores n, = n/p elements. During an all-to-all broadcast, each processor
collects the whole vector.

In this work, we analyze how fast the CNS can execute such a transfer. We first look
at some design principles of the network and the network interface. This gives us a lower
bound of the broadcast time. We then present a simple algorithm which meets this bound
if the vectors are not too short. These analyses indicate a bottleneck in the network. In
section 5 we therefore discuss design alternatives to overcome the bottleneck and to speed
up the all-to-all broadcast. And finally, we sketch the potential impact of the broadcast
on the performance of the CNS.

Without loss of generality, we assume that a vector element is four bytes. If the
elements are only one byte, four elements can be packed into one word. This packing can
be done with some loads from and stores to the on-chip data cache.

The CNS as described in [ABCT93, AC93] is still in design. We therefore base our
analyses on the run time model developed in [Miil93]. In the next section we sketch the
network and its timing, but for more details we refer to [ABCT93, AC93].

2 Network overview

The CNS has a cylindrical topology. This is a mesh with wraparound in only one dimen-
sion. Fach ring holds 32 nodes. Neighboring nodes are connected by a bidirectional link,
with a capacity of 8b! per CPU cycle and direction. Figure 1 shows a block diagram of
the network interface.

Transfer overhead occurs on the sending and on the receiving side. It is partially related
to processor activities and partially to network activities. The processor, for example,
executes an interrupt and moves the data into or from special transfer registers. For
simplicity, we assume that all overheads require about the same time ov = 5. That is a
realistic value as Tim Callahan showed in his recent analysis ([Cal93]). According to the
timing model ([Mil93], p. 5-7), it then takes 4 ov + 14 myengen cycles to transfer a message
of Miengtr, bytes between neighboring nodes. Each message includes nine header bytes.

The sender copies the message into a buffer of its network interface. The network
interface then sends the buffer message byte by byte through the network. The first byte
leaves the buffer 2 ov + 1 cycles after the start of the transfer, and the last byte leaves it
Miength — 1 cycles later. We assume that the node can start a new conflict free transfer in
the same direction myeng¢p, + 1 cycles after it started the previous transfer. This message
arrives in the network buffer 2 ov cycles later. So, only the overhead can be hidden, when
sending two messages over the same link.

'b designates bit and B designates bytes

8b
North ————= North
8b
South —— ot 2~ soutn
o [Lbufer |

8b

East —— (crosshar) East
8b

wet —— e

8b
register

register

processor

Figure 1: Data network interface

3 Lower bound

A node could receive up to four bytes per cycle, one byte from each of its four links, but
there is only one buffer in a network node forwarding data to the processor. The data are
copied to a receiver register after the message has completely arrived in the buffer. Then
the buffer is free for other messages. At best, each node can receive messages of mepnge
bytes every myepngsr, +1 cycles. That already gives us a lower bound for the broadcast time
on the CNS.

Each node sends n, vector elements and receives n,(p — 1) elements. A message can
transfer only one vector register. The length of vector registers varies between 1 and
the maximal length vlr, which usually is 32. So n, vector elements are transferred in
&t = [np/vir] chunks and each node receives at least anz = z (p — 1) messages with
me = [n,/z] > vlr/2 + 1 elements each.

At best — assuming no blockings in the network or in the nodes, the nodes receive the
first byte 2 ov 4 2 cycles after starting the broadcast. Every mjeng¢p 4+ 1 cycles, the nodes
receive the first byte of the next message. The first byte of the last message arrives after
2004 2 4+ (Miength, + 1) (anz — 1) cycles, the last byte arrives myengr, — 1 cycles later. It
takes the receiving node additional 2 ov cycles to extract the message from the network.
Consequently, the all-to-all broadcast requires at least 7'(p, n,) cycles on the CNS,

T(p,np) = 200+ (Miepgth + 1) anz + 2 ov
n
= 4dov+ (mlength + 1) (p - 1) [T;-‘ .

This bound does not take into account, whether the node and the network can handle the
data fast enough.

4 All-to-all broadcast algorithm

The following broadcast algorithm meets the lower run time bound 7'(p, n,), if the vector
has more than p - (vir 4+ 1) elements and if the broadcast is not delayed by computation
or other transfers.

The nodes are arranged in a directed ring. So, each node only sends to its successor
in the ring and only receives from its predecessor. After transferring its own part of the
vector, each node forwards the data received from the preceding node. The all-to-all
broadcast is finished after each node received p — 1 parts of the vector. Sends occur every
Miength, + 1 cycles. The data are transferred in chunks of m. elements.

4.1 Mapping a ring into the CNS topology

There are many ways to map a directed ring into a cylinder, using only nearest neighbors.
We chose to connect the nodes along the columns, alternating the direction per column.
Connecting the columns by horizontal links on the top or bottom yields a directed ring.
Figure 2 illustrates this mapping for a 8 x 4 cylinder.

Figure 2: Mapping a ring into a 8 X 4 cylinder

4.2 Run time analysis

We prove the following facts in order to show that our algorithm holds the time bound
T(p;np):

(1) sending and receiving overheads do not collide, when scheduling messages every
Miength, + 1 cycles, and there occur no blockings in the network,

(2) the memory bandwidth is sufficient to read and write m. vector elements every
Miength, + 1 cycles, and

(3) data arrive early enough, so that messages can be send on time (every miengen + 1
cycles).

These facts guaranty that the nodes send and forward the messages every miengn + 1
cycles, that the messages arrive in the same interval, and that the nodes can consume the
arriving data. So, all the assumptions we implicitly made when proving the time bound
are met.

(1) No collision

Transfers are scheduled every mjeng¢r, + 1 cycles, that is 4m. + 94+ 1 > 78 cycles. Send
and receive overheads only require 2 ov = 10cc (CPU cycles) each, and succeeding send or
receive overheads will therefore not collide. Receives occur 2 0v 4+ myengsr, + 1 cycles after
the corresponding sends, so they just start after the execution of the next send overhead.

The mapping guaranties that each link in the CNS network supports at most one link
of the ring. A link needs mycng¢p + 1 cycles to transfer the message. Consequently, there
also occur no blockings in the network.

(2) Memory bandwidth

The CNS has a multilevel memory hierarchy. In the worst case, it takes 28 cycles to load
vlr words into the CPU and 23 cycles to write them back. The values are based on the
memory model presented in [Miil93]. Message overhead and memory accesses can largely
be overlapped. After scheduling the load (store), the processor can execute the receive
(send). Message overhead and memory accesses therefore keep the processor busy for no
more than max(28 4+ 23,21) = 51 cycles. New data only arrive every mye,q¢n + 1 cycles,
which is at least 78 cycles.

(3) On time data arrival

Fach node sends its part of the vector in chunks of m, elements. These z = [n,/vir|
messages get started every mye,q¢n + 1 cycles, and as a consequence of (1) they also arrive
in the same interval. If the first message arrives early enough to be forwarded on time,
then the following z — 1 also do not cause a problem and the next forwarding round also
starts on time. As a consequence, all messages get started in the required time pattern.

Let us assume that the broadcast starts at time 0. The first message then arrives at
time (4 0v 4+ (Myenger + 1))cc and should be forwarded at time & (myepgen + 1)ce. That is
no problem if z is at least 2, because myepgr, +1 > 78 > 4 ov.

Short vectors

For a total vector length of vlr X p words or less, the nodes can transfer their data in
one message. This causes problems in the forwarding step. The nodes cannot start the
forwarding before they have completely finished the previous transfer. New sends start now
every 400+ Myenger, + 1 cycles, and the all-to-all transfer requires (4 0v + myepger, +1)(p—1)
cycles.

5 Design impact

Compared with theoretical results on the performance of all-to-all broadcast ([FL91]), the
CNS shows the run time behavior of a processor-bound? multicomputer. The network
nodes have a maximal degree of A = 4, and so a link-bound® version of the CNS could
reduce the all-to-all broadcast time upto one fourth. The transfer would still take at least
Tin(p, ny) cycles:
Mien, 1 n
Tin(p,ny) = % (p-1)- [v_lpr-‘ .

We now analyze, what causes the bottleneck and how to overcome it.

5.1 Location of the bottleneck

Figure 3 shows the interconnection of the network node and of the main processor parts.
The bandwidths of the links and busses are listed in table 1. These numbers show, that
the processor when working from data cache or register file could serve upto four network
links. When accessing random data in the main memory, the processor could still serve two
links. So the bottleneck is neither the processor nor the memory system but the network
interface. A link-bound version of the CNS is hardly possible, at least for general access
patterns in main memory, but a two-port transfer is realistic. To do so, the bandwidth of
the network interface has to be increased. This can be achieved by more or faster links
between processors and network nodes.

e,

— network ——

1 node [
TN
CPU Memory
./
D-cache

Figure 3: Data network interface

5.2 Faster network interface

The interface can be sped up by doubling the number of links between processor and
network node. That would increase the critical bandwidth to 21. A slight variation of the
original broadcast algorithm then achieves twice the original broadcast performance (at
least for large vectors).

Zeach processor can only use one link at a time
Jeach node can use all its links at the same time

Links Memory ‘ Vector Unit
M 1 Operation | 2 Operations
LI C -
max | min | 1 byte 4 bytes
read 1111 32 9 4 16 128
write 111 32 12 5 8 64
read & write yes no yes

Table 1: Bandwidth of network links and busses ([B/cc]). The table also shows, whether
a port supports reads and writes at the same time.

Modified algorithm

A ring can be traversed in positive and negative direction. N 7T indicates the neighbor of
node N in positive direction and N~ the neighbor in negative direction (figure 4).

N+

Figure 4: Node arrangement

The nodes are still arranged in a ring, but they now initiate the all-to-all broadcast by
sending their data to their two neighbors N* and N, starting with N . In the second
phase, the nodes forward data from neighbor N~ to neighbor Nt and vice versa. Messages
are transported |p/2| hops in positive and [p/2] — 1 hops in negative direction. Sends in
the same direction still start every myeng¢5 4 1 cycles, sends in negative direction start 4 ov
cycles later than the corresponding transfers in positive direction.

Run time

According to the bandwidth comparison in the previous section, the CPU and the memory
system can deal with twice as much data as in the original algorithms. The processors
have myenger, +1 > 78 cycles to execute the overhead and the memory accesses of two
transfers. The overhead requires 8 ov = 40 cycles. Since memory accesses and overhead
instructions can be partially overlapped, efficient scheduling is all that is needed to avoid
collisions.

We saw in the original algorithm that the receive overhead follows the send overhead
of the next transfer. Both overheads together require 4 ov cycles. We therefore schedule
the transfers in negative direction 4 ov cycles after the corresponding transfers in positive
direction.

For large vectors (n, > vlr) and an even number of processors, the all-to-all broadcast

now requires T57(p, np) cycles,

n
TZI(pv np) =4dov+ (nllength + 1) g [@_;?/'-‘ .

A faster link to the processor

Another way to achieve a bandwidth of 21 between the processor and the network node, is
to make that link twice as fast. The all-to-all broadcast algorithm stays basically the same,
but the interval between messages changes. It now takes the processor y = [myengen /2] +1
cycles to transfer the message to the network node. Consequently, the processor starts
new transfers every y cycles in alternating directions. This time y > 40 is still sufficient to
execute 4 ov = 20 cycles overhead. The all-to-all broadcast now requires 775 ,(p,n,) cycles,

T31(p,mp) = 4 00 + ([WW + 1) (p—1) [Ew :

vlr

5.8 Faster network links

An alternative solution is to speed up all network links, including the connection between
processor and network, by the same factor. With this change, the memory system will
become the bottleneck. The design team is currently trying to achieve a speedup factor
of two. Bandwidths of 2L and 21 would also double the all-to-all broadcast performance,
even using the original algorithm.

As in the previous case, the links only need [mjeng:n/2] cycles to transfer a message,
and new messages can be sent or forwarded every [myengern /2] +1 cycles. For large vectors
(n, > vlr), the all-to-all broadcast then requires Ta72r.(p, n,) cycles,

Miength Tp
T. =4 — 1 1) |—=.
2[,2L(p7np) ov + <[2 -‘ +) (p) L}lr-‘
So, speeding up all network links or only the link to the processor has the same effect on
the all-to-all broadcast time. However, for other transfers faster network links might be
useful.

5.4 Restrictions in the protocol

We assumed that a node can partially overlap transfers even when they use the same
link. However, the network protocol may not support this. In the current design, an
acknowledge signal will be sent back at the end of the transfer. With a one-bit signal, a
node could probably only overlap transfers using different links. The nodes then always
have to use more than one link in order to achieve a high all-to-all broadcast performance.

6 Performance impact

We now analyze how the broadcast time influences the performance of the CNS, when
evaluating the activations in a sparse neural network with half a million units having an
average of 500 connections per unit.

Communication

In the parallelization described in [GM94], the weights and activations are equally spread
over the p processors but the processors need all activations for their computation. The
activations are only one byte wide, and so four of them can be packed into one memory
word. The all-to-all broadcast then requires

5-10°
T=2 -1 1
Occ+(p—1) ’;4@1;‘ 38

cycles with a cycle time of 8 ns. Between two transfers, the CPU can spend at most
Miength + 1 — 2 0v < 128 cycles executing other code. During one all-to-all broadcast that
adds up to about half a million cycles per node, that is almost 93% of the whole transfer
time. At best, this time can completely be used for the computation of the next iteration.

Computation

It essentially takes one multiply-accumulate operation to evaluate a connection, but due
to the sparseness of the matrix there also occur address calculations and indexed memory
accesses. The address calculations need one addition per connection, and the indexed
memory accesses might also require considerable amount of run time.

A node has a peak performance of 8 multiply-accumulate operations per cycle. The
computation of one iteration therefore requires at least

2.2.5.108 108
co - 5-10° _5-10
8p 8p

cycles, when executing it at peak performance. That does not include time for main
memory accesses and so it is a very optimistic lower run time bound for the computation.
On the other hand, the analysis in [GM94] gives an upper bound of

5-10%
C'maaz: ’V -‘6
P

cycles. This run time is 24 times slower than the best case, but it is very difficult to
vectorize the indexed memory accesses, the most timeconsuming part of the code. That
already extends the run time by a factor 16. Another factor of 1.5 gets lost, because the
algorithm often accesses only one byte per memory page.

Performance comparison

Table 2 lists execution time and performance of one iteration of our benchmark task on
the CNS. The table also shows three different computation times: C,,;n, Cpaz and the
maximum time a CPU use for other operations during the all-to-all broadcast. The total
run time is based on C),;,. We assume that computation and transfer can completely be
overlapped.

The all-to-all broadcast has a 2 to 36% impact on the total run time, if the computation
time of the optimized sparse case code is close to Cl,4,. In the best case, the computation

Band- Nodes All-to-all Computation Time Total | Performance | Total
width Broadcast | available | Conin | Crraz || min (Crin) Cmin
128 4.35 4.03 3.91 94 4.35 58 1.1

I L 256 4.50 4.18 1.95 47 4.50 56 2.3
’ 512 4.51 4.19 0.98 23 4.51 55 4.6
1024 4.52 4.19 0.49 12 4.52 55 9.3

128 2.20 1.89 3.91 94 4.22 59 1.1

91 2L 256 2.28 1.96 1.95 47 2.28 109 1.2
’ 512 2.29 1.96 0.98 23 2.29 109 2.3
1024 2.29 1.96 0.49 12 2.29 109 4.7

‘ Unit | [ms] | [GCPS] | |

Table 2: Run time of one iteration of the benchmark task on different versions of the CNS

can be executed at peak performance and can completely be overlapped with the transfer.
The all-to-all broadcast then dominates the run time. On the 1024-node machine, the
execution of this task then takes at least 3.7 times longer than the whole computation
time. The computation time C,,;, does not include memory access times. Including
memory access times, the computation will hardly be faster than 8 C\,;,, at least with the
RDRAM memory system presented in [ABC193, AC93]. The total run time then adds up
to about 12 C\;5.

7 Conclusion

The bandwidth between the processor and the network is the same as the bandwidth
between two network nodes. That results in a processor-bound CNS. The network inter-
face is a bottleneck, but it can be speeded up by a factor of two before other hardware
components limit the performance of the all-to-all broadcast.

All-to-all broadcast has an considerable performance impact but does not cause disas-
trous performance loss, at least not on our benchmark task. The CNS can run all-to-all
broadcast almost without any visible transfer overhead, and the CPUs can use upto 93%
of the transfer time for other computations.

References

[ABCT93] K. Asanovi¢, J. Beck, T. Callahan, J. Feldman, B. Irissou, B. Kingsbury,
P. Kohn, J. Lazzaro, N. Morgan, D. Stoutamire, and J. Wawrzynek. CNS-1 ar-
chitecture specification. Technical Report TR-93-021, International Computer
Science Institute and UC Berkeley, 1993.

[AC93] K. Asanovi¢ and T. Callahan. Torrent Architecture Manual. International
Computer Science Institute and UC Berkeley, 1993. Internal document, revi-
sions 1.5/1.9.

[Cal93] T. Callahan. CNS-1 Networks, October 1993. Talk at the International Com-
puter Science Institute, Berkeley CA.

[FLI1] P. Fraigniaud and E. Lazard. Methods and Problems of Communicalion in
Usual Networks. Ecole Normale Supérieure de Lyon, France, 1991. Internal
document, October.

[GM94] B. A. Gomes and S. M. Miiller. A performance analysis of CNS on sparse
connectionist networks. Technical report, International Computer Science In-
stitute and UC Berkeley, 1993/94.

[Miil93] S. M. Miiller. A performance analysis of the CNS-1 on large, dense backpropa-
gation networks. Technical Report TR-93-046, International Computer Science
Institute, Berkeley, 1993.

10

