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Abstract: When searching a path in a digraph, usually the following situation is given: Every node v may
be entered by an arbitrary incoming arc (u,v), and v may be left by an arbitrary outgoing arc (v, w).

In this paper, however, we consider graphs with valve nodes, which cannot arbitrarily be entered and left.
More precisely, a movable valve is installed in each valve node v. Entering v via (u,v) and leaving it via
(v, w) is only possible if the current position of the valve generates a connection between these two arcs; if,
however, the current valve adjustment interrupts this connection then every path using the arcs (u,v) and
(v, w) is interrupted, too.

We investigate the complexity of the following problem

Given a digraph with valve nodes. Let s and ¢ be two nodes of this graph.
Does there exist a valve adjustment that interrupts all paths from s to 7

We show that this problem can be solved in deterministic polynomial time if all valve nodes belong to a
particular class of valves; otherwise the problem is NP-complete.
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1. Introduction

One of the most prominent problems in graph theory is the search of paths in digraphs. Usually, the following
assumption is made: A path may use any arbitrary incoming and outgoing arc when entering and leaving a node,
resp.

In this paper, however, the arcs used by a path must satisfy particular conditions. More precisely, it is assumed
that valves are intalled in several nodes of the given network (see Figure 1). A path may only use arcs that are
connected by the current valve adjustment.

This setting is of great practical relevance. E.g., Braun's diploma thesis [1] is about systems of pipes in breweries
where several crossings of pipes are equipped with valves. Another realization of valve graphs are processing
networks; connecting particular incoming and outgoing wires of a processing element (PE) can be interpreted as
adjusting a valve; in particular, a faulty PE can be simulated by connecting an incoming arc with an outgoing
arrow that ends in a dead end (see Figure Ic)).

Both papers [1] and [2] are about the existence of a valve adjustment that allows a path P from a node s to
another node t. Braun gives a heuristic algorithm to find such a path P with optimal length; in [2], however, it
is shown an exact solution of this problem is N"P-complete for a great class of valves.

Here, we consider the inverse question: Is it possible to find a blocking valve adjustment o, i.e. ¥ allows no path
from s to t7
This problem has several interesting practical and theoretical aspects:

e Consider s and t as processing elements; then all "valve” adjustments should allow a connection from s
to ¢; hence, the existence of a blocking valve adjustment means that the quality of the network is not high

enough.
If simulating faulty PE's by valves then the existence of a blocking valve adjustment means a bad fault
tolerance of the network.

o We can define a new type of connected components: Two nodes a, b are called strictly connected (a ~ b} if
there exists no blocking valve adjustment for a, b or for b, a; i.e. all valve adjustments allow an a-b-path and
a b-a-path. Then ~ is an equivalence relation whose equivalence classes can be considered as connected
components.

We show that the problem of blocking valve adjustments can be solved in deterministic polynomial time if all
valve nodes are in a restricted class T*®; otherwise the problem is A"P-complete.



2. Basic Notations and Definitions

Definition 2.1.

The set of all natural numbers is N := {1,2,3,...}; we write Ng := INU {0} . — If X, Y are two arbitrary sets
then X x Y is their cartesian product. Moreover, |X| is the cardinality of X. At last, the set 92X consists of all
subsets of X. -

Definition 2.2.

A digraph (without parallels and loops) is a pair G = (V,R) of sets where V is the set of nodes and R
C (V x V)\{(v,v)|v € V} is the set of arcs.

For any arc r = (u,v) € R we write a(r) := u and w(r) := v. Moreover, u and v are called incident with r.
IfG = (V,R) is directed and v € V then we define the sets R™(v) , RT(v) C RasR™ (v) := {(z,y) E R |y = v}
and R*(v) := {(z,y) € R |z = v}. The quantities ¢~ (v) := |[R™(v)| and g% (v) := |[R*(v)| are the indegree
and the outdegree of v, resp.

Moreover, S~(V) := {v € V| g~ (v) = 0} is the set of all sources, and ST(V) := {v € V|gT(v) = 0} is the set
of all sinks. -

Remark 2.3. Throughout our paper we only consider finite graphs. n

Definition 2.4. (Paths in Graphs)

Given a digraph G.

A path in G is a sequence P = [zq, ..., 2] with (za,za41) E R forall A =0,...,1 — 1. We write a(P) := x¢
and w(P) := ;.

If g = x; then P is called a cycle. We say that P is elementary iff all nodes zq,...,z;_1 are pairwise distinct
and z; ¢ {x1,...,2;-1}; in particular, elementary cycles with 29 = 2; are possible. (The definition of elementary
paths is analogous to [3], p. 28.)

If P = [vg,...,v1] is given then any path @ = [vg,...,vx] with A < [is called a prefiz of P ("Q < P"). If
Q = [var, Uarg1, - - -, var] with 0 < X < A < X then Q is a subpath of P; this is written as  C P. In particular,
P is a prefix and a subpath of itself.

Given two paths @ and @’ with a(Q') = w(Q). Then the concatenation P := Q & Q' is the path that first uses
Q) and then traverses (). The operation ‘@’ is also defined for arcs; e.g., the path P = Q@& r & 7' & Q' uses the
path Q, the arcs r, 7’ and the path @’ in this order.

The set of all paths in G is written as P(G). Moreover, if v,w € V then P(v) is the set of all paths starting from
v, and P(v, w) contains all paths from v to w; every element of P (v, w) is called a v-w-path. -

3. The Definition of Valve Graphs

We consider the following situation: A valve is installed in some nodes v of a digraph G; each valve adjustment
connects exactly one incoming arc 7~ € R~ (v) with some outgoing arcs r* € R*(v). This corresponds to the
requirement that a stream of liquid may enter a valve only by one incoming pipe.

Definition 3.1. A (directed) valve graph is a triple H = (G, 17,7) with the following properties:

G = (V,R,a,w) is a digraph. The set ]A/ C V\(S—(g) U S+(g)) contains all valve nodes of G. The third
component is the valve function v; for every arc (u,v) with v € V), the set y(u,v) consists of all arcs (v, w)
which can-be used af.ter (u,v). E.g.,y(r7) = {rf, 7T} in Fig. 1. More formally, v : UveﬁR_(v) — 2R with
the following properties:

(8) A(u,v) € R*(v) forall v eV and (u,v) €R.

($$) For every node v € V and every arc (v, w) € R there exists an arc (u,v) € R such that (v, w) € y(u,v).



The last condition means that every outgoing arc (v, w) can be reached from at least one incoming arc (u, v).

Given a valve graph H = (g,]A/,'y). A walve adjustment is a function ¥ : V — R such that J(v) € R™(v) for
all v € V. This means that the arc ¥(v) is connected with all arcs »* € (J(v)); moreover, each connection
between any further incoming arc r~ # ¥(v) and any outgoing arc r € R*(v)\7(?(v)) is interrupted.

Given a valve adjustment ¥ and a path P € P(G). Then P is called J-admissible or ¥-legal iff P can be realized
by ¥; this means that every valve node v visited by P is entered via ¥(v) and left by an arc r* € y(d¥(v)).
A path P is called admissible or legal iff there exists a valve adjustment ¢ such that P is ¥-admissible. -

We next describe the structure of valve nodes. Perhaps the following definition is somewhat formal and abstract;
but it allows correct description of sets of valve types. The underlying idea is that particular valves in a graph
are isomorphic copies of a given prototype 7 of a valve.

Definition 3.2.

a) A wvalve type or normalized valve node is a triple < k™, k%, f > where k=, k* € IN. The function f
says which of the outgoing arcs 1,..., k% are connected with a given incoming arc x € {1,...,k~}. More

precisely, f is defined as f: {1,..., k™ } — 2{1"“’k+}\(0 such that

(++) | fs)y={1,.. k).

This condition is analogous to ($$) in Definition 3.1 and means that each outgoing arc x* can be reached
by an incoming arc k™.
An example can be seen in Figure 2 where 7 = (2,2, f) with f(1) = {1} and f(2) = {2}.
The set of all valve types 7 = (k™ , k™, f) is defined as T.
b) A normalized valve 7 = (k™ , k*, f) is complete if f(k~)={Ll,...,k*}forallk= =1,..., k™. This means

that each outgoing arc can be reached from any given incoming one. The set of these valve types is Ty.
All further valve types are called incomplete and form the set T; := T\Ty.

c) Given a valve graph H = (g,f/,’y) and v € V. Then we say that v is of type 7 = (g7 (v), g% (v), f) is
v a "copy” of 7 (up to isomorphy); more precisely, we require that there exist bijections n : R~ (v) —
{1,...,97(v)} and x : R*(v) — {1,...,9%(v)} with the following property: The fact that some arc
r~ € R~ (v) is connected with r* € R¥(v) is equivalent to a connection from n(r~) to x(r*) in the
normalized valve nodes. More formally,

(9 (¥ 17 €R~(v), rt €R¥()) rte(rT) = x(rH) € fn(r)).
(Another formulation of (x) is: )
y(rT) = {X_l(n"') |K?+ € f(n(r™)) }for all P~ € R~ (v).

For example, recall Figure 1 and let 5(r; ) := i and X(r;') =7 (4,7 =1,2,3,4). Then v is of type (3,2, f)

where f(1) = {1,2}, f(2) = {2} and f(3) = {3}

The fact that v is of type 7 is abbreviated as v~>7. Note that v can be of different types (g7 (v), g% (v), f1) #
(g7 (v),gT (v), f2) because the enumerations 1 and y can be changed.

d) Let T C T. Then (g,f),'y) is called a T'-graph iff for every v € V there exists a 7 € T such that v is of
type 7. In this case we write (G, V,y)~=T or G~>T. -
4. The Problem of Blocking Valve Adjustments

We now formulate the Problem of Blocking Valve Adjustments for digraphs (PBVAd(T)) where 7' C T is fixed



set of valve types:

Given a valve graph 'H = (g,]j,'y) ~T" and two nodes s € S~(V), t € ST (V). Does there exist a valve
adjustment such that there is no ¥-admissible s-t-path P?

Our investigation starts with a special case: Let
T = (2,2, f*) with f*(3) := {i}, ¢ = 1,2 (see
Figure 2.) Then the following result is true:

Theorem 4.1. The problem PBVA({7*}) is N'P-complete.

Proof: It is clear that this problem can be solved in nondeterministic polynomial time: If G is given then the
Turing machine guesses a valve adjustment and tests whether ¢ cannot be reached from s.

We next show that PBVA({7*}) is N'P-hard. For this we reduce 3-SAT to it. Given a boolean formula C' =
C(1)-...-C(k) where each clause C'(k) is of the form C(k) = (u1(k)+ua(x)+us(x)) with u1 (&), ua(x), us(x) €

{#1,..., &, T1,..., Ty }; we must decide whether there exists a function f : {z1,...,z,} verifying C.
The first step of the reduction is considering the negation T':= —=C'. T has the structure 7'=T(1)+...+ T'(k),
where T'(k) = z1(k) - z2(k) - z3(k) with z1(k), z2(K), z3(k) € {®1,..., 20, T1,...,Tpn} forallk = 1,..., k. Here
we must test whether there exists a function f : {z1,...,z,} falsifying T or whether 7" is a tautology.

For this purpose we define the valve graph H = (G, IA/,’y). Its construction is divided into two steps. We first
generate the subgraphs G, representing the literals z, and T,, v = 1,...,n. Then we complete the graph G.
The global structure of this construction is quite similar to that of Theorem 3.4 in [2] In both proofs, the fact
that all valves of G, are in horizontal and vertical position corresponds to f(z,) = 1 and f(z,) = 0, resp.; these
two valve adjustments of G, are called consistent.

It is our aim to restrict our attention to consistent valve adjustments. So the graph G in Theorem 3.4 of [2] is
constructed such that

(A) C is satisfiable iff
(B) There exists some valve adjustment allowing an s-t-path iff
(C) There exists a consistent valve adjustment allowing an s-t-path.

But the assertion (B) = (C') is not self evident; it is effected by the construction of the graphs G,; roughly
spoken, the inconsistent adjustments allow af most the paths given by consistent ones, and this is effected by a
"series connection” of valves.

In the current situation we desire the following situation:

(A") T =-C is a tautology iff
(B') There exists no blocking valve adjustment, i.e. every valve adjustment allows an s-t-path iff
(C') Every consistent valve adjustment allows an s-t-path.

Here (C') = (B’) is non-trivial and must be made true by the construction of the graphs G,. This means that
the non-consistent valve adjustments must admit at least the paths that are possible by consistent ones.

This is the reason why copying the graphs G, on page 94 of [2] is not good in this situation. We need another
construction basing of " parallel connection” of valves. The construction of G takes place in a cartesian coordinate
system; the notation A =, B and A =, B means that the points A, B have the same z- and y-coordinate, resp.
An example of G is Figure 3.

Let us first describe the graphs G, ; they have thick arrows in Figure 3. We define the sets of all x for which
T(k) contains the factor 2, and Z,, resp.:

X, :={k |z, ocecurs in T'(x)}; X, = {% |z, occurs in T(%)}.

We assume that neither X, nor X, is empty; otherwise we add a dummy term z, - %, - T,/ with v #v' toT.
For every k € X, we generate a start node s,(k) and an end note ¢,(x). We draw these nodes such that



sy(K) =y t,(K), sy (k) =5 s, (k') and t,(k) = t, (&) for all k, k" € X,, where t,(k) lies on the right of s, (k).
For every ® € X, we generate a start node 5,(%) and an end note ?,(%). We draw these nodes such that
5,(F) =5 t,(R), 5,(R) = 5, (') and 1, (%) = t,(F') for all K, &' € X ,, where 1,(%) lies under 3,(%).

After this we draw a valve node v,(k, %) for each pair (x,k) € X, x X,; moreover, we generate the following

arcs: (sy(m),'vy(fﬁ;ﬁ)) | ('UV(K,E),tV(K)) , (E,,(E),'vy(ff,ﬁ)) ; ('UV(K,E);{V(E)) :

So we obtain the horizontal paths P,(k,R) := [SU(K),UV(K,E),tV(K)] and the vertical paths P,(k,%) :=

[E,,(E),v,,(ﬁ,ﬁ),t,,(ﬁ)] where k € X, and R € X,.

Now the construction of G, is finished, and we must complete G (see Figure 3). To make its description easier
we introduce the following notation: The exponent "1" means "no bar”, the exponent "-1" means a bar; e.g.,
zl =2, ;1) =5,(d), tL(k) = t,(k) and P} (k,R) = P,(k, ).

v = 14



We generate the start node s and the end node ¢t. Then we draw the following arrows:

a) Arcs from s to the start nodes indicated by z1(i), i =1,... k:
FORALLi=1,...,k DO
Let z1(¢) = 2 where @ € {£1}, v € {1, ..., n}; then generate the arc (5, s,‘,’(z))

b) Arcs from the end nodes corresponding to z;(7) to the start nodes representing z41(¢) (i = 1,...,k, =
1,2):
FORALL!=1,2DO
FORALL:i=1,...,k DO
Let z(i) = z; and z41 () = zf where o, 3 € {£1}, p,v € {1,...,n};

then generate the arc (tfj(z), sff(z))

c) Arcs from the end nodes indicated by z3(i) to ¢, i =1,...,k:
FORALLi=1,...,k DO
Let 23(i) = z° where 3 € {£1}, v € {1,...,n}; then generate the arc (tg(i),t).

Now the construction of G is finished, and we must show the equivalence of the following assertions:
(A) T is a tautology. (B) All valve adjustments of G allow an s-t-path.
We first show (A) = (B) and start with an important observation:

(1) Forall v =1,...,n the following is true:
Given an arbitrary adjustment of the valves v, (k,%), Kk € X,,,K € X,. Then

(1.1) Every t,(k), k € X, can be reached from s, (k) or
(1.2) every t,(R), K € X ,. can be reached from 5,(R).

To prove this we assume that (1.1) is not true. Then there exists a k' such that all paths P,(x’, %) are blocked;
this means that all valves v,(k',K), § € X,, are in vertical position. Hence all paths P,(k',R), K € X,, are
admissible connections between 5, (%) and %, (%).

Given now a valve adjustment ©. We must show that it admits an s-t-path. For this we define f(z,) := 1 if
(1.1) is true for G, and f(z,) := 0 otherwise. Since 7' is a tautology we can find an i € {1,...,k} such that
21(1), 22(17), 23(4) are made true by f. Let (i) = z)! where oy € {£1} and v; € {1,...,n} forall I =1,2,3.
Then for all [ the following is true:

If «; = 1 then f(x,,) = 1 because f verifies T'(i); this means that (1.1) is true for G,,. Hence there exists an
admissible path Q;(7) from s, (i) = s;! (i) to t,, (i) = t5'(i).

If, however a; = —1 then f(z,,) = 0; this means that (1.1) is false, but then (1.2) must be true. So there exists
an admissible path Q;(i) from 5, (1) = 3/ (i) to £, (i) = 121 (i).

In any case the valve adjustment allows the s-t-path

P (55500008 (10, 526)) Qe (5200, 522(0) ) ese (26, 1)

We next show —=(A) = —=(B). If T is not a tautology then there exists a function f : {z1,...,2,} — {0,1}
falsifying T". Then choose the valve adjustment ¥ such that all valves of G,, v = 1,...,n, are in horizontal and
vertical position if f(z,) =1 and f(z,) =0, resp. Consequently, for all v = 1,..., n the following is true:

(2) If f(x,) = 1 then there is no ¥-admissible connection from any 5,(%) to 7, (%

), KEX,.
If f(z,) = 0 then there is no ¥-admissible connection from any s, (k) to t, ()

Lk EX,.



Let us now try to find a ¥-admissible s-t-path P. It is easy to see that all nodes s, (i), 5,(7), t,(4), t,(i) occurring
along P must have the same argument 7 € {1,...,k}. So the first step of generating P is choosing i.

When this is done we consider the term T'(i) = 21(7) - z2(2) - 23(4) where 2(i) = ;! forall [ = 1,2,3. As f
refutes 1" there exists an !’ such that

[(a) ap =land f(z,,) = 0] or [(b) ap =—land f(z,,) =1 ] .

In case (a), the path P must visit s,,(i) and t,,(i), but these nodes are disconnected because of (2) and

f(s4,)=0.

In case (b), the path P must visit 5, ,(i) and f,,l,(i), but these nodes are not connected because of (2) and
f(s,,l,) =1.

So the construction of a Y-admissible s-t-path fails. -

After considering this important special case we next investigate general classes T of valve types. In analogy to
Definition 3.2 b) of [2] we introduce a set T* with the following property: If 7' C T* then PBVA4(T') can be
solved in deterministic polynomial time; otherwise it is A"P-complete.

Definition 4.2.

a) Given an abstract valve 7 = (k™ , k%, f). We say that k= € {1,..., k™ } has a minimal set of connections

if f(k7) is minimal with respect to subsets; this means that there is no A~ # k= with f(A7) ; f(&7).

b) 7= (k™, kT, f) has a unique minimal set
of connections if f(k7) = f(A7) forall k7, A~
with a minimal set of connections.
An example is given in Fig. 4, where a valve type
% =(2,2, f**) with f**(1) = {1} and f**(2) = {1, 2}
is shown. It is interesting to compare the result 4.5
and Theorem 3.5 in [2] both of them having to do with 7**.

c) The set of all 7 described in b) is defined as T*. -

The following result describes the structure of valves with unique minimal set of connections:

Lemma 4.3. Let 7 = (k= , kT, f) € T*® and let k; be an entrance of 7 such that f(k> ) is minimal. Then

a) (Ve=1....k7) f(k7) C f(x). b) Mezif (k) = f(k7). <) Mezif(k) #90.
We first prove Assertion a). For every x € {1,... k™ } there exists a minimal subset f(A) C f(x) (possibly
A = k). The uniqueness of this minimal set implies that f(k7) = f(}).
The proof to Assertion b) is very simple: First ﬂﬁ;lf(ff) C f(k;) as f(k;) is one of the members of the

intersection. On the other hand, the assertion in Part a) implies that ﬂi;lf(ff) D f(ky).
At last, Assertion c) is an immediate consequence of Part b) and f(k7) # 0. -

We next show that the problem of blocking valve adjustment for T-graphs is N'P-complete if not T C T*. If,
however, T is a subset of T*® then our question can be answered in deterministic polynomial time.

Theorem 4.4. Let 7' ¢ T*. Then PBVA4(T) is NP-complete.
This is even the case if T'= {7} where 7 = (k™, k%, f) does not have an unique minimal set of connections.

Proof: It is clear that our problem can be solved in nondeterministic polynomial time. To see the NP-hardness
we show that the problem PBVA ({7*}) can be reduced to the given problem PBVA4({7}). This is can be
seen in Figure 5 - 7.




We first note that there are two entrances k7, AJ of 7 with different minimal sets f(k;) # f(A7). An example
is given in Figure 5. The fact that f(x;) # f(A;) and the minimality of f(x;) and f(A7) imply that neither
f(&7) C f(A7) nor f(k7) D f(A7) so that

(1) FENFOT) £ and FONF(7) £0.
So we can describe the structure of 7:

(2) Foreach k =1,...,k™ exactly one of the
following assertions is true:

(2.1) Kk = k7, and & is connected with an
exit ¢(k) € f(k) such that ¢(x) € f(k7)\F(AT).
(2.2) kK = A7, and & is connected with an Fig. 5
exit ¢(k) € f(x) such that ¢(k) € F(A7)\F(K;).
(2.3) k ¢ {s7,A;} and & is connected with an
exit ¢(k) € f(x) such that ¢(x) € f(k7)\F(AS).
(2.4) k € {7, A7} (2.3) is false, and & is
connected with an exit ¢(x) € f(k)
such that ¢(k) € fF(AZ\f(k7).
(25) k & {k7, A7} (2.3) and (2.4) are false, and « is connected with an exit ¢(k) € f(x) such that
o(r) €{1,... k¥ N(f(k7)UF(A7)).
For example, the incoming arcs in Figure 5 are enumerated such that each entrance k has property (2.x),
k=1,...,5. We can choose ¢(1) :=1, ¢(2):=7, ¢(3):=2, ¢(4) := 7 and ¢(5) := 1..
It is clear that (2.1) — (2.5) are disjoint, and we must show that at least one of these assertions is true for every

k. If K = k7 and Kk = A then (2.1) and (2.2) follows by (1), resp. The only critical case we must consider is
that & & {x7, A7} and (2.3), (2,4) are false. Then negation of (2.3) and (2.4) implies that

() f(r) © (Fx7)NFAT) U ({1 BN (s7) UF(AT))) -
Moreover,
(00) f(k)isnot asubset of (f(k7)Nf(A7)) .
This can be seen as follows: First f(k7) N f(A7) is a proper subset of f(x;) because f(k;7) # f(A7). Hence

f(k) G f(x7) if (00) were false. But this were a contradiction to the minimality of f(x; ). — Fact (2) follows
from (o) and (¢0).

We next construct the 7-graph G if a 7*-graph G is given. For this we consider a 7*-node u* in G (see Figure
6.a)); its incoming arcs are v (u*),ry (u*), its outgoing arrows are ri (u*), rf(u*). Let a;(u*) := a(r; (u*))

and w;(u*) := w(rf (u*)), i = 1,2. Without loss of generality we assume that
(# ) «i(u*) and w;(u*) are not valve nodes (i = 1,2).

Then u* is replaced by a valve u := ((u*) of type 7, this is illustrated in Figure 6.b); in particular, we generate
the following arcs:

. Forall k e {1,..., k= }\{k;, A7} draw an arc from s to u ending at entrance .
For k = k7 [k = A7, resp.] replace ri (u*) [r3 (u*)] by an arc from aq(u*) [aa(u*)] to the xth entrance
of u.

For all K € f(k7) N f(A7) draw an arc from the xth exit of u to a dead end ¢,,.

Forall k € f(,; )\f(A;) [k € F(A7)\F(k; ), resp.] draw an arc from the xth exit of u to wy(u*) [wa(u*)];
these arcs replace r} (u*) [rf(u*), resp.].

For all remaining x € {1,...,kT} draw a direct connection from the kth exit of u to the end node ¢.



This construction may yield parallel arcs; they
can be avoided by replacing each of them by a
path of length two (see Figure 6.c)). So for
all k= € {1,...,k™} the following is true: If
K~ = K;, K~ = A7 and k= & {Kk;,A; } there
exists a path starting from a;(u*), as(u*) and
s, resp. that enters u in its K~ th entrance. This
path is called (a1(u*),u,x7), (a2(u*),u, k™),
(s,u,k™), resp. and has no valves up to u.
Moreover, for all k* € {1,... k*} there exists a
path (kt, u, w) starting from the k*th exit of u
and ending in w = wy(u*), w = wy(u*), w=1¢
and w = t, if kT € f(x7)\\F(A7) kt €
FOTNS(r7), k% ¢ f(k7) U f(A7) and k¥ €
F(&7) N F(AT), resp.

Substituting each node u* in G* we obtain a
7-graph G. For all 7-nodes u we have the
functions  : R~ (u) — {1,...,k"} and x :
R~ (u) — {1,...,k*} mentioned in Definition
3.2.c). Moreover, the 7-valve u and the corre-
sponding 7*-valve u* have the following proper-
ties, which are based on (2.1) - (2.5):

(3) Given an adjustment ¥(u) and let k= :=
n(¥(u)); é(x™) is defined as in (2.1) -
(2.5).

(3.1) K (2.1)is truefor k= (i.e. k= = k;)
then o connects (a1 (u*), u, K~) with
(85, wews(a”)).

(3.2) I(2.2)is true for k= (i.e. k= = A7)
then o connects (as(u*), u, K7 ) with
(65 ), wy (")),

(3.3) If(2.3)is true for K~ then ¥ connects
(s, u, k™) with (¢(k7), u, w1 (u*)).

(3.4) If(2.4)is true for K~ then ¥ connects
(s, u, k™) with (¢(k7), u,wa(u™)).

(3.56) If(2.5)is true for K~ then ¥ connects
(s,u, k™) with (¢(k7),u,1).

We next show the equivalence of the following
assertions:

Figure 6

(A) All valve adjustments in G allow an s-t-
path.

(B) All valve adjustments in G* allow an s-¢-
path.
Proof of (A) = (B) : Given a valve adjustment ¥* in G*. We must show the existence of a J*-admissible s-t-path
P* in this graph.
For this we define a valve adjustment ¥ in G: Let u be a valve of G and u* := (= 1(u). If ¥*(u*) = r] (u*) then
choose the k7 th entrance of u, i.e. ¥(u) := 77_1(.%_); if 0*(u*) = ry (u*) then ¥(u) := 77_1(/\;).

T




Then (A) yields a ¥-admissible s-t-path P. We assume that P visits the valve nodes uy, ..., u,, in this order and
define uj, := ¢ Y(uu), p=1,...,m. Then for all u the following is true:

IF 9% (u},) = r1 (u},) then the definition of ¢ implies that the xth entrance of u, is connected with all exits in
f(x7). Note that P does not use an exit k € f(x; )N f(A;), which would direct P to the wrong end node tuy,-
Consequently, P leaves u, via an exit kT € f(x7)\f(A;). But this means that P uses the path <f€+, uu,wl(uZ»
after entering u, via (al('uZ),'uu,fiT_>. Consequently, @, = <(X1(UZ),UN,K;> D (fc+,uu,w1(u’;)> is a -
admissible subpath of P from aj(u}) to wi(uj), while the path @, = ri (u}) @ rf(uZ) is a ¥*-admissible
al(uZ)—wl(uZ)—path in G*.

IF J*(uy) = 7y (u}) then an analogous argumentation shows that P has the 1-admissible subpath Q, =
<a2(u2),uu,ff;> @ <f£+,uu,w2(u2)> from as(uy,) to wa(uj,), and the path @}, = ry (uy) @ r;(u:;) is a 0*-
admissible a2(u2)—w2(u2) path in G*.

Figure 7
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So we can write Pas A1 Q1P A2 D Q2D - B Qm D Amg1 where Ay, ..., Ay are free of valves. Then
P = A0Q19A:0Q5P - B Q) B Ant1 is a ¥ -admissible s-1-path in G*

Proof of (B) = (A) : Given a valve adjustment ¢ in G. We must prove the existence of an s-t-path P in this
graph.

This is true if there exists a valve u such that (2.5) is true for k= := n(J(u)). In this case, (3.5) yields the path
P = {(s,u, k™) B (¢(k7),u,t).

Otherwise all valves u have the property that one of the assertions (2.1) — (2.4) is true for np((u)). Then we
define the following adjustment ¥* in G* : Given a valve u* in G* and let u := {(u*). If (2.1) or (2.3) is true for
n(¥(u)) then 9*(u*) := ri (u*), else 9*(u*) := ry (u*).

Assertion (B) yields a ¥*-admissible s-t-path

Q" =[uf =s,uj,ul, ... ,uyy =t =r1 @...&ry where r, = (uj_q,u;), p=1,..., M.
We assume that u:f(u), i =1,...,m are the valves on this path where i(p) < i(p + 1) — 2 for all u (see (# )).
An example with m = 3 can be found in Figure 7a). Let u;(,) := C(u;*(u)), pw=1,...,m We consider two
cases:

CASE 1: Every entrance n(9(ui(,))), =1, ..., m, satisfies condition (2.1) or (2.2), i.e. n(¥(ui(y))) € {r7, A7}
Then P is constructed as shown in Figure 7.b): For all y the following is true:

IF n(0(uiy))) = k5 then ﬁ*('uz‘(m) = rl_(uz‘(m) because of the definition of ¥*. Hence the subpath r;,) @
Ti(u)4l = T1 (u;‘(u)) &) rf(u;‘(u)) connects al(u;‘(u)) with wl(uf(u)) ( and not az(u;“(u)) with wz(u;w)) ). On the

other hand, consider G: The assumption n(J(u;(,))) = x5 and (3.1) imply that ¥} connects <a1(u;“(u)), Ui( ), KT_>

with <¢(m;),ui(u),w1(uf(u))>; consequently, S, = <a1(u;f(u)),ui(u),/£;> ® <¢(f€;),ui(u),w1(u2‘(u))> is a ¥-
admissible connection from al(u;‘(u)) to wl(uz(u)) via Ui(p)- This means that the current valve adjustment allows
a path from al(u:f(p)) to wl(uz‘(p)) in both graphs G* and G.

IF n(¥(u;))) = A7 then an analogous argumentation yields that r;(,) @ riu)41 = r;(uz‘(u)) D r;(u;(u))
is an admissible connection from as(uj,)) to wa(uj,)) in G*, and the same is true for the path 5, :=

<a1(U}‘(N)), i), /\T_> @ <¢()\T_), Ui(u),W2(‘u;“(H))> ingG.
So we can transform Q* = r1 @ - - - @ ras into the following 1¥-admissible s-t-path in G:

P = 7’1@~~~T’i(1)_1@51 @7"2'(1)-}-2@'"@7"2'(2)—1@52@7’2'(2).}.2@ ...... @T’Z’(m)_l@sm Dritm)y+2D - -Dru .

There exists a g’ such that n(J(uy)) has property (2.3) or (2.4).

We assume that p is the maximum of these numbers p'; e.g., /' = 2 in Figure 7.c). Let & := n(¥(uium)).
IF K has property (2.3) then the definition of ¥* implies that in G* the arc rf’(u;f‘(u,,)) is opened so that
5= wl(uj(u,,)) = Uj(,my41- On the other hand consider G and recall (3.3); so we obtain a ¥-admissible path

Q° = <S, ui(uu),:@ @D <qj)(%), ui(uu),wl(u;w,,))> ,
which is a path from s to wl(u;‘(u,,)) = 5. This means that both in G* and in G there exists a s-s-path which is
admissible under the current valve adjustment.
IF K has property (2.4) then an analogous argumentation says that Q* visits 5 := WQ(Ur(u//)) = u;“(uu)_l_l. When
considering G we use (3.4) and can find the Y-admissible s-3-path

Q° = <S, ui(uu),%> @D <qj)(%), 'ui(uu),(.uQ(u;f‘(H,,))> .
Again both valve adjustments ¥* and ¥ allow an s-s-path in G* and in G, resp.
Consider the final part of * that starts from s = u;(u”)+1' i.e. Pi(uyp2,D ... B rar,. This path is according to

CASE 1 as p” is maximal. So we can replace it by a ¥-admissible 5-t-path @Q°° in G. Then P := Q° ® Q°° is a
¥-admissible s-t-path.
So we have seen that assertion (A) is true if (B) is given.

11



We next show that the existence of blocking valve adjustments can be decided in deterministic polynomial time
if a G is aT-graph with T"C T*.

Theorem 4.5. Let T'C T°.
Then PBVA4(T') can be solved in polynomial time.

Proof: We give an algorithm A solving our problem in polynomial time. The procedure is similar to a game: The
first player adds more and more arcs in order to generate paths for all valve positions. His adversary tries to block
all paths by suggesting a bad valve position ¥.

Given the graph H = (G, 9,7); for any v € V let r; be an incoming arc such that the set y(r, ) is minimal. Our
algorithm is based on the following variables:

end0, endl: unsuccessful and successful termination of A, resp.
R’ : set of all arcs that have already been found.

J: tentative valve adjustment.
¥ is pessimistic: It tries to block each valve w by defining ¥(w) :=r
where 7 has not yet been found. If, however, R~ (w) C R’

then 5(10) := r,, generating the minimal set of outgoing arcs.
OPEN: set of all possible start nodes for new arcs.
BLOCKED: set of the valve nodes which have already been found but must not yet be expanded.
v €EBLOCKED is moved to OPEN if for all valve adjustments, v can be reached via each incoming arc.
CLOSED: set of nodes for that all possible outgoing arcs have been generated.

Let us now consider the following algorithm:

Procedure A

1. Initialization:

CLOSED := BLOCKED := R’ :=0; OPEN :=s; end0 := endl := false;
2. while (end0 = false and end1 = false) do

2.1. if OPEN # 0 then
2.1.1. Choose an arc r € R\R'; with v := «a(r) € OPEN;

ifve V then 7 is even selected from ¥(r));
let w:=w(r);
212, R :=R'U{r};
213 if(v ¢ V and R*(v) CR') then OPEN := OPEN\{v}; CLOSED := CLOSEDU{v};
2.14. if (veV and y(r;) CR’) THEN OPEN := OPEN\{v}; CLOSED := CLOSEDU{uv}
2.15. if (w €V and not R~(v) C R’) then
BLOCKED := BLOCKED U {w};
Y(w) := T where T is not yet found (i.e. 7 € R~ (w)\R');
2.1.6. if (weVand R~ (w) C R’ and w ¢ CLOSED) then
BLOCKED := BLOCKED \ {w};
OPEN := OPEN U{w};
Hw) = ry;
2.1.7. if (w ¢ Vand w#tand w ¢ CLOSED) then OPEN := OPEN U{w};
2.1.8. if (w =t) then endl := TRUE

2.2. if OPEN = () then end0 := TRUE.

3. IF end0 = TRUE there exists a valve adjustment blocking all s-t-paths;
IF endl = TRUE then all valve adjustments allow an s-t-path.
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We next prove the correctness and start with the following assertion:
(1) If end0 is true then there exists a valve adjustment g such that no s-t-path is possible.

For this we consider the adjustments 5(1}) found by Procedure A at the moment of its termination. We define

Yo such that ¥o(v) = 5(0) for all nodes v that are already known by A.

Then we assume and refute the existence of a ¥g-admissible s-t-path P = r1 @& ---® r; in G: Note that ¢ has not
yet been found by A as otherwise endl and not end0 were true. So 7 € R', and there is a first arrow r; that is
not in R’ when A terminates.

We next see that u := a(r;) € OPEN: If u is not a valve then it has not yet been moved to CLOSED because

the condition R~ (u) C R’ of Step 2.1.3 is violated by r; € R~ (u)\R’. The other case is that u € V. Then the
Jg-admissibility of P yields

(11) ﬁo(U)ITJ’_l ‘
The minimality of j implies that 5(u) = Jo(u) (L rj_1 € R'. But 5(11) € R’ is only possible if u has been
moved from BLOCKED to OPEN as described in Step 2.1.5 and 2.1.6. To see that u is not yet in CLOSED we

observe that rj_; (Lh Yo(u) = 5(11) = r; where the last equality is effected by the definition of 5(11) in Step
2.1.6. The admissibility of P implies that r; € v(rj_1) = v(ry ); moreover, r; ¢ R’ so that y(r; ) is not yet a
subset of R’; this means that Step 2.1.4 was not yet applied to v := u, and wu is still in OPEN.

We have seen that u € OPEN, no matter whether u is a valve or not. But this is a contradition to the fact that
end0 = TRUE, which can only happen if OPEN is empty.

Consequently, there is no ¥0-admissible s-t-path P.

We next show the correctness of Procedure A if all valve adjustments allow an s-t-path.
(2) If Procedure A ends with endl then every valve adjustment ¥/ of G allows an s-t-path.

For this we consider the situation immediately before the J!” iteration of Step 2 where J = 1,2,3,.... Then for
all J the following is true:

(2.1) Let V' := OPENUBLOCKED U CLOSED and R’ be the set of nodes and arcs found at time .J, resp.

For all w € V’\]7 and all valve adjustments ¢ there exists a ¥-admissible and elementary s-w-path Py,
which only uses arcs of R’.

(2.2) If, however, w € V' is a valve node then we can also find a path Py as described above; moreover, we even
can prescribe the arc » € R~ (w) N'R’ that Py uses to enter w.

Proof to (2.1) and (2.2): We prove these assertions by an induction on J. If J = 1 we have the situation
immediately after the initialization; in particular, V' = {s}, and (2.1), (2.2) are trivial (w = s).

We assume that (2.1) and (2.2) are true for J; we only have to consider the critical case that V' is changed in
the J*" iteration, i.e., a new node w is found, which is the endpoint of the current arc r = (v, w).

Given a valve adjustment ¥. Then the assumption of our induction yields an elementary and ¥-admissible s-
v-path @y consisting only of arcs in R'\{r}. We next try and connect (Jy with r where the connection at v

must accord to Y. If v is not a valve then Q) = Qy @ r is automatically J-admissible. If, however, v € Y
then the choice of r in the current iteration implies that v € OPEN and R~ (v) C R’'. Applying (2.2) to v says

that @y can even be required to enter v via the particular arc ¥~ := J(v) € R™(v) = R~ (v) NR'. Then
Step 2.1.1 Lemma 4.3 . .
ro€  y(ry) C 7(r~). So the path Q) := Qg ® r does not effect a conflict with ¥ at node v and all

earlier nodes.
It remains to transform Q) into an elementary s-v-path Py; for this we distinguish between two cases:

CASE 1: w is not a valve node.
Note that 0y is elementary. If this is not the case for ()} then w must have occurred in @y and r visits it for
the second time. Then let Py be the part of @)y from s to the first occurence of w.

CASE 2: w is a valve node.

Then Py := Q) is already elementary. Otherwise w occured twice on ()}, because @y is elementary. Hence Q)
uses an arc ' starting from w. The assumption of our induction yields ' € R/, i.e., ' has been found at Step
2.1.1 of the Jt" iteration or earlier. But at this moment, w is still in BLOCKED: the earliest moment when w
can be moved to OPEN is Step 2.1.4 of the J!” iteration. But the fact that w € BLOCKED makes it impossible
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that 7' has already been found, i.e. ¥ &€ R’ U {r}, a contradiction.

We now have proven the assertions (2.1) and (2.2). Fact (2) follows immedeately by applying (2.1) to the node
w:=1.

So we have shown the correctness of Procedure 4. It is easy to see that it works in polynomial time: Every
occurence of Step 2.1 generates a new arc; so the algorithm must stop at the latest when all O(|V|2) arcs of G
are found. -
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