Dynamic Programming in a
Generalized Decision Model

Ulrich Huckenbeck?

TR-93-080
December, 1993

Abstract: We present two dynamic programming strategies for a general class of decision processes. Each of
these algorithms includes among others the following graph theoretic optimization algorithms as special cases:

e the Ford-Bellman Strategy for optimal paths in acyclic digraphs,
e the Greedy Method for optimal forests and spanning trees in undirected graphs.

In our general decision model, we define several structural properties of cost measures in order to formulate
sufficient conditions for the correctness of our algorithms.

Our first algorithm works as fast as the original Ford-Bellman Strategy and the Greedy Method, respectively.
Our second algorithm solves a larger class of optimization problems than our first search strategy.

1) Ernst-Moritz-Arndt-Universitat Greifswald, Fachrichtungen Mathematik/Informatik,
Jahnstr. 15a, D-17487 Greifswald, GERMANY

Introduction

Two of the most prominent graph theoretic optimization strategies are the Ford-Bellman Algorithm ([2], [8]) and
Kruskal's Greedy Method (see [7]).

The first of them finds cost minimal paths in a digraph G. More precisely, if s is a fixed start node then the Ford-
Bellman Strategy finds a cost minimal path ¢(a) from s to a for each vertex a. If G is acyclic then this optimization
method can be simplified.

Kruskals Greedy Method, however, outputs a minimal spanning tree of an undirected graph with N nodes; more
precisely, the algorithm finds a cost minimal forest with a edges for each a = 0,..., N — 1.

It turns out that both optimization problems can be formulated in a general and uniform way:

ProBLEM P

Given the following objects:

e a search space {.
(In the first example, define I as the set of all paths starting at s.
In the second case, U denotes the set of all forests in the given undirected graph.)

e aset A
(In the first example, A consists of all nodes in the given digraph.

In the second case, A ={0,...,N —1}.)

e arelation R C U x A.
(In the first example define R such that (X, a) € R means that the path X ends at the node a.
In the second case, we define R as follows: (X, a) € R iff the forest X has exactly a edges.
In both examples, R is even a function; R(X) is the end node of X and the cardinality of X,
respectively.)

e a real-valued cost measure C' : U/ — R.

For all ¢ € A find a cost optimal object)(a) which is related to a. This means that C'(¢(a)) is minimal
among all candidates C'(X) where (X, a) € R.

This general formulation includes several further optimization problems. Important examples arise from searching
optimal sequences of decisions in dynamic programs [9] and in sequential decision processes [5], [6]. Also in these
situations, the relation R can be defined as a function. In our paper, however, we carefully study a situation where
the relation R is not a function.

The main purpose of this paper is to present an efficient solution to the general optimization problem P. For this
we introduce two Dynamic Programming algorithms, which are called DP; and DP;. Their global structure is the
following:

If a € A then ¢(a) is the optimal object within the set M of candidates; this set M is constructed by
applying elementary operations to optimal objects t(a’) that have been found earlier.

It turns out that the first algorithm DP; does the same as the Ford-Bellman Strategy if DP; is used to construct
optimal paths in acyclic digraphs; moreover, DP; behaves like the Greedy Method if DP; is used to find optimal
spanning trees in undirected graphs. We must only define the "elementary operations to optimal objects” in an
appropriate way. The second algorithm DP5 is a variant of DP5 that can solve a larger class of problems than DP;.

Our dynamic programming methods seem to be the first that include the case of a relation R which is not a function.
In contrast to the algorithms described in [5] and [6], we require a particular structural property of A, that is the
so-called admissible ordering of .A. An interesting field of future research would be to improve DP; and DP; so that
they work correctly without admissible orderings of A; these improved versions of our two algorithms would be at
least as general as the search strategies in [5] and [9].

The paradigm of Dynamic Programming helps to reduce the time of computation. Since only the optimal objects
¥(a’) are considered, no time is wasted by handling non-optimal objects related to a’. In particular, when using DP;
to search optimal paths and minimal spanning trees, DP; is as fast as the Ford-Bellman Strategy and the Kruskal
Method, respectively.

When proving the correctness of DP; and DP5 we successfully overcome the following difficulty: The Ford-Bellman
Procedure, the Greedy-Algorithm and the usual Dynamic Programming strategies are based on different properties
of the cost measure C'. More precisely, the correct behavior of the Ford-Bellman Procedure is proven with the order
preservance of C' as defined in [3]. The Greedy procedure works correctly since the set ¢/ of all forests is structured
like a matroid. The correctness of the Dynamic Programming paradigm is usually inferred from Bellman Principles,
which are described in [1] and [9]. In our paper we translate order preservance, matroid properties and Bellman
conditions from the original situations into the general case described in Problem P. These translated properties
help us to formulate sufficient conditions for the correct behaviour of DP; and DP5. We can then prove that these
algorithms can actually simulate the Ford-Bellman Procedure for acyclic graphs, the Greedy Algorithm and the usual
Dynamic Programming method.

The paper is structured as follows: Section 1 presents some basic definitions and illustrates them by several examples.
Section 2 compares several structural properties of general decision models such as order preservance and matroid
properties. The algorithms DP; and DP5 are presented in Section 3 and 4, respectively; in particular, their correctness
is proven and their complexity is analyzed. Section 5. consists of concluding remarks. At last, a structural property
of a particular cost measure is proven in the Appendix.

1. Basic Definitions and Concepts (with Examples)
1.1. Graph Theoretic Definitions.

A (di-)graph is defined as a pair G = (V, E') where V is the set of its nodes and E C V x V is the set of its arcs.
Given a path P = (v1,...,v,) in G; then an prefiz and a suffiz of P is a subpath of P starting with v; and ending
with vy, respectively; in particular, P is a prefix and a suffix of itself. Given a further path @ = (w1, ..., wn) or
an arc r = (w1, wz) with wy = v,; then P ® @ and P @ r is the path generated by appending @ and r to P,
respectively. More formally,

PaQ :=(v1,...,0n =w1,...,Wy) and P&r:=(vy,..., vy = wy,ws).

1.2 Definition of Relational Decision Models

In this paper, we consider optimization problems in a general situation; we now describe it exactly:

A relational decision model (RDM} is a quintuple 2 = (U, A, R,C,Gy) with the following components: I and A
are two disjoint, nonempty sets of objects; i/ contains "many” objects, which have a complicated structure, while A
consists of "few" simply structured elements. R C U x A is a relation. C' : U — R is a cost function from U into
the set R of all real numbers.

Gu = (U, &) is a digraph.
If an RDM E = (U, A, R, C,Gy) is given, then we formulate the following optimization problem P:
For each a € A find and object O € U such that (O, a) € R and C(O) = min{C(0")| (0, a) € R}.

The graph G;; has an important influence upon the order in which our dynamic programming algorithms DP; and
DP; consider the elements of U; the set &, of all arcs in Gy is often defined as follows: If X, Y, € U then (X,Y) € &
means that Y can be obtained by executing an elementary extension step to X. For example, if X and Y are paths
in a digraph, we insert (X,Y) into & iff the path Y is generated by appending an arc at the end of X in the case
of forests in a graph we insert (X,Y) into & iff the forest Y is obtained by adding an edge to X. It turns out
that these graphs G force the procedure DP; to emulate the Ford-Bellman Algorithm and the Greedy-Algorithm,
respectively.

We introduce several further notations related to RDMs. Given a relational decision model 2 = (U, A, R, C, Gu).
Forall OelU, U’ CU and a € A we define

R[O]:={d € A|(0,d") e R}, R[U']:=Upegy RIO] and R~ '[d]:={0"€U]|(0',a)€ R}.

In particular, if R is a function and O € U then R[O] and R[{O}] denote the set {R(O)}.

We say that O € U is optimal (minimal) for some a € A iff (O,a) € R, O € U and C(O) = min{C(0O') |0’ €
R~[a]NU} . So our optimization problem can be formulated as follows: For all a € A, we search an optimal object
¥(a).

The set of all successors and predecessors of O € U within Gy, is abbreviated as AV (0) := {0’ e U | (0,0’ € &u}
and V7 (0) :={0" € U|(0",0) € &y}, respectively. If U C U then Ny[U'] is defined as (Jygyr Nu(O), and
N [U'] is an abbreviation for the set |y, Ny (O).

For every RDM E we assume that two fixed start objects O, € U and a. € A are given such that (O, a.) € R and
O, is even optimal for a,. (This condition is not very restrictive; this is shown in Remark 1.15.b).)

Moreover, we define the quantity u(O, a’) where O € U and a’ € A; roughly spoken, u(O,a’) denotes the minimal
costs of all successors of O that are related to a’. More precisely,

w(0,d") = inf{C(O")[(0,0") € &, (0',d')€ R} = inf{C(0')|0" € Nu(O)NnR™[a']}.
(If there exists no O’ € NVy(O) N R™*[a’] then p(0,a’) := co.)
Remark 1.1. Throughout this paper, we make the following assumptions:
(i) Ris total, i.e. R[O] # 0 for all O € U.

(i) Ris surjective, i.e. R™[a] # 0 for all a € A;
moreover, there exists an object O € R™![a] that is optimal for a.

(i) All objects O € U can be reached from O,; this means that there exists a path in Gy from O, to O.

(iv) Forall O € U and o' € A, the infimum p(O,a’) is a minimum if there exists an O’ with (O,0’') € & and
(0',d") € R. -

1.3. Examples of Relational Decision Processes

We next illustrate the previous definitions with five examples. The first is the classical problem of optimal paths in
digraphs. The second example is a modification of the first and shows that the relation R need not be a function.
The third example is the classical Minimal Spanning Tree Problem. The fourth example is a situation in real life, and
the fifth is a decision model which frequently occurs in literature.

Example 1.1. (Optimal Paths in Acyclic Digraphs)

Given an acyclic digraph G = (V, E) with start node s. For all nodes v € E we define the sets N~ (v) of all
predecessors and N (v) of all successors of v; more formally, N~ (v) := {u € V|(u,v) € E} and N(v) :={w €
V|(v,w) € E}. For all arcs r = (v, w) let a(r) := v and w(r) := w. If P is a path in a graph we define a(P) and
w(P) is the first and the last node of P.

We next define an RDM E = (U, A, R, C, Gy), which represents the optimization of paths in G.

Let & be the set P(s) of all paths in G starting from s. Let A := V. We choose a, := s as the start object of .A.
The start object of U is chosen as the path O, consisting of the single node a, = s; more formally, O, := (a.) = (s).
We next define the relation R, which is a function: If P € U then let R(P) € A be the last node of P.

Moreover, the costs of the path P are given by the value C'(P). Here we do not generally assume that C': P(s) — R
is additive®.

We next define G;;. For this we note that every path P € U can naturally be extended by appending an arc r € F
at w(P); so the following definition is reasonable: Gy := (U, &) with & = {(P,P")|(3r€ E) PP=P&r}.
It should be mentioned that the graph GG and the function C' must satisfy two conditions, which follow from Remark
1.1:

(i) Every a € V must be reachable from a, by a path P. This is a consequence of the general assumption that

R1a] # 0.

(ii) If a path P starts and ends at a. then C'(P) must not be greater than C’((a*)) because O, = (a.) was
assumed to be optimal for a..

It is clear that the graph G;; forms a tree. If G represents a set P(s) as just described, then Gy is usually called the
expanded version of G.

(Another reasonable definition of R is that R(P) is the length of P; this point of view often occurs in Dynamic
Programming where decision paths of a particular length are optimized.)

In order to find optimal paths in GG, the following simplified Ford-Bellman Algorithm is used:
Procedure FORD-BELLMAN

1. Initialize ¢(a(0)) as the path (a(o)) consisting only of a(®).
Let £:= Ly := {1/} (a(o))} .

Computation of the optimal path (a(k)) . k=1,...,nfrom a® to a(*); the paths v (a(j)) ,] =
0,...,k — 1 are already given immediately before the k-th step; they can be found in the set £ =

Cosi= {4 (a®),..., % (a*D)).
FORk:=1TO n DO

2.1 Construct
X = {j e{0,....k—1} |a(j) €N~ (a(k))}_

2.2 Construct M .= {1/) (a(j)) &) (a(j),a(k)) | jE X} .

2.3 Choose the path ¢ (a(k)) € M such that
C (¢(a®))) = min{C(P) | P e M }.

24 L:=LU{¢(a®)} .

Example 1.2. (Optimal paths with endpoints in a set of nodes)

We assume that the graph G = (V, E), the start node s, the set &/ = P(s) and the graph G are defined as in
Example 1.1.

Given m > 0 and the sets a(®), ..., a(™) C V such that a(®) = {5} and

(1) dDu.. .Uuad™ = v.

1C is additive iff every arc h(r) of G has costs h(r) € R and C(P) = h(r1) + ...+ k(rg) for all paths P consisting of the arcs

T1yeeey Tk

Let A := {a(o), . ..,a(m)} . We then define the relation R: A path P € U/ and a set al/) are in R if the end point

of P lies in al%): this means that
R = {(P, a(j)) ‘ w(P) € a(j)} :

Note that the sets al/) need not be pairwise disjoint; therefore R is not always a function.

In contrast to Example 1.1 we assume that C'is additive.
Our optimization problem can be formulated as follows:
For each set al’) find a cost minimal path among all candidates P with a(P) = a. and w(P) € ali),

For example, al/) can be interpreted as a region in the Euclidian plane, and we look for the best paths ending in the
areas a(® ... a(™).

Example 1.3. (Minimal Spanning Tree)

Let (V, E) = G be a finite connected graph and let v : £ — R. We define the following relational decision model
E=(U,A R,C,Gy): First, let
U :={0 CF|O forms a forest}.

Moreover, let A := {0,...,|E|} and R(O) := |O] for all O € U. We define C(O) :=) .o 7(e) . In order to
introduce the graph Gy = (U, &), we define
& ={(0,0)eu*|loco, 0= |0|+1}.

The start objects are O, := 0 and a, := 0.

The graph Gy is not always a tree because a forest O can be constructed in different ways so that several paths in
Gu can end with O; hence Gy, is not isomorphic to a graph of paths described in Ezample 1.1.

(Here it is also possible to replace R by a non-functional relation:

Let A:= E and let R := {(O,e) €U x E|e € O})

The usual method to find minimal spanning trees is the Greedy Algorithm. The following formulation is almost
identical to Kozen's description [7]:

Procedure KRUSKAL
A) Sort the set F of all edges by weight.

B) For each edge € on the list in order of increasing weight, include ¢ in the intermediate forest if ¢ does not form
a cycle with the edges already taken.
Otherwise discard e.

We next give another description of the Greedy Algorithm; this formulation makes it easier to see that this search
method is a special case of DP;.

Procedure GREEDY
1. Define ¥(0) := 0.
2. FORk=1,...,n DO
Generate (k) by adding an optimal feasible element of £ to ¥(k —1).

These two versions of the Greedy Algorithm are equivalent in the case of optimal forests; Remark 1.8, however, gives

an example where KRUSKAL and GREEDY behave in a different way.

Example 1.4 (Financial Planning)

Given the period of the ten years 1991,...,2000. We assume that a saver has $ 10,000.— in 1991. He can buy and
sell bonds during a period of ten years 1991,...,2000. Every bond is a quadruple b = (i3, jb, 75, 65) where

e i is the year when the bond b is issued,

e j; is the year when b is sold,

e the factor 1; and the summand & describe the profit arising from buying the bond b.
More precisely, let « be the invested amount; then b has the value 7; - & caused by interest; moreover, the saver

gets a fixed premium 6;. Consequently, an amount of |7 - & + &3] is paid to the saver when selling the bond
b.

We assume that if the saver buys a bond b then he invests all money available in the year i;. Moreover, we assume
that the saver owns exactly one bond during the whole period from 1991 to 2000. This means that the saver buys a
new bond immediately after selling an old one, and he never owns two different types of bonds b1 # b3 in the same
year.

We next describe this situation more formally. If the saver has y dollars in the year ¢ then we symbolize this fact by
a pair (i,y). We define the set W of all possible financial situations:

W o= {(i,y)|i€{1991,...,2000} and y € {1,...,10,000,000} }.

Suppose that (4,y) € W and the saver buys the bond b = (i, j, 0, §); then the situation after selling b is written as
(7,J) ® b; more precisely, (4,7) ® b := (4, J(y,b)) where J(y,b) := | n-y+ 8] is the saver's capital after selling the
bond b.

Let us now define a relational decison model = = (U, A, R, C,Gy) representing the saver's financial planning and
satisfying the conditions of Remark 1.1.

The set U is defined such that it consists of all financial situations that can actually be achieved by buying and selling
bonds. More formally,

. (i,y) = (1991, 10,000) or
U= {(l’y)ew‘ (i,y) = (-~ ((1991, 10,000)® b1) @ --) @ b, where by, ... b, € B

Moreover, let A := {1991,...,2000}

After this we define the relation R as a function: Let R(i,y) := i for all (i,y) € U. The cost function C is defined
with the help of a profit function H. Let (4,y) € U; then y has been interpreted as the saver's capital in the year
i; so it is natural to define H(i,y) := y. Let C(i,y) .= —H(4,y) for all (i,y) € U. Then C is a reasonable cost
function because minimizing C(%, y) is equivalent to maximizing the profit H (i, y). Finding the optimal object O for
some year i € A means to find a policy of investments yielding the maximum capital in the year i.

The fact that the saver possesses $ 10,000.- in the year 1991 is symbolized by the start objects a, := 1991 and
O. = (1991, 10000); note that O, is the only object related to a..

We next introduce the graph Gy = (U,&). We draw an arc from (i, y) to (j,y') iff the situation (j,y') can be
effected by buying a bond. More precisely,

&y = {((4,y),(4,y) @b) | b= (4, jbo,m,6) € B and i =i} .

Note that Gy is not always a tree because different investment policies can yield the same amount y in the same year
i so that different paths in G;; have the same end point (i,y). Therefore G;; cannot be considered as the expanded
version of any graph so that the current situation is different from Example 1.1.

At last we define the B¥(a) as the set of all bonds starting in the year a and B~ (a’) as the set of all bonds ending
in the year a’. More formally,

Vae A) Bt(a) {b=(i43,n6)€Bli=a},
(Va' € A) B (d) = {b=(i,j,n,6)€eB|j=ada} .

Example 1.5 (Finite dynamic programs and sequential decision processes).

Many existing models of decision processes can be embedded into the concept of RDMs. For example, let D be a
finite dynamic program as defined in [9]. Then D = (Q, D,t, h) where Q is a finite nonempty state space; D is a
finite nonempty set of decisions; ¢t : A — Q, where A C Q x D, is the transition mapping; and h : Rx A — R is the
cost function.

Let yo € Q be the initial state. We define D* as the set of all finite sequences of decisions and ¢ € D* as the
empty sequence. Moreover, we introduce an additional dead-end state y* ¢ Q describing decisions that leave
A Let Q' = QU {yt}. We then define a new transition function t' : Q' x D — Q' and a new cost function
AR x Q' x D — R as extensions of ¢t and h, respectively.

(VEER ueQ de D) t(y,d) ::{t%fl) i Ey,d)

E Aa 17, R h(ga y: d) lf (ya d) E A:
: vd) ¢ A h(x,y,d) ._{

0 if (y,d) ¢ A.

(Perhaps the reader expects a high cost value A/(&,y,d) for (y,d) ¢ A in order to disqualify such pairs (y,d). These
pairs, however, are already disqualified because they yield the state t/(y,d) = yt.)

We define the following RDM (U, A, R, C,Gy): Let Y := D* and A :=Q'. The relation RCU x A=D* x Q' is
defined such that (6,y) € R iff the sequence é of decisions yields the state y € €Q'; more precisely, R is a function
with the following recursive description:

R(e):=vo, (V6€D* deD) R(6d):=1t(R(5),d).

We next define the costs C'. For this we note Morin's interpretation of the function h: Given a sequence § € D* and
a symbol d € D; let y := R(8) is the state effected by §. If (y,d) € A and if £ are the costs of 8, then h(&,y,d) is
interpreted as the costs of éd. In this line we define C recursively: If C(e) is given, then

(V6€D*, de D) C(6d) := h'(C(6), R(6),d).

At last, the graph Gy := (U, &) is defined by &, := {(6,6d) |6 € D*, d € D}.

Also the sequential decision processes in [5] and [6] can be considered as RDMs; the definitions are almost the same
as in the case of finite dynamic programs.

1.4. Further Definitions in Context with Relational Decision Models

We next define and discuss several structural properties of relational decision models or their components. In
particular, we translate the original graph theoretic definition of order preservance [3] and matroid propertiy [7] into
the situation of RDMs.

Let us start with order preservance:

Preliminary Remark 1.2. Given the situation of Example 1.1; then the order preservance of C' is defined as
follows:

If two paths 71,75 € U end with R(T1) = R(Tz) =t € Aand if U; :=T; @ (t,u) (i = 1,2) with (¢,u) € E then

This definition is equivalent to the original version in [3]. In particular, C' is order preserving if C is additive; this

follows from the equality C(P; ® Q) — C(P1) = C(P2 ® Q) — C(P-) for all paths Py, P, Q. -

Definition 1.3. Given an RDM E = (U, A, R, C, Gyy). We say that Z is order preserving (with respect to R) iff
for all t,u € A and all 71,7 € R[] with u € R[Ny (T1)] N R[Ny (T%)] the following is true:

Ch)<C(Ty) = pTi,u) <p(Tyu).

We next investigate whether or not order preservance is given in Example 1.1 — 1.5,

Remark 1.4.

2)

b)

d)

Recall Example 1.1. Let C be an order preserving cost measure according to Remark 1.2. Then the RDM
E=(U,A R,C,Gy) described in Example 1.1 is order preserving as defined in 1.3.

This can be seen as follows: Given two paths 77,7, € U ending at a and let o’ € V. Let ¢ € {1,2}. Then
Nu(T) N R™Ya') = {T; @ (a,ad’)} if (a,a') € E, and Ny (T;) N R™1[a’'] = 0 iff (a,a’) € E. In the first case,
w(T;,a") = C(T; @ (a,a’)), and in the second case, u(7;,a’) = oo for all i = 1,2. Now let C(T7) < C(T3). If
(a,a’) € E then the graph theoretical order preservance implies that C(T1 @ (a,a’)) < C(T5 @ (a, a’)) so that
u(Ty,a") < p(Ty,a"). If (a,a’) & E then p(T,d") < oo = p(Ts, d’).

As mentioned above, all additive cost measures C' in Example 1.1 are trivially order preserving in the graph
theoretical sense; consequently, the additivity of C' implies the order preservance of the RDM E.

We next consider Example 1.2 and an additive cost function C' defined with the arc costs h(r), r € R. Let E
be the RDM constructed in the description of Example 1.2. Then the following condition is sufficient for the
order preservance of Z: The minimum of all values h(v,w), w € al’2) is the same for all start nodes v € ali1).
More precisely

(4) For all 0 < i3 < i3 < n there exists a number g (a(il),a(“)) such that
min h(v,w) =g (a(il), a(“)))

(v,w) € E,
w e ali2)

To see that (+) implies order preservance, we assume that C'(01) < C(O3) for two paths Oy, O3 ending with a
node in al®). Then p (O,,a'®?)) &) C(0x)+g ('), al2)) (A = 1,2) so that p (O1,al2)) < pu (04, ali)) .

We next describe how to construct cost measures with property (+). Assume that the sets a®) are pairwise
disjoint. Choose the numbers ¢ (a(“),a(”)) and the functions ¢(11:%2) : q(1) — 4(2) where 0 < i1 < iy < n.
Then define h : R — R such that

.. i) iy h(v,w) =g (a(il), a(“)) if w= go(il’”)(v) ,
(v W02, Y < a()’ we Cl()) [h(v, w) Z g (a(il)’ a(iZ)) i w ;é (p(ilyiz)(v)

The pairwise disjointness of the sets a(*) guarantees that no ambivalent definition h(v,w) =g (a(il), a(iz)) and
h(v,w) =g (a(il), a(i;)) with 5 # 7}, can occur because the case go(il’“)(v) —w= gp(il’i;)(v) is impossible.

The relational decision model of Example 1.3 is not always order preserving. A counterexample is given in

Remark 2.5.

The RDM 2 = (U, A, R, C,Gy) of Example 1.4 is order preserving. To prove this we first observe that for all
a € Aand O € U with R(O) = a the following is true:

Ny (0) = {O®@b|b starts in the year a} = {O®@b|be BT (a)}.
Consequently
(1) (Va,d € A, 0€ R 'a]) Nu(O)NR'd] = {O@b|be BT (a)NB~(d')}.

We now assume that two financial situations O1,02 € U are given with R(O1) = R(O2) = a; moreover, let
a’ € R[Ny (01)]N R[N(O3)] . Then there exist y1, y2 such that O; = (a,y;), i = 1,2. Moreover, there exists
at least one bond of the form (a,a’,7n,6§). We assume that b} = (a,d’,n}, é}) is the best bond that can be
bought in the situation O; (i = 1,2) and ends in the year a’; more precisely,

(2) (Vi=1,2) H(O;®b}) = max{H(O; ®b)|be Bt (a)NB~(a')}.
Recall C' = —H and fact (1); so we obtain

g i=12) C0:eh) = minC(0;@h)|be B a)n B («))
= min{C(0)|0 € Nyu(0;) N R~ [a']} = p(0;,a’)

oo

Now let C'(01) < C(O3). Then H(O1) > H(O3), i.e. y1 > ya. We obtain an inequality in which (*) follows
from the optimality of b7 and (xx) is caused by y1 > ya.

(*)
w HOW) E HO98) = Han) o) =
5w+ 8] 2 s w4 8] = H(w)@by) = HO:05).

Consequently,

u(01,a") E 01 b7) = —H(O b))
(4)
< —H(O:9b3) = C(O1@b]) = p(0z,d').

e) We describe a sufficient condition for order preservance in Example 1.5. Given a finite dynamic program
= (Q,D,t,h). We make an additional monotonicity assumption (MA) about A; it is equivalent to the
conditions formulated in [5],[6] and [9].

(MA) For any £1,&2 € R, d € D* and y € Q with (y,d) € A the following is true:
£1 S £2 - h(gl;y;d) S h(-’EQ,y, d) .

Then the corresponding RDM = = (U, A, R, C,Gy) is order preserving.
Proof: If (MA) is given then A’ satisfies the following condition:
(MA’) For any é1,62 € R, d € D* and y € Q,
£1 S £2 - hl(£1= Y, d) S hl(£2= Y, d) .

The proof of (MA") is easy: If (y,d) € A then & < & implies that A/(&1,y,d) = h(&1,y, d) (JvéA) h(&s,y,d) =
h(€s,y,d); if not (y,d) € A then h'(&1,y,d) = 0= h'(&,y,d).

Now let 61,62 € U = D* with C(61) < C(é2). Let a = R(61) = R(62) and let ¢’ € A = Q with
a' € R[Nu(61)] N R[Nu(82)] .

Then there exist two decisions dy,ds € D such that R(é;d;) = a’, i = 1,2; we assume that df, i = 1,2 is the
optimal decision effecting the state a’; more formally,

(5) C(&id}) = pu(6i,d'), i=1,2.

We next note that R(6:d3) = t'(R(6:1),d5) = t'(a,d5) = t/(R(62),d5) = R(62d3) = a' . This implies
that é;d% is one of the candidates when computing p(é1,a’). Consequently

(6) w61, a) < Clords).
Recalling the assumption C'(61) < C(82), we complete the proof of order preservance.

, (6) . . (MA"
,u(él,a) < 0(61d2) = (C(él)aa’d2) <
(5)

W (C(82),a,d5) = C(b2d3) = p(ba,a").

We next generalize the matroid property; for this purpose we first introduce the order equivalence of two arcs, and
then we describe the transformation of the matroid property from the original situation into the setting of RDMs.

Definition 1.5. Given a relational decision model = = (U, A, R, C,Gy). Two arcs ¢; := (U;, Vi) € &y (i = 1,2)
are order equivalent (e; ~ eq) iff

C(Uh) <C(Uy) = C(V1) < C(Va) and
C(U) < C(Uy) = C(V2) < C(W1).
In particular, if e; ~ ey then C(Uy) = C(Us) = C(V1) = C(V2), but the direction ” <=7 is not always true. -

Preliminary Remark 1.6. We describe two versions of the matroid property and start with the original one:

Original matroid property of the set U of all forests in graphs:

For all forests V1 and W in U and for all numbers a and a’, the following is true:
If
(+) a = Vil <|W] = @
then the following facts are given:
a) There exists a forest Z € U of the form
al) Vi U{n} where n € W\ V7.

b) Every subset Vo C W is an element of I .

We next present a weaker version of the matroid property. The modified condition (+) says that a’ = a — 1, which
is a stronger condition than the above variant of (+); moreover, the modified assertion b) says that only a particular
set Vo must be a subset of W (and not all sets).

The new assertion a2) follows immediately from al), and b1) — b3) are trivial consequences of the choice of V3 :=

WA{n}.

The great advantage of the modified matroid property is that it can be easily translated into the terminology of
RDMs.

Weak matroid property of the set U of all forests in graphs:

For all forests Vp, V3 and W in U and for all numbers a and a’, the following is true:
If

Vo = W\{e} where e W
() a=1W =Ml (= [W-1),
a = |W].

then the following facts are given:

a) There exists a forest Z € U of the form
al) Z:=ViU{n} where n € W\V;.
The forest Z has the property that
2) @ = 17| (= W= Vil +1).

b) There exists a Vo € U (namely Vo := W\{n}) with the following properties:
b1) Vil = @ (= WD
b2) W can be obtained by adding a single edge to V2. (This edge is .)

b3) If C(V4) {<} C(Va) then

2

C(2) = C(V1) ++(n) { } C(V) +4(n) = C(W).

IV IA

10

The second version of the matroid property is really weaker than the first. This can be seen with the help of the
following example: Given an undirected graph G = (V| E) with E' = {eg, €1, e2}. We define

u = {(0, {eo}, {eo,e1}, {eo, €1, €2} IE} :

Let y(e;) :=3—1i(i=0,1,2) and let C(O) := 3 ., 7(e) forall O €U.
Then U has the weak matroid property. But &/ does not have the original matroid property because the subset
Vo :={e1,ea} of W := Eis notin U. -

We next translate the above weak matroid property of i into the situation of relational decision models:

Definition 1.7. Given an RDM E = (U, A, R, CGy). Then E has the matroid property iff the following condition
is satisfied:

For all objects Vy, Vi, W € U and for all elements a,a’ € A, the following is true:

If
(o, W) € &u,

(+) (Vo,a) € R and (Vi,a) € R,
(W,d") e R

then the following facts are given:

a) There exists an object Z € U with the property
al) Ze Nu(W).
The Z hasl the property that
a2) (Z,d)eR.

b) There exists an object V2 € U such that
bl) (V2,a) € R,
b2) (Vo, W) € &u

b3) If C(V3) {

IV IA
H/_/
2
5
—+
0o
1)

3

We now have formulated the matroid property for relational decision models. Before presenting further definitions
we study the behavior of the Greedy Algorithm when applied to the example at the end of Remark 1.6.

Remark 1.8. We next show that the procedures KRUSKAL and GREEDY given in Example 1.3 are not equivalent.
For this we recall the example for a weak matroid that was not a matroid in the original sense: Given an undirected

graph G = (V, E) with E = {eg,e1,e2}. Let U = {(0, {eo}, {eo,e1}, {eo,e1,e2} = E} and let A =

{0,1,2,3}. For every O € U we define R(O) as the cardinality of O. Let y(e;) := 3 — ¢ (¢ = 0,1,2) and let
C(O) =3 .core) forall O el

Then our optimization problem has a trivial solution because for each number a € A there exists exactly one object
O € U with R(O) = |0| = a.
This optimal solution is actually found by the procedure GREEDY, which constructs

Y(0) =0, ¥(1)={eo}, ¥(2)={eo,e1}, ¥(3) ={eo,e1,e2} = E.

The procedure KRUSKAL, however, fails to find the optimal solution because it must discard an unfeasable element
e € E for all following rounds of the algorithm. More precisely:

11

Let ¢(k — 1)U {e} & U for some k and ¢; then the element ¢ is not considered any more; that is,
KRUSKAL does not construct any set ¥(k' — 1)U {e}, k' >k

This yields the following behavior of KRUSKAL: When generating (1) the algorithm first tries to add the cheapest
element to ¥(0) = B; but ¥(0) U {e2} = {e2} is not an element of &. Consequently, KRUSKAL does not find
¥(3) = {eo, e1,e2} = ¥(2) U {ea} because the discarding rule forbids the construction of the candidate ¥(k') U {e}
with &' =2 and e = e5.

Consequently, KRUSKAL and GREEDY are not equivalent when applied to I/. If, however, U/ is the set of all forests
in a graph then GREEDY automatically complies with the discarding rule; therefore GREEDY generates the same
forests as KRUSKAL. -

The next introduce the optimal successor property of a relational decision model Z. This definition is not directly
based on Ezamples 1.1 and 1.3, but it is very useful for proving the correctness of DP;. Roughly spoken, optimal
successor property means the following: If an arbitrary object X; has an optimal successor then an optimal object
X5 has an optimal successor, too.

Definition 1.9. Given an RDM E = (U, A, R, C,Gy).

We say that = has the optimal successor property (OSP) if for all z,y € A, X1,X5 € R7Yz], Y1 € R71[y] the
following is true:

If (X1,Y1) € & and if X2, Y} are optimal for z and y, respectively, then there exists a successor Yo € Ny (X3)
which is optimal for y. (This implies that C(Y3) = C(Y1) but not always ¥> = Y7.) n

Remark 1.10 Given the situation of Example 1.2. We construct an additive cost measure C' with the property
that the relational decision model (U, A, R, C,Gy) has the OSP. In contrast to 1.4.b), condition (+) need not be
satisfied, and the sets a(*) need not be pairwise disjoint.

For this we give the following definitions: If 7 C A = {0,...,n} then let a/) := Uier a®; in particular, a(®) =
and all}) = 4 for all i. Forall k=0,...,n we define X} := {je{0,....n—1} |a(j) x ak) £ 0} . (X is the
same as the set X generated in Step 2.2 of DP;.) Moreover, let R > 0 and 0 < o < 2/5.

We make the following assumptions:

(i) For every v € al¥*) there exists an arc from v into al¥), i.e. N(v) N al®) £ §. ‘
Moreover, we assume the existence of the minimum h*(v) of all values h(v, w) where w € a*) is a successor
of v. We choose the node w*(v) € a*) such that h(v, w*(v)) = h*(v).

(i) Forall v € al*) and w € N(v)Na*) with w # w*(v) the following is true: h(v, w) > h(v, w*(v))+ R-a®F
(i) (Vvea®)) (Vwea®) we Nw) R-a®*~1 < |h(v,w)] < R-a3k~2,

This cost function C' is used to define the RDM = = (U, A, R, C,Gy) according to Example 1.2; then = has the
optimal successor property. The exact proof is given in the appendix. The argumentation is the following: Given the
paths X;, Xs € R~! [a(j)] and Y7 € R~ [a(k)] such that Y; is an optimal successor of X; and X5 is optimal for

a¥). Then X; and X5 must have the same end point as otherwise Y7 cannot be optimal. The optimal successor Y,
of X5 is constructed by appending the last arc of Y7 to X5. -

We next define several Bellman properties of relational decsion models. These properties are similar to the principles
of optimality in [1] and [9].

Definition 1.11. Given an RDM = = (U, A, R, C,Gy).
a) E has the weak Bellman Property iff for all a € A the following is true:

There exists an optimal object O for a,
there exists a path P = (O. = 0y, 04,...,0, = 0),
there exist objects a, = ag,a1,...,a, = a with (Op,a,) €R, p=0,...,7

such that O, is optimal a,, p=0,...,r.

b) E has the strong Bellman Property iff for all a € A the following is true:

12

Every optimal objects O for a,

every path P = (O, = Oy, 04,...,0, = 0),

all objects a. = ag, a1, ...,a, = awith (O,,a,) ER, p=0,...,r

have the property that O, is optimal a,, p=0,..., 7.

c) Asan analogy to the weak and the strong Bellman principle we define the (qlqqu) -Bellman property where

q,,4,.9, € {V, 3} this Bellman property is given iff

(q1 O €U, O optimal for a)

(qZP: (O* = Ooaola"':or — O))
(qBa* =ag,a1,...,ar = a € Awith (0,,a,) €R, p= 0,...,r)
O, is optimal a,, p=10,...,r.

The weak Bellman principle is equivalent to the (333)-Bellman property, and the strong Bellman principle is
equivalent to the (VVV)-Bellman property.

d) We say that a path P = (Og = O.,...,0, = O) in Gy is a Bellman path iff there exist a. = ag,...,a, € A

such that O; is optimal for a; forall j =1,...,r.
Let a € A; then we say that P is a Bellman path from (O.,ax) to (O, a) iff the objects ag,...,a, can be
chosen such that a, = a. -

We discuss these Bellman principles in the next remark:
Remark 1.12.
a) Forall i =1,2,3 the following is true:
(*) The (q1q2q3)—BeIIman property becomes weaker if the quantifier (, is switched from 'V’ to '3’

This can be seen as follows: For i = 1 note that Remark 1.1.(ii) guarantees the existence of an optimal
element O for a. For i = 2 recall Remark 1.1.(iii), which yields a path P from O, to O. For i = 3 note that
Remark 1.1.(i) yields an element a, € R[O,] for every p=0,...,7r.

b) If the third quantifier is equal to ‘3 then every (qlqz%)—Bellman principle can be formulated as follows:

(q1 O €U, O optimal for a) (q2 P =(0.=0,04,...,0, = O))
P is a Bellman path from (O, a.) to (O, a).

c) If R is a function then the (qqu‘v’)— and the (qlquI)—Bellman principles are equivalent. Both properties
can be formulated as follows:

(q1 O €U, O optimal for a = R(O)) (q2 P=(0.,=04,04,...,0, = O))
O, is optimal R(a,), p=0,...,7. =
Our next definition introduces two structural properties of the components of relational decision models.

Definition 1.13. Given an RDM E = (U, A, R, C,Gy).

a) Ris C-monotone iff for all objects O1, 02 € U related to the same a € A the following is true:

C(01) < C(02) = R[Nu(01)] 2 R[Nu(02)].
b) The set is A is orderable (with respect to Gy and R) iff there exists an enumeration a. = a® a2
of A with the following property: If (O, 0’) is an arc of Gy and (O, a?)), (O',al)) € R then i < j. Such an

enumeration is called an admissible ordering (with respect to Gy and R). n

We next make several observations about C'-monotonicity.

13

Remark 1.14.

a) The C-monotonicity of R is automatically given in Example 1.1, 1.3, 1.4 and 1.5. The reason is that in each
of these examples the set R[A(O)] does not depend on the costs of O.
We next consider the examples in detail: Given O1,03 €U and a € A as in Definition 1.13.a).

In Example 1.1 we obtain the following equality:
(Vi=1,2) RINu(0:)] = R[{Oi & (a,d)|(a,a") € £} = {d'[(a,d) € I}

so that even R[Ny (01)] = R[Nu(02)].

In Example 1.3, the matroid property is given; Part b) of this remark says that the matroid property yields
the C'-monotonicity of R.

In Example 1.4 we first show
(o) Given a,a’ € A. Then for all O € R~![a] the following is true:

a' € RNy (0)] < Bt(a)nB~(a') £ 0.
To prove " =" we assume that a’ € R[Ny (O)]; then there exists a bond b with R(O ® b) = a’. This is only
possible if b is of the form b = (a,a’,n,é). The direction ”/ <=" can easily be seen by computing R(O ® b)
where b € BY(a) N B~ (d').
The monotonicity of R follows from (e): Let 01,02 € R™![a] then

RINu(01)] Y {d € A|BH(a)n B~ (a) £ 0} Y RINL(02)],

no matter how the costs C'(O;) and C(O3) behave.

At last, we consider Example 1.5. The assumption that O; and O; are related to a means that R(O;) =
R(O3) = a. This is used in equality (¢) of the following assertion: For all i = 1,2,

RINu(0:)] = {R(O:d)|de D} 2 {t(a,d)|d e D}.
Hence R[Ny (01)] = R[Nu(02)].

b) Given an RDM E = (U, A, R, C, Gy) with the matroid property. Then R is C-monotone.

This can be seen as follows: Let (O1,a),(02,a) € Rand C(01) < C(02). Let 04 € Ny (02) and o’ € R[O}].
We must show that then a’ € R[A(01)].

For this let Vy := Oz, V1 := O and W := O, The matroid property yields an object Z € R~![a] and an
arc e; = (V1,7) € &u. Hence Z € Ny (V1), and consequently a’ € R[Ay(V1)]; this and O; = V; imply that
indeed a’ € R[Nu()1)].

This means that R[AV4(02)] 2 R[Ny (01)] and even R[Ny (02)] = R[Nu(01)]. because the condition
C(01) < C(03) has not actuelly been used. -

In the next remarks we give examples of admissible orderings; moreover, we show how admissible orderings can be
maintained if an artificial start object is added to i.

Remark 1.15.
a) We describe how admissible orderings are realized in our earlier examples:
Ezample 1.1. Since G is acyclic there exists a topological ordering a(*), v =0, ..., n of A; this means that
(1) i < j for all arcs (a(i),a(j)) cr.

This ordering is also admissible in the sense of Definition 1.13.b). To see this we consider two paths X, Y € Y
with R(X) = a®, R(Y) =al) and (X,Y) € & . Then there exists an arc r € E with Y = X @ r, and the
values R(X), R(Y) say that r = (a(i), a(j)) . Then i < j by (1).

Ezample 1.2. Here the existence of admissible orderings depends on the particular situation.

14

Ezample 1.3. Here the definition a(*) := (v =0,...,n) yields an admissible ordering of .4. To see this we
assume that (X,Y) € & with al) = R(X) and aU) = R(Y)). Then Y is the union of X with a single edge;
consequently, i = a'¥) = |X|=|Y|+1=10a) + 1 =741 so that indeed i < j.

Ezample 1.4. Let al?) := 1991+ v, v =0,...,9. We show that this ordering is admissible. Let (X,Y) e &y,
R(X) = a® and R(Y) = al¥). Then there exists a bond b with Y = X & b, and this bond b must start in the
year a() and end in the year al/). Consequently, i = a(¥) — 1991 < aU) —1991 = ;.

Ezample 1.5. Admissible ordering are not automatically given.

b) Adding new start objects 6* to U and @, to A does not destroy the existence of an admissible ordering.
More precisely, given an RDM = = (U, A, R, C,Gy) with the start objects O, for U and a, for A. We assume
that a, = a9, e, ... o) is an admissible ordering of A.

Then we define a new RDM E = (U, A, R, C,gﬁ) as follows:

Let # := # U{0.} and A := AU {@.} where O, ¢ U and . ¢ A. Define the relation R C U x A as
R:=RU {(6*,5*)}. Let 6’(0) =C0)ifO # O, and 6’(6*) := 0. Moreover, construct G~ by adding the
arc (6*, 0.) to Gy. Then the following ordering of .,Z is admissible with respect to gﬁ and R: Let a(®) := s,
a¥) = qv-1), v=1,...,n+1 B B
Note that the new RDM E satisfies the condition in Remark 1.1.(iii), since every object O € U, O # O, can
be reached from 6* via O,.

In addition, the following assertions are true:
($) R1[a®] = R[] = {0.}.
Hence O, is optimal for @, = a(©).
($%) The start object O, is not related to any element @*) k > 0; more formally, (5*,5(]“)) ¢ R for all
k> 0.

So the conditons ($) and ($%) can be required without loss of generality. n

2. Logical Relationships between Different Properties of C

This section consists of proofs or counterexamples to assertions of the form A = B where A and B mean order
preservance, optimal successor property, matroid property or some Bellman condition.

We start with the following result:

Theorem 2.1. For all relational decision models = = (U, A, R, C,Gy) the following is true:
If = is order preserving and R is C'-monotone then = has optimal successor property.

Proof: Let X1, Xq,Y1, 2,y be the objects described in the definition of OSP. Then the existence of the arc (X1,Y7) €
&y implies that y € R[N (X1)]. Hence y € R[Ny (X2)] by C-monotonity.

Therefore we can choose Y3 such that C'(Y2) = p(Xa,y). Then C(Y2) = pu(Xa,y) < pu(X1,y) because C(X3) <
C(X1) and E is order preserving. On the other hand, (X3, y) < C(Y71) because of the minimality of x(X1,y), and
C(Y1) < C(Y3) as Y7 is optimal. Consequently, C(Y3) < pu(X1,y) < C(Y1) < C(Y3) so that C'(Y2) = C(Y1) and

Y5 is indeed an optimal successor of X related to y. -

Theorem 2.2. For all relational decision models = = (U, A, R, C,Gy) the following is true:
If = has matroid property then = has optimal successor property.
Proof: Let X1, Xo,Y1, 2,y be the objects described in the definition of the OSP.

Then let Vo := X1, Vi := Xo, W := Y7 and ¢g := (Vp, W) = (X1,Y1) € & Then the matroid property of C'
implies the existence of two order equivalent arcs (V1, Z) = e; and (Va, W) = €5 with Vo € R™1[z] and Z € R™1[y].

Now note that C'(V1) < C(V3) since Vi = X is optimal. This and e; ~ ey implies that C'(Z) < C(W) = C(Y1).
Consequently, C(Z) = C(W) = C(Y1) because W = Y7 has been assumed to be optimal. Hence Y3 := Z is

15

optimal, too, and it is a successor of Xa because (X3,Y2) = (V1,7) =e1 € &u -
The next result shows that the OSP can be used to construct paths consisting of optimal nodes.

Lemma 2.3. Given an RDM E = (U, A, R, C, Gy). We assume that E has the optimal successor property.
Let n < 2. Given the objects O11,...,01n €U, O21 €U and ay,...,a, € A with the following properties:

a) Pr:=(011,...,01,) is a path in Gy.

b) (O1;,a;) €R (i=1,...,n),and (O21,a1) € R.

¢) Oa,1 is optimal for a1, and Oy 5,..., 01, are optimal for as, . .., a,, respectively.
Then we can find objects O3 3, ..., 02, forming a path Py := (O21,...,02,) where all objects O3, are optimal
fora,, v=1,...,n.
(Hence P, is "better” than P because all nodes of P; are optimal while the start node of P is possibly not optimal.
— By the way, the case of n = 2 means the original OSP with X; := 0;1and Y; :=0; 5, 1 =1,2.)
Proof: We recursively construct the prefixes

P27y 12(0271,...,027,,), I/:l,...,n.

For v =1, the path P, 1 = (O2,1) is already given by the assumption that O, ; is optimal.

If P, exists then P, 41 is constructed as follows: Let X; := 0;,, ¢ = 1,2 and let Y7 := Oy ,41; moreover, define
z:=a, and y := a,4+1. Then the objects X1, Xo, Y1, z, y satisfy the conditions of the definition of the OSP. Hence
there exists an optimal successor Yo =: O3 , 41 of X3 = O3, and the path P, , 1 is ready.

Finally, let Py := Py, . -
The next result says that the OSP implies the weak Bellman property. As a consequence, order preservance is at

least as strong as the weak Bellman property. This fact is already mentioned in [9], p. 670 in the special case that
U is a set of paths in a decision graph.

Theorem 2.4. Given an RDM 2 = (U, A, R, C, Gy) such that Gy is finite and acyclic and = has optimal successor
property.

Then = has the weak Bellman property.

Proof: We start with the following definition: Given @ € A and an object O € R~![a], which is possibly not
optimal. Then for all paths P = (O. = Og,01,...,0, = O) in Gy we define k(P) as the length of the longest
uninterrupted sequence of optimal objects at the end of P. More precisely, k(P) = m + 1 if every O, is optimal for
some a, € A, K = 0,...,m; otherwise there exists a mazimal | < m such that O; is not minimal for any a’ € A;

then k(P):=m— 1

In Gy there exist only finitely many paths because G4 is finite and acyclic. Hence we can find a path P = P* between
O, and some O € R~![a] for which k(P) is maximal. We now prove that P* only consists of optimal objects.

Otherwise P* can be written as Q1 @& P; where
e Pr=(011,...,01,) and n = k(P*) + 1,
e 01, € R a,) (v=1,...,n) for some ay,...,a, € A with a, = a,
e O13,...01, are optimal for as, ..., a,, respectively.

Remark 1.1.(ii) yields an object O3 1 € U that is optimal for a;. Then Lemma 2.3 says that there exists a path
Py := (03,1, ...,02.,) consisting of optimal objects O ; for a;, i =1,2...,n. In particular,

(1) P, has n = k(P*) + 1 nodes, and O3 ,, is optimal for a,, = a.

16

Then @2 be a path from O, to O3 1 and let P** := Q2 @ P>. Then (1) implies that k(P**) > n = k(P*), which is

a contradiction to the maximality of k(P*).

Hence P* indeed consists of optimal nodes, and the weak Bellman property is proven. -

Remark 2.5. If a RDM = has the matroid property, then = is not always order preserving. °
Proof: Recalling Ezample 1.3, we define the graph G = (V, E) with
Vi={vo,...,va}t, E:={r;={vo,v}|i=1,...,4}.

Let y(r;) :=20—42 (i=1,...,4) and let Oy := {r1,7a}, O3 := {ra,r3}. v.1
We define the RDM E as in Example 1.3.
Then C(01) = 23 < 27 = C(O3). The best successor O; of O; with 'U.z '0.3

R(O}) = |0;| = 3 is constructed by adding the optimal missing edge to O; (¢ = 1,2).
Consequently,
/.t(01,3) = C({T’l,r3,7”4}) = 34 > 31 = C({T2,7’3,7’4}) = /.t(02,3)

so that = is indeed not order preserving. -
Remark 2.6. On the other hand, if = is order preserving then = does not always have the matroid property; this

is even true if R is C-monotone.

Proof: We define the following RDM = = (U, A, R,C,Gy): Let U := {Oy,01,05,07} and A := {0, 1,2} with
O, := Og and a, := 0. Moreover, let

0,
C = 2 []
Ol OII
&u = {(00,01), (00, 0y), (01,07) }, C—1 Y .
R(00) =0, R(O) =1, R(0%) =1, R(O}) =2, O
C(0p) :=0, C(0):=1, C(0%):=2, COY) =1 C—0 .

Then it is easy to see that = is order preserving and that R is C-monotone. On the other hand, for V7 := O}, there
exists no Z € U with ey := (V1,7) € & in spite of the existence of the arc ¢q := (Vo, W) := (O}, OY). Therefore
= does not have the matroid property. -

Remark 2.7. Note that in the situations of Remarks 2.5 and 2.6 the optimal successor property is given (see
Theorems 2.1, 2.2). Therefore the OSP is not strong enough to yield order preservance and C-monotonity; moreover,
the OSP does not always imply the matroid property. -

The next result describes the relationship of the strong Bellman condition to the optimal successor property.
Theorem 2.8.

a) The optimal successor property does not always imply the strong Bellman condition.

b) The strong Bellman condition does not always imply the optimal successor property.

c) If the strong Bellman condition is given and every set R_l[a], a € A has a unique minimum, then the OSP is
given.

Proof to a): We define the following RDM Eq = (U, A, R,Cy,Gy): Let U := {0y, 01,01,02,04} and A =
{0,1,2}. R is defined as a function: Let R(O;) =i and R(Ol) := i for all i. We define C(0}) :=1and C(O) :=0
for all O € U\{O}}. The set &, of all arcs of Gy is defined as

¢ = {(00,01), (00,01), (01,0,), (01,03) }.

17

Vg

Then Zg has the optimal successor property. We only must consider A7;(O1) and Ny (0}). Note that (O}, 0%) € &u
where O, is optimal for 2 € A; so we must check whether the optimal element O; has an optimal successor, too.
But this is true because O is an optimal successor of O;.

The strong Bellman property, however, is not given; the path (Og, O7, 0%) ends at the optimal object O} but the
intermediate object O} is not optimal.

Proof to b): We define the RDM E; = (U, A, R, C1,Gy) such that all components except the cost measure are the
same as in Part a). Let C(0}) := 1 and C'(0O) := 0 for all O # O3,

Then the strong Bellman condition is satisfied; for this we consider all paths from Og to an optimal object:
(00) ; (OO; 01) ; (00;01; 02) and (OO; Oll) .

It is easy to see that each of these paths exclusively consists of objects X that are optimal for R(X) € A. The
optimal successor property, however, is not given, because O; has the optimal successor O3, but the optimal object
O} does not have any optimal successor.

Proof to ¢): Given two elements z,y € A and the objects X1, X» € R7![z], Y1 € R™![y]. Let (X1,Y7) € &4 and
let X5,Y71 be optimal for x and y, respectively. We show that X; = X5.

Condition (iii) of Remark 1.1 guarantees a path P from O, to X;. Let Q := P&® (X;,Y1). Then @ ends with the
optimal object Y. So we can apply the strong Bellman property to the object X; € U on the path Q). Hence X, is
optimal for x, and the same was assumed for X5; the uniqueness of optimal objects implies that X; = X5.

Hence (X3,Y1) = (X1,Y1) € & so that X3 has the optimal successor Yy := V7. -

Altogether, the assertions of the following diagram are true:

= is order preserving,

i =h troid t
R is C-monotone as matroid property

= has the strong Bellman property,
each a € A has a unique minimal object

‘ = has the optimal successor property ‘

‘ = has the weak Bellman property ‘

3. The Dynamic Programming Algorithm DP;

In this paragraph we present a dynamic programming algorithm for relational decision models. We show that DP;
executes the same steps as FORD-BELLMAN and GREEDY if DP; is applied to the optimal path problem and the
minimal spanning tree problem, respectively. After this we prove the correctness of DP;; at last we consider its
complexity in the general case and in the Fzamples 1.1 — 1.4.

When introducing DP; we assume that the conditions of Remark 1.1 are given, and we make the following additional
assumptions:

(I) Gy is finite and acyclic; A = {a(o), aV a(”)} is also finite, and a. = a(®.

(IT) The set A is orderable with respect to Gz and R; in particular, the given enumeration a(®) is admissible.

18

(ITI) = has the optimal successor property.

(IV) The start object O, is given.
Moreover, we assume that R™*[a.] = R™! [a(®)] = {O.} . and that (O*,a*)) & R for all k > 0.
This situation can easily be generated by adding artificial start objects as described in Remark 1.15.b).

Our algorithm has the same global structure as the usual dynamic programming methods:
1. Initialize ¢ (a(®)) := O...

2. FORk=1TO n DO
Choose v (a(k)) as the optimal object within the set M of candidates; this set M is constructed by generating

all Gy4-successors of the optimal objects (a(j)), J < k, which have earlier been found.
3.1. The Formulation of the Procedure DP;,

We next give the detailed description of algorithm DP;. The numbers of the steps are the same as in FORD-
BELLMAN. The look-ahead step 2.0 of DP; often helps to save time.

PROCEDURE DP,

1. Initialize 1/;(a(0)) =0, and £ := Lg:= {¢ (a(o))})

Moreover, generate an empty list L(a(’)) for every element [=1,...,n
Computation of ¢ (a(k)) , k=1,... n; the objects ¥ (a(j)) ,] =
the k-th step; they can be found in the set £ = L1 = {1/} (a(o)) s

FORk:=1TO n DO

0,...,k — 1 are already given in
0 (at=D)),

2.0 For all { with al') € R [Ny (¥ (a®~1))] do
Compute an object O ~1) e If with
(1/}(a(k—1)’0(k—1,l)) €&y, (O(k_l’l),a(l)) € Rand C (O(k—l,l)) = u (1/}(a(k—1))’a(1)))
Insert the pair (kK — 1, 0%*=1.D) into the list L(a(").

2.1 Construct X := {_] €{0,....k—1} | (Foel) (1/}(a(j)),0) € &y, (O,a(k)) € R}.
2.2 Construct M := {OUH)|jeX }.
2.3 Choose 9(a'®)) € M such that

C (¢(a®)) := min{C(0) |0 € M} .
24 L:=LU{¢(a®)} .
3.2. Elementary Properties DP,

We first see that in Example 1.1, FORD-BELLMAN and DP; do the same things. This is an immediate consequence
of the following observation:

Remark 3.1. Given the notations of Fzample 1.1. For all j < k, the following assertions are equivalent:
(i)) e N~ (a®) .
(i) Ao eP (@) =u) (¥(a),0) €& A (0,aP) € R.

Proof: If (i) is true then r := (aU) a(¥)) € E, and O := ¢(al¥)) & r verifies assertion (ii).

If assertion (ii) is given then (1/}(a(j)), O) € & implies that there exists r € E with O = ¢(al)) @ r; in particular
a(r) = w (1/}(a(j))) = aU). Moreover, (i) implies that (O,a(k)) € R so that w(r) = w(0) = a®). Hence
r= (a(j), a(k)), where 7 € E, and Assertion (i) is proven. -

19

We next compare DP; to GREEDY:

Remark 3.2. If DP; is applied to Example 1.3 then it emulates Procedure GREEDY.

Proof: Let k € {1,...,n}. We first consider the set X constructed in Step 2.1 of DP;. Forall j and O, the condition
(1/} (a(j)) ,O) € &y implies that O is generated by adding one element to 3 (a(j)) so that |O] = |1/} (a(j)) |—|—1 = j+1;
i, in addition, (O, a®)) € R then |O| = k so that j = |[O|—1 = k—1. Consequently, Step 2.1 generates X = {k—1}.
It follows that M only consists of a single forest O*~1%) which has the property C (O(k_l’k)) =pk—-1),k).
This means that O*~1.%) has been generated by adding a minimal feasible edge to 1 (k—1) . Consequently, Step

2.4 of DP; finds the same forest ¢(k) = OF=1.k) a5 Step 2 of GREEDY. (This conclusion is based on the following
assumption: If there are several feasible edges with equal costs then DP; and GREEDY chose the same edge.) m

We next consider the correctness and the complexity of DP. For this purpose we make several simple observations:

Remark 3.3. The following definitions are equivalent to step 2.2:
() X = {je{0,.. . k—1} [a® € R[Ny (¥ ()] }.
(i) X == {j€{0,....k—1} |[R7* [a®] NNy (¥ (aV))) # 0} . -

Lemma 3.4. LetJ < k. Then the following assertions are equivalent:
(2) a® € R [Au(v(a®))] .

(b) 7€ X in the k-th iteration.

~

(c) A pair (j]\,O(J\’;)) is inserted into L <a<k:)) in Step 2.0 of the (J+ 1)st round.

(d) & [a®] Nz (v(a)) # 0.

Proof: The equivalence of (a) and (b) follows from Remark 3.3 (i). The assertion (a) <= (c) is clear by the
description of Step 2.0 forJ:= k — 1 and k :={. Finally, (a) is trivially equivalent to (d). -

3.3. The Correctness of DP;
We next show that DP; outputs optimal objects ¥(a¥)), k =0,..., n.

Theorem 3.5. (Correctness of DP;)

Given a relational decision model Z = (i, A, R, C,Gy). We assume that = satisfies the conditions (I) = (IV). Then
the object ¢ (a(k:)) found by DP; is optimal for a*), k =10,... n.

Proof (Induction on k): If k = 0 then the object ¥ (a*)) = O, is optimal for a*) = a(%) because R~* [a(")] = {0.}
by Condition IV .

Now let 1 < k < n; we assume that our assertion is true for all 0 < j < k. Then Remark 1.1.(ii) yields an object O
that is optimal for a®*) Then O #0.as0€ R [a(k)] while O, is not in R~! [a(k)] because of Condition IV).
Remark 1.1.(iii) yields a path P from O, to O. The path P has at least one arc because O # O,. Let (6, O) be
the last arc of P and let al) ¢ R[6] (Recall that R is total). Then j € X because of the admissibility of the
ordering (a(y))::o; hence Step 2.0 finds an object OU'*) (see Lemma 3.4, (b) <= (c)).

Note now that O € R™! [a(j)] has the successor O which is optimal for al*); moreover, v (a(j)) is optimal for
alJ) by the assumption of the induction. So the OSP yields an 0 € Ny (1/) (a(j))) such that O is optimal for a(*).
Consequently, OU:%) with C' (O(j’k)) =pu (1/}((10)), a(k)) < 0(6) is likewise optimal for a(*). Moreover, OU-*) € M
in the k-th iteration because j € X (see above); hence Step 2.3 indeed finds an optimal object ¢ (a(k)) for al®). g

We next summarize several sufficient conditions for the correct behaviour of DP;, and we discuss how they are
satisfied in Example 1.1 - 1.5.

20

Corollary 3.6. Given a relational decision process (U, .A, R, C,Gy) and an ordering A= (a(o), ceey a(")) of A.

The procedure DP; works correctly if the ordering A is admissible and one of the following conditions (i) — (iv) is
satisfied:

(i) = is order preserving and R is C-monotone. (Recall Theorem 2.1 and 3.5.)
(ii) E has the matroid property. (Recall Theorem 2.2 and 3.5.)

(iii) E has the strong Bellman property and every a € A has a unique optimal object. (Recall Theorem 2.8.c) and
3.5.)

(iv) E has the optimal successor property. (Recall Theorem 3.5.)

We next check the correctness of DP; in the Examples 1.1 — 1.5.

Example 1.1: We assume that the cost measure C' is order preserving in graph theoretical sense (see Remark 1.2).

As shown in Remark 1.15.a), topological sorting of the set V' of vertices yields an admissible ordering of A = V.
Remark 1.4.a) implies that RDM E constructed in Example 1.1 is order preserving, and Remark 1.14.a) says that
R is C-monotone. So Condition (i) is given, and DP; works correctly. More precisely, for all j = 0,...,n, the path
) (a(j)) output by DP; has minimal costs C' among all paths from a, to a) € A = V.

Example 1.2: Let E = (U, A, R,C,Gy) be the RDM constructed in Example 1.2.
We assume that there exists an admissible ordering of .A. Moreover, we assume that one of the following conditions
is given:

e The cost measure C' is constructed according to Remark 1.4.b) so that = is order preserving.
In addition, R is C-monotone.
Then Condition (i) is satisfied.

e The cost measure C' is defined according to Remark 1.10.
Then E has the optimal successor property, and Condition (iv) is satisfied.

In both situations, DP; works correctly. This means that for all j = 0,...,n, the path ¢ (a(j)) output by DP; has
minimum costs C' among all paths starting at a, and ending within the node set /) C V.

Example 1.3: Let E be the RDM constructed in Example 1.3. The definition aU) := j, j = 0,...,n yields an
admissible ordering of A (see Remark 1.15.a). Recalling Remark 1.6 and Definition 1.7 we see that the original
matroid property for forests implies that the RDM E has the matroid property. So Condition (ii) is satisfied, and
DP; outputs an optimal forests ¢ (a(j)) for each given cardinality j.

Example 1.4: Let = be the RDM defined in Example 1.4. It follows from Remark 1.15.a) that the definition
al):=1991+j, j=0,...,9 yields an admissible ordering of A. Remark 1.4.d) yields the order preservance of =,
and Remark 1.14.a) says that R is C-monotone. So Condition (i) is given, and DP; works correctly. More precisely,
forall j = 0,...,n, the algorithm DP; finds a pair ¢ (a(j)) = (a(j),y(j)) such that y(j) is the maximum profit the
saver can achieve in the year al).

Example 1.5: Let E = (U, A, R, C,Gy) be the RDM defined in Example 1.5.

We assume that a(®), ... a(™) is an admissible ordering of A. Moreover, we assume that h satisfies condition (MA)
in Remark 1.4.e).

Then E is order preserving. The relation R is automatically C-monotone as shown in 1.14.a). Hence Condition (i)
is satisfied so that DP; works correctly. This means that for all j = 0,..., n the following is true: The sequence
Y (a(J)) of decisions has minimal costs C' among all sequences effecting the state al/). -

3.4. The Complexity of DP,

We now consider the time consumed by DP;.

21

Lemma 3.7. Let T") be the time consumed in Step 2.i of the k-th iteration of DPy (i =0,...,4, k=1,... n).
Then the time T consumed by the procedure DP; is in

o (2”: (789 + 1 + 1P + 1)) .

k=1
The proof is straight-forward and based on the fact that Steps 1 and 2.4 of DP; are irrelevant for 7" -

We next investigate the complexity of DP; in the Examples 1.1. — 1.4.

Remark 3.8. In Example 1.1 and 1.3, the procedure DP; works as fast as FORD-BELLMAN and KRUSKAL,
respectively. In Example 1.2 and 1.4, the time consumed by DP; is often substantially smaller than the number of
the arcs of G and Gy, respectively. This is seen in the following discussion of the Examples 1.1 — 1.4.

Example 1.1:

We make the following assumption:

(+) For each a®) € V the lists A~ (a(k)) and A(a(k)) are given; they contain all nodes of N~ (a(k)) and N (a(k)),
respectively.

Then DP; comes out with O(|E]) steps; this is equal to the complexity of the usual Ford-Bellman Procedure for
acyclic graphs.

Proof: We consider the quantities Ték) (i=0,1,2,3)forall k=1,...,n:
Let us first calculate Ték). It is easy to see that every path O € U and for all [> k the following is true:
(1) (0€Nu((a*V)) and (0,aV)eR) =
O is of the form O = ¢ (a(k_l)) S3) (a(k_l),a(l)) where al) € N (a(k_l)).

This implies that a() € R [./\fu (1/; (a(k_l)))] iff (a(k_l),a(")) € FE so that all of these !'s can be found by traversing
A (a(k)) in |N (a(k_l))| time units. A further consequence of (1) is that ¢ (a(k_l)) &) (a(k_l),a(])) forms already
the desired path O*~1.) so that

70 = ‘N (a(k_l))‘ .

We first calculate Tl(k). For this we note that X = {j |a(j) EN~ (a(k))}. This and Assumption (+) imply that
2) 1" = ‘N‘ (a(k))‘ .

To estimate Tz(k) we note that Step 2.2 generates M = {1/} (a(j)) &) (a(j),a(k)) | J€E X} ; so the computation of
this set takes | X| W |N- (a(k))| time units. Moreover, Ték) =|M|=|X|=|N" (a(k))| .

Hence the time of computation is

O (Xn: (769 + 1 + 1" +T§’“))) €0 (é ‘N (a(k_l))‘ +3 é ‘N‘ (a(k))‘) - O(E)).

k=1

Ezample 1.2:

Let us first recall Remark 1.4.b) and 1.10. They show how to construct cost measures C' such that the resulting
RDM = = (U, A, R, C,Gy has the OSP.

We assume that 'v,(.f) is the end node of the path ¥ (a(i)) foralli=0,...,n.

In order to estimate the time of computation, we start with a general observation: Let #; < ¢3. Then a path

22

O is in Ny (¥(al))) N R~ [al?2)] iff there exists a w € N(vfl)) such that O = ¢ (a'')) & (vgfl),w) and
w=w(0) € al’?). So it is easy to see that

(3) (Vi1 < i) \Nu (w(a(“)))ﬂR‘l [MH = \N(vgm)maw

We next consider an arbitrary £ € {1,...,n} and the number of entries in the list L(a(k)) immediately after Step
2.0 of the k-th iteration. Let ¢(j, k) € {0, 1} the number of pairs (j, OU*)) in the list L (a(k)) forj=0,...,k—1
Recalling (c) <= (d) of Lemma 3.4 we easily see that ¢(j, k) = 0 and ¢(j, k) = 1 iff My (¥(a¥9))) N R=! [a®)] is

empty and nonempty, respectively. In both cases the following inequality is true:

(VO<j<k) .

Nb(¢&#”ﬁrWR‘1P“ﬂ

< t(5k) = MU}XWHL@W)

This implies that
0)] - Tn = S () ar []] 2 5 () na]
j<k i<k j<k

These facts are useful for estimating the computation times Ték), .. .,T?Ek):

Let us first consider To(k). We assume that for every O € ,/\fu(d;(a(k))) the set R[O] is available and that Step 2.0 is
executed as follows:

For all O € Ny (1/}(a(k_1)))
For all I with a!') € R[O] do

IF O(k_l’l:) does not yet exist THEN O(k__l’l:) = 0; _
IF O%~1.D already exists and C (O¢~1D) > C(0) THEN 0D .= 0.

This procedure takes a time of
e o > |wol
OeNu(w(a(k—l)))
To estimate this sum we observe that
> Jwo| = [{©n]oesiaty s k-1 0.0 e)
OENu(ab(a(k—l)))
= Vet Wi WD) n R 0] 25 | () et

This implies that

To(k) e O (Z ‘N (v&k_l)) ﬁa(")‘))
_1

>k

To estimate Tl(k) we conclude from the equivalence (b) <= (c) of Lemma 3.4 that X can be computed by scanning
L (a(k))) so that
(4) ;
Tl(k) = ‘L (a(k))‘ < Z‘N (vﬁ”) ﬂa(k)‘ .
i<k

In order to compute TQ(k:) we again consider (b) <= (c); so we can see that Step 2.2 can be executed by scanning
all pairs (_],O(J’k)) cL (a(k)) (|t is not bad if an object 0U" k) = 0G"k) with J' # 7" occurs more than once in
the representation of M.) Consequently,

< [oe®)] 2 Sl (e

i<k

23

In particular, the representation of M consists of |L (a(k))| entries so that

1" = L (a®)] < @ Z‘N(D) na®).

Altogether, the time 1" of computation lies in an order of magnitude which is given by

[()00 + 5 5 ())]

k=11>k-1

Each of the two double sums is equal to E ‘N (vih)) N a®)| so that

Osil <19 <n

Gy T'e O > ‘N (vgl)) A ali?)

0<i1<iz<n

Before discussing this result more profoundly, let us have a look at the data structure that should be used to store
the pairs (i1, O(il’“)). The estimation of Ték) is based on the assumption that inserting, searching and updating of
(i1,001%2)) is possible in (D(1) steps where i1 = k — 1. When estimating Tl(k) and Tz(k), we assume that the set
L (a(“)) with 45 = k can be scanned in |L (a(“))| steps.

This behavior can be effected by an array Y (i1, i3) where each element y(i;,2) is a record of three components:
y(i1,142).1 is equal to nil or contains the current pair (il,O(il’“)) . y(i1,i2).1 # nil then y(i1,42).2 = 4] and
y(i1,149).3 = i where i] and il is the next index i} < i; and i} > i; for that y(i},i2).1 # nil, respectively.

Let us next compare the time 7' of DP; with the O(]E|) complexity of the usual Ford-Bellman strategy. For this
we consider the special case that the sets al*) are pairwise disjoint; this means that the relation R is a function

R:V — A Of course, if i1 is given then the sets N (vSfl)) N ali2) (i = 1,...,n) are also pairwise disjoint.

Consequently, the following fact is true for all i, =0,...,n — 1:
> ()] = | O (v () na)| = v () (O a)| = |y ()]
ia=i1+1 ia<i1+1 ia=i1+1

From this we can conlude that

|V (i) na®)] = Z Z v (o) et = 3 v (o))

0<21<22<7’L i1=043=i;+1 i1=0

This and (5) imply that

6) T € (f)(ni ‘N(vffl))‘)

i1=0

Note that V' := {'Uio), . .,'vin_l)} is very often a proper subset of V so that 271;10 ‘N ((“)) ‘ dovev: IN(W)] <
Y vev IN(v)| = |E|. This and (6) make us expect that in many cases 7" is substantially smaller than |£].

For example, assume that a(®) = {s} and all other sets al/) have a cardinality within the interval [0.5¢, 2¢] where

¢=+/n. Then

n

M IVl =

1
[1+§n\/ﬁ,1+2n\/ﬁ])

j=0

We define . .
E = {(v,w)|v€a(l), wEa(]), 0§Z<]§7’L}

24

Then

® B = 3 |a® a<i>‘2 3 fa®

0<i<j<n 1<i<j<n 1<i<j<n

2 2

a(i)‘ > Z 0.5¢-0.5¢ = n 2_” CZ 69(713)'

On the other hand, NV («vyl)) = altt) ... Ua™ for all i; so that ‘N (vgil)) ‘ <2-(n—11)-+/n. Consequently,

n—1) n—1 2
) X_:O‘N (1)] < 22.(71_1'1).\/; = B vn e 0w v,
- 7
Let us now compare (8) and (9). We see that the time E?l_:lo ‘N ('U,E“))‘ consumed by DP; is \/n (E) S) <\3/|V|)
times smaller than the complexity |E| arising from first applying the Ford-Bellman Strategy to the graph G and then
searching the paths ¢(al)) (j = 0,...,n) among all optimal paths from v(%) to v where v € a/). The reason is
that Ford's and Bellman's algorithm considers each predecessor v of a given node w while DP; investigates v only

if v belongs to the set V'’ of endpoints of optimal paths (a(k)); in particular, for any set a*) only one element

v =" is considered (and not all elements v € a(®) as in the Ford-Bellman Procedure).

Ezample 1.3:

Let a®) .=k, k=0,...,|V|-1:=n

We first consider Step 2.0 of the k-th iteration (k € {0,...,k — 1}). The only [with () € R [./\fu (1/;(&““‘”)] =
R[Ny (¢¥(k — 1)] is I = k because every forest O with (¢¥(k — 1),0) € & has k edges. This means that Step 2.0
only generates one object O* 1) namely OF—1.%),

In order to describe this step in more detail we assume that the arcs of £ are already sorted by their y-value, i.e.

E={e,...,e;} and 7y(e1)>...>v(er).

Moreover, we imagine that DP; calculates the index p of the current edge ¢,; this index is initialized as p := 1 in
Step 1. Every node v € V is associated with a value cc(v) describing the connected component of v in the forest
Y(k); cc(v) = nil if v does not yet belong to ¥(k). Then we can formulate Step 2.0 in the k-th iteration as follows:

2.0.1. WHILE (Both end points of e, belong to the same connected component of Y(k —1)) DO p:=p+1;

2.0.2 IF p < r THEN construct ¥(k) := ¢(k — 1) U{e, };
FORALL v € V' update cc(v). (This is necessary if e, connects two components of 1(k — 1).)

Then all iterations of DP; cause altogether r executions of Step 2.0.1. Each Step 2.0.2 comes out with (D(n) time
and is executed < n times. Hence

(10) 1Y € or+n?) = O,

Let us next consider Tl(k) , T2(k) and T?Ek) fork=1,...,n: First Tl(k) = 1 because X = {k — 1}. (Note that every
forest (a(j.)) , J <k —1 has less than k£ — 1 elements and cannot have a forest of cardinality k as its successor.)

Moreover, T2(k) =las M= {O(k_l’k)} , and T?Ek) = 1 for the same reason.

This means that the time complexity T' of DP; is mainly influenced by Ték), ie.

'€ o)
This means that in this case DP; is as fast as the Greedy Procedure described in [7].
Example 1.4:
To calculate Ték), ce T?Ek) we make several observations. It is obvious that

a) The sets Bt (a(“)) , 21 =0,...,n— 1 are pairwise disjoint;
(11) b) the sets B~ (a(iz_)) , 12 = 1,...,n are pairwise disjoint;
¢) the sets B (al)) N B~ (al®2)) , i3 =0,...,i5 — 1 are pairwise disjoint for every is.

25

We next note that for all iy,
(12) N (v (a®)) = {v (™) @] be Bt (a)}
Moreover, if b = (alt),a’2) 7, 6) € B (alk~1)) then
(13) R (¢ (a™)@b) = ol
This implies that
(14 Ny (¢ (a®)) 0[] = {e(a)@b]sest (@) B (o)}

We next estimate Ték). Applying (12) to i3 := k — 1 we see that Step 2.0 can be executed by traversing the
set Bt (a(k_l)). Moreover, let b = (a(k_l),a(l),n,é) € Bt (a(k_l)). Then Fact (13) with iy := [says that
R (1/} (a(k_l)) ® b) = aV) so that L (a(l)) is updated.

Hence every bond b € BT (a(k_l)) causes O(1) steps so that

1 ¢ o (|5 (a)])

We next consider Tl(k), . ..,T?Ek). For all j we define t(j,k) € {0,1} as the number of pairs (j, O(JV’“)) occurting
in L(a(k)). Moreover, Fact (¢) <= (d) of Lemma 3.4 says that (j, O(j’k)) €L (a(k)) iff Ny (1/} (a(j))) N
R! [a(k)] # 0, and Fact (14) implies that this is true iff B+ (a(j)) NnB- (a(k)) # 0. Consequently,

1) [e(a)] = Suk < |5 (@) ns- (o)

Recalling the last assertion of (11) we obtain:

(16) ‘L (am)‘ <§>> é‘m (am) NB- (am)‘ _ Uo [B+ (am) nB- (a(k))] _ ‘B_ (a@))‘ .

Then the set X can be constructed by scanning L (a(k)) so that

(16)
The set M is generated by traversing X so that

¥ e 0(x))

N

(16 € ol ().
1 o o) € fo (@)

We next compute the time 7" consumed by DP;. At first, 22:1 Ték) isin O (E:zl |B+ (a(’“—l)) |) moreover, Fact
(11).a) implies that Y 7 _, |B+ (a(k_l))| = U:;é Bt (a(k_l))‘ = |B]. Consequently

At last,
T(k) M|

IN

S e o(B).

k=1

For ¢ = 1,2,3 our previous results imply that > ,_, Ti(k) is in 0(2:21 |B_ (a(k))|); Fact (11).b) vyields
Siet BT (a®)| = |Uezi B~ (a*~V)| = |B|. Consequently

Yot e oqs).

k=1

26

Applying Lemma 3.7 we obtain
T € 0(B8)).

To get a better impression of the complexity O(|B]) we compare the quantity |B| with the number of all arcs in Gyy.
For this we make the following assumptions, which are not very restrictive:

(+) Let O € U. Whenever two different bonds by # ba are sold in situation O, then the resulting financial situations
O ® by and O ® by are different.

(++) There exists a year a with |[R™![a]| > 1.

As seen in Remark 1.4.d), for all a € A and O € U with R(O) = a the following is true: A(O) = {O®b|be
Bt (a)} . Consequently,

(17) (YaeA)(OeRa) N(0)] = [{00b]beB(a)}| L |B*(a).
This implies that
|&ul = Eoeu |M1(O)| = 2(119:919990206%—1[(1] |Ml(0)|
(19) _ (++) (11).a)
= e Yoer-1w BT @] = Yuiheo [RYdll - B (@) > FaZieo IBH(a) =8|

4. The Dynamic Programming Algorithm DP,

We now present and investigate the dynamic programming procedure DP; for relational decision models = =
(U, A, R,C,Gu). In contrast to DPy, the algorithm DP3y works correctly even if the underlying relational deci-
sion model E only satisfies the weak Bellman condition; by Theorem 2.4 and Remark 2.8 (b), this property is not
so strong as the optimal successor property required in Section 3. Hence DP5 is more universal than DP;.

Given the RDM = = (U, A, R, C,Gy). Then we define the function W from A into the power set 2/ of U as follows:
For all @, ¥(a) C U is the set of all objects that are optimal for a. More formally,

(VaeA) VY(a) = {0 eu ‘ (0,a) € Rand C(0) = (Omi)nRC(O')} :
' a)€
We make the following assumptions:
(I) Gu is finite and acyclic.

(IT) The set A is orderable, and the given enumeration (a(i))?zo is an admissible ordering with respect to G;; and
R.

(III) = has the weak Bellman's property.

(IV) The start object O, is given.
Moreover, we assume that R™*[a,] = R™! [a(®)] = {O.} . and that (O*,a*)) & R for all k > 0.
This situation can easily be generated by adding artificial start objects as described in Remark 1.15.b).

Our task is to find an element v(a) € W(a) for all a € A. For this we consider the dynamic programming method
DP5. lts structure is similar to that of DP;. The main difference is that the single object ¥ (a(k‘l)) and ¥ (a(k-)) is

replaced by an object O € ¥ (a(k_l)) and 0 € ¥ (a(k)), respectively.
4.1. The Formulation of DP,

We now give the detailed description of the procedure DPs.

27

PROCEDURE DP,

1. Define ¥ (a(®) := ¥(a(®) = {O.} and
L:=Lo =) = {0.}.
5 Computation of W(al¥)), k = 1,...,n; the sets ¥(al)), j = 0,...,k — 1 are already given, and
Ly =L=iZ, ¥(a)).
FORk:=1TO n DO
2.0 For all I with a'¥ € R [/\/'u (\Il (a(k_l)))] do
Compute the set O =1 of all objects O with the following property:

(F0ew (5) (008 (0.6%) cr)= (0.00)).

Put each pair (k — 1, 6) with O € O*=1D in the list L (a(l)).
2.1 Construct X := {j e{0,....k—1} ‘ (EIO EU) (356 v (a(j))) ((6,0) €& A (0,aM) € R] }

2.2 Construct M := U oUk),
jex
2.3 Construct the following set ¥(a*)) C M:

U(a®)y = {0 €M ‘ C(0) =min{C(0") | 0" € M}} .

24 L =LUV¥ (a(k)) .

3. FORk:=0TO n DO
Choose an arbitrary object ¥(a*)) € W(a(*)).

4.2. Elementary Properties of DP,
The next remark describes an elementary observation about DPs5.
Remark 4.1. The following definitions are equivalent to step 2.2:
() X = {j€{0,....k—1} |a™ € R[Ny [¥(a)]] } .
(i) X = {je{0,....k =1} | R [a®)] n Ny [¥ (a9)))] # B} .
(i) X = {je{0,....k—1} |OUR) £ 9} . -

4.3. The Correctness of DP,

We next show that the objects ¥ (a(j)) found by DP5 are actually optimal.

Theorem 4.2. Given an RDM E = (U, A, R, C, Gy) satisfying the conditions (1) — (IV) at the beginning of this
paragraph. o

Then the objects v(a'®)) found by DP5 are indeed in W(a(*)) for all k =0,...,n.

Proof: 1t is sufficient to show that

(1) ¥(a®))CV(@®), k=0,...,n.

28

(2) Wa®)£0, k=1,...,n.
For this we first show an auxiliary result:
(3) Forall k =0,...,n the following is true:

Voecl) 0ec¥(a?) _ _
There exists a Bellman path from (O.,a(®) to (0,a*)).

The proof is given by an induction on k. The case of k = 0 is very easy. Note that ¥(a(®)) = ¥(a(®) = {0.}. If
Ocv (a(o)) then O = O, and the path (O.) only consisting of O, is the desired Bellman path. On the other hand,
given a Bellman path from (O.,a(®) to (0, a®)) with k = 0. The (O,a®)) € R implies that 0 = 0, € ¥ (a(o)).

We now assume that (3) is true for all 0 < j < k and prove this fact for k.

Proofto” =7 : Let O € ¥(a™®)). Recalling the construction of this set we obtain

4) (0,a*)) e R.
We now prove that
(5) O € ¥(a®), ie., O is optimal for al®).

For this purpose we compare O to an optimal element 0evw (a(k)) that can be reached by a Bellman path. More
precisely, the weak Bellman property yields

~

e a path P .= <60,...,Os ::6) and

e elements dp = a9, Gy, ...,a, = a®)
such that O, € ¥(d,), 0=0,...,s.
Then O, # 6; this follows from the relationships (6, a(k)) € R and (O*,a(k)) ¢ R (see Condition IV)). The fact

Og=0,# 0=0, implies s > 0. Since s > 0, the subscript s — 1 really occurs. Let j’ such that G,_; = ali’). We
make the following observations:

(6) (Os-1,@o-1) = (Os-1,a0") € K.
(7) (63,a(’“)) = (6,a<k>) €R.

(8) (63_1,63) €&

So the strict monotonity of R and Facts (6),(7).(8) imply that j/ < k. Therefore we may apply direction ” <= of
(3) to j' and obtain:

(9) 63_1 evw (a(jI)) ,le., 65_1 is found by DP5.

Moreover, consider the definition of X and let O := 65 and O := 65_1; then (9), (8) and (7) imply that
(10) j' € X in Step 2.1 of the kth iteration.

These facts are now used to prove (5): It follows from Assertion (9) that Step 2.0 of the (j' + 1)st iteration also
considers O := O,_1; Facts (7) and (8) imply that Az(O) N R~} [a(“] # 0; consequently, Step 2.0 inserts at least

one object O into OU"%) with the property 0(6) =pu (63_1,a(k)) . A further consequence of Facts (7) and (8)

is that even C'(0) = p (65_1, a(k)) <C (65) so that 0(6) =C (65) because O is optimal for a(*). Moreover,

~ o (10) ~
O € OU"F) 'C" M so that the object O € ¥ (a(k)) has been compared with O in Step 2.3 of the kth iteration.

29

Consequently, C'(0) < 0(6) = C’(és); this and the optimality of O, imply the same property of O.
We now have proven assertion (5) and must still construct a Bellman path from (O*,a(o) to (O,a®)). For this
we observe that O € ¥ (al®)) is only possible if O € M = Uf;ol 0Uk) Hence there exists a j” < k with

0 € 0U"*) The definition of O € OU"*) yields an O € ¥ (a(j”)) such that (O, 0) € &;. We apply = of the

induction hypothesis to j”; thus we obtain a Bellman path P from (O*, a(o)) to (6, a(j”)) . Assertion (5) says that
P @ (0,0) is the desired Bellman path from (O*, a(o)) to (O, a(k)) .

Proof to ” <=7 : Here our argumentation is similar to the last part of 7 = ”:

We assume that there exist a Bellman path from (O, a(o)) to (O,a(k)); more precisely, we assume that there exist
e apath P := (Oy,...,0, = O) and
e objects ag = al ay, ..., a, = a®
such that O, € ¥(a,), p=0,...,r; in particular,
(11) O =0, €¥(a,) = ¥(a®).

11
Note now that O. # O because (O,a(k)) (E) R and (O*,a(k)) ¢ R (see Condition IV)). Consequently, Oy =
O. # O = O, so that r > 0 and the index r — 1 really occurs.

Let j/ such that a,_; = a'). Then the following assertions are true:
(12) (Or—l;ar—l) - (Or_l,a(jl)) = R

(13) (O,,a™) e R.
(14) (Oy-1,0;) = (0y-1,0) is an arc of Gy.

So the strict monotonity of R implies that j° < k. We then apply direction ” <=7 of (3) to j' and obtain:
(15) 0,1 ew(alV) .

Moreover, we recall the definition of X for O := O, and O := O,_;; then (14) and (13) imply that

(16) j' € X in the k-th iteration.

These facts are used to complete the proof of (3): Assertions (12) and (13) and the optimality of O = O, yield
C(O)=p (O,_l,a(k)); this and Fact (15) imply that O is put in 0U"*) in Step 2.0 of the (' + D)st iteration. The
consequence of this and of (16) is that O € M in Step 2.2 of the kth iteration. Note that M C R~} [a(k)] because
0Uk) € R=1[al:¥)] for all j. This and the optimality of O = O, within R™! [a(¥)] implies that O € ¥ (a*)) in
Step 2.3.

Now Fact (3) is proven. In order to show Fact (1) we consider an O € W(al*)). Then ” < ” of (3) yields
a path (Op,...,0, = O) and the objects ag,...,a, = a*) such that 0O, € ¥(a,) for all p. Consequently,
O =0, € ¥(a,) = ¥(a®)). This means that indeed ¥(a'*)) C W(al*)), and Fact (1) is proven.

Fact (2) is shown with the help of Assertion (3). It says that for the given a(*) there exist a path (O, ...,0,) and
r objects ag = a?, ..., a, = a'®) with 0, € ¥(a,) for all p. But then ” < ” of Fact (3) says that O, must be an
element of ¥(a,) so that this set is not empty; in particular, this is true for p = r so that ¥(a,) = ¥ (a(k)) £0.

Now Facts (1), (2) and (3) are proven. Assertion (2) means that Step 3 finds an element Y(a®)) forall k =0,...,n,
and Fact (1) says that ¢(a®)) in W(a(*)). -

4.4 The Complexity of DP,
The next results are about the time consumed by DPs.

Theorem 4.3. We define Ti(k) as the time of computation DP2 consumes in Step 2.i of the kth iteration (i =
0,...,4, k=1,...,n). Then the time T consumed by DP; can be estimated as follows:

30

T e O (E::l (Ték)+T1(k)+T2(k)+T?Ek))) .

0T e @(S N (9 (o)) 0 WH).

Osil <19 <n
Proof:
Part a) is almost trivial because only the steps 2.0 — 2.3 cause a substantial amount of computation time.

We next consider Part b) and start with estimating Ték). For this we assume that for every O € Ny (¢(a'*))) the
set R[O] is available. Then we can give the following description of Step 2.0, which is based on the fact that all
elements of O*~1.)) have the same costs.

For all O € Ny (\Il (a(k_l)))
For all I with a") € R[O] do
IF O=1D =) THEN O=1D .= {0},
IF 0= £ ¢ THEN
Choose an arbitrary O’ € Q=11 ;
IF C(O") > C(O) THEN O¢*-11) .= {0}
IF C(0') = C(0) THEN O=1D .= 0k-1D y {0} .

This procedure takes a time of

" ¢ o > ‘R[O]‘
ONu(¥(alt=1))

To estimate this sum we observe that

3 ‘R[O]‘ = ‘ {(0.0] 0 €N (¥ (a*1)), 1> k=1,(0,a") € R}‘
OEN (¥ (ak=1)))

= Yo Nu(¥(a*=D) N R=aD]]

This implies that

1 € of X (v ot0)) nr []]).

>k—-1

We next find an upper bound to Tl(k). Recalling Remark 4.1 (iii) we see that X can be computed in | X| time units
by collecting all j with Q) # (. This means that each j = 0,...,k—1 requires ¢(j, k) = 1 time unit if 0k #0,
and j costs t(j, k) = 0 time units if OU¥) = (). Consequently, t(j, k) < |O(j’k)| for all =0,...,k— 1. Moreover,

(1) (Vj=0,....k—1) 00" C Ay (\IJ (a(j))) NR™[a®)].
This implies that
k-1 ' (1) k-1 '
™ = Gk < ‘007’“)‘ <3 ‘Nu (\If (am)) nR-! {a(k)] ‘ .
j=0 j=0 j=0
We next consider Tz(k:); for this we assume that M is represented as a list of all elements O € OU:%) where j € X.

(It is not bad if an object O € 0U"*) N OU"*) occurs more than once.) This description of M can be obtained by
traversing all sets OU:%) £ () which can be done in the following time:

G S PTION =) —1 [)
= Soss] ¥ S (o () et o]
j=0 j=0

31

In order to calculate T,SB) we observe that the list generated in Step 2.2 has Ef;ol |O(j’k)| elements. Hence Step
2.3 takes the following time of computation:

T ’“f‘oo,m‘ 9 ’“f‘,vu (w () ne- [a] |
’ j=0 %o

Altogether we see that the time 7" consumed by DP5 has the following property:

T e o5 5 b () ot + 35 (v (#9) o)

k=1 I>k-1 k=1j=0

Let 77 := I, i3 := k in the first sum, and let ¢ := j, i5 := k in the second. Then we see that

T e® 3 ‘/\/U(q; (a(il)) mR—l[a(iz)]‘

1§i1<i2§n

At the end of this proof we should have a look at the data structure that should be used to store the sets Q(1:12) () <

11 < i3 < n. The computation of Ték) is based on the assumption that for iy = k£ — 1 and for all i > k£ — 1 the
following operations can be executed in 1 time unit:

e testing whether O JUREVEN empty,

e choosing an element O’ € O1:2) jf Q(i132) #0,
e replacing OC1%2) by {0},

e adding a new element to Q(1%2).

Moreover, when estimating Tl(k) and Ték) we assume that for iy = k the sets Q(71:%2) #0 (i1 =0,...,i) can directly
be found without considering the sets O('1:%2) =). In addition, scanning all elements of a given set QU1:72) £
must be possible in |O(11:%2)| steps.

This behaviour can be effected by an array Z(i1,i2) where each element z(i1,72) is a record of three components:

2(iy,12).1 is equal to nil if OU1%2) = {}; otherwise 2(i1,is).1 is a linear list with all elements of OU1.%2) — If
z(i1,12).1 # nil then z(i1,42).2 = i1(<) and z(i1,42).3 = i1(>) where 4;(<) and i;(>) is the next index #} < i3
and 7} > 4; for that z(4],42).1 # nil, respectively. . -

Remark 4.4. Recall Example 1.1. Then the time of computation consumed by DP5 can be bounded as follows:

a1 e oS @) v (@)]) € oS)| v ()).

01 € o g, [()] |£]) € oy, [7(e)]]£])

In particular, T € O(|E|) if |§ (a(il))| =1 for all 4;; this condition means that the minimal path from a(®) to a(®1)
is unique for all 7;.

Proof: It is easy to see that for all 0 < #; < i3 < n the following is true:

- . (11) q(i2) (1) i (1) (i2)
(1) /\fu (\If(a(“))) N R! [a(m)] — { {P@<a , @ 8|PE‘I/<G)} if (a , @)EE,

if (aC),a2)) g E.

32

Consequently, forall i, =0,...,n— 1,
(2) B(i) = Uiz, 41 M (¥ (a)) 0 R [al2)]
(P& (a),al) | P e W (a) , iy> iy, (at),a0®) € 1)} |

So we can define the function A : B(i;) — ¥ (a(“)) x N (a(il)) by A (P@ (a(il),a(“))) = (P, a(i2)) for all
paths P & (a(il),a(”)) € B(i1). Obviously, A is bijective; in particular, A71 (P, a(“)) =FP& (a(il),a(i2)) for all
Pev (a(il)) and a(2) ¢ N (a(il)) . So we can conclude that

(3) (Vir=0,...n—1) [B(ir) = [(a®@)] ¥ (a®)]

We next observe that the sets R~} [a(“)] iy =0,...,n are pairwise disjoint because different sets R~* [a(“)] and
R™! [a(ig)] with iy # i, contain paths with different end nodes a(’2) # al’2) . Of course, the same is true for the

sets Ny (W (a(il))) NnRrR! [a(iz)], i = 0,...,n. This implies that

4) (Vii=0,...,n=1) Y ‘Nu (v (a)) n R [a(i2)H @ By ¢ ‘qf (a(il))‘ : ‘N (a(il))‘

ia=i1+1
So we obtain
(5) Cogircisgn Wt (¥ (a60)) 0 R [a0]| = SEZUSE g [N (0 (@) 0 R [a)]| &
>izo [T (@) [N (@)

Moreover, we recall Fact (1) in the proof to Theorem 4.2:

(6) U(al)) CW(alV)), i1 =0,...,n.

With the help of these facts we obtain

. - (5) _ . .
(M Cocirciren W (¥ () 0 R [a D] < 5207 [()] [N (a)]

©) i1 =~ o . e .
< hzo [P (@) N ()] = T [E (@)] -V (a@)]

Combining this fact with Theorem 4.3 b) we obtain Assertion a) of this Remark. In order to prove Part b) we
observe that

. G . .
Yo <izen [Nu (¥ (@) 0 R [al]] < TG W (o)][N (al)]
< Yi [maxz':o,...,n—lI‘I’(a(“)|] N (a)] = [maxz':o,...,n—l|‘I’(a“))|] Yo

= (maxico, oot [(a)]) | 2] € (maxicy

N ()]

This result and Theorem 4.3 b) yield Assertion b). =

5. Concluding Remarks

We have studied the two dynamic programming algorithms DP; and DP5 working in relational decision models. The
procedure DP; can emulate the Ford-Bellman Algorithm for acyclic graphs and the Greedy Procedure for optimal
spanning trees. The algorithm DP; is more universal then DP; as the conditions for the correctness of DP5 are less
restrictive than those for the correctness of DP;.

33

An interesting field for future research is the extension of DP1, DP; or similar procedures to more general classes of
graphs Gy, cost functions C' and relations R. For example, it seems to be easy to prove that the original DP; works
correctly if the relation R is a Bellman-Ford ordering, i.e.: For all paths (O. = Og,...,0,) in Gy and all objects
a, = al® = alo) () aqln) the following is true: If (O, , al™)) € R, v =0,...,n then iy < i) < ... < ip.
This property is somewhat weaker than the monotonity of R, and it was already investigated in [4].

So it remains to give an generalized version of DP; or DP; if

e Gy is not acyclic,

e R is not even a Bellman-Ford ordering,

e The underlying relational decision model = does not even have the weak Bellman property.
A further idea is to consider not only the graph Gy but also an analogous graph G4 = (A,£4). With respect to
the relationships between G;; and G4 we can formulate new properties of R and C', and perhaps we can create

new versions of DP; and DP5. For example, it may be sensible to require that the objects ag = a4, a;...,a,, in a
Bellman path (see Definition 1.11 d)) must form a path in G4

References
[1] R.Bellman, Dynamic Programming. Princeton University Press, Princton, N.J., 1957.
[2] N.Christofides, Graph Theory, An Algorithmic Approach. Academic Press, London (1975).
[3] R.Dechter, J.Pearl, Generalized Best-First Search Strategies and the Optimality of A*. JACM 32, No. 3, p. 505 — 536 (1985).
[4] R.W.Haddad, A.A.Schaffer, Recognizing Bellman-Ford-Orderable Graphs. SIAM Journal on Discrete Mathematics 1, No. 4,

p. 447 — 471 (1988).

[5] T.Ibaraki, On the Optimality of Algorithms for Finite State Sequential Decision Processes. Journal of Mathematical Analysis
and Applications 53 (1976), p. 618 — 643.

[6] R.M.Karp, M.Held, Finite-State Processes and Dynamic Programming. SIAM Journal on Applied Mathematics 15 (1967), p.
693 — 718.

[7] D.C.Kozen, The Design and Analysis of Algorithms. Springer-Verlag, New York, Berlin (1991).
[8] E.L.Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York (1976).

=

T.L.Morin, Monotonicity and the Principle of Optimality. Journal of Mathematical Analysis and Applications 88, p. 665 —
674 (1982).

34

Appendix

Here we show the optimal successor property of the relational decision model E = (U, A, R, C,Gy), where the cost
measure C' is defined in Remark 1.9). The proof consists of several steps.

Definition A.1. Given a set A, a number p > 0 and a function f: A — R. Then f has a unique minimum with
radius p if there exists an a* € A such that f(a) > f(a*) + p for all a # a*. -

For every v € V we choose P*(v) as a minimum cost path from s to v; let C*(v) := C'(P*(v)).
Forall 1 C{0,...,n} let all) := User a®; in particular, a® = @ and a{t*) = () for all 4.

If I # () then we choose a node 'UiI) € al!) such that the value C*(v), v € a) is minimal for v = 'v,g); in particular,

vg) = 'Ui{i}) in the description of Example 1.2 in Remark 3.8

We next discuss the step from k — 1 of k where k£ € {1,...,n}. For this we define
Xy = {j €{0,...,n—1} |a¥) x a® 75(0} .
(This set X = X}, is constructed in Step 2.2 of DP;.)

Then we prove the following result:

Theorem A.2. We consider the situation of Example 1.2. Given the numbers A ¢ 6" 6" > 0 such that
A>28"> 26"

We make the following assumptions:

(i) For every v € al®*) there exists an arc from v into a(F), ie. N(v)N alk) # 0.
Moreover, we assume the existence of the minimum h*(v) of all candidates h(v,w) where w € al®) is a
successor of v. We choose the node w*(v) € al¥) such that h(v, w*(v)) = h*(v).

(ii) Forall v € al**) and w € N(v) Na*) with w # w*(v) the following is true: h(v,w) > h(v, w*(v)) + &".

This means that the restriction of h to £ N ({v} x a*)) has a unique minimum with radius &

(i) (Vvea?)) (Ywead®nN(w)) 6 < |h(v,w)] < 6.

(iv) VICH{0,....k—1},i#0) C*

o() has a unique minimum with radius A.

Then C*

as

«(n has a unique minimum with radius A’ for all nonempty sets I C {0, ..., k}; the quantity A’ is defined

A" = min{é, 8", A-2-6"}.

Proof: Given I C{0,...,k}. Let z:= vg) and 7 # 'vg). We assume that z € a(™) and 7 € alm) where m,m € I.
If m =k > 0, then there exists a predecessor y of z on P*(z), and we choose ¢ such that y € a. fm=k>0

then there exists a predecessor § of Z on P*(Z), and we choose ? such that 7€ ab.

In our proof we often use the strong Bellman principle for additive cost measures on paths in graphs. It says:

(1) Given v € V and the path P*(v). We assume that u is the predecessor of v along P*(v) and that @ is the
prefix of P*(v) that ends at .
Then @ is an optimal path s to u is C-optimal for u. This means that

C(Q)=C(P*(u)) = C*(u) and C*(v) = C(P*(v)) = C(P*(u)) + h(u,v) = C*(u) + h(u,v).

In particular, we obtain the assertions C*(z) = C*(y) + h(y, z) and C*(Z) = C*(y) + h(y, %) .

35

(This Bellman principle is the same as the Bellman condition in Remark 1.12.c), where the RDM E of Example 1.1
is choosen and the quantifiers are defined as (J; := (2 :='V'.)

We must show that
(2) C*(Z) > C*(2)+ A"

For this we consider four cases:

CASE 1. m<k, m<k.

Let then I' := {m, m}. Then I' C I implies that a") C a) so that C*(z) =C* (vﬁ”) is minimal among all values
C*(v), v € al’"). Moreover, I' C {0,...,k — 1} so that Assumption (iv) can be applied to I’. Thus we obtain

vg,) = U,EI) = z because C"|, 1) takes its minimum both in v,gl) and in vil). A further application of Assumption
(iv) to I' yields

) CE-ce = c@-c (W) > A

CASE 2. m=k, m<k.

Let I’ := {¢,m}. We first prove that

(3) 5= o € alm).
Suppose that Fact (3) is not true; this si-
tuation is illustrated in Figure A. Then
W) e al®\a(™) . This and the fact that

2z = v) is an element of a(™) would
imply that

(31) y= 'vg) # vg) =z and
Y= *vg) cal), »= vg) cal),

Applying Assumption (iv) to the set
I' C{0,...,k— 1} we see that § = o)
is the unique minimum of C* on a") with

radius A. This and (3.1) imply
(32) C*(2)-C"(y) = A

Note that £ € X} because (§,%) € E. This
and Assumption (i) imply that § = v,(kI)

has a successor in al*); let 2 := w* ()
=w*(v!")) and #' := (7, 2). Then

C7(2) = C7(2) 2 C7(2) = C(P*(y) @ (¥, 2))

N . (3:2),(18)
=C(z)-C*"Yy)—nh(y,2) > A=">0.
This means that C*(z) is greater than C*(Z) where z = 'v,(kI) and z = w* ('U&II)) are elements of a(¥) = ¢(m) c alD.
This is a contradiction to the optimality of C*(2).

Consequently, (3) is true. We next show that even

@ g=" =" =2

For this we assume that vgl) # vg). We then note that viI) € a™ C al). Applying Assumption (iv) to

I' C{0,...,k— 1} we obtain

(1) € (o) > ¢ () + A > cr (0D)

36

' 3) ‘ '
On the other hand, vg) (G a™) C al!); this and the optimality of C"* (vg)) implies that C* (U(I)) > C* (v(I)) ,
which is a contradiction to (4.1).

After proving Assertion (4) we next consider two subcases. The first is that ¥ = z. Then

—~

@y [CE-CEN T 0P @ e -0)

- @G- E pED > 8

vg[) (é) Uscll)

The other subcase is ¥ # z. We note that z = and §y € a(m C a). So we can apply Assumption

(iv) to I', and we obtain for § # z:

() " -C"(=)] 2 A.

So we get the following result:

* (3 * (_) * ~ *
(B.2) @) - (=) = |C @)+h((35/,§)“—0 (2)]

> @ - - G S A—an,

CASE 3: m<k, m=k.
Let I’ := {£,m}. We then prove

(6) 5=\ € al®)

If not, then v,(kll) #£yasy€ a¥). Moreover, y € a"): hence we can apply Assumption (iv) to I' and obtain
C*(y) > C~ (vg)) + A; this is used in (¢) of the following inequality:

, i (0),(idd)
cr(z) - () B ety +hiy) -0t (W) TE A—e >0

But then C*(y) > C* ('v&f’)), and this is a contradiction to the fact that 'U,(f') is at least as good as the candidate
Y c a(z) g a(II)_

Hence (6) is true, and we have almost the si-
tuation illustrated in Figure B.
We next show that even

1 g=u") =

For this we observe that the arc (y, z) is

both in E and in a(®) x a(*) so that £ € X.
This, Fact (6) and Assumption (i) yield

anode z := w*(y) € al®) . If (7) is false

we can apply Assumption (iv) to §j = ")

and y € vI'); so we obtain C*(y) — C*(7) > A,
This inequalty is applied in (o) of the follow-

ing assertion:

crz)-crm) Y
C*(y) + h(y, 2) = C* (y) — h(y,2)
(0),(411)
> A-2.-6">0.
This is in conflict with the optimality of z;
consequently, (7) must be true.

We again consider two cases. If y = % then

37

1) (@) - @) L 10 @) -)~ hw)| TZ hw2) > 8.

The other case is that y # Z; then Fact (7) says that 'vgl) # Z. Moreover, vill)

Applying Assumption (iv) to I' we obtain
8 o (") -cE > A
Consequently,

(C2) [C*(3) - C*(2)] € |0*(3) - C*(y) — h(y,)|

- (8) (i)
2 CE) =Wl =y,)] =z A=

CASE j. m=k, m=k.
Let I’ := {¢, £} . We first show that

@ 7=+4" =y
For this we observe that each of the nodes
y € a® and § € a® has a successor in al*)
since (y,2) € E, (§,%) € E and 2,Z € a®).
It follows that ") = ¢ U a®) C al¥x),
Then Assumption (i) yields a successor
z = w*(y) = w* (v(II)) of y. We assume
that (9) is false; this situation is illustrated
in Figure C). (In contrast to Figure C),
the case § € al¥) is possible, too, if (9) is false.)
We then apply Assumption (iv) to the nodes
Nl ,y € a’") and obtain C*(y) — C* (v,(kll))
> A. This fact is used in the inequality (o):
C*(y) + h(y, 2) — C*(y) — h (¥, 2)

(o))
> A—|h(y,2)[- |h(y,2)] 2
A—-2-6">0.

Hence C*(z) > C* (%) although
z=w*(y) € a® Cal) and z = o).
This is a contradiction to the optimality of z.

We next distinguish between two cases. Let first y = y. Then
~ 1 -
(D.1) C*(2) = C*(2) 2 C*(@) + h(F,7) — C*(y) — h(y, 2)
(17)
©) "

€ al) and 7 € al™) C al).

The other case is that y # §. Applying Assumption (iv)toy = vy 'and y € a® C a") yields C*(y)—C*(y) > A.

This fact is used in (¢) of the following inequality:

(D.2) 1C°(3) = C*()] = IC*(@) +h(F5) — C*(u) + h(y, 2)] > A— g — g =

38

A—2.6".

The assertion follows from combining the facts (A), (B.1), (B.2), (C.1), (C.2), (D.1) and (D.2). -
Conclusion A.3. Given the situation as described in Remark 1.9). Let N, :={0,...,k} forall 0 < k < n.
Then C*|,(v;) has a unique minimum with radius 2 - adk.

The proof is an induction on k. For k = 0 the assertion is correct because a(®) only consists of the element s. In the
step from k£ — 1 to £ let

A:=R- oV §.=R.a%* § =R %!
Then Theorem A.2 says that C*

6/// —R. a3k—2

bl

.(v) has a unique minimum with radius A’ where

A" = min{é 8" A-2-6""} = {R~a3k, R-a%-1 R. (a?’(k_l)— 2-a3k_2)} .
Then A’ = R-o** asa < 2. -

Conclusion A.4. Given the situation in Remark 1.9). Then the RDM E has the optimal successor property.

Proof: Given the sets = al), y = a(*) € A, and the paths X1, X5 € R '[z], Y1 € R~ '[y]; this means that
u = w(X;) € a i=1,2and vy := w(Yr) € al¥), We assume that (X1,Y1) € & and that X5 and Y] are optimal
for al) and a*), respectively. |t must be shown that X5, as well as X, has an optimal successor in alk),

Let us first consider the case u; = us. Then (uz,v1) = (u1,v1) € E because (X1,Y1) € & Let Yy := Xo @B (uaq, v2).
We then obtain an assertion where () is based on the optimality of Xo:

(0)
C(Yg) = C’(Xz)@h(ul,vl) S C(X1)+h(ul,‘l)1) = C(Yl)
This and the optimality of Y7 implies that Y3 is optimal, too. Moreover, Y5 € Ay (X32).
The other situation is that

(1) up # us.
We show that this case does not occur; the idea is that Y7 cannot be optimal if (1) is true.
For this purpose first observe that
(2) (u,v)€E

because (X;,Y1) € & . Consequently, (uy,v;) € a¥) x al®) # (). Hence j € Xy, and we can apply Assumption (i)
of Remark 1.9). So we find a vy € a®) with (uz,v2) € E. We show that the path Yy := X3 @ (ug,v2) is better
than Y7; this is the desired contradiction to the optimality of Y.

The assumption that X5 and Y] are optimal implies that

C(Xs) = C*(us),
B) oivy) = *(w).

Fact (2) together with the strong Bellman Principle for additive cost measures yield:
(4) C(X1)=C"(wm).

We next apply Conclusion A.3 to N;. Recalling (1) we obtain
(5) C*(u1) > C*(uz)+R-a%.

Moreover, Assumption (ii) of Remark 1.9) says that
(6) |h(us,v)| < R-a3*-2 i=12

Consequently,

C(Y1) = O(Ya) = C(X1) + h(ug, v1) — O(Xa) — h(uz, vs) 2
(5),(6) ,
C*(u1)+h(‘u1,vl)_C*(UQ)—h(U2,402) > R - a3 _Q'R'O(Bk_2

E—1>j . a<2/5
> R-a®*-1 _92.R.a%"2 = R.a*3.(1-20a) 0.

This is a contradiction to the optimality of Y7. Hence assertion (1) is false. -

Vi

39

