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Abstract

Let g be an n-argument boolean function. Suppose we are given a black-boz for g,
to which n honest-but-curious players can secretly give inputs and it broadcasts the
result of operating g on these inputs to all the players. We say that g is complete (for
multi-party private computations) if for every function f, the n players can compute
the function f n-privately, given the black-box for ¢. In this paper, we characterize
the boolean functions which are complete: we show that a boolean function ¢ is
complete if and only if ¢ itself cannot be computed n-privately (when there is no
black-box available). Namely, for boolean functions, the notions of completeness
and n-privacy are complementary. On the other hand, for non-boolean functions,
we show that this two notions are not complementary. Our result can be viewed as
a generalization (for multi-party protocols and for (n > 2)-argument functions) of
the two-party case, where it was known that two-argument functions which contain
“embedded-OR” are complete.
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1 Introduction

We consider multi-party private computations. Quite informally, given an arbitrary function
[, a t-private protocol should allow n players, each possessing an individual secret input,
to satisfy simultaneously the following two constraints: (1) (Correctness): all players learn
the value of f and (2) (Privacy): no set of at most ¢ players learns more about the initial
inputs of other players than is implicitly revealed by f’s output. This problem, also known
as secure computation have been examined in the literature with two substantially different
types of players — malicious (i.e. Byzantine) players and honest-but-curios players:

SECURE COMPUTATION FOR MALICIOUS PLAYERS. Malicious players can deviate from the
prescribed protocol in an arbitrary manner, in order to violate the correctness and privacy
constraints. The first general protocol for secure computation were given in [Yao-82, Yao-86]
for the two-party case, and by [GMW-87] for the multi-party case. Other solutions were
given in, e.g., [GHY-87, GV-87, BGW-88, CCD-88, BB-89, RB-89] based on various as-
sumptions (either intractability assumptions or the existence of private (untappable) com-
munication channels between each pair of players). These solutions give ¢-privacy for ¢ < %
ort < % depending on the assumption made.

SECURE COMPUTATION FOR HONEST-BUT-CURIOUS PLAYERS. Homest-but-curious players
must always follow the protocol precisely but are allowed to “gossip” afterwards. Namely,
some of them may put together the information in their possession at the end of the protocol
in order to infer additional information about the original individual inputs. It should be
realized that in this honest-but-curios model enforcing the correctness constraint is easy,
but enforcing the privacy constraint is hard. The honest-but-curious scenario is not only
interesting on its own (e.g., for modeling security against outside listeners). Its importance
also stems from compiler-type theorems, such as the one proved by [GMW-87] (with further
extensions in many subsequent papers, for example, [BGW-88, CCD-88, RB-89]). Namely,
there are algorithms transforming ¢-private protocol with respect to honest-but-curious
players into a t‘-private protocol with respect to malicious players (¢* < ¢). Surprisingly,
much of the research efforts were devoted to the more complicated case of malicious players,
while the case of honest players is far from being well understood. In this paper we examine
the latter setting.

INFORMATION THEORETIC PRIVACY. In our setting, we do not put any computational
restrictions on the power of the players, hence the notion of privacy is information-theoretic.!
Information-theoretic privacy was examined by [BGW-88, CCD-88] which prove that every
function is n/2-private, and was then the subject of considerable work (e.g., [CKu-89,
CGK-92, BB-89, CGK-90]). Particularly, [CKu-89] have succeeded in characterizing the

!This is in oppose to other works, e.g, [GMW-87], that give computational-privacy. That is, some
information is revealed in the information-theoretic sense, but this information cannot be extracted in

polynomial-time.



boolean functions for which n-private protocols exist: an n-argument boolean function f is
n-private if and only if it can be represented as f(z1,z2,...,2,) = fi(z1) @ fo(z2) B ... P
fn(zy,) where f; are boolean. Namely, f is n-private if and only if it is the exclusive-or of
n local functions. An immediate corollary of this is that most functions are not n-private
even for the honest-but-curious players.

COMPLETENESS FOR SECURE COMPUTATION. Sometimes, instead of giving an explicit
t-private protocol for evaluating a function f, one can show that a protocol is reducible
to an implementation of some other, simpler protocol. In [R-81, Yao-82, GMW-87] first
such results were shown based on some assumptions. In particular, [GMW-87] gave the
first such result for a multi-party protocols, assuming the existence of a one-way function.
Without additional assumptions, a stronger result was established in [K-88, K-91] for two-
party protocols: most generally, [K-91] shows that any two-argument function with an
embedded-OR (to be discussed later) is complete for two-party secure computation. No

result of this generality is, unfortunately, known for the multi-party scenario.

Our CoNTRIBUTION. We formally define the notion of reducibilily among multi-party
protocol problems. We say that f is reducible to g, if just by repeatedly using a black-box
(or a trusted party) for computing g the n players can compute the value of f n-privately.
That is, in any round of the computation, the players secretly supply arguments to the
black-box and then the black-box publicly announces the result of operating g on these
arguments. For example, it is clear that every function is reducible to itself (all players
secretly give their private inputs 1, ...,z, to the black-box and it announces the result).
Naturally, we can also define the notion of completeness. A function g is complete if every
function is reducible to it. It can be seen that if ¢ is complete then ¢ itself cannot be
n-private. As the definition requires that the same function g will be used for computing
all functions f, it may be somewhat surprising that complete functions exist at all.

In this work we prove the existence of complete functions for multi-party n-private
computations (in the honest-but-curious model.) Moreover, while previous research con-
centrated on finding a single complete function for multi-party protocols, our main theorem
characterizes all the Boolean functions which are complete:

Main Theorem: For all n > 2, an n-argument boolean function g is complete for all n-private
protocols if and only if it is not n-private.

Our result thus shows a very strong dichotomy: every boolean function is either “simple
enough” so it can be computed n-privately, or it is “sufficiently expressive” so that a black-
box for it enables computing any function (not only boolean) n-privately. We stress that
there is no restriction on g, beside being non-n-private boolean function, and that no relation
between the function g and the function f that we wish to compute is assumed. For example,
the identity function I D(z1,...,x,), which is 1 if all the inputs are equal to each other and
0 otherwise, is complete and can serve as g. Thus, in any model in which such a g may be



n-privately implemented (e.g., by using your favorite assumption) the computation of any
other n-argument function can be implemented n-privately.

THE STRENGTH OF OUR RESULT. Qur result is actually stronger, as we elaborate below:

e Although one can define the notion of reduction while allowing more complicated
types of communication between players (such as private channels, broadcast channel
etc.), it should be stressed that in our construction the only means of communication
among the players is by interacting with the black-box (i.e., evaluating the function

9)-

o We consider the most interesting scenario where there are n players and both func-
tions (i.e, the black-box function g and the function f that the players are trying to
compute) are n-argument functions. This enables us to organize the computation in
rounds, where in each round each player submits a value of a single argument to g
(and the value of each argument is supplied by exactly one player).? Thus, no player
is “excluded” at any round from evaluation of g. Our results however remain true
even if the number of arguments of g is different from the number of arguments of f.

e As mentioned, when we talk about privacy we do not put any computational restric-
tions on the power of the players; hence we achieve information-theoretic privacy.
However, when we talk about protocols, we measure their efficiency in three ways:
(1) in terms of the ratio between the expected running time of a Turing machine
(or a circuit) that computes f versus the number of calls to g; (2) in terms of the
computational complexity of computing inputs to ¢ by each player; and (3) in terms
of a parameter k (our protocol allows error probability of 2_O(k)). The protocol we

introduce is efficient (polynomial) in all these measures.

Our main theorem gives a complete characterization of the boolean functions g which
are complete (those that are not n-private). When non-boolean functions are considered,
it turns out that the above simple characterization is no longer true. That is, we show that
there are (non-boolean) functions which are not n-private, yet are not complete.

SUB-CONTRIBUTIONS. As mentioned, the special case of {wo-party computations and two-
argument functions is implicit in previous works: [Ku-89, CKu-89] showed that if a two-
argument function is not private then it contains an embedded-OR?. [K-91] showed that
if a two-argument function g contains an embedded-OR then with a black-box for g it is
possible to implement an Oblivious Transfer (OT)*. Finally, [K-88] showed that a black-box
for OT is sufficient for computing any two-argument function privately; The combination

? Which player submits which argument is a permutation specified by the protocol.

A function g(3, 5) contains an embedded-OR if (i, i1, o, J1, T, 21) (Va,b € {0,1}) g(ia, 55) = Tave.

*Oblivious transfer is protocol for two players: a Sender that holds two bit by and b; and receiver that
holds a selection bit s. At the end of the protocol the receiver gets the bit b but has no information about
the value of the other bit, while the sender has no information about s.



of these results gives our result for the special case n = 2 (i.e. only for two-party protocols
and only for two-argument functions.) Our proof for general n is a generalization of the
above argument, and each of its three components may be of independent interest:

1. We appropriately generalize the notion of embedded-OR for n-argument functions. We
then show that if an n-argument function is not private then it contains an embedded-
OR (this does not follow from the characterization of [CKu-89]).

2. We show that if an n-argument function g (boolean or not boolean) contains an
embedded-OR then with a black-box for g it is possible to implement private channels

between any two players.

3. We use a construction similar to this of [K-91] together with the private channels
(we already implemented) to implement OT. It should be emphasized that OT in
a multi-party setting has the additional requirement that listeners will not get any
information. This additional requirement is handled by the implementation of the
private channels. Finally, it follows from the work of [GHY-87, GV-87, BG-89] that a
n-private computation of any function f can be implemented given private channels
and OT. All together, our main theorem follows.

1.1 Organization of the paper

In section 2 we specify our model and definitions. In section 3 we prove our main lemma; In
sections 4 and 5 we use the main lemma to implement private channels, and OT channels
(respectively) between players; In section 6 we use the above constructions to prove our main
theorem. Finally, section 7 contains a discussion of the results and some open problems.

There are two appendices containing formal proofs.

2 Model and definitions

The system we consider is a collection of n synchronous, computationally unbounded players
Py, Py, ..., P,. All the communication between the players is done using a black-box for g,
as described below.

Let f be an n-argument function defined over a finite domain. At the beginning of an
execution, each party F; has an input z; taken from this domain. In addition, each party
can flip unbiased and independent random coins. We denote by r; the string of random bits
flipped by P; (sometimes we refer to the string r; as the random input of P;). The players
wish to compute the value of a function f(z1,x2,...,2,). To this end, they use a prescribed
protocol F. In the i-th round of the protocol, every processor P; secretly sends a message
m; to the black-box ¢.> The black-box then publicly announces the result of evaluating the

function g on the input messages.

® Notice that we do not assume private point-to-point communication among players. On the other hand,

we do allow private communication between players and the black-box for computing g.



We allow the players to take “different seats” in different rounds. Formally, with each
round ¢ the protocol associates a permutation 7;.° The value computed by the black-box
1) M2 -
P; to the black-box in the ¢-th round, is determined by its input (z;), its random input

at round ¢, denoted s;, is s; = g(mfri( .,771;1,(71)).7 Each message m;, sent by
(r;), and the output of the black-box in previous rounds (sq,...,s;—1). We say that the
protocol F computes the function f if the last value (or the last sequence of values if case
of non-boolean f) announced by the black-box equals the value of f(z1,z2,...,2,), with
probability > 1 — 2=9(%)_ where k is a security parameter.

Let F be an n-party protocol, as described above. The communication S(Z,7) is the
concatenation of all messages announced by the black-box, while executing F on inputs

Z1,...,%, and random inputs rq,...,7,.

Definition 1 Let F be an n party protocol which computes a function f, and let T be
a coalition of parties, 7" C {1,2,...,n}. We say that the coalition 1T does not learn any
additional information from the execution of F if the following holds: For every two input
vectors 7 and ¥ that agree in their 1" entries (i.e. Vi € T': z; = y;) and for which f has the
same value f(Z) = f(¥), for every choice of random inputs {7; };c7, and for every communication

S
Priy. e (S1Z Aritier) = Privy, (17, {ritier) -
(The probability space is over the random inputs of all parties in 7T'.)

Informally, this definition implies that for all inputs which “look the same” from the
coalition‘s point of view (and for which, in particular, f has the same value), the commu-
nication also “look the same” (it is identically distributed). Therefore, by executing F, the
coalition T cannot infer any information on the inputs of 7' (other than what follows from

the inputs of 7" and the value of the function).

Definition 2 A protocol F for computing f, using a black-box ¢, is t-private if any coalition
T of at most t parties does not learn any additional information from the execution of the
protocol. A function f is {-private (with respect to the black-box ¢) if there exists a ¢-private
protocol that uses the black-box g and computes f.

REMARK: In the above definition we require perfect privacy. That is, we require that
the two distributions in the definition 1 are identical. We remark, that one can relax the
above definition of privacy to require only statistical indistinguishability of distributions or
only computational indistinguishability of distributions. For these definitions we refer the
reader to the papers mentioned in the introduction (e.g., [GMW-87, BGW-88, CKu-89]).

5 It follows from the construction that without loss of generality the sequence of permutations can be
made oblivious at a price of O(n2). At a price of O(n4) it can even be made independent of the non-n-private
function g¢!

" We assume here that the number of arguments of ¢ is the same as the number of arguments of f (ie.,
n) but this is not essential to the results. Also note that if ¢ is a symmetric function, there is no need to

permute the inputs to g.



Definition 3 Let g be an n-argument function. We say that the black-box g (alternatively,

the function g¢) is complete if every function f is n-private with respect to the black-box g.

Oblivious Transfer is a protocol for two players S, the Sender, and R, the Receiver. It
was first defined by Rabin [R-81] and was then studied in many works (e.g., [R-81, FMR-85,
0OVY-90, IL-89, K-88, K-91]). The variant of OT protocol that we use here was originally
defined in [EGL-85]. It was shown equivalent to other notions of OT (see, for example

[R-81, EGL-85, BCR-86, B-86, C-87, K-88, CK-88, K-91]).

Definition 4 Oblivious Transfer (OT): Let k be a security parameter. The Sender § initially
has two bits by and b; and the Receiver R has a selection bit ¢. After the protocol completion
the following must hold:

e R gets the value of b, with probability greater then 1 — 2=9(k) where the probability
is taken over the coin-tosses of S and R. More formally, let s, rr € {0,1}7°%(¥) be
random tapes of S and R respectively, and let comm(bo, b1, ¢,rs,rr) € {0, 1}Polu(k) pe
a communication string. Then for all k£ and for all ¢,by,b; € {0,1} the following must

hold :
1

20(k)

Prog v (R(c, R, comm(bg, by, c,7s,7R)) = bs) > 1 —

e R does not get any information about b;_.. (In other words, R has the same view in
the case where b;_. = 0 and the case where b;_. = 1). Formally, for all k, for all

¢,b. € {0,1}, for all r¢ and for all communication comm:

Pr, (comm | ¢,be,rr,b1—. =0) = Pr, (comm | ¢,beyrr,b1—c = 1).

e S does not get any information about ¢. (In other words, S has the same view in the case
where ¢ = 0 and the case where ¢ = 1). Formally, for all &, for all by, b; € {0,1}, for all
rs and for all communication comm:

Pr, (comm | b, by,rs,¢=0) = Pr. (comm | bg,by,75,¢=1).

REMARK: We emphasize again, that both § and R are honest (but curious) and as-
sumed to follow the protocol. Usually, when OT is defined with respect to chealing players,
it is allowed that with probability 2-°() information will leak. This however is not needed
for honest players.

3 A New Characterization of n-private functions

In this section we prove our main lemma. We start by showing that any non n-private
function gives us a broadcast channel. Then we show that any function which is not n-
private has two arguments such that when appropriately restricted to this two arguments
any such function contains an embedded OR.



3.1 Establishing a Broadcast

Even if there are no privacy requirements, it is probably not obvious that a black-box
computing a function g can be used for computing any function f, given that the black-box
is the only means of communication. To see that this is possible it is enough to show that ¢
can be used to implement a broadcast operation. In such a case each player can broadcast

its input and then each of them can locally compute the value of the function.

Lemma 1 Broadcast channel is realizable given a black-box g, for any non-constant g¢.

If ¢ is non-constant, it is easy to verify that there exist aq,...,a,, and an index ¢ such that
g(alv ey @1, Q5 Ajg 1, - . '7an) ;’é g(alv .. '7ai—17a_i7 741, '7an)-
Therefore, we can let n—1 players supply the n—1 (fixed) input values a1, ..., a;—1, @it1,. .., @n,

and let the Sender supply the n-th value (@; or @;). The value of this last argument alone
determines whether a 0 or 1 will be broadcasted by the black-box g¢. |

3.2 Extracting embedded OR

We now proceed with our main lemma which establishes a new combinatorial characteriza-
tion of all n-private functions.

First we present a generalized definition of what it means for an n-argument boolean
function to have an “embedded-OR” and show that any two-argument function which is not
1-private contains an embedded OR. We then generalize this to multi-argument functions

in the appropriate way.

Definition 5 We say that a two-argument function % contains an embedded-OR if there exist
inputs x1,%2,%1,y2 and o € {0,1} such that h(z1,y1) = h(z1,y2) = h(z1,y1) = o but
h(z2,y2) = 0.

Definition 6 We say that an n-argument (n > 3) function f contains an embedded-OR if
there exist indices 1 < ¢ < j < n, and values a;, for all & ¢ {¢, 7}, such that the two-argument
function

AN
h(’y,Z) = f(alv ey 1, Y, 0541, - 505 1,2, 0541, - '7an)

contains an embedded-OR.

The following facts are proven in [CKu-89] (or follow trivially from it):

1. An n argument boolean function is [n/2]-private if and only if it can be written as

flz1,...,2,) = fi(z1) B ... B fu(z,), where f; are boolean.

2. A two-argument boolean function f is not l-private if and only if it contains an

embedded-OR.



3. If an n argument boolean function is [n/2]-private then it is n-private.

4. An n argument boolean function is [n/2]-private if and only if in every partition of
the indices into two sets 5,5 each of size at most [n/2], the two-argument boolean

function
A

gS({xi}ieS ’ {xi}ieg) = g(wla s xn)

is 1-private.
Our main lemma extends Fact 2 above to the case of multi-argument functions.

Lemma 2 (Main Lemma:) Let g(z;...,z,) be any n-argument function. g is not [n/2]-

private if and only if it contains an embedded-OR.

Proof: Clearly, if g contains an embedded-OR then there is a partition of the indices (as
in Fact 4) such that the corresponding two argument function gg contains an embedded-OR
and hence not 1-private. By Fact 4, ¢ is not [n/2]-private.

For the other direction, since ¢ is not [n/2]-private then, again by Fact 4, there is a
partition S, S5 of the indices such that gs is not 1-private. For simplicity of notations we
assume that n is even and S = {1,...,n/2}. By Fact 2 gg contains an embedded-OR.
Hence, we have some inputs which form the following structure:

gs W= (W, 9415, Wn) | 2= (22415 %n)
= (ug,...,U,) o o
v = (v1,...,0,3) c o)

We will be able to finish the proof if we will show that it is possible to choose those inputs
so that u; # v; for exactly one ¢ and w; # z; for exactly one j. We will show how based on
the inputs above we can find «’ and v’ which are different in exactly one coordinate. Then
based on the new u’, v’ and a similar argument, we can find w’, 2’ which are different in one
coordinate. All this process will maintain the OR-like structure, and therefore, by using
the above values of i, 7, fixing all the other arguments in S to u} = v} and all the other
arguments in S to wf, = z}, we get that g itsell contains an embedded-OR.

Let L be the set of indices on which u and v disagree (i.e., uy # v). Define the following
sets of vectors: T}, is the set of all vectors that can be obtained from w by replacing wuj in
exactly m coordinates (in which vz # wg) by v. In particular, Ty = {u} and Tjy| = {v}.
Also define a vector = (21, ...,7,3) to be of type 1 if gs(z,w) = gs(z, ) and of type
2 if gs(z,w) # gs(z,z) (where w and z are the specific vectors we choose above). So in
particular, u is of type 1 and v is of type 2.

We now claim that there must exist u’, v’ as required. Namely, one of them is of type
1, the other is of type 2 (i.e., v/, v’, w, z still form an OR-like structure), and they differ in
exactly one coordinate. Suppose, towards a contradiction that this is not true. We will show



that this implies that for all 0 < m < |L| all the vectors in 7}, are of type 1 contradicting
the fact that v which is in 7}z, is of type 2. The proof is by induction. It is true for m = 0 as
Ty contains only u which is of type 1. Suppose the induction is true for m. That is, all the
vectors in 1), are of type 1. For each vector x in T}, there is a vector in 7}, which differs
from it in exactly one coordinate. Since we assumed that «’, v’ as above do not exist, this
immediately implies that z is also of type 1. Since we reached a contradiction this implies
the existence of such «’, v'. Based on those, we can also show in a similar way the existence
of w', 2" as needed. The o', v, w’, 2’ exhibit the fact that ¢ contains an embedded-OR. I

4 Private Computation implies Private Communication

In this section we prove that private channels can be simulated using a non-n-private black-
box. This alone already gives some interesting corollaries, as well as some intuition for the
simulation of the OT-channels by a black-box, which is given in the next section.

Lemma 3 Private point-to-point communication channels are realizable given a black-box g¢,
for any non-n-private g (with error probability Q_O(k)).

Proof: We describe a protocol that uses a black-box for ¢ and enables a Sender to send
a bit B to the Receiver such that listeners get no information about the value of B. The
key tool is that by Lemma 2 the Sender and Receiver can privately compute, using the
black-box, OR of bits they hold (by feeding appropriate inputs into the special indices i, j
guaranteed by Lemma 2 and letting the other players supply the other (fixed) inputs). A
listener that listens to such a computation will know the outcome of the OR but will get
no additional information about the input bits. The protocol goes as follows:

1. Sender chooses m = O(k) bits aq,...,a, at random and Receiver chooses by, ..., by,
at random. They use the black-box to compute bits ¢; = OR(a;,b;) for all 1 <1 < m.

2. Let S be the set of indices 7 such that ¢; = 1. The Sender constructs a subset £ C 9
as follows: For every ¢ € 5 if ¢; = 0 then ¢ € F. If a; = 1 then ¢ € F with probability
1/2. Sender broadcasts (as in Lemma 1) the set £ (broadcasting £ is not necessary
for the protocol but is used to simplify the analysis).

3. To send the bit B, the Sender broadcasts a set D C E of the first k indices ¢ such
that a; = B. If Sender does not have enough indices with the required property he
aborts the protocol (this happens with exponentially in & small probability, where

probability is taken over coin-tosses of Sender and Receiver).®

4. Receiver, upon receiving the set D checks the corresponding b;’s. If any of these b;’s
is a zero, the Receiver decrypts the message as 1, otherwise it decrypts it as 0.

8 Here, and in other places, the players can “restart” the protocol instead of aborting it. This will decrease
the error probability but will make the efficiency to be expected polynomial and not polynomzal.



To analyze the protocol, we first point out some simple properties it has.
e Lor every index ¢, Pr(¢ € §) = 3/4 (the only case that 7 is not in 5 is if a; = b; = 0).

o Pr(a; = 1]i € §) = 2/3, since ¢; = 1 implies that (a;,b;) is one of (0,1),(1,0),(1,1)
each with equal probability. Formally, Pr(a; = 1| € ) = Pr(a; = 1ANi€ 5)/Pr(i €
§) = (2/4)/(3/4) = 2/3.

e Pr(a; = 0t € E) = 1/2. To see this we restrict our attention to the conditional
probability space where ¢ € S (and note that £ C ). Then we can write: Pr(a; =
0l € £) = Pr(a;=0Ai € E)/Pr(i € E). In this restricted space Pr(a; = 0Ai € L)
equals Pr(a; = 0) which, as computed before, is exactly 1/3. We can also write
Pr(i € E) = Pr(i € Ela; = 0)- Pr(a; = 0)+ Pr(i € Ela; = 1)- Pr(a; = 1). As
computed Pr(a; = 0) = 1/3 and Pr(a; = 1) = 2/3. Also by the construction of F,
Pr(i € Ela; = 0) = 1 and Pr(i € Ela; = 1) = 1/2. This gives us Pr(: € L) =
1-(1/3)4(1/2)-(2/3) = 2/3. Hence Pr(a; = 0]t € E) = (1/3)/(2/3) = 1/2 as
required. Making the probability of ¢; = 0 and a; = 1 equally likely was the goal of
restricting ourselves to the set F.

e Assuming that the protocol is not aborted, then the chances that a “1” message is
decrypted as a “0” equals the probability that for each of the k indices in D we have
b; = 1. This happens with probability 27%. (As Pr(b; = lja; = 1 A¢; = 1) = 1/2.)
On the other hand a “0” message is always decrypted as 0 (As Pr(b; = 1|la; = 0A¢; =
1)=1.)

To show that the protocol is secure against listeners (i.e., that we indeed obtain a private
channel), we need to show that the distribution of communication is identical in the case
that the transmitted bit is 0 and the case that the bit is 1. Formally, let comm be any
communication in the above protocol. Then we want to show that

Pr(comm|B =0) = Pr(comm|B =1).

Note that the communication in the above protocol may be of one of two forms:

® C1;C9;...; ¢y F abort or
® C1;C9;...;Cn; By Dy
Also note that ¢q,...,¢, and F are all constructed independently of what the value of B

is. Now, since F has the property that Pr(a; = 0]¢ € £) = Pr(a; = 1| € E') = 1/2 then
(given ¢1,...,¢,, and E) the probability that less than £ indices in E satisfy a; = B (in
which case we abort the protocol) is the same for B = 0 and B = 1. Similarly, if there are
at least k indices as needed, the probability of any D is the same no matter what the value
of B is. |
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REMARK: As the distribution in case that 0 is transmitted and the distribution in
case that 1 is transmitted are identical, then we will also get the same distribution for all
messages of ¢ bits.

At this point we already get the following corollary:

Corollary 1 Let g be a non-n-private Boolean function. Given a black-box g, it is possible to

compute any function f |(n — 1)/2]-privately.

Proof: We use the protocols of [BGW-88, CCD-88] that can compute any function f
|(n — 1)/2]-privately, assuming the existence of point-to-point communication channels,
and we simulate these channels using the above lemma. The simulation preserves the
perfect privacy of these protocols, and introduces a small probability of error (bounded by
the number of messages exchanged in the original protocols times 27%). |

5 Counstructing Embedded Oblivious Transfer

We have shown in our main lemma that any non n-private function f contains embedded OR
on two arguments, with all the other arguments fixed to some pre-specified values. Thus, our
basic strategy is for the two players who wish to communicate via an OT channel to supply
the two remaining free arguments to f, while all the other players specify fixed arguments
given by our main lemma. The resulting two-argument function is an OR function, which
by the results of [K-91] is sufficient to implement OT between two players. However, there
is a subtle difficulty in implementing a private OT-channel in a multi-player system which
we must address: beside of the usual properties of an OT channel, we should guarantee that
the information transmitted between the owners of the channel will not be revealed to the
listeners (i.e. the other n —2 players). If OT is implemented as a black-box, then clearly no
information is revealed to the listeners. However, since we implement OT using a black-box,
which publicly announces each of its outcomes, we must also prove that no information is
revealed to the listeners. In order to do so, we substitute every message which is being sent
in a clear from Sender to Receiver by using a private channel (whose existence was proven
in Lemma 3 using a non-n-private black-box!). The crucial fact which we establish is that
when other players (listeners) hear the result of the conversation between the two players,
they do not get any information about the OT channel®. Thus, every pair of players can
realize a private OT channel from which the lemma follows. We now state and prove the
lemma:

Lemma 4 Embedded OT-channel between players is realizable given a black-box g, for any
non-n-private g.

® We remark that it is possible to implement a private OT channel directly, without using the private
channel. The resulting protocol would be more efficient in terms of communication complexity but the proof
that the protocol is private becomes much more involved. Thus, in this extended abstract, we preset a less
efficient, but simpler proof.

11



Proof: We start with an OT protocol of [K-91, CK-88]. In order to show that it is secure
again listeners as well (i.e. that it implements an Embedded OT-channel) we modify this
protocol so that all communication between the Sender and the Receiver is done by using
the private channel (which can be simulated by a black-box according to Lemma 3), or by
computing OR where input bits of both the sender and the receiver are chosen at random

(recall that, again, computing OR can be done using the black-box according to Lemma 2).
|

For sake of completeness we present a complete protocol and its proof of security in appendix
A. It is simpler than the one presented in [K-91].

6 A completeness theorem for multi-party boolean black-
box reductions

In this section we state the main theorem and provide its proof. It is based on a protocol
that can tolerate n — 1 “curious” players, assuming the existence of OT-channels, private
channels and a broadcast channel. Such a protocol can be obtained by combining results
from [GHY-87, GV-87, BG-89] (these works deal also with Byzantine players). Both the
protocol and proof of security appear in appendix B. To conclude, this proves the following
lemma:

Lemma 5 Given a broadcast channel, a point-to-point private communication channel and OT
channel between each pair of processors is sufficient to implement n private protocol for any

function f.

We are now ready to state our main theorem:

Theorem 1 (MAIN:) Let n > 2 and let g be an n-argument boolean function. g is complete

if and only if it is not n-private.

Proof:

(=) First, we show that any complete g can not be n-private. Towards the contradiction
let us assume that there exists such a function ¢ which is n-private and complete. This
implies that all functions are n-private (as instead of using the black-box ¢ the players can
evaluate g by using the n-private protocol for it). This however contradicts the results of
[CKu-89] that shows that most functions are not n-private. It is important to note that
this negative result of [CKu-89] does not depend on the running time of the protocol, and

it allows a probability of error. 19

1% This impossibility result holds even if we allow the players to communicate not only using the black-box

but also using broadcast channel and point-to-point communication channels.

12



(<=) Next (and this is where the bulk of the work is) we show how to compute any function
n-privately, given a black-box for any ¢ which is not n-private. Recall that we shown a
protocol that can tolerate n — 1 “curious” players, assuming the existence of OT-channels,
private channels and a broadcast channel (Lemma 5). However, we have also shown how a
black-box, computing any non-private function, can be used to simulate all these types of
communication while preserving the privacy. In order to do so, we first proved in our main
lemma (Lemma 2) that any non-private function can be reduced to an OR function on two
arguments. Then, we have shown that based on our main lemma, we can implement all
three primitives needed in Lemma 5. In particular, in Lemma 1 we show how to implement
a broadcast channel; in Lemma 3 we show how to implement a private channel; and in
Lemma 4 we show how to implement an OT channel. Combining these lemmas we get the
result. (We remark that the proof of Lemma 4 utilizes Lemma 3.) .

The theorem implies that “most” boolean functions are complete! That is, any function
which is not of the XOR-form of [CKu-89] is complete.

7 Conclusions and further extensions

7.1 Non-boolean functions

We have shown that any non-n-private boolean function g is complete. Namely, a black-box
g can be used for computing any function f in a totally private way. Finally, let us turn
our attention to non-boolean functions. Here, we can state the following lemma:

Lemma 6 For every n > 2 there exists a (non-Boolean) n-argument function g which is not

n-private, yet such that g is not complete.

Proof: The proof for 2-argument g is simple: there are non-private two-argument functions
which do not contain an embedded OR. Examples of such functions were shown in [Ku-89]
(see Figure 1).

We now show that with no embedded-OR one can not compute an OR function. Assume,
towards the contradiction, that we can, i.e., that there is some function f which does not
have an embedded-OR, yet it could be used to compute an OR function. Since it can be used
to compute an OR function, we can use it to implement OT (see appendix A). Hence, there
exists an implementation of OT based on some f which does not have an embedded-OR.
However, [K-91] have shown that for two-argument functions, only the ones that contain
an embedded-OR, can be used to implement OT, deriving contradiction.

For n-argument functions, notice that if we define a function ¢ (on n arguments) to
depend only on its first two arguments, we are back to the 2-argument case, as the resulting

function is not n-private. ||

To conclude, we have shown that for boolean case, the notions of completeness and

privacy are exactly complementary, while for the non-boolean case they are not.
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Y1 | Y2 | Y3
z1 | 0] 0
9 | 2 | 4
z3 | 2|3 |3

Figure 1: A non-private function which does not contain an embedded-OR

7.2 Open questions

The above results can be easily extended to show that any boolean g which is complete
can also be used for a private computation of any multi-output function f (i.e., a function
whose output is an n-tuple (y1,...,y,), where y; is the output that should be given to F;).
It is an interesting question to characterize the multi-output functions g that are complete.

It is not clear how to extend the model and the results to the case of Byzantine players
in its full generality. Notice, however, that under the appropriate definition of the model, if
we are given as a black-box the two-argument OR function we can still implement private
channels, and hence by [BGW-88, CCD-88] can implement any f, n/3-privately with respect
to Byzantine players.

If we turn our attention to polynomial-time players and protocols and relax the notion of
privacy to hold only in a computational sense then it is possible to show that an implementa-
tion (which is computationally n-private) of any (information-theoretically) non-n-private
complete function implies the existence of a one-way function (basically, since we have
shown that it is equivalent to the implementation of OT, which implies a one-way func-
tion by [IL-89].) The best-known implementations of OT for polynomially-bounded players
requires trapdoor one-way permutations [GMW-87], and [IR-89] have shown that if using
black-box reductions, then implementing OT for polynomially-bounded players using one-
way permutations (without trapdoor) is as difficult as separating P from NP. Thus, using
black-box reductions, complete functions are hard to implement (with computational pri-
vacy) without a trapdoor property. An interesting open question to study is the complexity
assumptions needed to implement polynomial-time protocols for computing (with computa-
tional privacy) functions which are non-n-private and, at the same time, are not complete,
as the results [IR-89] do not apply to this case, yet, the best known polynomially-bounded
implementation still seems to require a trapdoor one-way permutation.
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A APPENDIX: Embedded Oblivious Transfer protocol

In this appendix, we present a simplified version of the [K-91] protocol which works for
honest but curious players and is secure against listeners as well. We first re-state the
lemma.

Lemma 7 Embedded OT-channel between players is realizable given a black-box ¢, for any
non-n-private g.

Recall that k is a security parameter and denote the two bits of the Sender by By and
By and the selection bit of the Receiver by Z. At the end of the protocol, Receiver should
get the value of By and learns nothing about the bit B;_z, while the Sender learns nothing
about the selection bit Z. All the communication between the Sender and the Receiver
(except for step (1) which is done directly using the black-box) is transmitted using their
private channel). The protocol is as follows:

(0) The Sender selects two new random bits sy and s;. The goal of steps (1)-(5) is that
the Receiver will get one of them at random (i.e. Receiver will get a random ¢ € {0,1}
and the bit s;) and will not have any information about the other bit s;_;, while the
Sender does not have any information concerning . When this is completed, Receiver
and Sender will be able to complete the protocol (step (6)) using s, s; and ¢.

(1) Sender chooses m (= O(k)) random bits aq, ..., a,; Receiver chooses by,...,b,, ran-
dom bits. For each 1 < ¢ < m, Sender and Receiver execute O R(a;,b;) = ¢;.

(2) Both players discard bits for which OR(a;,b;) = 0. In addition, for each of the
remaining bits, Receiver discards each of the bits with b, = 1 with probability 1/2.
He sends the set £ of the discarded bits to the Sender (the goal of this is to make
the probability of each remaining b; to be 1 equal to its probability to be 0). The
remaining bits are renumbered from 1 to n, where n is some constant fraction of the
original m (if not the players abort the protocol).

(3) Receiver chooses 2k b’s out of the remaining by, ..., b, such that exactly & of them are
zero and k are one (if there is not enough such b’s receiver aborts the protocol), and
pairs them up into & distinct pairs of indices 3¢ = (i¢, js), where in each pair b;, # b;,
and the order (which of the b’s is 1 and which is 0) is chosen at random. Receiver
sends the indices of the pairs f1,..., 8k to Sender.

(4) For each pair 3¢, the Sender checks the corresponding bits a;,,a;,. If none of these
pairs is (1, 1) he aborts the protocol (the probability of this event is 27k the purpose
of this will become clear in the proof of Claim 4). Otherwise, the Sender selects k — 1
random bits r1,...,rx_1. For each pair By = (i¢,Js), 1 <€ < k he sends to Receiver a
pair of bits ay = (r¢ @ a;,, 71 B so ® s1 P a;,). Additionally, using the remaining pair
B Sender transmits a pair ax = (11 @...ry_1BsoPai, , M1 P...Ere—1Bs1 Baj, ).
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(5)

(6)

For each pair §;, one of b’s is 0 (in which case Receiver knows that the corresponding
a must be a 1) and the other b is 1, which means that the corresponding a could be
either zero or a one (each with probability 1/2). Therefore, for each 1 < ¢ < k — 1,
Receiver can recover the element of ay whose corresponding b is 0. Namely, he can
compute either r, or 7, @ so @ s1 (but not both). Similarly, from the k-th pair ay,
Receiver can recover either r1 & ... @& rp_1 G sgorr1 & ...Ere_1 & s1 (but not both).
Now, Receiver can take a XOR of the k recovered items. The XOR of the first £ — 1
items gives him either 11 @ ... B rg_1 or r1 & ... B re_1 B So P s1. In addition, both
elements of oy contain r1@...PHrr_1 therefore when he takes the xor of the & recovered
items together, all the r/’s cancel. So, from the first & — 1 pairs, the contribution is
either sg @ s; or nothing and from the last pair, the contribution is either sqg or s;.
Hence, taking the “xor” of everything, yields either sy or s1, and receiver can figure
out, based on the order of the pairs, which case this is (it has the same probability of
getting sg and s; as the order of b’s is random).

Finally, remember that in step (1), Sender selected two new random bits sy and s;
which he sends to the Receiver such that the Receiver got one of them at random
(i.e. the Receiver can compute an ¢ and the bit s;) and does not have any information
about the other bit s;_;, while the Sender does not have any information concerning .
Now, the Receiver requests Sender to send him two bits By @ s; and By_7® s1_;, where
the order in which the Receiver requests them is randomly chosen (by the Receiver).
Sender transmits the two bits requested by the Receiver. The point is that since the
Receiver already knows s; he can recover Bz, and since he has no information about
s1—i (and s;_; was chosen at random), he also has no information about By_7. The
sender, since he does not know 1, i.e., which of sg, s; was transmitted to the receiver
(and since the order of the two bits requested was chosen at random) also has no idea
which of Bz, Bi_7 the Receiver got.

Now we wish to verify that the protocol hides the value of By_7 (and of s;_;) from the

Receiver, and the value of Z (and of 7) from the Sender. Additionally, we need to show that

information is protected from the listeners as well. Note however that only step (1) is done

in the open, and all other steps are done using a private channel.

Claim 1 For any setting of Z,B7,B1_7 and Z', B}, B} _;, and for any communication string

comm between Sender and Receiver, it is the case that for listeners:

Pr(comm|Z,B7,B1_7) = Pr(comm|I’,B%,Bi_7)

where the probability is taken over the coin-flips of both the Sender and Receiver.

Proof: For any setting of Z,B7,B1_7 we can generate a distribution which is identical

(from listeners view) to the conversation above as follows:
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e generate ¢y, ..., ¢, as in step (1) of the protocol (which is independent of Z, Br, B1_71).
That is, m bits each is chosen to be 1 with probability 3/4 and they are all independent.

e For each bit transmitted on the private channel in steps (2)-(6) (either from the
Sender to the Receiver or vice-versa) generate a “transmission” from the distribution
corresponding to the private channel (as in the proof of Lemma 3).

The crucial point to notice is that step (1) is simulated perfectly and all the subsequent
steps are done using a private channel. However, each transmission on the private channel
can be simulated perfectly by Lemma 3 and independently of the other transmissions, we
are done. |

Next, we wish to show that in the above protocol, the Receiver gets no information
about s;_;. Recall that the view of the Receiver in the protocol consists of the messages

it received. Namely, the m bits ¢1,..., ¢, where ¢; = OR(a;, b;), and the pairs aq, ..., o
(2K bits).

Claim 2 For all ¢ (the index of the selected bit), for all values of the bits by,...,b,, and the
pairs of indices (i,..., 0k, constructed by the Receiver according to the above protocol (in

particular, the b;’s corresponding to each pair 3, are different, and the order of the pairs implies

that 7 is the selected bit), for all values sy and s1, and for all sender — comm € {0,1}7+2k

consistent with the above values 1!

1

PrVIEW (Receiver,by, ..., by, B1,..., Bk, S0, 51) = sender — comm| = ST

where d is the number of b; which are equal to 0 and where the probability is taken over all
random choices of the Sender; namely, ay,...,a, and 71,... rp_1.

Proof: First, we consider the first m bits of the communication. As the communication
is consistent with the b;’s then if b; = 1 then so is ¢; = 1, no matter what the value of the
corresponding a; is. On the other hand, for each of the d bits where b; = 0, it must be that
a; = ¢;, which happens with probability 1/2. Therefore the probability of ¢, ..., ¢, given
the information of the receiver (particularly, by,...,b,,) is 2-¢. Note that up to this point,
we only assigned the values of a;’s whose corresponding b;’s equal 0.

Consider now the two bits 1,15 in the communication by the sender, corresponding to
the pair ay, for 1 < £ < k — 1. We will show that the probability of having these two
bits in the communication is 1/4. We first consider the case where b;, = 0 and b;, = 1
(the case b;, = 1 and b;, = 0 is handled similarly). In this case, the corresponding a;, was
already assigned the value 1. Hence to get this communication, we need r, @ a;, = {; or

11 consistency here means that for this choice of values, there exist random choices for the sender that

leads for this communication by the sender. In particular, if the value of one of the b;’s equals 1 then the
corresponding c¢; must always be equal to 1. Also, the sum of elements in the pairs a,’s corresponding to
b;’s that equal 0, must be equal to the value of s; (the correctness implies that no communication can be
consistent with both s; = 0 and s; = 1).
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alternatively, we need to fix r, = a;, @ {1 (note that ¢; is fixed, and that at this point a;,
is also fixed, and only 7y is still “free”). This happens with probability 1/2. Now, to get
e @ aj, D so D sy = ty, weneed a;, = 7, D sg D s1 O 2. Again, note that ¢1,s9 and s; are
fixed, and that at this point we already fixed the value of ry, but a;, is still “free”. Hence
a;, get the required value with probability 1/2.

Finally, consider the last two bits {1, 13 in the communication, corresponding to the pair
a. We will show that the probability of having these two bits in the communication is
1/2. First, we observe that the order in the first £ — 1 pairs (1,.. ., Br_1 together with the
value of 7 already determine the order in the pair 3. Suppose we are in the case b;, = 0
and b;, = 1 (the case b;, = 1 and b;, = 0 is handled similarly). In this case, a;, was already
assigned the value 1. Also, r1,...,rx_1 were also assigned values, and sg and ¢; are fixed.
Hence, we have no freedom here: it must be that ¢{; = r1 @ ...® rr—1 @ 5o D a;,. Otherwise,
the communication is inconsistent (as we assigned values to the random bit only if we had
no choice). Now, toget 11 @&...®ry_1Bs1Pa;, =1lz, weneed aj, =71 B...Brr_1Bs1Pls.
Again, note {; and s; are fixed, and that at this point r,...,rp_1 are already fixed as well,
so only a;, is still “free”. Hence aj, get the required value with probability 1/2. 2

Combining all together, and using the independence of all the random choices made by
the Sender, the claim follows. |

Informally, in the previous lemma, we have shown that the communication does not
reveal any information about s;_;. Now, we can show that the Receiver does not get any
information about By_7 as well. (In other words, Receiver has the same view in the case

where Bi_7 = 0 and the case where By_7 = 1):

Claim 3 For all &, for all Z, By € {0, 1}, for all random strings of Receiver rz and sender rg
and for all communication comm:

Pr. . (comm | Z,Br,rr,Bi—1 =0) = Pr, (comm | Z,Bz,rg,Bi_7=1).

Proof: From the previous lemma, we know that the probability of any communication
string comm according to the receivers view is the same up to step (5). But this implies
that

Pr.g (comm | i,8;,7R,81-; = 0) = Pr, (comm | i,s;,1R,81—; = 1)

In step (6), however, we xor Br_; with s;_; which implies that the transmission of Br_; &
s;—1 is equally likely to be a 0 or a 1, from which the claim follows. |

Next, we wish to show that sender does not get any information about Z. (In other
words, that sender has the same view in the case where 7 = 0 and the case where 7 = 1).

More formally:

12 The distributions are not the same for i = 0 and i = 1; If b;, =1 and b;, = 0 the order is flipped and
so is the value of :. In such a case, we get a different distribution: % is now already determined, and

changes its value according to the random choice of a;, .
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Claim 4 For all &, for all By, By € {0,1}, for all s and for all communication comm:
Pr., (comm | By,B1,rs,2 =0) = Pry, (comm | By, By,7s,7 =1).

Proof: We break up the proof into two cases, depending on whether the protocol is aborted
at step (4). In case it is aborted in step (4), the above claim follows trivially, as all the
steps before the abortion are independent of Z, By, 5.

Consider the case that the protocol is not aborted. The view of the sender can be divided
into two parts: the first part,comm;_s, its view during steps (1)-(5) of the protocol. This
view consists of the m bits ¢; = OR(a;, b;); the set E of discarded bits sent at step (2); and
the k pairs of indices §; that the receiver sends him at step (3). The other part, comms, its
view during step (6), consists of the request issued at that step. First note that comm,_;
is independent of Z, By, By, sg, s1 and 7. We also claim that

1
Pr,, (i = 0|rs,commq_s) = 7

(Clearly, 7 is independent of 7, By and B;.) This is because, in case that the protocol is not
aborted then for at least one pair 3; the corresponding bits a;,, a;, are both 1. Therefore,
the pair 3, is ordered (0,1) or (1,0) each with probability 1/2 (for pairs where one of the
bits a;,,a;, is 1 and the other 0 the order of 3, is uniquely determined), which says that i
may be either 0 or 1 each with probability 1/2 (to see this note that if we flip the order in
this pair G, it flips the value of ¢ but does not change the communication).

Based on this, commg is either {By & so, B1 @ s1} or {Bo @ s1,81 @ so} (in a random
order) with equal probability, no matter what Z is. The claim follows. |
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B APPENDIX: The n-private protocol using private chan-
nels, broadcast and embedded-OT channels

In this appendix, we present an n-private protocol, that uses the types of channels that
we can implement based on black-box. We start with the protocol presented in [GHY-87,
GV-87, BG-89] which also deals with Byzantine players. Here we assume that players are
honest. This enables us to use a simplified version of the protocol, and prove the following

lemma:

Lemma 8 Given a broadcast channel, a point-to-point private communication channel and OT
channel between each pair of processors is sufficient to implement n private protocol for any

function f.

Proof: The protocol goes as follows: we are given a circuit with SUM/MULT mod 2 gates,
that computes the function f, the players do the following.

1. Sharing the inputs: Each player P; shares its input z; by choosing, uniformly, at
random a vector (al,...,a’) such that > =1 aj« = z,;.!% BEach such a} is called a piece
of the secret z;. The player P; sends the piece aj— to P; (over their common private

channel).

2. Evaluating the function: The evaluation of the function is done in a bottom-up
fashion. Each gate ¢ = a o b is evaluated using the pieces corresponding to the inputs
@ and b of the gate. The evaluation ends with each player P; holding a piece ¢; of the
output ¢, where the vector of pieces is uniformly distributed among the vectors whose

sum is ¢. We distinguish between two cases according to the operation in the gate:

e c—a-+b: P, computes its piece of ¢ by summing its pieces of ¢ and b. l.e.,
¢; = a; + b;. (No interaction.)

o c=ab: In this case ¢ = a-b = (37 ;) - (]=1 bj) = Fi<ij<n @i - bj. Each
player P; can compute (locally) a;b;. However, if player P; will know a; - b; (for
J # 1) he will be able to compute b;, violating the privacy requirement. Instead,

we let P; and P; interact in a two-party protocol, so that at the end P; will know

v;; = (a;-b;) — r;;, and P; will know r; ;, where r; ; is a random bit (note that

v; ;47 ; equals a;-b;). This is done by letting P; choosing r; ; at random. Then,
P; receives from P;, via their common OT-channel, the a;-th element of the pair of
values ((0-b;)—7; ;,(1-b;)—r; ;) (this pair can be easily computed by P;). Clearly,
this element, is exactly (a; - b;) — 7;;, as desired. As they use the OT-channel,
P; has no idea which value P; selected. We repeat this two-party protocol for
each pair F;, P;. Each player computes ¢; = a; - b; + 324 vij + 22 75 It can
be verified that ¢ = 377 ¢;.

13 All arithmetic operations are modulo 2.
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3. Revealing f(z1,...,2,): Each player P; broadcasts its piece of the output gate of
the circuit. The sum of these pieces is the desired value.

In the lemmas below, we verify (inductively) that during the computation each vector of
pieces has the required sum, and that the distribution in any proper subset of the pieces
is uniform. In addition, the interaction gives no information about previously computed
pieces. These properties give the correctness and privacy of the protocol. |

Let VIEW (T, {z:};cr ,{Ri};er) denote the view that the set of players (coalition) T
has on the communication given that each player P; in T has an input z; and random string
R;. We include in this view only messages that goes from players in T to players in 7. (Note
that these messages together with the inputs and random strings of players in 7" completely
define the messages sent among players in 7 and also messages sent from players in T to
players in T.)

In the above protocol there is no communication for addition gates. Hence the view
consists only of messages received during the sharing stage, during the evaluation of mul-
tiplication gates, and during the revealing stage. The first claim says that in a single

evaluation of a multiplication gate no information is revealed.

Claim 5 Consider the subprotocol evaluating a gate ¢ = ab. For all coalitions T, for all set
of shares (ai,...,ay) (b1,...,b,) which are the input for this subprotocol, for all choices of

random strings for players in 7', {R;} and for all communication comm € {0,1}*

€1
Pr [VIEW(T {a;,bi};cp s {Ri};ep) = commla, ... an,by,. .. by] =277,

where s = |T'|(n — |T|), and the probability goes over all choices of R; for i € T’

Proof: The communication that goes from 7 to T is as follows: for every i € T,j € T
the players P;, P; jointly “compute” a;b; and a;b;. In computing a;b; the player P; does
not get any message (his role is to pick a random 7;; and to send a messages over their
common OT-channel). In computing a;b; the player P; receives a one bit message (v; ;).
Hence comm must be of size s. Moreover, as r;; is chosen (by P;) uniformly at random,
then v; ; is also uniformly distributed in {0,1} (independently of what a; and b; are). As
all r; ;’s are independent, the claim follows. |

The next claim shows that at each stage of the computation the vector of shares is
uniformly distributed. This is particularly important in the revealing stage, when we need

to be sure that only the output is revealed.

Claim 6 Let zq,...,z, be an input. Let C' be a gate in the circuit and let ¢ be the value of
this gate when the input for the circuit is z1,...,2,. Let C be a vector of shares that represents

¢ in the above protocol. Then,

e > ", C; = c (correctness); and
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o Cis uniformly distributed among the vectors whose sum is ¢ (privacy). l.e., let ¢1,..., ¢,
satisfy 3" ¢; = ¢ (there are 2"~ such vectors) then Pr[C = (¢c1,...,¢,)] = 1/277 L.

Proof: The first part is easily proved by induction. The second part is also proved by
induction. It is certainly true after the sharing stage (as this is the way the shares are

chosen). Now suppose we evaluate a gate. If the gate is an addition gate, computing

C = A+ B, then

PriC = (c1,...,¢,)] = > PrlA = (a1,...,a,)]  Pr[B = (c1 — a1, ..., cn — ay))
al,...,an;ZaZ':A
ey 101 1

gn—1 9n—-1 - gn—1"

If the gate computes C = A - B then we can fix A = (ai,...,a,) and B = (b1,...,b,) and
now show that for any such fixed choice still C satisfies the requirement. In particular,
it suffices to show (by induction on ¢) that the probability that C; = ¢1,...,C; = ¢, for
i < n—1is 1/2'. To do so, we consider the bits r;; (j # i) and r;; (j # i) and assign
random values to each of them (that were not assigned values so far). As at least one of
those random bits (e.g., 7,;) is still “free” this implies that ¢; will be uniformly distributed
(as ry; is one of the summands that construct ¢;). Clearly, when we consider C), all the
random bits already got values and hence the value of C), is already determined. |
We now turn to the proof of privacy of the whole protocol:

Claim 7 For all coalitions 7' (1 < |T| < n — 1), for all input z1,...,2,, for all choices of

random strings for players in 1", { R;},. 7, and for all possible communication comm™

PrVIEW(T, {z:};ep {Ri}ier) = comm] = 277,

where d = (m+ 1)|T|(n— |T])+ (n — |T| — 1), and m is the number of multiplication gates in
the circuit for f. (Again, the probability goes over all choices of R; for i € T.)

Proof: In the sharing stage, each player in 7' receives a share (a bit) from each player in 7.
The properties of the secret-sharing guarantee that each of these bits is 0 with probability
1/2 and they are all independent. The evaluation of addition gates does not involve any
communication. Claim 5 guarantees that in the evaluation of any multiplication gate, no
matter what are shares that the player start with, the view of the players in T consists
of a random string of length |T'|(n — |T']). Also, note that each of these evaluations make
use of new (independent) random bits. Finally if fi,..., f,, are the shares representing the
outcome of the circuit, then by Claim 6 this vector is uniformly distributed among the
vectors whose sum equals f(z1,...,2,). Therefore, the players in 7" get in the revealing

gn—|T|-1

stage n — |T'| bits which form combinations each with equal probability. Note that

if |T| = n— 1 then in the revealing stage the players in T' get only one bit which is uniquely

14 a communication is possible for z1, ..., %y if it is consistent with flz1,...,z0).
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determined. However, if || < n — 1 then the independence of the communication seen
in the revealing stage and the communication seen in previous stages is guaranteed by the
random bits r; ; for i,j € T. Combining all together we get the desired claim. |

Corollary 2 For all coalitions T (1 < |T| <n—1), for all inputs z1,...,z, and y1,...,Yn
such that f(z1,...,2,) = f(y1,...,Yn) and such that z; = y; for all i € T, for all choices
of random strings for players in T, {R;};cr, and for all communication comm

PrlVIEW(T, {xi}ieT , {Ri}ieT) =comm| = Pr[VIEW(T, {yi}z‘eT , {Ri}z‘eT) = comm)],

where the probabilily goes over all choices of R; fori € T.
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