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Abstract

One of the fundamental problems in distributed computing is how identical pro-
cessors with identical local memory can choose unique IDs provided they can flip a
coin. The variant considered in this paper is the asynchronous shared memory model
(atomic registers), and the basic correctness requirement is that upon termination
the processes must always have unique IDs.

We study this problem from several viewpoints. On the positive side, we present
the first protocol that solves the problem and terminates with probability 1. The
protocol terminates in (optimal) O(log n) expected time, using O(n) shared memory
space, where n is the number of participating processes. On the negative side, we
show that no protocol can terminate with probability 1 if n is unknown, and that no
finite-state protocol can terminate with probability 1 if the schedule is non-oblivious
(i.e., may depend on the history of the shared variable).

We also discuss the dynamic setting (where processes may join and leave the
system dynamically), and give a deterministic protocol for the read-modify-write
model that needs only 3 shared bits.
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1 Introduction

Background and Problem Statement. In the course of designing a distributed algo-
rithm, one has often to confront the problem of how to distinguish among the different
participating processes. One attractive (and sometimes realistic) solution is simply to deny
the existence of a problem altogether: assume that each process is fabricated with a unique
identifier. This assumption seems especially reasonable where the processes are physical
processors, and an ID which is guaranteed to be unique is “hardwired” in them (see, for
example, the IEEE 48 Bit Standard [Tan81]). In some cases, however, one cannot get away
with this approach. For instance, the processes might be virtual (i.e., software) processes
that are spawned using the same code, and thus they are created identical. In this setting,
the processes typically run on the same physical machine, and the communication among
them is realized via shared memory space. This problem, of giving distinct names to iden-
tical processes, is known by the name “Processor Identity Problem” [LP90]. In the sequel
we denote it by PIP for short. We remark that PIP, due to its fundamental role, has many
applications for some of the most basic distributed tasks, including mutual exclusion, choice
coordination, and resource allocation.

On an abstract level, the heart of the problem is “guaranteed” symmetry breaking. Note
that most message passing models provide some asymmetry simply by virtue of the topology
of the underlying interconnection network. In this paper, we focus only on the completely
symmetric shared memory systems. More specifically, we are concerned with the read-write
registers model [Lam86], where in a single action, a processor can either read or write the
contents of a single register. (This model is also known by the name of “atomic registers”.)
We shall contrast this model with the read-modify-write model, in which a processor can,
in a single indivisible step, access a register and update its value in a way that may depend
on the current contents of that register. (One of the interesting consequences of this work
is sharpening the difference between the computational power of the randomized variants
of these two models.)

The formal specification of the problem is as follows. We have a system with n processes,
and for each process there is some designated output register. We assume that the output
register is capable of storing N > n different values. A protocol for PIP must satisfy the
following conditions.

Symmetry: The processes execute identical protocols.

Uniqueness: Upon termination, all the values in the output registers are distinct.

Notice that we insist that processes never err. This rules out trivial solutions that require
no communication (e.g., each process chooses a random ID, and the error probability is
controlled by the size of the ID space). The original formulation of the problem by Lipton
and Park [LP90] had additional requirements. First, that the initial state of the shared
memory is arbitrary (the “dirty memory” model); and second, that upon termination, the
IDs constitute exactly the set {1,...,n}.

Previous Work. Symmetry breaking is one of the well-studied problems in the theory
of distributed systems. For example, see [Bur81, JS85, CIL87, ABD*87]. The Processor
Identity Problem for the dirty memory model was first defined by Lipton and Park in [LP90],
where they also give a solution that uses O(Ln?) shared bits (for any given parameter



L > 0) and terminates in O(Ln?) time with probability 1 — ¢, for some constant ¢ < 1.
However, if the protocol fails, then it never terminates. Since this event occurs with positive
probability, that protocol has infinite expected termination time. The protocol of [LP90] was
subsequently improved by Teng [Ten90], who shows how to get running time of O(nlog? n)
time with probability 1 — 1/n¢, for any constant ¢ > 0. As in [LP90], however, in the
event of failure, the protocol never terminates. Recently, Egecioglu and Singh [ES92] have
obtained independently a randomized protocol that assigns distinct IDs to the processes in
O(n") expected time using O(n*) shared variables.

Our Results and Organization of the Paper. In this work, we give tight positive and
negative results describing the conditions under which the Processor Identity Problem can
be solved. First, we show how to solve the problem: in Section 3 we give a randomized
protocol for PIP in the read-write registers model that terminates in O(logn) expected
time, using O(n) shared memory space. The protocol works under the assumption that n is
known, and that the schedule is oblivious (i.e., the order in which processes take steps does
not depend on the actual execution). As in the original formulation of PIP, the protocol
has the nice features that it works in the dirty memory model, and that upon termination
the given names constitute exactly the set {1,...,n}. We also consider the dynamic case,
where processes may join and leave the system dynamically. Here, we relax the problem
specification and require only that if no process joins the system for sufficiently long time,
then eventually the IDs stabilize on unique values. We give a simple variant of our protocol
for this case, which stabilizes in O(logn) expected time.

Next, we prove that the assumptions for the protocol of Section 3 are actually necessary
to obtain protocols that terminate with probability 1. Specifically, in Section 4 we prove the
following results. First, we prove that there is no protocol that solves PIP if only a bound
on n is known in advance, even if the schedule is oblivious. We also show that any protocol
for PIP must run in Q(logn) expected time. These results are fairly straightforward. Our
last impossibility result seems to be the most interesting. We show that even if n is known,
there is no finite-state protocol that solves PIP when the adversary is allowed to be adaptive,
i.e., when the adversary can decide which process moves next based on the history of the
shared variables. This impossibility is complemented with a protocol for PIP that works
for any fair scheduler — using unbounded space. The interpretation of the results is that
one can have either a bounded space protocol, or a protocol which is resilient to arbitrary
adversaries, but not both.

Finally, in Section 5, we consider the read-modify-write model. We show some similari-
ties and some deep differences between this model and the model of read-write (i.e., atomic)
registers. Specifically, we show that in this model PIP can be solved deterministically using
only 3 shared bits under any fair adversary, if the system is initialized properly. On the
other hand, there is no finite-memory randomized protocol that solves PIP if the initial
state is arbitrary and the adversary is adaptive.

We start with a brief description of the models we consider in Section 2.



2 The Model

Our basic model is the asynchronous shared-memory distributed system. Such a system
is characterized by a set of n processes denoted by pq,...,p,, and m shared registers, or
variables, denoted by r1,...,r,,. The processes are modeled as probabilistic state machines,
and the shared registers may hold values from some specified domain. All processes can
access all the shared registers. A slale of the system is completely determined by the
states of the individual processes and of the shared registers. The state may be altered by
processor actions. We assume that in every state, at most one action is enabled in each
process.

Action Models. In this paper we shall be mainly concerned with the read-write model,
where every step of a process is either a read or a write of a shared variable, followed by
some local computation. We shall also discuss read-modify-write model, where a process
can, in a single indivisible step, access a shared variable, obtain its value, and rewrite it as
a function of the process local state and the value of the variable. Precise definitions for
these models are given in Appendix A.

Asynchronous Freculions and Adversaries. Following the IO Automata model of Lynch
and Tuttle, we model an exzeculion of a system as an alternating sequence of states and
actions, where in each step, one process makes an action to yield the next state (cf. [LT89]).
To model asynchrony, we assume that the choice of which process takes the next step is
under the control of an adversary. There are two types of adversaries we consider in this
work. The oblivious adversary is simply an infinite sequence of processes names. The
adaptive adversary is defined by a function that takes a finite sequence of shared memory
states, and produces a process name. Intuitively, the oblivious adversary commits itself to
the order in which processes are scheduled to take steps oblivious to the actual execution,
while the adaptive adversary may observe the shared memory and choose which process
to schedule next based on this knowledge. The only general restriction we impose on the
adversaries is that they must be fair, i.e., (in our context) each process must be scheduled
to take steps infinitely many times.

Time Complexity. To measure time in the asynchronous model, we assume that each
process takes at least one step (either a read or a write) every one time unit. The executions
are completely asynchronous, i.e., the processes have no access to clocks, and the “real time”
notion is assumed here only for the purpose of analysis. We also call a time fragment in
which all processes are scheduled at least once a round.

3 A Solution for the Processor Identity Problem

In this section we give a protocol that solves the Processor Identity Problem in the asyn-
chronous shared memory model. Our protocol uses O(n) shared bits, and terminates in
O(logn) expected time, where n is the number of participating processes. We solve the
problem in its original formulation [LP90], i.e., assuming the dirty memory model, and pro-
ducing as the final names exactly the set {1,...,n}. We also discuss the dynamic model,
where processes may join and leave the system arbitrarily. We explain how a simple variant
of our basic protocol can be used for that model. We remark that our protocols rely on the
assumptions that n is known in advance, and that the schedule is oblivious. (We show in



Section 4 that both assumptions are necessary to ensure termination with probability 1.)

3.1 Terminating Protocol for PIP

We begin with an intuitive description of the protocol. Throughout the protocol, each
process proceeds in a loop as follows. At every given point in the execution of the loop,
each process claims some “tentative” ID, which it repeatedly checks to verify that no other
process claims. If a process detects a competitor for its claimed ID (we call this case a
collision), the process chooses a new ID at random. The loop terminates once the process
can safely deduce that all processes have unique names.

The protocol is based on a few ideas, designed to implement collision detection, termi-
nation detection, and operation with initially dirty memory.

The collision detection is done by repeated checking as follows. We have in the shared
memory a vector of N registers, where N = ¢ - n for some constant ¢ > 1. Each register
corresponds to a particular tentative ID, namely the index of that register. During a
checking phase, a process either reads the register corresponding to its tentative ID, or
writes it. The choice between the alternatives is random. If the process writes, it writes a
random signature of constant size (i.e., a bit). If the process chooses to read, it examines the
contents of the register to see if some other process has changed it since its last own write.
If no change is detected, then the process simply proceeds. Otherwise, it concludes that its
claimed ID gives rise to a collision. In this case the process chooses a new ID uniformly at
random from {1,..., N}, and then proceeds.

It is important to observe that once an ID is claimed, it will remain claimed: at any
point, the last process to write a random signature at the corresponding register claims
that ID. This property of the algorithm facilitates the termination detection mechanism,
that works parallel to the collision detection mechanism. The idea is to count the number
of claimed IDs; the above property ensures that we can only underestimate the number of
claimed IDs, and thus, if this number is known to be n, then the collision detection can
stop. We shall also guarantee that after the set of claimed has stabilized (at size n), then
eventually all IDs will be detected as claimed. The number of claimed IDs is counted by
the processes in a “tree addition” fashion. Specifically, we use the following implementation
strategy. The vector of registers used for the collision detection is treated as “level 0”7 of a
tree, denoted D[7,0], where 1 < ¢ < N is the index that corresponds to a tentative ID. The
other levels are defined inductively as follows. For each “leaf” register D[¢, 0] we define its
ancestor register at level j for 7 > 0 by

1 .
i

The ancestor relation defines, in the natural way, a directed tree whose root is D[1,log N].
The semantics of this tree is that each entry D[, level] (for level > 0) is intended to contain
the number of claimed IDs in the range (i — 1)2/*'¢' 41 < ID < 4 - 2!, This is done by
the following rule. The registers at each level level are partitioned into consecutive pairs
D[2i — 1, level] and D[2i, level] (for 0 < level < logn and 1 < i < N/2"). These pairs
(whose elements are siblings in the tree) are called segments. The idea is that each process
maintains its current level (initially 0). The process is “responsible” for filling the values

v

ancestor(i,j) =D [1 + [ 2_]



Shared Variables

D . a complete binary tree of height [log N'|; registers are indexed by location and level

Local Variables

tent_ID : tentative ID, initially random({1,...,N})
signature : takes values from {0,1,A}, initially A (retains state of claimed register)
D : oulput value
level : takes values from 0..log N, initially 0 (retains current level for summation)
count : takes values from 0..N, initially 0 (retains count of claimed IDs in segment)
Code
1 repeat
2 either, with probability 1/2, do
3 if Dltent_ID,0] ¢ {signature, A} then (read and check for collision)
4 tent_ID — random({1,...,N})
5 signature «— A
6 level — 0
7 or, with probability 1/2, do (write and record random signature)
8 D[tent_ID,0] — signature — random({0,1})
9 if level > 0 then (summing number of claimed 1Ds)
10 D [ancestor(tent_1D, level) , level] — count
11 if level < log N then (read the segment in the current level)
12 left — D [2 - ancestor(tent_ID,level + 1) — 1, level]
13 right — D [2 - ancestor(tent_ID, level + 1) , level]
14 if ancestor(tent_ID, level) is the first non-erased register in the segment then
15 count — right + left (treat A as 0)
16 level — (level + 1) mod [1 4 log V]
17 else level — 0 (start checking from the leaf again)
18 until D[1,log N]=n (termination predicate)

19 ID — |{i : D[i,0]# A and i < tent_ID} | (compute rank of tent_ID by parallel prefiz)

Figure 1: Terminating algorithm for PIP in the dirty memory model, with IDs in the range

{1,...,n}.



for all its ancestors up to that level. It checks the segment associated with its ID at its
current level; if the process is the first process in that segment (i.e., either its ancestor
register is the only non-erased register in the segment, or else the index of its ancestor is
odd), it increments its current level, and writes the sum of the entries in the segment in the
ancestor at its new level. Otherwise, it resets it current level to 0, so that values under its
responsibility are re-written at least once every O(logn) time units. We shall show that this
procedure guarantees that once all the collisions disappear, eventually the root of the tree
(in our notation, D[1,log N]) will contain n. Moreover, at any point before all the collisions
has been resolved, no process reads D[1,log N] = n.

As a final twist, since we want the names to constitute the set {1,...,n}, we perform
some kind of “prefix sums”. In other words, we compute for each process the rank of its
ID among the claimed IDs. Using standard techniques (see, e.g., [Lei91]), it can be done in
O(logn) time, given the tree structure already existing in the shared memory.

The formal specification of the protocol is given in Figure 1. To deal with shared
memory which is initially dirty, the algorithm uses the following strategy, which we call
“read when clean”. Each process keeps track of the status of each register of the shared
memory. Initially, all registers are marked dirty; whenever a write is performed, the written
register is marked clean. The rule observed by the algorithm is that a process reads only
clean registers; this is maintained by erasing the contents of each dirty register with a
special value A when it is to be read. More specifically, whenever a register needs to
be read, its status is checked; if it is dirty, then a write(A) step is inserted before the
read. The correctness of the algorithm, despite possible erasures, is maintained since each
meaningful value is re-written periodically: at level 0, the collision detection mechanism
writes a random signature (different from A) every O(1) time units; and for higher levels,
each process re-writes the registers under its responsibility in a wrap-around fashion.

Before we turn to analyze the algorithm, let us return to the “read when clean” mech-
anism. The erasing value (written before a register is ever read) is a special value denoted
A. Note that by the structure of the algorithm, any register belonging to the tree structure
whose leaves correspond to claimed IDs is periodically re-written. Also, the sibling of any
such register is erased at some point. For the purpose of addition, A is treated as 0.

3.2 Analysis

In this section we sketch the outline of the correctness proof for the protocol. The proofs
are presented in Appendix B. We first state the correctness of the protocol.

Theorem 1 The algorithm in Figure 1 produces, upon termination, unique IDs in the range
{1,...,n}. Moreover, il terminates with probability 1, and its expected termination time is

O(logn).

We call a tentative ID value unique if at most one process claims it.
The following three lemmas show that the termination detection mechanism is correct.

Lemma 1 If an ID is claimed at some state of the execution, then it remains claimed from
that point on.



Lemma 2 If a process reads some value v at some D|i, level] for level > 1, then the number
of claimed IDs in the range (i — 1)- 2"l 4 1,... i- 2/ at that time is at least v.

Lemma 3 If the protocols reaches a state with n claimed IDs, then in O(logn) time units
all processes exit the main loop.

The correctness of the collision detection mechanism is expressed in the following pair of
lemmas. We remark that the calculations are not optimized. This effects the constant
factor in Theorem 1 slightly.

Lemma 4 Suppose k > 1 processes claim the same ID al some state. Then in one lime
unit, at least k /16 of them choose a new tent _ID with probability more than 0.4*~' — N—H/2,

Lemma 5 After O(logn) expected time units, the number of claimed IDs is n.

Theorem 1 is a direct corollary of Lemmas 2, 5 and 3.
To conclude the analysis of the protocol, we remark that the size of the shared space

(in bits) is

log N
(level + 1)!
2N+ Y, o <5N=0(n).
level=1

The first term is for the level 0 registers (each of size 2 bits). Each register at level level,
for level > 0, needs to hold values in the range 0..2"¢!, which implies size of level + 1 bits.
The number of registers at level level is N /2!,

3.3 Dynamic Protocols

Consider the dynamic selting, where processes may join and leave the system dynamically.
In this case, the protocol only has a bound on the number of processes that may be active
simultaneously. As proved in Section 4, such a protocol cannot terminate (Theorem 2). We
therefore relax the correctness requirement as follows. We require that if processes stop
joining the system, then the IDs in the output registers will eventually stabilize on distinct
values (not necessarily {1,...,n}).

The algorithm of Figure 1 can serve as the basis for efficient dynamic protocols as
follows. First, we can simply repeat the main loop forever, and interleaving in it the rank
calculation. This yields a dynamic protocol that stabilizes in O(logn) time on the names
{1,...,n}, for the actual number n of active processes.

Another simplification can be done if we do not care that the IDs will be exactly the
set {1,...,n}. Specifically, we can get rid of the counting mechanism altogether. Moreover,
there is no need for the “read when clean” rule any more. The algorithm then reduces only
to an infinite collision detection procedure. We remark that this construction is not only
dynamic, but it is in fact self-stabilizing, i.e., it works even if the initial state of the whole
system (shared memory and local states) is arbitrary. We give code for a dynamic protocol
in Figure 2 in the appendix.



4 Necessary Conditions for Solving PIP

In this section we show that in the read-write model, no terminating algorithms exist for PIP
if either n is not known in advance, or if the schedule is adaptive. We shall also argue that
there is no protocol for PIP that terminates in o(logn) time. All these impossibility results
are based on the observation that at least one of the processes needs to “communicate”
(not necessarily directly) with all the other processes before termination. This observation
translates fairly easily into a rigorous proof of the time lower bound, and to the proof
of necessity of knowledge of n; the proof of impossibility for adaptive adversaries is more
difficult.

We analyze the protocols for PIP in terms of Markov chains (we shall use the terminol-
ogy of [Fel68]). Consider a single process taking steps according to a given PIP protocol.
(Even though we might have n > 1, we consider only one process taking steps without
interference of other processes.) That process can be viewed as a Markov chain, whose
state is characterized by the local state of the process and the state of the shared memory.
We shall represent that Markov chain as a directed graph, whose nodes are the states of
the Markov process, and a directed edge connects two nodes iff the probability of transi-
tion from one to the other is positive. Given a protocol P for PIP, this Markov chain is
completely determined. In the sequel, we denote the graph corresponding to a protocol P
by Gp, and we shall use the terms “states” and “nodes” interchangeably. Since we shall
be proving impossibility results, we assume in this section, without loss of generality, that
the initial state of the shared memory is fixed and known (this can only add extra power to
the protocols). This assumption allows us to have a standard Markov chain, with exactly
one node no incoming edges (called hereafter the source node), that correspond to the (well
defined) initial states of the system.

We start with a general lemma for PIP in the read-write model.

Lemma 6 Let s be any reachable node in Gp, and let s* be the global state of the n-
process system with the same shared state portion as in s, and such that the local states
of all processes are identical to the local state portion in s. Then there exists an oblivious
schedule under which the system reaches s* with positive probability.

Proof: We shall show that the “round robin” schedule works. Let sy be a source node
in Gp from which s is reachable. We prove the lemma by induction on the distance d of
s from sg in Gp. The base case, d = 0, follows (with probability 1) from the symmetry
requirement for PIP: s* is the state where the shared memory is in the same state as in s,
and all the processes are in the same state as in s. For the inductive step, suppose that s is
at distance d + 1 from sg. Let s’ be the node in Gp which is reachable in d steps from the
S0, and such that s is reachable in one step from s’. By the inductive hypothesis, the global
state corresponding to the symmetric combination of the s’ nodes is reachable with some
probability @ > 0. By the definition of G'p, s is reachable in a single step of process p;, with
some probability 8 > 0, for all 1 < ¢ < n. Now consider scheduling exactly one step of each
process. Since the processes take their steps when they are in identical local states, it must
be the case that they either all read or all write in their respective additional step. Hence,
their steps cannot influence one another, which means that the probability distributions of



their next state are independent. Therefore, with probability af™ > 0, the global state s*,
is reached, and the inductive step is complete. [

We remark that Lemma 6 holds even for infinite state protocols (so long as no zero
probability transitions are ever taken).
Using Lemma 6, we can now prove our first necessary condition for PIP.

Theorem 2 There is no protocol for PIP (including infinite state protocols) that works for
unknown n and terminates with probability 1, even for oblivious schedules.

Proof: For simplicity, suppose P works for n = 1 and n = 2. (The argument extends
directly to arbitrary different values.) We argue that in this case, P cannot terminate when
run with a single process. For suppose not: let p be any terminating execution in which only
one process takes steps. By Lemma 6, there exists an execution p’ of positive probability
with two processes such that both processes reach the same state as in the end of p. But
since the last state in p is a terminating state, we conclude that both processes terminate
in p/, and since they are in identical local state, they must have the same output value, a
contradiction to the uniqueness requirement. |

A similar argument, augmented with a standard lower bound technique for parallel
computations, shows that any protocol for PIP requires 2(logn) time units.

Theorem 3 There is no protocol for PIP that terminates in o(logn) time.

Proof Sketch: Given an execution of a protocol, we define inductively for each process p;
at any given step k the set of influencing processes, denoted 9;(k), by the following rule. At
the initial state, the set of influencing processes for process p; is 5;(0) = {p;} for all <. The
influencing set of p; may grow only when a process reads a register: suppose that p; reads
a register 7 at step k, and that r was previously written by process p; at step [. In this
case, we define S;(k) = S;(k — 1)U S;(1). For all other cases, we define S;(k) = S;(k —1).
Intuitively, the influencing set of a process at any given state is the set of all processes that
might have effected the computation of that process up to that point. It is easy to see that
in any run of a protocol for PIP, a process may terminate only when its influencing set is
{1,...,n}. For suppose not, i.e., there exists a run p of the system, in which p; terminates
at step k with j ¢ S;(k). Then there exists another run p’ which is identical to p from the
point of view of p;, in which p; advances in lockstep with p;, maintaining identical local
state. Since p; terminates in p’ iff it terminates in p, and since termination in p’ violates
the uniqueness requirement, we have reached a contradiction, proving that a process p; may
terminate at a step k only if S;(k) = {1,...,n}.

To get the lower bound on time, consider the executions resulting from the round robin
schedule, where each step takes exactly one time unit. An easy induction shows that in
these executions, |5;(k + 1)| < 2].5;(k)| for all processes p; and steps k. Since we must have
|5:(k)| = n at the terminating state for all processes, we may conclude that the worst-case
running time of every protocol for PIP is Q(logn). 1

We now turn to consider the case of adaptive adversary. Intuitively, the adaptive adver-
sary picks the processes to take steps based on the history of the system, or more precisely
on the history of the shared portion of the system. (The adversary has no access to in local
state of the processes.) For such adversaries we have the following theorem.



Theorem 4 There is no finite state protocol that solves the Processor Identity Problem
with probability 1 using read-write registers if the schedule is adaptive, even if n is known.

Proof: By contradiction. Suppose that a given protocol P terminates with probability 1.
Then for all € > 0 there exists 7T, such that the probability of P terminating in 7, or less
time units is at least 1 — e¢. We shall derive a contradiction by showing that there exists
€0 > 0 (that depends only on P), such that for any given time 7', there exists an adaptive
schedule in which P cannot terminate in 7" time units with probability greater than 1 — ¢g.

The our strategy, as in the proof of Theorem 2, is to keep the processes “hidden” from
each other. For simplicity of presentation, let us consider the case of n = 2. The proof can
be extended to an arbitrary number of processes in a straightforward way.

Our first step is to decompose the corresponding Markov process into irreducible pro-
cesses. In graph theoretic language, consider the Markov graph Gp: it is a directed graph;
we decompose it into strongly-connected components [Eve79]. That is, we partition the
nodes into equivalence classes (“strong components”), such that two nodes s and s’ are in
the same class if and only if there is a directed path in Gp from s to s’ and from s’ to
s. Given this decomposition, we define a terminal component to be a strong component
such that no other component is reachable from it. (We remark that terminal components
are the irreducible components of the given Markov chain.) Notice that the existence of
terminal components in the Markov graphs is guaranteed by the fact that the number of
nodes in Gp (i.e., the number of states of the protocol P) is finite. We now use a simple
fact from the theory of Markov chains.

Lemma 7 Consider a global state s* which corresponds to a state s in a terminal component

of Gp. Then for all v < 1 there exists a positive integer M., such thal in an execution that
starts at s* and consists of M., steps of process p; only, s* occurs again with probability at
least 7.

Proof: The state of a process p; in an execution that starts from a state in a terminal
component, and in which only p; takes steps, is an irreducible Markov chain. The lemma
follows from the fact that for an irreducible Markov chain, all states are persistent, i.e.,
with probability 1, s* eventually occurs again. |

Lemma 7 gives rise to the following immediate corollary.

Corollary 8 Let s* be a global state which corresponds to a state in a terminal component
of Gp, and let v be the state of the shared portion of s*. Then for all v < 1 lhere exists a
positive integer M., such thal in an erecution that starts at s* and consists of M., steps of
process p; only, v occurs again with probability at least .

We now continue with the proof of Theorem 4, by describing a complete strategy of an
adaptive adversary, given a protocol P and a time bound 7. First, an arbitrary reachable
state s in a terminal component of Gp is chosen. (This can be done since the protocol
completely characterizes Gp.) The adversary then uses the round-robin schedule outlined in
the proof of Lemma 6, that guarantees, with some probability e > 0, that the corresponding
symmetric global state s*, in which all the processes are in the same local state as in s, and
the shared memory is in the same state as the shared portion of s. We shall show that for

10



any given time 7', there is an adaptive schedule such that the protocol fails to terminate in
T time units with probability greater than a/5.

We do this as follows. Let v = 1 — 1/2T. Denote the state of the shared portion in
s* by v. The adversary now lets p; take steps (at least one) until the values of the shared
variables are again as specified by v, or until M., steps (as obtained from Corollary 8) have
been taken. This can be done since by our assumption that the adversary is adaptive, the
adversary can “see” when v recurs. Moreover, Corollary 8 guarantees that this process
will succeed with probability at least 7. When v recurs, the adversary lets p; take steps
(again, at least one and no more than M, ), until the configuration of the shared memory
is v again. This can be done by the same reasoning as for p;. Notice that now, p; and p
are not necessarily in the same state; however, py is completely “hidden” from pq, since the
shared memory is in exactly the same state in which p; stopped taking steps. Therefore,
the adversary can resume p; now, and p; must act as if it is the only process in the system.

Observe that this procedure of letting one process take steps until v is reached and then
switch to the other process, can be repeated 27" times (thus resulting in a schedule with
running time 7'), with probability of success at least

- 1 2T 1
~ :<1_ﬁ) >3 for T>1.

We can now complete the proof of Theorem 4. We argue that for any given T > 0,
using the schedule specified above we get, with probability at least ¢y = «/5, an execution
in which neither p; nor py can terminate in 7' time units. This is since with probability at
least @, s* is reached, and with probability greater than 1/5, once s* is reached, p; and p,
remain “hidden” from each other for 7T" time units. Now we claim that termination of any of
the processes in this execution implies a contradiction: since p; (say), did not observe any
action of py, it follows that from the point of view of p;, there exists an indistinguishable
execution p in which p; is advancing in “lockstep” with p;, maintaining symmetrical local
state. If p; terminates in the given execution, then in p p; and p; terminate also, violating
the uniqueness requirement. Since the uniqueness property must be met always, we have
reached a contradiction. ||

To show the necessity of the bounded space condition in Theorem 4, we have the fol-
lowing theorem.

Theorem 5 There exists an unbounded-space algorithm that solves PIP for any fair ad-
versary.

The unbounded protocol is presented in Figure 3 in the Appendix.

5 PIP in the Read-Modify-Write Model

In this section we give positive and negative results for PIP in the read-modify-write model.
Due to the lack of space, we only state the results here. The proofs are given in Appendix

E.

Theorem 6 In the read-modify-write model, there exists a deterministic protocol for PIP
that works with 3 shared bits under any schedule.

11



Theorem 7 There is no finite state, self-stabilizing protocol that solves PIP in the read-
modify-write registers with probability 1 if the schedule is adaptive and n is unknown.
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APPENDIX

A Model Definitions

We first make the following abstract definition, to be used in the definition of randomized
protocols.

Definition 1 For a given domain A and range B, a probabilistic function ¥ of type A — B
is a collection of deterministic functions of type A — B, together with a probability space
over the collection. The value of F(a) for a € A is determined by first picking a function
[ € F at random according to the given distribution on F, and then applying [ to a.

We can now define the read-write model

Definition 2 A distributed system satisfies the atomic registers condition if each step of
each process p; is one of the following.

1. read(r;) action, where r; is a register, and the next state of the system salisfies the
following constraints.

o The next state of the system is unchanged for all registers, and for all processes
other than p;.
e The next state of p; changes as a probabilistic function of its previous local state

and of the state of r;.

2. write;(r;) aclion, where r; is a register, and the next state of the system salisfies the
following constraints.

o The next state of the system is unchanged for all registers other than r;, and for
all processes other than p;.

o The next state of p; changes as probabilistic function only of its previous state.
(This reflects the fact that p; “knows” that it has made the write; action).

o The next state of r; changes as a function of the previous state of p;.
In the read-modify-write model, we have only one type of action, termed access.

Definition 3 A distributed system satisfies the read-modify-write condition if for each pro-
cess p; and register r;, the access;(r;) aclion satisfies the following constraints.

o The next state of the system is unchanged for all registers other than r;, and for all
processes other than p;.

o The next state of p; changes as a probabilistic function of its previous local state and
of the previous state of r;.

o The next state of r; changes as a function of the previous state of p;.
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B Correctness Proof for the Protocol

In this section we give sketches of the proofs for the claims used in the proof of Theorem 1,
i.e., the correctness of the algorithm in Figure 1.
We start with a simple fact, that follows from the fact that N = ¢ - n.

Lemma 9 Whenever a process chooses a new value for tent_ID, this value is unique with
probability at least 1 — %

Proof: Since the choices of tent_ID are independent and uniform over {1,..., N}, and since
the number of claimed ID is at most n, we have that the probability to choose a claimed
ID is at most & = % |

Lemma 1 If an ID is claimed at some state of the execution, then it remains claimed from
that point on.

Proof Sketch: The claim is immediate for IDs that are unique for the remainder of the
execution. Now suppose that two or more processes claim some ID. The lemma follows from
the observation that by the code, whenever a collision is detected, the value in the register
is not changed, and that a process may change its tent_ID only after reading. Therefore, at
any time, the last process to write the register claims that ID. |}

Lemma 2 If a process reads some value v at some DIi, level] for level > 1, then the number
of claimed IDs in the range (i — 1)- 2" 4 1,... i- 2! at that time is at least v.

Proof Sketch: By induction on the level numbers. Consider D[, 1], for 1 <i < N/2. If a
process reads some value v at that location, then the “read when clean” rule ensures that
some process wrote that value v. For level 1, this means that some process has detected
that v of the IDs 27 — 1 and 2¢ are claimed. By lemma 1 and the “read when clean” rule,
there are indeed at least v claimed IDs at that segment at any point after v was written at
D[i,1]. A similar argument can be applied to higher levels as well. |1

Lemma 3 If the protocols reaches a state with n claimed IDs, then in O(logn) time units
all processes exit the main loop.

Proof Sketch: We show, by induction on ¢, that in O(logn) + O(¢) time units, the set of
locations accessed by the processes at level 7 is fixed, and that any read from level ¢ of the
tree returns the correct value. The base case, for level 0, is given by the assumption The
“read when clean” rule will have no effect on level 0 from that point on, since the locations
read by processes at that level will remain fixed. Next, notice that in a time interval of
O(log n) units, for each process there is a state with level = 0. Now, to prove the inductive
step it is sufficient to show that no erasures occur at level ¢« + 1. This follows from the fact
that the reads from level ¢ are correct, and hence only one process will write at level ¢ 4 1.

Lemma 4 Suppose k > 1 processes claim the same 1D al some state. Then in O(1) time
units, at least k /16 of them choose a new tent_ID with probability more than 0.4k 1_N—H/2,

Proof Sketch: If one of the processes has terminated, then by Lemma 2 we are done. So
suppose that none of the processes has terminated. Consider an execution fragment where
each of the k processes accesses the claimed register at least twice. The duration of any
such fragment is O(1) time units. Denote the sequence of accesses to the claimed variable
in this time interval by a1,as,...,a,. Denote the second access of process p; by a;,, for
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1 < j < k. Note that by the “read when clean” rule, the second access is never write(A).
Now consider the pairs of events iy i1, for all 7 such that ;-1 is defined. In other
words, we consider the second access of p; and the access immediately preceding it. Note
that a;,_1 is an action of some process other than p;, by definition of a;;. Now, consider
the following events:

Qjo—15 Ujy 5 Ajy—15 Ay sy - - "ai2Lk/2J_17ai2Lk/2J .

We first claim that all these events are distinct. This is easy to see since between a;,,
and iy se1) there must occur @iy, 4y - We now argue that py; chooses a new tent_ID with
probability 1/8, for 1 < j < |k/2]. This is because the previous access to the register was
by another process, that wrote (with probability 1/2) a value that differs from tent_ID;
(with probability 1/2), and p; makes a read (with probability 1/2). The crucial observation
here is that the obliviousness of the protocol guarantees that all these occur independently,
and therefore the probability of the intersection is 1/8. Finally, we argue that the |k/2]
events of processes py; detecting a collision are also independent, which follows from the
fact that all the events involved are distinct. The result follows by applying the generalized
Chernoff Bound [Spe87]. We need to subtract the probability that the a;,, are write(A)

events, which is N=%/2. |1

Lemma 5 After O(logn) expected time units, the number of claimed IDs is n.

Proof Sketch: Suppose that the number of collisions at some state is . Using Lemma
4 and Lemma 9, it can be shown that in O(logn) expected time, the maximal number of
colliding processes per ID is at most 31. Using the same argument as in Lemma 4, it is easy
to show that in additional O(logn) expected time, all IDs are unique. [
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C Dynamic Protocol for PIP

In the code given in Figure 2, we use a slightly different randomization technique: instead
of flipping a coin whether to read or write (as in the algorithm of Figure 1, we associate
with each ID two registers, and we choose randomly from which to read or write.

Shared Variables
D : a veclor of N pairs of bils

Local Variables

stgnature : a vector of two bils (retains state of claimed segment)
ID : output value (to stabilize on a unique value)
7, pos : temporary indices

Code

1 repeat forever
2 pos — random({1,2})

3 if signature[pos] # D[ID, pos] then (read location, check for collision)
4 ID — random({1,...,N})

5 for all j € {1,2} do signature[j] — D[ID, j]

6 else (1D seems unique)
7 D[ID, pos] — signature[pos| — random({0,1}) (write new random signature)

Figure 2: Dynamic algorithm for PIP using 2N shared bits.

The algorithm in Figure 2 does not need to guarantee that a claimed ID will always
remain claimed. It is sufficient to guarantee that any collision will be detected in expected
constant time. We therefore use only spatial randomization here, that controls the location
the process accesses next. The correctness of the algorithm is stated in the theorem below.

Theorem 8 The algorithm in Figure 2 stabilizes in O(logn) expected time units with all
IDs unique.

The detailed analysis of the algorithm uses ideas similar to the analysis of the algorithm
of Figure 1 and is omitted.



D Unbounded Memory Algorithm for PIP

Shared Variables
D : a vector of N inlegers, initially all 0

Local Variables

ID : output value, initially random({1,...,N})

signalure : a sequence of bils, initially emply sequence (retains state of claimed segment)
Code
1 repeat
2 either, with probability 1/2 do
3 if signature # D[ID] then (read and check)
4 ID — random({1,...,N})
5 signature «— 0
6  or, with probability 1/2, do (append a new random signature)
7 D[ID] « signature — (2 - signature + random({0,1}))
8 until |{7 : Dl]#0}|=n (termination predicate)

9 ID — |{i : Dli] # empty sequence and ¢ < tent_ID}|  (output value: rank of tent_ID)

Figure 3: Unbounded space algorithm for PIP under any adversary

Theorem 9 The algorithm in Figure 3 stabilizes with probability 1 in expected O(logn)
time units.

Proof Sketch: Intuitively, the idea in the algorithm is that each process maintains a
complete history of the location it claims. The main step in proving the theorem, is showing
that every collision is eventually detected. This follows from the fact with probability 1,
one process eventually reads what another process wrote, and since that the probability
that two colliding processes have the same history forever is 0. |
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E PIP in the Read-Modify-Write Model

In this section we give positive and negative results for PIP in the read-modify-write model.
First, we show that in this model, PIP can be solved deterministically using constant size
memory, under any fair schedule. This result should be contrasted with the impossibility
results of Theorems 2 and 4 for the read-write model. Qur second result for this section
shows that if the initial state of the protocol is arbitrary (i.e., self-stabilization model), then
there is no protocol (including randomized protocols), that solves PIP with probability 1.
This result uses the technique of Theorem 4.

E.1 Solving PIP with 3 Shared Bits

Let us start with an informal description of a protocol for PIP that uses log N bits. We
will then derive our constant-space protocol. The protocol using log N bits is trivial: the
shared variable is used as a counter, or a“ticket dispenser”, in the following sense. When a
process enters the system, it accesses the variable, takes its current value to be its ID, and
in the same step, increments the value of the variable by 1. It is straightforward to verify
that this indeed produces unique IDs at the processes under any fair schedule.

In our constant space protocol, we still employ this “serial counter” approach. However,
to reduce space, we shall use the shared variable as a “pipeline” to transmit information from
one process to another, while the relevant information is maintained in the local memory of
the processes. Specifically, there will be some process “in charge” at any given time such
that this process knows the current value of the counter. Whenever a new process enters the
system, it writes a request message in the shared variable. The process in charge responds
by transmitting the current contents of the counter, bit by bit, with an acknowledgment
for each bit. By the end of this procedure, the new process has the value of the counter,
it increments it by 1, takes it to be its ID, and becomes the process in charge. This serial
style dialog will not be interrupted by other process, by the read-modify-write assumption.
Also, we assume that the shared variable is initialized with a special initial value, that tells
whoever accesses the variable first, that it is in charge, and the counter value is 0. The
formal specification of the algorithm is given in Figure 4. We summarize in the following
theorem.

Theorem 6 In the read-modify-write model, there exists a deterministic protocol for PIP
that works with 3 shared bils under any schedule.

E.2 TImpossibility for Self-Stabilizing Protocols

In this section we describe briefly how can the technique of Theorem 4 be extended to the
read-modify-write model, under the stronger assumption that the initial state is arbitrary.
Theorem 7 There is no finite state, self-stabilizing protocol that solves PIP in the read-
modify-write registers with probability 1 if the schedule is adaptive and n is unknown.
Proof Sketch: As in Theorem 4, we prove the theorem by showing an adaptive adversary
under which, with some fixed probability €, the protocol cannot stabilize in any given time
T.

We again consider the Markov graph, and its decomposition into strongly connected
components. Now, by the self-stabilization assumption, we can let the first state of the
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system be such that the two processes are in identical states in some reachable terminal
component. We now apply the schedule in which p; takes steps until the values of the
shared memory vector recur (since Lemma 7 and Corollary 8 hold in this case also), and
then let py take steps until the shared memory state recurs, and so on for 7' time steps.
This yields (with some probability €) a fair schedule in which the view of p; and p; is
identical to the view of them running alone, and hence they either don’t stabilize in time
T (i.e., keep changing their IDs), or else the initial collision of IDs persists forever. |
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Shared Variable
message: takes values from {init, ready, accept,0, 1, ack, end}, initially init
Local Variables

D : output value
mode : takes values from {start, get, seek, give, done}, initially start
rem . integer
Code
repeat

case mode
start: if message = init then
mode — seek
D —0
message < ready
else if message = ready then
mode — get
ID —0
message «— accept
else message — message
seek:  if message = accept then
mode — give
message «— ID mod 2
rem «— |ID /2]
else message — message
get: if message € {0,1} then
ID «— 2-ID 4+ message
message < ack
else if message = end then
ID — ID+1
mode — seek
message < ready
else message «— message
give:  if message = ack then
if rem # 0 then
message «— rem mod 2
rem «— |rem/2]
else mode — done
message «— end
else message «— message
end case
until mode = done

Figure 4: Deterministic algorithm for PIP in the read-modify-write model, using 3 shared
bits
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