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Abstract

We describe a new method of proving lower bounds on the depth of alge-
braic decision trees and apply it to prove a lower bound Q(log N) for testing
membership to a convex polyhedron having N facets of all dimensions. This
bound apparently does not follow from the methods developed by M. Ben-
Or, A. Bjorner, L. Lovasz, A. Yao ([B 83], [BLY 92]) because the topological
invariants used in these methods become trivial for the convex polyhedra.
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Introduction

The problem of testing membership to a semialgebraic set ¥ was considered by
many authors (see, e.g., [B 83], [B 92], [BKL 92|, [BL 92], [BLY 92], [MH 85], [Y 92],
[Y 93], [YR 80] and the references there). Here we consider a problem of testing
membership to a convex polyhedron P in n-dimensional space R”. Let P have N
facets of all the dimensions. In [MH 85] it was shown, in particular, that for this
problem O(log N)n®®) upper bound is valid for the depth of linear decision trees,
in [YR 80] a lower bound Q(log N) was obtained. A similar question was open for
algebraic decision trees. In the present paper we prove a lower bound Q(log N)
for the depth of algebraic decision trees testing membership to P (see the theorem

below).

Several topological methods were introduced for obtaining lower bounds for the
complexity of testing membership to ¥ by linear decision trees, algebraic decision
trees , algebraic computation trees (the definitions one can find in, e.g., [B 83]).

In [B 83] a lower bound Q(log C') was proved for the most powerful among the
considered in this area computational models, namely algebraic computation trees,
where (' is the number of connected components of ¥ or of the complement of .
After that, in [BLY 92], a lower bound Q(log x) for linear decision trees was proved
, where y is Euler characteristic of ¥, in [Y 92| this lower bound was extended to
algebraic computation trees. A stronger lower bound Q(log B) was proved later in
[BL 92], [B 92] for linear decision trees, where B is the sum of Betti numbers of
Y (obviously, C,x < B). In the recent paper [Y 93] the latter lower bound was
extended to the algebraic decision trees.

Unfortunately, all the mentioned topological tools fail when . is a convex polyhe-
dron, because B = 1 in this situation. The same is true for the method developed in
[BLY 92] for linear decision trees, based on the minimal number of convex polyhedra
onto which ¥ can be partitioned.

To handle the case of a convex polyhedron, we introduce in section 1 another
approach based on a short description of a set of all sharp points of a semialgebraic
set W which is accepted by a branch of an algebraic decision tree. Sharp points of
W are its singular (nonsmooth) points of a special kind. In order to obtain such a
description we use complexity bounds for quantifier elimination in the theory of real

closed fields (see [GV 88], [G 88], [R 92], [HRS 90]).

In section 2 we give an upper bound for the number of facets of P which intersect
by a full dimension with the set W (using lemma 3 from section 1 which states that
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these are exactly the facets having intersections of a full dimension with the subset
of sharp points).

In section 3 we complete the proof of the theorem.

We conclude the paper discussing a much easier (than obtained in the theorem)
lower bound Q(log Ny), with Ny being the number of all (n — 1)-dimensional facets,
which is valid also for a more powerful model of algebraic computaion trees.

Now let us formulate precisely the main result.

We consider algebraic decision trees of a fixed degree d (see, e.g., [B 83], [Y 93]).
Suppose that such a tree T', of the depth k, tests a membership to a convex polyhe-
dron P C R”. Denote by N the number of facets of P of all dimensions from zero
to n. In this paper we agree that a facet is “open”, i.e., does not contain facets of
smaller dimensions.

Theorem.

k> Qlog N),
provided that N > (dn) for some ¢ > 0.
Let us fix a branch of 7" which returns “yes”. Denote by f; € R[Xy,..., X,],1 <
¢ < k the polynomials of degrees deg(f;) < d, attached to the vertices of T" along

the fixed branch. Without loss of generality, we can assume that the corresponding
signs of polynomials along the branch are

flz...:fklzo’ fk1_|_1>0,...7fk>0.

Then the (accepted) semialgebraic set

W:{flz"':fhzov fk1+1>07"'7fk>0}

lies in P. Our main technical problem is to give an upper bound for a number of

facets Il of P such that dim(Il) = dim(II N W).

1 Sharp points

For an m-plane ) C R™ and a point € R" denote by Q(x) the m-plane, collinear
to () and containing z.



For a facet II denote by II the dim(II)-plane, containing II.

Two planes (), (), of arbitrary dimensions are called transversal if

dim (Q1(0) N Q2(0)) = max{0, dim(Q1(0)) + dim(Q2(0)) — n}.

Lemma 1. For any pair 1,5 with 1 < 7,57 < n and any i-plane () C R" there
exists a subset {l1,...,1;} C {1,...,n} such that Q) is transversal to j-subspace
with coordinates Xy, ..., X,.
Proof. There exists a subset {my,...,m;} C {l,...n} such that @ projects bi-
jectively onto i-subspace with coordinates X,,,,..., X,,, (along all the rest coordi-
nates). It is sufficient to prove that the subset {l1,...,[;} exists for the latter. If
n —1 > j then an arbitrary subset of j elements from {l;,....,_;} = {1,...,n}\
{ma,...,m;} satisfies the requirement. Else, the set {l1,... L, li—it1,...,{;}
where {l,,_i11,...,[;} is an arbitrary subset of ¢ + j —n elements from {m4, ..., m;},
satisfies the requirement.

Lemma 2. There exists a rotation of coordinates Xy, ..., X, such that after this
rotation for every subset {l1,...,1;} C {l,...,n} and for every facet 1l of P, the
subspace with the coordinates Xi,,..., X;; and the plane I become transversal.

Proof. Consider the algebraic variety R of all rotations of coordinates Xi,...,
X,,. The nontransversality of a coordinate subspace to a facet Il imposes algebraic
conditions (in the form of polynomial equations) on R.

These equations do not vanish simultaneously at every point of R. Indeed, fix
an i-facet II and a subspace with coordinates Xj,,..., X;;. Due to lemma 1, there
exists a coordinate j-subspace which is transversal to II. Choose a rotation which

forces this subspace to coincide with the subspace with coordinates X, ..., X,.

It follows that for a fixed pair of i-facet and j-subspace the subvariety of all
rotations satisfying the equations has the dimension smaller than dim(R). Since
the family of all facets is finite, almost all rotations from R satisty the requirement
of the lemma.

Below we suppose that the coordinate system meets the requirements of lemma 2.



Definition. For arbitrary 1, 0 < ¢ < n, a point * € W is called i-sharp in W
if there exists a real ¢ < 1 such that for every real ¢ > 0 and for every subset
{1,...,5:} C {1,...,n}, for any two points z1), 2 c Wn{X; = ---=X,, =0}
the following holds: if

20 =l = 2 = ¢
then
I M — 2 ||< 2ec.
Here || - || denotes the Euclidean norm in R™.

Denote the semialgebraic set of all ¢-sharp points by S;.

Lemma 3. Let for a i-facet Il of P the set W N1l contain a neighbourhood of
some point x in II. Then x is i-sharp.

Proof. Due to the supposed property of the rotation of the coordinate system (see
lemma 2), x is a vertex (zero-facet) of the polyhedron

P=Pn({X; ==X, =0}))
for any subset of 7 elements

{r, ..,y c{1,...,n}.

Fix one of such subsets {j1,...,7;}. For every € > 0 and each pair
M, 2@ ewn {X;, ==X, =0}
such that
2= 2 =) 2 — 2@ = 2

the relation
I M = 2@ l|< 2¢

holds according to triangle inequality because z is a vertex of P. The existence of
the required ¢ in the definition for the subset {ji,..., j;} follows from the existence
of the maxima (less than 7) among all possible flat angles in P with the vertex in
x (taking into the account that the set of all such flat angles is compact). Then we
take the maxima over all subsets {j1,...,7:} C {l,...,n}.



Lemma 4. dim(S;) <.
Proof. Suppose that, contrary to our claim,

dim(S;) =iy > i+ 1.

Let a point @ € S; have a smooth #;-dimensional neighbourhood in 5; (in fact
almost all the points of 5; are smooth) and denote by 7T, the tangent i;-plane to S;
at z.

Due to lemma 1, there exists a subset {j1,...,7:} C {l,...,n} such that 7, and
{X;, =--- = X,, = 0}(x) intersect transversaly, i.e.,

dim(Tz N{x, ==X, = 0}(;1;))) =iy — 1.

By the implicit function theorem, for a neighbourhood ¢ of x in S;, the intersec-

tion
o N ({X =+ = X;, = 0}(x))

is smooth and its dimension is ¢; — ¢ (its tangent plane at z is T, N {X;, = -+ =
X;, = 0}(x)). Since the dimension ¢#; — ¢ > 1 this contradicts to ¢-sharpness of z,
because by the definition of a smooth neighbourhood, for a sequence {¢,} such that
lim, o &, = 0 there exist two sequences {z(V}, {2} € o N ({le =.-..=X; =
0}(;17)) such that for each sufficiently large r

o= o =)o — 2@ =,
and ) ,
P e |
r—00 267‘ ’

2 The proof of the theorem

Lemma 5. For every:, 0 < <n — 1, the number v; of all :-facets Il of P such
that dim(Il N W) = ¢, does not exceed (kd)o(”2).



Proof. First let us reduce the lemma to the case of compact P. Observe that
there exists a linear form L = 51 X7 + --- + 3, X,, with 8; € R, 1 <7 < n such that
for every v € R the intersection {L 4+~ > 0} N P is compact.

For each i-facet II of P with dim(Il N W) = ¢ choose a point zy € (I N W)
such that a suitable neighbourhood of zr; in Il is contained in W. Take 7 such that
zn € PP={L+~ >0} NP for all I[I. The number of all i-facets II' of P’ such that
dim(II' " W) = ¢ is greater or equal to v;. From now on we assume, without loss of
generality, that P is compact.

Following the definition, one can determine the set S; of all -sharp points by a
formula ®; of first-order theory of reals. Formula ®; involves quantifiers and free

variables Xi,...,X,.

We can assume that ®; is in a prenex form with the prefix of the following kind:

Fevev XV v x(yx® Ly x @),

The quantifier-free part of ®; is a Boolean combination of atomic subformulas of
the kind A > 0 or o = 0 where & is a polynomial in variables

e, &, XU x0 x®

n

LXD XX,

of a total degree at most max{2, d}. The number of atomic subformulas is less than

O(k).

One can apply to ®; an algorithm for quantifier elimination in the theory of
real closed fields (see [GV 88], [G 88], [HRS 90], [R 92]). The result would be an

equivalent to ®; quantifier-free formula in a disjunctive normal form:

V (B =0& g >0& & g >0).

1<j<7

Here A1), gy), e ,gg) € R[Xy,..., X,]. Moreover, according to [R 92] (cf. also the
estimates in [GV 88], [G 88], [HRS 90]) the following bounds hold:

I; < (kd)?™,

J < (kd)°t™), (1)



Due to lemma 3, for an i-facet Il of P, the equality dim(IINW) = 7 is equivalent
to dim(I N S;) = ¢, so we can replace in the formulation of the lemma the former
equality by the latter one. Moreover, taking into the account the inequality J <
(kd)°U) it is sufficient to prove the lemma separately for the conditions dim(II N

SZ-(])) = for all 1 < j < J instead of dim(II N W) = ¢, where

SO = (b =0 & ¢ >0 &---& g >0} C S,

K3

Thus, we shall prove that the number I/Z»(j) of all i-facets I of P such that dim(IIN
S»(J)) = ¢ does not exceed (kd)o(”Q).

K3

In case © = 0, the set 5; consists, due to lemma 4, of a finite number of points.
Their number is less than (kd)°*) according to the estimates from [M 64], [T 65],
taking into the account the bounds (1). In the remaining part of this proof we shall
assume that 7 > 1.

In the space R™ one can introduce the Zariski topology (for its properties used
below, see, e.g., [H 77]), in which each closed set coincides with a set of all zeros of
a multivariate polynomial with real coefficients.

The Zariski topology on R™ is Noetherian. In relation to it, the concepts of
an irreducibility (over R) of a set, and of the Krull dimension of a set are de-
finable (note that for semialgebraic sets Krull dimension coincides with the Eu-
clidean dimension). The theorem on the dimension of intersection is valid, which
implies that for two closed irreducible subsets Vi, Vo, C R™, either dim(V; N Vz) <
min{dim(V1), dim(V2)}, either V; C V, or V2 C V].

Each subset of R can be (uniquely) represented as a finite union of its irreducible
components. Let V be an irreducible component of SZ-(j) (by lemma 4, dim(V') <),
and II be an i-facet of P such that dim(II N'V) = 7. Applying the theorem on the
dimension of intersection to the Zariski closure V of V and to II, we conclude that
V C 1L, hence V = II. Using this property, represent SZ-(]) as a union of its irreducible
components:

sO= (J vy (J vO (2)
1<i<n 1 +1<I<r
where for each [, 1 <1 < 7y, there exists an i-facet Il of P such that vV c 1 and
for each I, r1 +1 <1 <r, for every i-facet 1l of P

dim(V N 1I) < 4.



Consider an irreducible component V), 1 < [ < r; and the corresponding -
facet I (such that dim(II N V®) = i). Since V) is closed in SZ»(]) and V() =TI,
we get that V() S TI N SZ-(]), hence V) =TI N SZ»(]). Because dim(II N SZ»(])) =1, we

conclude that AY) vanishes identically on II, therefore

vO=TnsY =Tn{g? >0& &4 >0} (3)

Introduce a polynomial

g=TI ¢,

1<I<I;

and choose a real ¢ > 0 satisfying the following requirements:

(a) ¢ is smaller than the absolute value of any nonzero critical value of the
restriction of ¢ on 1l for any i-facet II of P (by Sard’s theorem [Hi 76], there exist
only a finite number of critical values);

(b) polynomial ¢ — ¢ does not vanish identically on any irreducible component
of every intersection V() NII, 1 < [ < r (there exists at most finite number of
possible values of & such that g — & vanishes identically on V) N TI).

The property (a) implies (involving the implicit function theorem) that TN {g =
e} is a nonsingular hypersurface in 11.

> From the property (b) it follows that
dim({g =} nVONT) <i—1 (4)
foreach ry +1 <[ <r.

Observe that, due to (a) and according to elementary facts from Morse theory

[Hi 76], every connected component of the set V() =TI N {gy) >0&--- & gg) > 0}
(see (3)) containes at least one (necessarily compact) connected component of the
hypersurface {g = ¢} in IT * (note that the signs of all polynomials gy), . ,gg) are
constant on each connected component of {¢g = }). Thus, in order to estimate the

number v of all i-facets I of P such that dim(IT N SZ»(])) = 1, it is sufficient to
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bound properly the number of all connected components of {g = ¢} in II N {gl
0&---& gI > 0} for all i-facets II.

The rest of the proof of the lemma closely follows [GKS 93].

Because of the property (a) of ¢, for a fixed i-facet 1I, each compact connected
component Gy of IIN{g = e} divides IT\ Gy into exactly two connected components
(according to Jordan-Brouwer theorem, see, e.g., [D 72]). Hence, the zero Betti
number by(IT \ Grr) = 2. Then, Alexander’s duality principle (see, e.g., [D 72])
implies that the (¢ — 1)th Betti number,

bior(Gr) = bo(TI\ Gpp) — 1 = 1.

It follows that

y? <303 bia(G)

I Gn

where the exterior sum ranges over all ¢-facets 11 of P and the mterlor ranges over
all connected components Gy of IIN {g = ¢} N {g1 >0&---& gI > 0}.

Relations (2) and (3) imply:

SV N{g=c}= (UU GH) U ( J vOn{g= 5}) (5).

11 GH 7’1+1Sl§7’

Here the union Uy ranges over all z-facets 11 of P.

Let us analyse the pairwise intersections of the sets involved in the union (5).

(i) For a fixed 1I, any two different sets of the kind Gy do not intersect being two
different connected components.

(ii) For two different facets IT and II', two sets G and G do not intersect. Indeed,
G and Gy lie in the Euclidean closures ¢l(I1), cI(11') of the facets I, II' respectively.
Suppose that there exists a point @ € G N el(11) N el(I'), thus @ € ¢l(IT) \ II. Then
each point of a neighbourhood of x satisfies all the inequalities gl(j) >0,1 <1<,
Hence (because ) vanishes identically on II),

SY A (T el(ID)) # 0

which contradicts to SV C P.

K3
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(iii) According to (4), for each i-facet I of P the following holds:

dim(Gun( |J VOn{g=¢}))<i-1.

r1+1<I<r

Properties (i)—(iii) imply that (¢ — 1)-th Betti numbers of all pairwise intersec-
tions of the terms of the union (5) are zeroes. Therefore, applying Mayer—Vietoris
theorem (see, e.g., [D 72]) to the union (5), we get:

bi—l((UUGH)U( U V(l)ﬂ{gzg}))z

>33 bisa(Gn) + by ( J vPn{g= 5}) : (6)

11 GH 7’1+1Sl§7’

The right side of the inequality (6) is obviously not less than the first item

> bia(Gh)

I G

which is an upper bound for Z/Z»(j) (see above).

On the other hand, the left side of (6), being (see (5)) equal to
b (R =0 & i > 0 & & g >0 & g =¢}),

does not exceed (kd)°), according to [M 64], [T 65] and taking into the account
the bounds (1).

Hence the estimate I/Z-(j) < (kd)o(”2) is established. Since, by (1), J < (kd)O(”2),
we get: ‘
v < Y u? < (kd)),

1<j<J

The lemma is proved.
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3 Algebraic computation trees

Consider now algebraic computation trees which constitute a more powerful com-
putational model than algebraic decision trees (of a fixed degree) which we were

dealing with so far (see, e.g., [B 83]).

Let an algebraic computation tree Ty of the depth kg test a membership to an
n-dimensional polyhedron P C R”. Denote by Ny the number of all (n — 1)-facets
of P.

We claim that kg > Q(log(No)).
In order to prove that, consider any branch of Ty with the output “yes”. Let
Wi={fV==f=0& i, >0& & f>0ycp

be the semialgebraic (accepted) set, corresponding to this branch. In this formula
fi(l) € R[Xy,..., X,], 1 << kg are all the polynomials occuring along the branch.

Obviously, deg(fi(l)) < 2k (cf. [B 83]).

Assume that for a (n — 1)-facet II of P, the dimension dim(W; N1II) = n — 1.
Here, the (n — 1)-plane I is defined by

ﬁ:{ E OZJ'X]‘—/B:O}

1<j<n

3 € R.

l

for some «a;,

Denote
1<i<ks

Evidently, f(!) # 0, otherwise the dimension of the open set Wy, dim(W;) = n,
which means that Wi N (R™\ P) # 0.

Because polynomial f!) vanishes on II, the linear expression 3 a; X; — 3 divides
W, therefore the number of (n — 1)-facets such that dim(W; N1I) = n — 1 does not
exceed

deg(fM) < 200k),

Since there are at most 3¥ branches in T}, arguing as at the end of the proof of the
theorem, we get the lower bound

ko > 0 (log(No)).
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Note that the number of all facets of all dimensions N < (maX{Q, No and

%),
this estimate is sharp. Thus, the bounds log(/N) (from the theorem) and log(Ng)

can differ by a factor O(n).

An interesting open problem remains lower bound Q(log(N)) for the depth of
algebraic computation trees.
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