An Alphabet—Independent
Optimal Parallel Search for
Three Dimensional Patterns

Marek Karpinski! Wojciech Rytter?

TR-93-070
November, 1993

Abstract

We give an alphabet-independent optimal parallel algorithm for the searching phase of three
dimensional pattern-matching. All occurrences of a three dimensional pattern P of shape m x m x m
in a text T of shape n x n x n are to be found. Our algorithm works in log m time with O(N/log(m))

processors of a CREW PRAM, where N = n3. The searching phase in three dimensions explores
classification of two-dimensional periodicities of the cubic pattern. Some new projection techniques
are developed to deal with three dimensions. The periodicites of the patern with respect to its faces
are investigated. The nonperiodicities imply some sparseness properties, while periodicities imply
other special useful properties (i.e. monotonicity) of the set of occurrences. Both types of properties
are useful in deriving an efficient algorithm.

The search phase is preceeded by the preprocessing phase (computation of the witness table). Our
main results concern the searching phase, however we present shortly a new approach to the second
phase also. Usefullness of the dictionaries of basic factors (DBF’s), see [7], in the computation of the
three dimensional witness table is presented. The DBF approach gains simplicity at the expense of
a small increase in time. It gives a (nonoptimal) O(log(m)) time algorithm using m processors of a
CRCW PRAM. The alphabet-independent optimal preprocessing is very complex even in the case of
two dimensions, see [9]. For large alphabets the DBF’s give assymptotically the same complexity as
the (alphabet-dependent) suffix trees approach (but avoids suffix trees and is simpler).

However the basic advantage of the DBF approach is its simplicity of dealing with three (or more)
dimensions.

The algorithm can be easily adjusted to the case of unequally sided patterns.

1Dept. of Computer Science, University of Bonn, 53117 Bonn, and the International Computer Science Institute,
Berkeley, California. Research supported in part by the DFG Grant KA 673/4-1, by the ESPRIT BR Grants 7097
and ECUS030, and by the Volkswagen-Stiftung.

2Tnstitute of Informatics, Warsaw University, 02—097 Warsaw.

1 Introduction

The problem of three dimensional matching (3d-matching, in short) is to find all
occurrences of a three dimensional pattern array P in a text array 7'. By an occur-
rence we mean the position of the specified corner of P in T in a full exact-match of
P against T'. For simplicity of exposition we assume that all sides are equal, sides of
P are of length m and sides of T" are of length n. Assume m < n. The total size of
T is N = n® and the total size of P is M = m®. The 3D-matching is a natural gen-
eralization of the classical string matching and two-dimensional pattern-matching
problems, and aside of applications, of independent algorithmic interest.

The pattern-matching usually consists of two quite independent parts: prepro-
cessing and searching phase. The main role of the preprocessing is the computation
of the so called witness table (defined later). Let ¥ be the underlying alphabet. In
two dimensions there are two approaches to compute this table efficiently: use the
suffix trees (see [2]), which is a factor log |X| slower than linear time, and the lin-
ear time alphabet independent algorithms of [9] and [6]. The alphabet independent
algorithms are extremely complicated. They would be even more complicated in
three dimensions. On the other hand if ¥ is large then we can replace log|X| by
log m. We show a simple approach through the dictionary of basic factors (DBF, in
short). This is a useful data structure introduced in [12]. It has received the name
DBF and its usefulness in string algorithms was shown in [7]. The advantage of the
DBF is that it can be very easily extended to the three dimensional situation. For
large alphabets the complexity of the DBF approach is not inferior to that of the
sufix trees. In the three dimensional case the DBF works in much simpler way as
the suffix trees approach.

In the paper we concentrate mostly on the first phase of the pattern-matching:
the searching phase. Amir, Benson and Farah were the first to give alphabet-
independent linear time searching phase, see [2]. They have also given in [3] an
alphabet-independent searching in logM time with O(M/log(M)) processors of a
CREW PRAM. We refer to the latter algorithm as the algorithm ABF . The al-
gorithm ABF needs only the witness table from the preprocessing phase. An O(1)
time optimal algorithm was given recently in [6], however it needs additional data
structure from the preprocessing phase: so called deterministic sample. The basic
precomputed data structure needed in our algorithm is (similarly as in the algorithm
ABF) the witness table WIT. The entries of WIT correspond to vectors (poten-
tial periods). The components of each vector are integers, the size of the vector
a = (a1, a2, a3) is |a| = max(|aq], |az], |as]).

Usually only (potential periods) vectors of size at most ¢ x m are considered,
assume here that ¢ = 1/8. We call such vectors short. The vector « is a period
of P iff P(x) = P(z + «a) for each position z in P, whenever both sides of the
equation are defined (correspond to positions in the pattern). If o is not a period
then WIT («) = x is a witness (to this fact) if :

P(z) # Pz + a).
If v is a period then by convention let WIT («) = 0.

We say that P is 1D-nonperiodic iff it has no short period parallel to one of

edges of the pattern cube. Let H be a face of P, it is an n X n square parallel to
two of the three axes of the coordinates. By a face of a given cube we mean a set
of its points with one of the coordinates fixed. The faces can be boundary faces or
internal faces of the cube. If we consider all (global) periods of P parallel to H then
we can classify them in the same way as periodicities in two dimensions. So the face
H can be:
nonperiodic, lattice periodic, radiant periodic or line periodic.
We say also that P has a given (one of four) periodicity type w.r.t. face H. We
emphasize that we consider global periods, so the period w.r.t. H is parallel to
H but works globally in the cube P. We refer to [2] for definitions of periodicity
types. Our three dimensional matching uses in essential way the classification of
(two-dimensional) periodicities of the pattern cube P with respect to its faces.

2 An alphabet-independent optimal parallel algo-

rithm for the searching phase.

Throughout this section assume that the witness table W IT has been already pre-
computed. Using WIT we can easily decide if P is 1D-periodic. Also we know (one
of four) types of the periodicity for each face of P.

Lemma 2.1 The 3D-matching can be reduced in log M time using O(N/log(M))
processors (independently of the alphabet) to the case of 1D-nonperiodic patterns.

Proof: We can decompose the cube P into smaller subcubes if P is 1D-periodic.
These smaller subcubes will be 1D-nonperiodic. The same argument as reducing
periodic to nonperiodic case in one dimensional matching can be applied, see [8].
We omit the details. O

Recall that by short vectors we mean vectors whose size is at most ¢ - m. Let
us partition the whole text array 7' into cubic windows, each of the same shape
c-mXxc-mxc-m. Itis enough to show how to find all occurrences in a fixed
window in O(M) time. We have O(N/M) windows. Let us fix one window W to
the end of the section. The occurrence in W does not mean that the whole P is in
W, it just means that the specified corner of an instance of P is in W. Assume this
specified corner is fixed, let it be for example the lower left corner of the top face.

We say that two positions x,y € W are consistent (and write consistent(z,y)),
iff overlaps of copies of P placed in positions x, y agree each with other (though
they could disagree with the actual parts of 7). The searching phase has two basic
subphases:

Subphase (I):
compute a consistent set C AN D of candidate positions in the window W: if z,y €

CAND then consistent(z,y). No position outside CAND can be an occurrence of
P.

Subphase (II):
Verification of CAND: check which positions @ € CAND are real occurrences (P
placed at & matches the corresponding part of the text cube T').

Subphase (II) is rather simple compared with (I), so we concentrate later mostly
on the first subphase.

Lemma 2.2 Subphase (II) can be implemented to work in O(log M) time with
O(N/log(M)) processors of a CREW PRAM.

Proof: The basic point here is the reduction to the search of a unary pattern P’
in a binary text T'. Unary means that P’ is a cube consisting of the same symbol ”1”
repeated. The computation of such patterns essentially reduces to the calculation
of runs of consecutive 1’s, or to the computation of the first 70” (which is easy in
parallel). It has to be done in each window independently.

The reduction to the unary case works in three dimensions essentially in the same
way as in two dimensions, see [2]. Each position in the text ”finds” any element
of CAND which 7"covers” this position. The important point is that any covering
position represents all such positions due to consistency. We place ’1” if the symbol
on a given position agrees with the pattern placed at the covering element of CAN D.
We omit details. O

The nonperiodicity is explored using the operation of a duel. If two positions x,
y are related through the vector & = # — y and « i1s not a period then the operation
DUEL(x,y) 7kills” one of positions in constant time. The witness table is used.
If « is a period then we know that = and y are consistent. We refer the reader to
[2] for the details about the duelling. The rough idea how to construct CAND is:
start with C' = W, then use more and more duels to reduce the size of C', if no duel
kills any element of C' then C' is the required set C AN D. However we cannot make
too many duels. We are allowed to make in total O(M) = O(m?) duels in a fixed
window.

Observe that if we know a set C such that CAND C C and C is small (|C| <
m?®?) then we can perform duels between each pair in C' simultaneously and we are
done. We perform at most M duels in total.

Due to lemma 1 we can assume that P is 1D-nonperiodic. Let us make duels
between positions on each line in W parallel to some edge of the cube W. There are
O(m) positions on one line. They can be eliminated except at most one position
per line by processing each line independently. A given line needs O(m/log(m))
processors to process it in log(m) time. There are O(m?) lines, altogether the
computation is optimal.

Therefore we can assume now that in an initial set C of candidates, each line
(parallel to an edge of W) contains at most one position of C.

Remark. Unfortunately C' can be too large in this moment. We construct such
large set C' of candidates using the latin square strategy. Each row and each column
of such square is a permutation of integers 1...n. Pile m squares one on the other.
The first one has candidates on positions containing 1 in the latin square, the second
on positions containing 2, etc. Hence the set C' has quadratic number of points in
a cube and no two points are on the same line (parallel to one of three orthogonal
directions).

Lemma 2.3 (simple case)

Assume that at least one of the faces of P is nonperiodic. Then we can find all
occurrences of P in log M time with O(N/log(M) processors (independently of the
alphabet).

Proof: Assume the face H is nonperiodic. Partition the window W into disjoint
squares of shape ¢-m x ¢-m. Each square is an external or internal face parallel

to H. On each of them we can apply the two-dimensional algorithm ABF. Only
one candidate remains on any face, due to nonperiodicity w.r.t. H. We have now
together (on all internal faces) at most m candidates in the set C of survivors. For
each pair z,y € C we perform DUEL(z,y). The whole computation has O(M)
work since C' is small. C' is a set of pairwise consistent positions. This completes
subphase (I). The second subphase can be done optimally due to Lemma 2.2. O

Assume to the end of the section that P is periodic w.r.t. each of its faces
(otherwise we could apply the lemma above). Assume also P is nonperiodic w.r.t.
each line parallel to an edge of P. We can preprocess each set of points on each face
independently using the two-dimensional algorithm A BF. Then we have reduced the
situation to the one satisying the following:

e we have an initial set of candidates C C W. Positions outside C' in W are
known to be nonoccurrences

e for each two points z, y if ,y € C'N H for some face H, then consistent(z,y)
e there are no two elements of C' on the same line parallel to an edge

e P is globally periodic w.r.t. each of its faces.

Let H be an (external) face of the window W. Assume w.l.o.g. that

H={z=(21,22,23) : 0 < 21,22 < em and x5 = 0}.
Let us project the set C' onto the face H. Assume that H is parallel to the first two
axes. The point (x1,x2,x3) is projected onto the point @ = (2, x3) of H. The third
component is associated with = as its weight. We have weight(x) = x3. Let

I' = projecty(C)

be the collection of projected points on H together with their weights. We write
(z, k), for a point with weight k. We write also weight(x) = k. Due to the fact that
no two points in C' are on the same line each point in C' is projected onto a different
point in H. However I' can contain many points on the same line, though none two
of them can have the same weights.

In a certain sense we reduced the problem to a two-dimensional one. We have
a collection I' of points on the two-dimensional square H. Also we have a witness
table for them. It refers to three dimensions but all we need is the operation DUFEL
which works in constant time for any two points. Hence the duelling can be treated
as two-dimensional since it involves points on a two-dimensional array. We have
to eliminate some points from I' and be left with the subset of pairwise consistent

element, which means that for any two points x, y DUEL(x,y) will eliminate none
of x, y. One could try to apply in this situation the two-dimensional algorithm A BF.
Unfortunately it doesn’t work in a straightforward way. The algorithm A BF'is based
on some partial transitivity properties of the consistency relation. These properties
are here more complicated due to weights which correspond to the third dimension
(and which cannot be neglected). At this moment we can assume that all faces are
periodic, otherwise Lemma 2.4 can be applied. The searching depends on the type
of periodicity. The lattice-periodicity means that a 2D-pattern has a short periodic
vector in quadrant (I) and a short periodicity in quadrant (II). However it could
happen that both periods are equal, but then the pattern is line periodic according
to one of the axes. In the lemma below such possibility is excluded by assuming
that the whole pattern is not 1D-periodic.

Lemma 2.4 Assume that a 1D-nonperiodic cubic pattern P s lattice-periodic w.r.t.
one of its faces H. Then we can find all occurrences of P in time log M with

O(N/log(M)) processors (independently of the alphabet).

Proof: Let T'y. be the set of points in I' of weight k. We know that all elements of
I’y are pairwise consistent for a fixed k. If P is 1D-nonperiodic and lattice-periodic
w.r.t. H then the following properties can be proved :

Claim A

Assume z € 'y and y € I} for k # [. Then

1) Ifin DUEL(z,y) x is "killed” then all positions in I'y can be also "killed”. They
certainly do not start any occurrence of the pattern.

2) If in DUFEL(z,y) both elements survive then all positions in I'y UT; are pairwise
consistent.

We omit the proof of the claim. It is reduced to the following observation:
if a two-dimensional pattern P’ is lattice-periodic but not line-periodic then for each
position in the left-upper window of shape ¢-m x ¢-m there is a witness in the
central subarray of shape (1 —cm) x 1—em), if there is any witness at all. This is the
only place where we need the constant ¢ to be rather small, ¢ = 1/8 is sufficiently
small.

Due to the claim the computation of the consistent set CAND can be solved
by choosing a representative from each set 'y and then by making duels between
all possible pairs of representatives. Each killed representative in some group I'y
consequently kills all memebres of I'y. Let I” be the set of remaining elements.

Each element in fact corresponds to a three dimensional point (we are undoing the
projection). This gives the required set C AN D as the three-dimensional version of
I". Then CAND is the input to the subphase (II). The whole searching can be done
optimally due to Lemma 2.2. This completesthe proof. [

Lemma 2.5 Assume that the pattern P is quadrant-periodic or line-periodic w.r.t.
each face of P. Then we can find all occurrences of P in time log M with O(N/
log(M)) processors independently of the alphabet.

Proof: Define ' to be row-monotonic if the weights of points in I' are increas-

ing in each row or are decreasing in each row of H. Analogously define column-
monotonicity of .
If the two-dimensional pattern is line- or radiant-periode then it is known, see [1],
that any set of consitent candidates in the 2D-text is monotonic in an unweighted-
sense. this means that one of the coordinates is a monotonic function of the second
one. Such property holds for all faces orthogonal to H. The successive points are
at agrowing or decreasing distance from H. This implies the following property.

Claim 1. If P is line-periodic or quadrant-periodic w.r.t. each of its faces then I is
row-monotonic and column-monotonic.

Assume w.l.o.g. that the weights of points in I' are increasing in rows left-to-
right and decreasing in columns top-down. Consider a point x in I'. We refer the
reader to Figure 1. We explain how to make duells between = and all points in T’
to the right of . There are O(m?) such points, hence making all possible duells
needs quadratic work for a single point z. Altogether it gives O(m?) work as there
are possible O(m?) points z. However we make duells in an implicit way. The
processing for X is done in three seprate areas denoted by A, B and C' in Figure 1.
In area A weights are smaller than weight(z) and in two other areas the weights are
larger. We explain only how we process part A, other parts are processed similarly.
Each column in A is processed independently. Let us fix some column L, see Figure
1. Let y, z be two points on L, where z is further from x. It is easy to observe the
following:

P(z)n P(z) C P(y) N P(z).
where P(z), P(y) and P(z) denote the copies of the cubic pattern P which start at
the three dimensional points in T' corresponding to z, y and z, respectively (they
do not have to match T').
This observation is due to the fact that weight(x) > weight(y) > weight(z) and
due to the way how z, y, z are situated on H. It implies the following properties:

(not consistent(x,z)) = (not consistent(z,y)) ;
consistent(x,y) = consistent(x, z).

Denote by top_incons(x, L) the topmost point y € L N I' which is inconsistent
with x and which is in a row not below x. The above two properties imply that for
each ze LNT:

(z is above top_incons(x, L)) => consistent(x, z);
(z is below top_incons(z, L) = (not consistent(x,z)).

In a certain sense top_incons(x, L) is the "stronger fighter” for x in L N A. We
perform:
if top_incons(x, L) "kills” z in a single duell then x is removed;
otherwise we know (without more duells) that « ”kills” all z € LNI" which are below
top_incons(x, L) and it does not kill any z which is above.

All that can be done easily by a parallel algorithm for all z’s together. Hence
it is essentially enough to compute the values top_incons(z, L) for each column L
to the right of . We start with an algorithm which is optimal within logarithmic
factor, afterwards we explain how to remove this factor.

Almost optimal algorithm: assume z is fixed. Assign one processor to each
column L in area A. This processor finds top_incons(x, L) in log m time by a binary
search method. For a single x we need m processors. Altogether it works in logm
time with O(m?) processors.

Optimal algorithm: we have waisted the work by a logarithmic factor due to
independency in computing values of top_incons(x, L). Let us now compute these
values together for all x € K, where k is some column preceeding L, see Figure 2. If
we can do it for all z € K in logm time with O(m/log(m)) processors then we will
have optimality. We use a standard trick of partitioning columns into O(m/logm)
small segments and processing each of them by one processor in logarithmic time. We
refer the reader to Figure 2. The column L is partitioned into logarithmic segments,
denote the partitioning points by y.’s.. Each partitioning point y; computes its
value x, = bottom_incons(y, K), where bottom_incons is the table analogous to
top_tncons but working for column K against L and in a bottom-down manner.
Then for x € L we know the following:

if x is between zx_; and x in K then top_incons(z) is between yi_1 and y; in

L.

Unfortunately the segments implied in column K can be larger than logarithmic.
We overcome it by refining . with horizontal lines containing points y;’s, see Figure

2. In this way K is divided into O(m/ log(m)) segments, each of logarithmic size and
the values top_tncons for points in a given segment are contained in a known segment
of logarithmic size. Then we asign one processor to each segmenet in K which in
top-down way computes required values for all members of the segment sequentially
in logarithmic time. We use O(m/ log(m)) processors and time is logarithmic. There
is the quadratic number of pairs K, L. Altogether O(m?®/log(m)) processors are
enough.

The computation for the area C' is carried out in the same way. For the array
B we group points z in rows, instead of columns. We omit technical details. The
computation of the tables top_incons and their counterparts for areas B and C
were the bottleneck. Other parts can be easily done by an optimal algorithm. This
completes the proof. O

The series of lemmas above implies immediately our main result:

Theorem 2.6 Assume that the witness table is precomputed. Then the 3D-matching

problem can be solved by an optimal parallel algorithm working in log(M) time on a

CREW PRAM, the complexity does not depend on the size of the alphabet.

3 Preprocessing the pattern: the DBF approach.

Let S be a set of strings. Each subword of a word in S is specified by two integers:
a position p, where it starts, and the length {. (All words of S can be concatenated,
so a single position can determine where and in which word a given subword starts.)
Basic factors are subwords whose length is a power of two. DBF(S) is a data
structure which assigns to each basic factor corresponding to a pair (p,[) a unique
name [D(p,l). The names are integers in the range 1...|S| and two words of the
same length are equal (as strings) if and only if their names are the same. The
following fact was shown in [7].

Lemma 3.1 DBF(S) can be computed in log |S| time with O(|S|) processors of a
CRCW PRAM.

The power of the DBF relies on two facts:

10

1: DBF is small, it stores explicitely information only about O(|S|log(]S])) ob-
jects.

2: Implicitely DBF gives information about O(]S|*) objects. Each subword can
be split into at most two (maybe overlapped) basic factors and get a constant
sized name (composed of at most two smaller ones). Equality of two subwords

can be checked with O(1) work.

We demonstrate first usefullnes of the DBF on the 1D-matching and 2D-matching.

1D-matching: Assume we want to compute the value of WIT][i] for each position
¢ in a given string P for which the DBF is computed. We can do it with one
processor per each position ¢ in logarithmic time by a kind of binary search. For
a given position ¢ names of basic factors whose lengths are decreasing powers of
two are compared successively. Each position has one processor (assigned to this
position) which finds a witness (if there is any) in log m time.

2D-matching: Assume we are to compute the witness table for a 2D-pattern P.
Consider a fixed k-th column of P.We linearize the problem. Compute DBF(S)
for the set S of all rows of P. Place at each position in the k-th row the name of
the horizontal word of length m — k starting at this position. Observe that m — k
can be a nonpower of two (but then it can be decomposed into such powers and
have a composed name). Do the same with the first column. In this way we have
two strings. We compute witnesses in the second string w.r.t. the first one by the
1D-method. Consider a fixed position z in the k-th column of P. After linearization
it becomes some position z’ in 1D-string. If the witness for 2’ is in some position j,
then we know that the horizontal strings of length &’ starting in the first column and
the k-th column in row j are unequl. The mismatch is found by the binary search
method mentioned-above. A witness for the position z is found. This approach
extends to three dimensions automatically.

Theorem 3.2 The three dimensional witness table can be computed in log M time

with O(M) processors of a CRCW PRAM.

Proof: Consider the (whole) faces
Py ={x=(x1,22,23) : 0 < zq,29 <m and z3 = k}
for 0 < k < m. (Previously we considered only faces of the window W, the windows
are not relevant here.) We show how the computation of witnesses for points in Py

11

can be reduced to a two-dimensional case for a given k. It works in the same way
as the reduction of 2D-case to 1D-case.

Let us fix k. Assume that the third coordinate corresponds to the horizontal
direction. Compute the DBF for all horizontal strings in the cube P. Place at
each position in Py and Pj the name of the string of size m — k which starts at
this position and goes in the horizontal direction. We receive the two-dimensional
arrays Py and P,. Compute the witnesses of all positions in P, against the pattern
Py using the two-dimensional method described above. If the witness for position
(z1,22) in P, is found at (y1,y2) then we know that the witness for (z1,x2,k) is
at a horizontal string starting at (y1,y2, k). We apply the one-dimensional method
to two strings of size m — k going into the horizontal direction. The binary search
described before can be applied to find a witness of one horizontal string against
the other. In this way we reduce the computation of the three dimensional witness
table to the independent computation of m two-dimensional witness tables. This
completes the proof. O

References

[1] A. Amir, G. Benson. Two dimensional periodicity in rectangular arrays.

SODA’92, 440-452
[2] A. Amir, G. Benson, M. Farach. Alphabet independent two dimensional match-
ing. STOC’92, 59-68.

[3] A. Amir, G. Benson, M. Farach. Parallel two dimensional matching in logarith-
mic time. SPAA’93, 79-85.

[4] T .J. Baker. A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM J. Comp. 7 (1978) 533-541.

[5] R.S. Bird. Two dimensional pattern matching. Inf. Proc. letters 6, (1977) 168-
170.

[6] R. Cole, M. Crochemore, Z. Galil, L. Gasieniec, R. Hariharan, S. Muthukrish-
nan, K. Park, W. Rytter. Optimally fast parallel algorithms for preprocessing
and pattern matching in one and two dimenstons. FOCS’93.

[7] M. Crochemore, W. Rytter. Usefullness of the Karp-Miller-Rosenberg algorithm
in parallel computations on strings and arrays. Theoretical Computer Science

88 (1991) 59-62.

12

[8] Z. Galil. Optimal parallel algorithms for string matching. Information and Con-
trol 67 (1985) 144-157.

9] Z. Galil, K. Park. Truly alphabet independent two dimensional matching.
FOCS92, (1992) 247-256.

[10] Z. Kedem, G. Landau, K. Palem. Optimal parallel prefiz-suffiz matching algo-
rithm and application. SPAA’89 (1989) 388-398.

[11] R. Karp, R. Miller, A. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. STOC’72 (1972) 125-136.

[12] R. Karp, M. O. Rabin. Efficient randomized pattern matching algorithms. IBM
Journal of Res. and Dev. 31 (1987) 249-260.

[13] U. Vishkin. Optimal pattern matching in strings. Information and Control 67
(1985) 91-113.

13

increasing weights

column L

column K

Figure 1: The duels between x and points in L to the right of x are done in

three separate areas.

monotonicity is
top-down

Figure 2: The column L is partitioned into small segments. The inverse point-
ers partition K. This is refined by the dotted lines.

14

