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Abstract

We propose an alternative definition for the speedup of parallel algorithms. Let A
be a sequential algorithm and B a parallel algorithm for solving the same problem.
If A and/or B are randomized or if we are interested in their performance on a
probability distribution of problem instances, the running times are described by
random variables 74 and 7. The speedup is usually defined as E[T4]/E[T®] where
FE is the arithmetic mean. This notion of speedup delivers just a number, i.e. much
information about the distribution is lost. For example, there is no variance of the
speedup. To define a measure for possible fluctuations of the speedup, a new notion
of speedup is required. The basic idea is to define speedup as M(T4/T?) where
the functional form of M has to be determined. Also, we argue that in many cases
M(T#/TB) is more informative than E[T4]/E[T?] for a typical user of A and B. We
present a set of intuitive axioms that any speedup function M(T4/T?) must fulfill
and prove that the geometric mean is the only solution. As a result, we now have
a uniquely defined speedup function that will allow the user of an improved system
to talk about the average performance improvement as well as about its possible
variations.

Keywords: Speedup, variation of running time, geometric mean, functional equa-
tions, randomized algorithms.
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1 Introduction

Although recently various new performance measures for parallel algorithms and ar-
chitectures have been proposed (see e.g. [SGI1]), the speedup defined as the ratio of
the running times of sequential and parallel execution still is one of the most common
figures for the performance evaluation of parallel algorithms and architectures.

There are two obvious scenarios where the speed of an algorithm is described by
a distribution of running times. In case of a determistic algorithm the distribution of
running times may be taken over a sample of different problem instances (i.e. different
inputs). In case of a randomized algorithm®, even for a fixed problem instance,
the running time may depend on the random seed and therefore is described by a
probability distribution.

Let 177 and T, be the random variables for the running time on one and on p
processors. The “speedup of the average running times” Sy is usually defined as

i.e. as the ratio of the expected values. This definition has been widely used for
many years by empirical as well as theoretical scientists. Especially in the analysis
of randomized algorithms for combinatorial problems the speedup is a measure of
great interest. For example, there is an ongoing discussion about the reasons for
superlinear speedup (see e.g. [MG85, RK88, Nat89, SMV88, Ert92, GK93]). In [GK93]
and [Ert92] e.g. it was shown, that for certain combinatorial search algorithms there
is a strong correlation between the variance of the probability distribution of running
times and the occurrence of superlinear speedup.

If the variables 7} and T, both have only one value, say ¢; and {,, then there
is no doubt, that ¢;/t, is the right relative performance measure. If, however, T}
and T}, have nontrivial distributions, then there are two problems with Sy. First,
often the expectation of the relative performance 71 /T, is of interest, which Sy does
not provide. Second, the speedup Sy gives information about the relative average
performance of the two systems, but carries no information about possible variations
of the “speedup”. In other words, since Sy is just a number, there is no underlying
distribution and consequently nothing can be said about the deviation of the ratio
T1/T, from the value Sy(p).

This leads to the more general question: What is the right speedup definition
for any purpose? To answser this question we will introduce in Section 2 a new
speedup definition and compare it with the standard definition. For two most common
scenarios where a distribution of running times occurs we show in Section 3, how to
compute the distribution of the ratios. In Section 4 we will prove that this definition

! A randomized algorithm receives in addition to its input a sequence of random bits, called the
seed.



is uniquely determined, i.e. it is the unique solution of a set of obvious functional
equations.

2 From “Speedup of the Average” to “Average Speedup”

First we will introduce a slightly more general notation which will be applicable to
comparing the running times of any two systems A and B rather than just sequential
and parallel algorithms. Let 74 and T be the random variables for the running
times of A and B with the possible values ay,...,qa, € IR * and B4,..., 53, € IR,.
The respective probability densities will be denoted by p? and pP. Let

ETY =Y a;pf and E[TP =" 8;pP,
=1 =1

be the expected values of T4 and T®. The speedup of the average running times is
defined by
E[T4]
Sy (T4, TP) = ———. 1
As already mentioned above, this definition has the disadvantage, that there is no way
to define the “variation of the speedup”. This leads to a short excursion about the
purpose of the “speedup”. Among others there are two different, typical scenarios:

1. The designer of an improved system B (e.g. a parallel algorithm) wants to
compare its performance with the original system A. Since this system will be
used very often, he may be interested in the reduction of cost it produces in
the long run. Therefore, in this case the sum of the running times of system
A has to be related to the sum of the running times of system B. Thus 5 is
perfectly appropriate for this purpose. Also, variations in the running times are
not of great interest, since the relative variations of running times will cancel
out, if the sample size is big enough. For these reasons we could also call S}
the “designer speedup”, as opposed to the “user speedup” which is motivated
as follows.

2. The user of the two systems A and B may have a different view. He wants to
know, if he runs B once, how much it is faster (or slower) than A. Thus, he
wants to know the mean of the ratio 74/T® what we might call the “average
speedup”. But even if the user knows the mean ratio of 74 and 7%, he might
ask how certain it is to observe this value. In other words, the user really should
have some knowledge about the variation of the speedup.

ZFor the rest of this paper let IR, denote the positive real number without zero.



Let the “average speedup” 53 be defined as the mean value M of the ratio of the
two variables T4 and T®. Thus, we define

Sy(T4, TPy =M @—;) (2)

where M can be any mean, in particular the arithmetic mean. In the following we will
show that the geometric mean is the only useful instantiation of M. Before, however,
we have to make clear what 74 /T% means.

3 The Appropriate Sampling Strategy

Depending on the source of randomness in our statistical running time data 74 and
TB there are two obvious ways of defining the new random variable X = 74/TB,

3.1 Scenario 1: The Running Times 74 and 7? are Correlated via the
Input

A typical scenario involves the comparison of two different deterministic algorithms
(or architectures) A and B on a set of inputs (benchmarks). Here, the definition of X
is obvious, since the only figure of interest is the ratio «;/3; of the running times of A
and B on each of the inputs Iy, ..., ;. Hence we have the same number of different
running times for A and B. If we define k as the number of different ratios «;/3;, we
have £ = n = m. Although in this scenario in many cases it would be sufficient to
have equal weights, i.e. pf! = ... = pf = pP = ... = pP = 1/k, we will work with a
probability distribution of inputs.

k

Therefore we define for ¢ =1, ...,

and

Motivated by the task of comparing different RISC processors on a set of benchmark
problems, this scenario has been investigated in [FW86] and it was proved that the
geometric mean is the only “reasonable” figure to summarize the relative performance
on all the benchmarks in one number. Unfortunately however, the uniqueness proof
in [FW86] is only valid for this scenario and not for the case of two uncorrelated
random variables 74 and T2, which me must consider e.g. when A and/or B are
randomized algorithms.



3.2 Scenario 2: The Running Times 74 and 7? are Uncorrelated

Now let us assume the two random variables T4 and T'® are uncorrelated, both
having their own distribution. This happens for example if A and B are randomized
algorithms and if the experiments are performed such that the seeds for any two runs
of A and B are independently chosen at random. Here we have no indication which
particular values «;/f3; we must select to compute the distribution of X. Therefore

we have to work with all possible ratios and define the set A of possible values for
the quotient variable X = 14/T by

X={a;/Bj € Ry v e{l,....;n},j €{l,...,m}} (5)

with cardinality & = |X| < nm.® For any ratio z; € X the probability to observe z;
is

TA
P Pr(X =ua;) = Pr ( = ;172)

TB

n m
J=

@ . .4 B Nl L=y
25(&,1’2) pj -p’ where 5(37,3/)—{0 otherwise

1i=1

3.3 Other Scenarios

These two scenarios describe just two out of many possibilities for computing the
quotient variable X. Of course there are many other situations, where the computa-
tion of X is different. For example one can imagine a deterministic algorithm A and
a randomized algorithm B and vice versa. Also, in case of randomized algorithms
one might sample over different inputs. However, in all these cases the computation
of X is obvious.

Now, that we know how to compute the distribution of X, we get back to the
question of finding the appropriate mean M.

4 The Right Mean

The first choice for M usually is the arithmetic mean, i.e. M(X) = 3, z; p;. How-
ever, as the following example shows, the arithmetic mean does not behave as one
would expect a speedup function to do. Suppose we have two identical randomized
algorithms A and B and for either algorithm we measure the same running times 1
and 10 with probability 1/2. Thus, if we use the method of Scenario 2 to compute
X, we get the values 1, 1/10, 10, 10/10 and the following distribution:

L 10

10

—_

Ty

B [

1
4

FT

Pi

3Note that || may be less than nm due to multiple occurrences of certain ratios «;/f3;.
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The arithmetic mean of this distribution is 3.025. Since both algorithms have the same
performance, we get T4 = T8 and one would expect S(T4,T4) = M(T4/T4) = 1.
As can easily be checked, the geometric mean of these four numbers is 1. The reason
for this is that the inverse ratios 1/10 and 10 cancel out when they are multiplied
rather than added. In [FW86] a number of examples obtained from measurements of
the relative speed of RICS processors are used to point out the problems which arise
if the arithmetic mean is used to summarize relative scores. From these examples one
can derive a set of obvious requirements on M which are listed below.
First, however, for any k& > 2 we introduce the notation

for the mean value of the random variable X with the possible values xq,...,x; and

probabilities py,...,pr. In case of equal probabilities p; = p; = ... = pr = 1/k we
define a new k-ary function

Fi(z, .. xe) = M(xq, ..o e 1k, oo 1 E).

In the remainder of this section we will restrict ourselves to this case of equal prob-
abilities, since this will make the proofs much easier and clearer. This is no real
restriction, since for any k a 2k-ary function M™ can be defined in terms of a function
F,, where r > k, as follows. If we have rational probabilities

d d
p1:_17"'7pk:_k (dlewvnzew)
ny n
and define 5 as the least common denominator of py, ..., px, there is for all z a unique
6; with d;/n; = 6;/n. We get 61 + ...+ 6, = n and
d d 6 )
M(ml,...,xk;—l,...,—k) :M(xl,...,xk;—l,...,—k).
ny ng n n
This allows us to define
. 6 Oy,
M (xl,...,:ck;—l,...,—) EFn(ml,...,3;1,502,...,xg,...,:ck,...,xk) (6)
7 7 §1times Sotimes 5 times

This definition represents the interpretation of the probabilities as normalized fre-
quencies, or in other words, the weight of the value z; must be proportional to its
probability.* If the p; are real numbers, this definition makes no sense. However,
every real number p; is the limit of a sequence (¢ )rew of rational numbers. If we
require M to be continuous in the last k arguments, we can define

M(z1,. . 2 p1y ey pr) = m M (21,00 25 Grny - -+ Gin) (7)

n—oo

4Since below we will require F' to be symmetric in its arguments, the weight of z; is naturally
represented by the number of occurrences of ;.



If we assume for a moment that F} is the geometric mean, i.e. F, = ¥/z1- ...z,
equation (6) and (7) rewrite to

61 6k § § 5 1 k 5.
M™ (.o @ —, ., —) = (@ ap™ oy R)" = ;&
(a1 ) = (o ) II
and .
M(@,7) = G(&, ) = [ o )
i=1

as one would expect. Since we know (see below) that the geometric mean is the only
solution for Fj, the geometric mean is also the only solution for M.

In the following we will keep the arity k of Fj fixed (but arbitrary), so we can
omit the index k, i.e. we define F' = Fj.

4.1 A Uniqueness Proof for Scenario 1

Now we are ready to give a first characterisation of F' for the case of correlated running
times T4 and T?, as described in 3.1. If we define a second random variable Y with
values y1,...,yr, our requirements are

A1l (Reflexivity): F(z,...,z) ==z

A2 (Multiplicativity): F(z1,...,25) - Fyr,...,yx) = F(x1y1, ..., Trys)

A3 (Symmetry): For any vector & of length £ and any permutation 7 of {1,...,k}
F(xy, ..., x1) = F(2rqy, - Trr))

Al is obvious. To understand A2, imagine a scenario, where a deterministic
algorithm A is being improved, resulting in C', which again is improved, resulting in
B. Together with (2) this implies that the overall speedup of B relative to A is the
product of the two single speedups, i.e.

S(T4,T8) = S(T4,T%) - S(T°, T?).

In the context of randomized algorithms (see 3.2) A2 is not applicable, since in general
the sample size of X and Y need not be the same. This shows that A2 is a very
strong (restrictive) axiom which will make the proof of Lemma 1 very easy. A formal
verifikation of the strength of A2 can be found in [Rob90], Theorem 1. One might
think of generalisations of A2; however as we will see below there is a very natural,
but weaker axiom A2’) which is still sufficient to characterize the geometric mean.
Requirement A3 ensures that for fixed x4, ..., x; the order of the values z; does not
affect the resulting speedup.

We will first use the relatively strong set of axioms Al...A3 to characterize the
geometric mean. In [FW86] and [Acz66] a similar proof has been given for the same
set of axioms.



Lemma 1 The only function F : ]Ri — IR, that fulfills requirements A1,A2 and A3

is the geometric mean
F(ay,...,xp) = Yy 0 e

Proof: It is easy to see that the geometric mean fulfills Al,...,A3. The following
sequence of equations holds for any solution f of Al,...,A3:

f($17...,$k)k = flon,.me) f@a s mp @) o (TR 21 Tk1)
= fler o Thyeo o Ty)

= X1°"..."Tg.

For the first equation we used A3 to write f(z1,...,z%)* as the product of f applied
to all cyclic permutations of xy,..., ;. The second equation follows from & — 1 fold
application of A2 and the last line is an application of the reflexivity axiom Al. The
lemma follows immediately, since f must be a positive real valued function. a

4.2 A General Uniqueness Proof

We will now give a second set of axioms that characterize the geometric mean. Al-
though there are many more axioms, they are all obvious for characterizing a speedup
function regardless which of the two scenarios is being considered.

B1 (Continuity): F is continuous in all its variables.

B2 (Strict Monotony): for 1 <i < k, if ; < 2! then
Flay, ..,z x) < Flag,. oo a0 k)

B3 (Bisymmetry): the symmetry of the following function in its k% variables,

911y Ty e ey Ty e v ey Tnn) = F(F (211, -0, T1n)y o oo, F(Zpay ooy o))

B4 (Homogeneity): For any ¢ € Ry: F(cxq,...,cap) = cF(xq,...,25)

1 1 1
B5 (Reciprocal Property): F (— —) =

x xg F(zq,...,xx)

B1 and B2 are obvious. B3 basically says that it we split up our data into equal
parts and then compute the mean of the means of the parts, the result must not
depend on how the data are partitioned. The meaning of B4 in terms of the running
times o; and f; is: if all the ratios «;/f; are increased (decreased) by a constant factor
¢, then the speedup must increase (decrease) by the same factor ¢. In particular,
multiplying all a; by ¢ has the same effect as multiplying all 5; by 1/¢. B5 ensures
that if we exchange the two algorithms A and B, the speedup is being inverted. This
property is central for the proof of Theorem 2, since it excludes the arithmetic mean
from the set of solutions of B1-B4.



Any function @y : ]R’j_ — IR, is called a quastarithmetic mean if and only if there
exists a strictly monotonous function ¢ such that

Qu(iy...,xx) = ¢~ (%gqﬁ(%)) (9)

For the case of unequal probabilities we define the quasilinear mean

k
qub(‘ri? <oy Ty Piy - - 7pk) = ¢_1 (Z:pl ¢(‘rl))

which we get, if we substitute (9) into (6) and (7). This is a very general notion of

mean. For ¢(x) = & we get the arithmetic mean, for ¢(z) = log(x) the geometric
mean, and for ¢(z) = 1/x the harmonic mean.

Theorem 2 The only solution of BI-B5 is the geomelric mean

F(ay, ... xp) = Yy - e

The proof is based on two lemmas. We will first use BI-B5 to characterise the
class of quasiarithmetic means and then show that the only quasiarithmetic mean
that fulfills our axioms B4 and B5 is the geometric mean.

It is easy to see that the homogeneity B4 implies the reflexivity Al. As an imme-
diate consequence of B3 and Al we get the symmetry A2. Thus, in the following we
can use Al and A2 to prove Theorem 2. To characterize the quasiarithmetic mean
we use the following lemma which was proved in [Acz46].

Lemma 3 A Function F' : ]R’j_ — IR, is solution of A1, A2, B1, B2 and B3 if and

only if it is a quasiarithmetic mean.

There are other characterisations of the quasiarithmetic mean, (see e.g.]AA86],
or [AS83], which replace B3 by different properties, but at least in the present con-
text, they are much less natural than B3. The next lemma completes the proof of
Theorem 2.

Lemma 4 The only homogeneous quasiarithmetic mean that satisfies B5 ts the geo-
metric mean.

A proof for this lemma can be found in [AA86] and [AS83]).
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5 Variations of the Speedup

The variance of a random variable X is defined as the second moment of X — E[X],
where the expected value E[X] is defined as the first moment of X. As our new
speedup definition Sy(7T4,TP) = G(Z,p) uses the geometric mean rather than the
first moment, the second moment is no adequate means for measuring the variation
of the speedup. Therefore we have to find a different figure to measure deviations
from the geometric mean.

Since the geometric mean is a quasilinear mean, and any quasilinear mean Q1,(X)
is a function of the expected value of ¢(X), we can use the second moment of ¢(X) —
E[¢(X)] to define the quasi variance

Vo(X) = ¢ (E[(8(X) = E[¢(X)])*]) = 67 (E[f(X)] = (E[6(X)])’])  (10)

and the quast standard deviation

Dy(X) = 67 (VELPO) = (B(O]?) .

2

Dig(X) = exp sz og?(e:) — (L osta)) | (11)

This definition is a natural measure for the deviation of X from the geometric mean.
For example, this function has the desirable property that for ¢ > 0 the values ¢ G(Z, ¢)
and 1 G/(Z,§) have the same weight in the computation of Dieg(X).

Of course, there are other measures of variation, which are independent from the
particular mean that is being used, e.g. for certain applications the use of quantiles
may be the right choice.

6 Continuous Variables

If the variables 74 and T2 are continuous, e.g. real valued, then the definition of S,
in (2) and G in (8) must be replaced by

STA,TP) = G°(Z,p) = exp </ p(z) log(x) dx) , (12)
X
where X' depends on the sampling strategy. For example the continuous variant of
(5) is
X={a/feR:a€e R, pclR}

9



The definition (12) can easily be motivated by the above mentioned fact that Qlie(X) =
G(X), i.e.

Sy(T4,T8) = H P =exp (Z pi log(x )

Replacing summation by integration yields (12). Note that the integral over & in fact
is a two-dimensional integral. It is easy to see that S3 fulfills the continuous variant of
A0...A4. However we do not elaborate on whether S5 is the general solution of these
properties or not. The formulas for computing variance and standard deviation of a
continuous variable can easily be derived from (10) and (11) by replacing summation
by integration.

7 Other Speedup Definitions

Sometimes, the user of a refined system B, who is interested in the speedup, wants
to know about the variation of the speedup, but only in that portion of the variation
caused by the refined system B. A typical example is the parallelisation of a ran-
domized search algorithm A. Here, 74 may have a great variance and thus cause a
great variance of the variable 74/TP. The user of B, who compares the performance
of B with that of A wants to know the speedup and the fluctuation of the speedup
caused by the fluctuations of the performance of B. Both can be integrated in the
same diagram, if the speedup definition

srt =6 (B8 - mr 6 (1)

T8 T8

is being used where G and E stand for the geometric and the arithmetic mean. This
definition can be seen as a reasonable compromise between S; and S;. Using the
geometric mean of 1/TP is necessary due to the same reasons as above. Note that
this definition is just a special case of S; where the distribution of T4 is collapsed to
the single value E(T4).

A case that needs very special considertion is that of infinite® running times. In
this case none of the above presented definitions is applicable. A possible remedy
for the case that more than 50% of the runs are finite is the Median. However, the
Median is not continuous and does not satisfy the requirements PO-P2 and therefore
is of limited use for an objective comparison of systems. If more than half of the
running times are infinite, it is very hard to find a reasonable performance measure.

5In case of experimental results no infinite running time can ever be observed. However, it is
common practice to define all runs above a certain time threshold as having quasi infinite running
time.
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One way to define the speedup for such a system might be

number of finite runs of B
total number of runs of B

number of finite runs of A
total number of runs of A

where S, is any one of the presented speedup definitions and the distributions of 74
and T'® are defined only for the finite runs. This works as long as 74 as well as 1P
have at least one finite value, i.e. nonzero probability for finite runs.

8 Conclusion

We are now able to give the following recipe to anybody in charge of (either experi-
mentally or theoretically) evaluating the relative performance of two systems A and
B with varying running times: If both A and B are executed very often and the
total running time of all runs is of interest, then only the ratio of the average running
times is the relevant figure, i.e. the classical speedup definition S; must be used. If,
however, the typical application of A and B involves only one run, the user wants
to know which value of the ratio 74/T® he can expect to occur in a representative
sample. We showed that in this case one has to apply the definition S; which uses
the geometric mean. The confidence in this value however may depend on the quasi
standard deviation D), of the distribution, which is an appropriate measure for the
variation of S,.
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