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Abstract

We present a formalisation for the notion of viewpoint, a construct meant for
expressing several varieties of relativised truth. The formalisation consists in a logic
which extends first order predicate calculus through an axiomatization of provability
and with the addition of proper reflection rules. The extension is not conservative, but
consistency is granted. Viewpoints are defined as set of reified meta-level sentences. A
proof theory for viewponts is developed which enables to carry out proofs of sentences
involving several viewpoints. A semantic account of viewpoints is provided, dealing
with issues of self referential theories and paradoxes, and exploiting the notion of
contextual entailment. Notions such as beliefs, knowledge, truth and situations can
be uniformly modeled as provability in specialised viewpoints, obtained by imposing
suitable constraints on viewpoints.
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1 Introduction

Any adequate theory of knowledge representation must be capable of dealing with certain
modal notions such as belief, knowledge and truth, or in general any notion of relativised
truth. These notions are essential in particular for the reasoning of rational agents, for
building micro-theories which can be exploited outside their original scope [Guha 91], for
enabling programs to translate knowledge from one source into another.

Modal logic has been used to address propositional attitudes, while the formalisation
of contexts [McCarthy 93] aims, among other things, at addressing the issues of relativised
truth. In this paper we attempt to develop a theory of relativised truth which can cover
also propositional attitudes.

First-order modal logics are not expressive enough for representing all natural statements
involving knowledge and beliefs: sentences like John knows that Bill knows something that
he doesn’t know, or John believes everything that Bill does require quantification over propo-
sitions and properties. Approaches based on modal logic also suffer other drawbacks: issues
related to the need of rigid designators, problems with opacity of quantification within the
scope of a modal operator, the problem of logical omniscience.

An alternative approach to modal logic is to introduce a metalanguage, view proposi-
tions as objects and express modalities as first-order predicates. Such syntactic treatment
of modalities has several appeals: great expressivity and extendibility is achieved with-
out adding special operators to the language; well established first-order theorem proving
techniques remain applicable; the complications of possible world semantics are avoided.

The advantages of a syntactic approach to the representation of truth, knowledge and
beliefs have been largely discussed in the literature ([McCarthy 79], [Moore 77|, [Kono-
lige 82], [Perlis 85], [Perlis 88], [Davies 90]).

Along this line of research several proposals are based on extending a logic calculus with
a notion of provability. Provability in an agent’s theory is considered as one of the primitive
relations for the formalization of beliefs and knowledge.

These proposals differ in the degree of connection between object-theory and meta-
theory, ranging from a semantic connection of completely separate theories as in [Kono-
lige 82], to the reflection principles of FOL [Weyhrauch 80], bridging two still distinct the-
ories, to the proposal of a single amalgamated theory encompassing object and meta-level,
but with weak reflection rules [Bowen 82].

Nevertheless, a satisfactory first order theory of relativised truth is not easy to develop
since one must face delicate issues of semantics and must avoid the pitfalls of paradoxes
arising from self referential sentences, which trickle in by diagonalization [Montague 63].
One may think that these sentences are pathological and never arise in practice, therefore
the issue can just be ignored. However even very simple examples of reasoning across
contexts, applying for instance what McCarthy and Guha call lifting rules, exhibit the
use of logical properties which subsume those required by Montague’s result. Once these
properties are available and since a paradoxical sentence can always be built in such systems,
the whole logical formalism collapses. We will show how this happens in section 3.

A simple way out of paradoxes is to keep the object language separate from the metalan-
guage [Moore 77, Weyhrauch 80] and to build a hierarchy of languages [Konolige 82], each
one being a meta-language for the previous, when nested beliefs are involved. Self reference



is not allowed and the construction of paradoxical sentences is blocked. However this forbids
also non paradoxical self referential sentences like John believes that he has a false belief
and mutually referential sentences like when one person says I believe that we both believe
true things while his opponent denies it: I do not believe so. This lack of expressiveness
may be considered a major drawback [Perlis 85, Davies 90] since self referential statements
about truth, beliefs or knowledge arise naturally in common sense reasoning.

The complex machinery required by the layered approach also does not seem convenient
for implementation within reasoning programs nor natural as a formalisation of common
sense.

A more promising approach is the one suggested by Turner [Turner 89] and adopted
also by the Interlingua working group of the DARPA Knowledge Sharing Initiative [Gene-
sereth 92]. The solution advocated for the liar paradox is to build the extension of the truth
predicate progressively in a layer-by-layer fashion like in [Kripke 75]. However the other
modal operators are not covered and will have to be defined separately.

That we need a single theory where truth, propositional attitudes such as belief and
knowledge, and situations can coexist is apparent if we envision computer agents able to
plan and execute actions by taking into account their own beliefs and knowledge as well as
the beliefs and knowledge of other agents.

Introducing a metalanguage is only the first step in this direction allowing one to express
modalities as predicates: for each of them one still has to provide an axiomatization, verify
the consistency and analyze the interactions among the modalities. This may lead to a
proliferation of theories [Turner 89]. What we propose instead is to rely on the single
notion of entailment in viewpoint, in terms of which modalities and several other notions
can be defined. The solution for the paradoxes and the proof of consistency will apply to
all these notions.

The theory of viewpoints that we propose is a reflective first order logic which amalga-
mates object and metalanguage by using names for each term and sentence of the language
and which contains an axiomatization of provability and carefully formulated reflection rules
which result in a non conservative but consistent extension. To develop its semantics we
exploit some recent results [Gupta 82, Herzberger 82, Turner 89] on semantic theories of
truth.

Viewpoints denote sels of sentences which represent the assumptions of a theory. A
sentence of the form in(’A’, vp), where vp is a viewpoint expression, is interpreted as sentence
A is entailed by the assumptions denoted by vp.

In the theory of viewpoints modalities are expressed as entailment in a viewpoint: dif-
ferences in the behaviour of modal operators are captured by additional axioms imposed
on viewpoints, thus constraining or expanding the set of sentences that hold in specialised
viewpoints [Simi 91]. Several concepts, even beyond the traditional modal operators, can be
expressed through viewpoints: therefore viewpoints fulfill our goal of a unified framework
in which all these notions can be handled and where one can reason about their interaction.

Viewpoints were conceived [Attardi 84] as a formalization of the notion of conteut,
whose importance for knowledge representation has been stressed recently by several authors
[McCarthy 87, McCarthy 93, Sowa 90, Guha 91]. Contexts should be considered as first
class objects in the language so that they can serve as a frame of reference for sentences
(which are relative to some context) and that it is possible to formulate rules which relate



one context to another (called lifting rules in [Guha 91]).

Several problems are to be addressed and critical choices are to be made to achieve a
satisfactory theory of viewpoints: selecting appropriate model theoretic domains for inter-
pretation to allow for self referential or mutually referential viewpoints; deciding between a
two or three valued logic; having a single language or a hierarchy of languages; amalgamat-
ing object and metalevel or providing a fully reflective theory.

In each case we settled for what we considered the most advanced alternative: a two
valued logic to maintain the naturalness and simplicity of classical logic; a single language
instead of a hierarchy of languages; a fully reflective theory where mixed object/metalevel
statements are allowed and can be proved.

The idea of viewpoints was introduced in [Attardi 84] and viewpoints were incorporated
in the implementation of the Omega system [Attardi 86]. The basic theory of viewpoints
was sketched in [Attardi 91] as a non conservative extension of first order predicate calculus,
with the inclusion of an axiomatization of provability at the meta-level and of carefully for-
mulated reflection rules. The consistency of the resulting theory was proved by establishing
a correspondence with a syntactic variant of a modal logic, proved consistent by [Davies 90].

Such translation however did not provide sufficient insight into the real meaning of
sentences relativised to viewpoints. The main goal of this paper is to develop an independent
semantics for viewpoints, which is useful in better understanding how closely the semantics
matches the proof theory. For providing a semantics to sentences of the form in(’A’, vp), we
introduce the notion of contextual entailment, as a way to express the fact that A should
hold in all interpretations which are coherent with the interpretation given to vp. The proof
theory is sound with respect to this interpretation, and we obtain several hints on possible
ways to strengthen it to get closer to completeness, which is nevertheless unachievable.

The paper is organised as follows: section 2 and 3 present the syntax and proof theory
of viewpoints. Section 4 is devoted to a semantic account. Section 5 is a discussion on
the intended use of viewpoints. Finally in the remaining sections we discuss extensions,
implementation issues and draw some conclusions.

2 Syntax

The logic of viewpoints has the syntax of classical first order logic, extended with the
sentences in(’A’, vp), where ‘A’ is the name of a sentence and vp can be:

1. a finite set of sentence names: {'A},/A},...,)/Al}

2. a viewpoint term, consisting of a viewpoint function and a list of terms. A viewpoint
function of no argument is a viewpoint constant.

For each symbol s of the language (either variable, function, predicate or viewpoint),
we denote by 's’ its name. Names for terms and literals are obtained through the following
definition:

(U, ey L) = term(' 1 L, L)

"p(ty, g, ..., 1) = literal("p’, 1) 1, ... t])



Ay A Ay = and(4},/A})

Ay v AL = or(A} ) AY)

'S5 Al = not("A))

V. A" = forAll("z’ A")

in(t,{t1,12, ..., t,}) = inTerm("t', set(t1, {2, ..., 1))

in(t, vp(t1, ta, ..., 1)) = inTerm("t!,vpTerm("vp' 1],/ 5, .../ 1))

In the following we use the conventions that A, B are metavariables for statements, 'A’,
‘B’ are quoted statements while vp, vp;, vpy are metavariables for viewpoints, i.e. expressions
denoting sets of sentences. To simplify the notation, we will sometimes use vp, vpy, vpy for
sets of sentences or for the sentence which is the conjunction of the sentences in the set
denoted by a viewpoint. It should be clear from the context which is the intended meaning
for such meta-variables.

3 Proof theory

The proof system for a logical system to be used as the underpinning for reasoning programs,
must be consistent and simple to implement. Decidability is out of question, since the
expressive power of an amalgamated system approaches that of second order logic, and
likewise for completeness.

In this section we concentrate in developing a consistent set of axioms and inference rules
for viewpoints. Since the axiomatisation remains within first-order logic, well established
theorem proving techniques remain applicable. Also, the constraints on the applicability of
the reification inference rule are easy to fulfill: it is just necessary to keep track of whether
or not reflection has been used in the course of a proof.

The proof systems of viewpoints consists of the axioms for classical logic, plus a suitable
axiomatisation of provability and reflection rules which link what is provable in the object
and meta level.

3.1 Axiomatisation of provability

The axiomatisation of provability exploited here is quite standard [Bowen 82, Attardi 91].
We consider an axiomatisation of first order logic and introduce a meta inference rule for
each of the object level inference rules. For example, the following meta-rule:

in('B', opU {"A"})
in('A = B, vp)

will correspond to the following rule of implication introduction:
vpU{A} F B
vpk (A= B)

The following axiom schemata are included, so that viewpoints will behave as logical
theories:



Azl. in("A" {... A", .. })

Az2. in("A’,vp), for any logical axiom A and viewpoint vp.

3.2 Reflection rules

Two reflection rules provide the link between object and meta-level:

vpr Fin("A", vpg)

i
op UopeF A (reflection)
vplko A . .

m (rezﬁcatzon)

The notation F¢ stands for “classically derivable” or “derivable without using the reflec-
tion rules”. The choice of this formulation of the reflection rules was discussed thoroughly
in [Attardi 91].

The reflection rule is to be compared with weaker versions of reflection rules, such as
the ones in [Bowen 82, Wehyrauch 80], which are formulated as follows:

Farr PR('A")
Fr A

(conservative reflection)

where PR means ”provable” and 17" and M1 are the object and metalevel theory respec-
tively. The important difference is that the precondition of our rule does not require that
in(‘A’, vpy) be proved with no premises, but it is sufficient that such premises be assumed
in the proof of A. Therefore, unlike the previous proposals, the theory resulting from the
addition of the reflection rules is a non conservative extension: new theorems are derivable
which where not provable in the combined object and metalevel theory.

For instance the following theorem is easily proved:

in('A’,vp) = (vp = A)

This sentence can in fact be regarded as an alternative formulation of the reflection rule,
meaning that if in holds then material implication holds as well.

We claim that this is a desirable property for the formalisation of propositional attitudes,
in particular when in is interpreted as belief. We will return to this point in section 5.

As a consequence of the stronger reflection, the restriction imposed on the reification
rule becomes necessary in order to avoid falling in an inconsistent theory [Montague 63].

The implications of Montague’s negative results about inconsistency of theories which
have enough technical machinery to represent their own syntax and strong reflection rules
have been largely discussed in the literature. In these theories a self referential formula R
can be constructed such that:

Lemma 1 In a logical system expressive enough to represent its own syntax, there exists a

formula R such that: - R < P('-R')



where P(’A”) stands for any predicate on names of formulae such as True, Bel or our own
in(A’,{}). A similar self referential formula was constructed in [Bowen 82] for a different
purpose: to show the incompleteness of their amalgamated object meta-level theory.

The self referential formula R leads to inconsistency when the predicate P satisfies the
properties expressed in the following theorem.

Theorem 1 (Montague) Let T be a theory such that:
(i) FP(A)Y = A

(1) FP(P(‘A") = A')

(1) FP('A"), if k¢ A

(iv) If FP(A— B')and + P('A") then + P('B’)

(v)

T includes enough machinery to represent its own syntaz

then T is inconsistent.

Here F¢ A means that the proof of A is carried out without using any of the schemata
(i — 1v).

As Montague has noted, all the above properties seem quite reasonable and it is hard
to conceive a logic of syntactic modality which could dismiss any of them.

To see how easy it is to overlook the problem of consistency, let’s consider the sketch
of proof about the blocks world presented in [McCarthy 93]. In one step of that proof the
fact that block A is on block B in situation S is inferred for context ¢, written as:

c: on(A,B,5S)
from the fact that ist(c,on(A, B, Sy)) holds in another context ¢y, written as:
co: ist(e,on(A, B, So))

where ist(c,p) means “p is true in context ¢”. This deductive step corresponds to the
application of a quite strong reflection rule:

¢ Fist(eg, A)
Co FA

Such rule leads directly to property (¢) of Montague:
co: ist(eg, A) = A

Unrestricted reification is also used in a later step of the same proof: therefore we obtain
co: If F Athen Fist(cg, A)
co: ist(co,ist(co, A) = A)

which correspond to properties (ii7) and (7¢) of theorem 1. Property (iv), equivalent to
Modus Ponens within a context, is also exploited in the same proof. As a consequence, any
context like ¢g is inconsistent.



Instead, in the proof theory for viewpoints, because of the restriction imposed on the
reification rule, it is not possible to prove the equivalent of property (i), i.e.:

in('in('A", {}) = A", {})
which is essential and sufficient, together with the other properties of Montagues’s the-

orem, to obtain the inconsistency result.
To reach the evidence of consistency, we had however to prove the following

Theorem 2 (consistency) The logic of viewpoints is consistent.

Proof. The full proof appears in [Attardi 91]. The result was obtained by establishing a
correspondence with a syntactic variant of a modal logic, proved consistent in [Davies 90].
In essence, viewpoint formulae are translated into formulae of a consistent logic of truth: a
sentence of the form in(’A’, vp) is mapped into a sentence of the form True('vp = A’) and
conversely True(’A’) is translated into in(’A’,{}). These translations allow us to prove the
equivalence of the two logics. O

3.3 Additional axioms and properties

Due to the restriction on the reification rule, only classical proofs, which do not use reflec-
tion, can be transferred into an arbitrary viewpoint. This is formally expressed as:

Proposition 1 (Proof in context) Ifin(’A’,vp) and At¢ B then in('B’, vp)

Note that a weaker condition, like A+ B or in('B’,{’A’}) instead of A F¢ B would not
entail the same conclusion. It is however easy to show that a proof, provided it is classical,
can be performed at any level of nesting.

The following sentence represents an intuitive property of viewpoints, saying that if
something holds in a viewpoint, then this very fact itself holds in the same viewpoint:

in('A’,vp) = in('in("A’, vp)’, vp) (positive introspection)

This property is usually referred as positive introspection, since if we interpret in as
knowledge (or belief), it reads as: whatever one knows, one knows that he knows.

The truth of in("A’, vp) does not imply the existence of a classical proof, and therefore
reificalion cannot be used for deriving the consequent of this sentence. This property is
independent from the other axioms, and we choose therefore to add it explicitly to our
axiomatisation.

The reification rule instead turns out to be derivable. This is due to the fact that a proof
at the object level can be mirrored completely at the metalevel. Vice versa, if we carry out
a proof at the metalevel without using any premises, the same conclusion could have been
reached directly at the object level. The following theorem formalises these observations.

Theorem 3 Fin('A’,vp) iff wvpkc A

This basic proof theory for viewpoints behaves reasonably well for the use that we have
in mind. Later in section 5, we will give a sketch of how to use viewpoints to model beliefs,
truth, knowledge and situations. Here we give an example of a proof involving three related
viewpoints.



3.4 An example

We show here how to formalise a classic logical puzzle by means of viewpoints and then
how to use the proof theory of viewpoints to solve it.

The members of the tribe of Voo always speak the truth, while the members of
the tribe of Doo always speak the contrary. An explorer meets a Voo and a Doo,
and has to figure out which is which.

By denoting with vp the common knowledge that both Voos and Doos have, we can
write:

1. Says(Voo,z) = in(z,vpy)

2. Says(Doo,z) = in(—z,vpp)

where

3. vpy = vpU{Says(Doo,z) < in(~z,vp)'}
4. vpp = vpU{Says(Voo,z) & in(z,vp)'}

If the explorer asks to one native what the other would answer to a yes/no question,
the answer A he would get from a Voo would be false; in fact

5. Says(Voo,/Says(Doo, A))

6. = in("Says(Doo, A)', vpy) MP(1, 5), proof in context
7. = in('in(=A, vp), vpy) MP(2, 6), proof in context
8. = in("'vp = = A, vpy) MP(7, reflection), proof in context
9. = (vpy = (vp = —A)) reflection(8)
10. = (vp = -A) absorption(3)

Similarly the answer of a Doo would be false:

11. Says(Doo,Says(Voo, A)')

12. = in("=Says(Voo, A),vpp)
13. = in("=in(A4, vp)’, vpp)

14. = in('in(=A, vp)', vpp)

15. = in("vp = ~A', vpp)

16. = (vpp = (vp = —4))

17. = (vp = —A)

Step 13 is justified by the choice of a yes/no question, for whose answer A it is either
in(A,vp) or in(=A, vp). Such is the case for instance for the answer I am a Voo. Therefore
a suitable question to solve the puzzle could be: What would your friend answer to the
question: “Are you a Voo?”.



4 Semantics

The main problem in providing a semantics to a reflective theory is to avoid the inconsisten-
cies arising from sentences of the form R < F(’=R’), which can be built by diagonalisation.
Solutions proposed in the context of logics for truth, can be a source of inspiration. Krip-
ke’s account of truth [Kripke 75] is based on Kleene’s three valued logic and on an iterative
process which assigns truth values to larger and larger sets of sentences. In the final model
all sentences are either true or false, satisfying our requirement for a binary logic. Unfor-
tunately this model is too weak since not always in(’A’,{}) when A is a classical tautology
like BV = B. A counterexample is RV =R, where R is a paradoxical sentence.

We adopt therefore a different solution which builds upon the Gupta-Herzberger seman-
tic theory [Gupta 82, Herzberger 82| along the lines indicated by Turner for a logic of truth
[Turner 89].

An adequate semantics must also avoid to sanction dangerous formulae. For example
in consistent reflective theories, a T axiom, i.e. an axiom such as our

in('A’,vp) = (vp = A)

is often allowed, but in this case the reification rule (called necessitation in the context of
modal logics) must be restricted so that

in('in("A’, vp) = (vp = A), {})

is not derivable. Its derivation in fact would immediately lead to an inconsistent theory
[Montague 63]. The same argument applies to the reified positive introspection.

Another problem we had to face is that we want to account for positive introspection,
which is a useful principle for our purposes, without also having to admit the slightly
different, stronger

in('A" vpy) = in('in("A’, vpy), vps)

which is not desirable and in fact cannot be proved in our theory. As a consequence, an
interpretation of in as straightforward entailment or derivability is not satisfactory. Our
answer to this problem is an interpretation of in as contextual entailment, i.e. entailment
restricted to a subclass of all models, to ensure that viewpoints at different levels of nesting
are interpreted coherently. We want to interpret in(Z1,13) in a certain model M, as entail-
ment of ¢; from %5, i.e. that whenever {5 holds, then ¢; holds. However M establishes an
interpretation for viewpoint functions some of which may appear in ; we must ensure that
the same interpretation is used in evaluating ¢;. Consider for instance:

in('A’,vp) = in('in("A’, vp)’, vp)

When examining the validity of the consequent, we are already restricted to models where
vp is a viewpoint which entails A. Therefore, when we consider whether vp entails in(’A’, vp),
we must carry over this restriction, and in fact we conclude that in all such models A is
entailed by vp.

We describe here our semantics. An interpretation structure M is a pair (D, 7) defined
as follows:



1. The domain of interpretation D contains the set of sentences S of the language.

2. T associates an n-ary function f7 : D™ — D, to each n-ary function symbol f of the
language, except the syntax constructors term, literal, and, or, not, forAll, set, vpTerm
and inTerm, whose interpretation is fixed.

3. 7 associates to each n-ary predicate symbol p of the language, an n-ary predicate
pr € D".

4. T associates to each n-ary viewpoint function vp, a function vpy — 25

Notice that since a domain D must contain sentences, and sentences may represent
viewpoints, which are in turn sets of sentences, and finally a viewpoint can refer to its own
sentences, as suitable domains one might need Scott’s lambda calculus models or Aczel’s
non well founded sets [Aczel 88].

Terms are interpreted with respect to an assignment function g, which assigns elements
of D to variables. The interpretation of terms is classical except for naming terms whose
interpretation is the term or sentence they name. In detail:

[2]5 = 9(2)

[f(t1,ta, s t)]y = fr([taly, [t2lys -5 [n]y), where f is not a syntax constructor.
[y ==

[literal(t, t1, L2, ..., 1)1, = [ty ([ta]y, [talys -5 [Enly)
[term(t, t1, 0, ..., 10)]g = [t ([t1]y, [t2]gs -5 [Enlg)
IvpTerm(t, 1,42, ..., 1)1, = [tly([taly, [t2]gs -5 [Enly)
[and(t1,£2)], = [ta]y A [22],

[or(t1, t2)]y = [taly v [t2]g

[not(2)], = -[t],

[forAll("z’,1)], = Va.[t],

[inTerm(ty, )] = in([i1],, [t2]y)

Moreover for sets of sentence names and viewpoint terms (viewpoint constants as a
special case) we have:

ﬂset(tlvti’v ) tn)]]g = {[[tl]]gv [[tQ]]gv L [[tn]]g}
ﬂvp(tlv Ly ey tn)]]g = vpz([[tl]]gv [[tQ]]gv s th]]g)

In short we could write, for any term t: without variables
(] =1

10



For each closed formula A, =1, A means that A is true in the interpretation M with
assignment function g. The notation g[i/z] represents the assignment function identical to
g except that x is bound to 7.

For the interpretation of sentences we proceed by defining the notion of true at level n,
where the level corresponds to the level of nesting of in sentences. A sentence with a nesting
level of n will receive its definitive truth value at level n; while paradoxical sentences, to
which no finite level of nesting can be assigned, will keep oscillating periodically between
true and false.

At level 0, all sentences are considered false: not |:9\A, ;A

For any n > 0:

|:nM,g p(tlat%---atn) it <[[t1]]gv[[t2]]ga"'7[[tn]]g> € pz

—A) i mnot Ry, , A

’I’L

|:M,g

Fig (AANB) il Ry, Aand F}y, B

(

(
Fig (AVB) iff R, AorERy, B
Ehi, (Ve A) iff  for all d in D, |=nM7g[d/$] A

The truth of in sentences at level n is defined on the basis of the truth at the level n — 1.
The interpretation of in is contextual entailment, i.e. entailment restricted to a subclass of
all models, to ensure that viewpoints at different levels of nesting are interpreted coherently:

Fh, in(tr,tg) iff - for all N € M(ty], not |:7\/_,; [t2], or |:7\/_,; [t1],

where M(t] is the class of models that coincide with M on all the viewpoint functions
appearing in ¢, i.e. M[t] = {(D,Z')| for each viewpoint function f appearing in ¢, fpr =
fr}. Note the difference in semantics between implication and in operators: in might be
interpreted as “necessary implication”.

In most cases, this process of revision stabilises in the sense that the truth value of
sentences settles to either true or false from a certain level onward. There are however
paradoxical sentences, like the counterpart of the liar sentence, which do not stabilise at
any finite level of revision but continue to oscillate between different truth values. To such
sentences false will be assigned as ultimate truth value.

A sentence is said to be stably true accordingly to whether or not the revision process
stabilises:

g A iff 3kVR > kT, A

Stable truth is however too coarse, since all sentences which do not stabilise are assigned
to false: therefore for any such sentence R both R and =R would be false. One further step
is necessary to separate among the sentences which do not stabilise.

The notion of truth hinges on that of stable truth for in sentences:

|:M,g p(tlv la, ..y tn) iff <[[t1]]g7 [[tQ]]gv EAEE) [[tn]]g> €prr

|:M,g (—|A) iff  not |:M,g A

11



Emyg (AAB) iff |y Aand Epmy, B
Emg (AVB) iff EmyAor Emy, B
Emyg (Yo A) iff forall din D, =g ga70 A
Eamgin(ty,ta) T [Ehy, in(t, 1)

Note. The Gupta-Herzberger semantics is more complex and requires transfinite induction
to distinguish different degrees of instability for formulae. For instance if we have two
formulae A and B which oscillate out of phase, according to their semantics the formula
(AV B) will be stable, and in fact true, while in our semantics it will be false. For example
consider A = “This senlence is false”, B = “It is false that what I say is true”. We could
make it true as well by the following clause:

Fmg (AVB) iff EapmyAorfEmy Bor |:j\,17g (AV B)

However we will not be able to prove it true with our proof theory, so it is not clear
whether it is worth to make this change.
Validity is defined as usual:

A i VM, g Emy, A

vp = A means that A is true in every model of vp.
We can now verify that our semantics has the required properties.

Note. The law of excluded middle holds both at the object level:
AV -A
and at the metalevel:
in(AvV —A', vp)

However this does not imply that in(YA’, vp) V in("=A’, vp), which would be undesirable
since it would sanction the completeness of any viewpoint.

Consider the formula R, such that R < in('=R’,{}), which corresponds to the Liar
sentence. The paradox is avoided since the Liar sentence is false in every model:

Proposition 2 |= —R.
Proof. For every n > 0, 5%, -R iff 3" R:
SR
iff  FR in(=R, {})
iff  not for all N. |2} ! =R
iff  mnot = in(—R,{}) (for an arbitrary K)
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iff  for all £ . not E=¢ R
iff  for all K. F§ R
iR (R ()

(by definition of R)

if =R
a
Proposition 3 =%, A implies |=p A but not vice versa.
Proof. As a counterexample consider the case = R. |
Lemma 2 in('A’, {/B'}) = (A = B) is valid.
Proof.
VM. Emin(A'{'B'}) = (A = B)
not =a in(YA",{'B'}) or Em (B = A)
Assume =4 in(’A’,{'B'}), then by definition:
(A, 1B
for all M € M[A] . not =}, Aor 3 A (for n > k)
Since M € M[B], not |=7}, B or =}, A:
EyuB=A (for n > k)
EmB=A
a
Corollary 1 (in("A’,{}) = A) is valid.
Lemma 3 in('in('A’,{}) = A’,{}) is not valid.
Proof. (Sketch) It is not difficult to show that (in(‘R’,{}) = R) does not stabilise. m]

Corollary 2 in('in('A’,{{B"}) = (B = A)’,vp) is not valid.

Lemma 4 (Positive introspection) in(’A’, vp) = in('in( A, vp), vp), is valid.

Proof. (Sketch) The interpretation of in as contextual entailment, ensures a coherent

interpretation of the inner and outer occurrence of vp.

O

Note. Like lemma 2, lemma 4 is valid but cannot be used in reification, since it cannot be
derived classically, and in fact in("in(‘A’, vp) = in("in("A’, vp)’, vp)’, {}) is not valid.
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Lemma 5 in(’A’, vp) = in("in("A’, vp)’, vps) is not valid.

Now that we have a satisfactory semantic account for our theory of viewpoints, we can
investigate how faithful is our axiomatisation to the proof theory. The first obvious result
is soundness.

Theorem 4 (Soundness) IfF A then = A.

We turn our attention to the reflection rules, to discover that they are not yet ideal.

To stay safe of paradoxes, we have chosen a rule for reification which is fairly weak.
Even though we could never achieve completeness for our logic, we might want to look for
a stronger version of reification. What the semantics suggests is that in(’A’, vp) is valid
whenever A is grounded and it is entailed by vp.

Definition 1 A formula A is grounded iff |3, A or =3 A.

The reification rule could be formulated as follows:

vp F A, Grounded(A)
Fin("A’, vp)

A similarly restricted necessitation rule is proposed by Turner and Davies [Davies 90,
Turner 89] in connection with logics for truth.

This formulation however has the disadvantage that grounded sentences cannot be char-
acterised syntactically, violating our requirement of a mechanisable proof system.

5 Use of viewpoints

We briefly report here on the use of viewpoints as a unifying framework for the represen-
tation of beliefs, truth, knowledge and situations: all these notions can be expressed as
provability in a viewpoint, as was shown in [Simi 91]. Differences in the behaviour of modal
operators are captured by additional axioms imposed on viewpoints, thus constraining or
expanding the set of sentences that can be proved in specialised viewpoints.

This approach proves to be a valid alternative to other proposals were separate groups
of axioms are to be provided for each modality, together with axioms relating different
modalities with each other. The proof of consistency needs to be redone any time a new
modality is added. The proof of consistency of the basic theory of viewpoints is done once
for all. The worst that it can happen is that if a viewpoint is too much constrained by
additional axioms a model for it will lack but the basic theory will remain consistent. We
will make this more clear when discussing the formalisation of truth.

In the rest of the paper we simplify the notation further by getting rid of quotes, which
become unessential details.
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5.1 Beliefs

The beliefs of an agent ¢ is rendered directly by means of in sentences, by using vp(g) as
the viewpoint corresponding to the set of assumptions of the agent. More precisely:

Bel(g, A) = in(A,vp(g)) (definition of beliefs)

We can postulate, if we wish, a kind of internal coherence for agent beliefs, with an
additional axiom of consistency, which is not required by the basic theory.

—in(false, v consistency of viewpoints
(false, vp y P

With this additional axiom all the properties usually ascribed to beliefs can be derived.
For example, the axiom K of modal logics, i.e.

in(A = B,vp) = (in(A,vp) = in(B,vp))

is a property of in which corresponds to the metalevel version of modus ponens.
The axiom D of modal logics, i.e.

in(A, vp) = —in(=A, vp)

postulates a kind of coherence for an agent’s beliefs and can be derived by using the con-
sistency axiom. Without it, a weaker property would hold, i.e.

vp = (in(A, vp) = —in(=A4, vp))
The Barcan formula, i.e.
Vo in(A,vp) = in(VzA,vp)

can easily be proved with the rule of V-elimination and the meta-rule for V-introduction.
Moreover the property of positive introspection, which is usually considered a valid
property for belief, is an axiom of the basic theory of viewpoints and our reification rule
corresponds to a restricted rule of necessitation.
Finally, the rule of reflection, i.e.

in(A,vp) = (vp=> A)

is perfectly reasonable and even useful under the interpretation of in as belief, even though
it roughly corresponds to a knowledge axiom. As stated, it corresponds to the following
property of beliefs: if an agent holds belief A, then either some of the agent’s assumplions
are false or belief A is true. This property was exploited also in the solution to the puzzle
presented in section 3, where conclusions were drawn based on an agent’s trust or mistrust.
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5.2 Truth

Truth is rendered as provability in a special theory, that we call Real World (RW). Ideally,
everything that it is true should be derivable in this theory. We are therefore assuming the
following definition for truth:

True(A) = in(A, RW) (definition of truth)

We might be tempted to give a characterisation of RW by assuming the equivalence
in(A",RW) < A as for example in [Konolige 82]. It is known however that this leads
immediately to the Tarski’s liar paradox. Therefore weaker properties should be explored,
that our intuition feels appropriate for a theory of the real world, namely:

consistency: the real world should be non contradictory;
completeness: something is true or it is not;
veridicality: the set of assumptions of the real world are true.

This amounts to imposing the following properties as axioms, whatever set of assump-
tions RW is chosen as a description of the real world:

=in( false, RW) (consistency of RW)
—in(A,RW) = in(—A, RW) (completeness of RW)
RW (veridicality of RW)

The above properties are not minimal; in fact veridicality implies consistency. Moreover
it can be shown that veridicality and completeness together are too powerful, since A =
in(A, RW) can be proved using them: the liar paradox springs up again.

Among the two possible ways out, to give up veridicality or completeness, we choose
to go for the second alternative because completeness is problematic in itself. In fact well
known results show that no axiomatisation of provability can be complete (see for example
[Bowen 82]); this concretely means that for any vp, a sentence J can be constructed such
that it says of itself that it is unprovable in wvp, i.e.

J < =in(J, vp)

can be proved. It follows that, postulating completeness of a viewpoint, precludes the
existence of a model for that viewpoint. In fact —vp can be derived both from the assumption
in(J, vp) and from the assumption—in(.J, vp). This can also be alternatively stated as “no
truthful set of assumptions can be complete” or “no complete set of assumptions can be
consistent”.

This negative result suggest to investigate weaker forms of completeness. One restriction
that comes naturally to mind is to impose some kind of closed world assumption, that is to
insist on completeness only for ground atomic formulas, not including in statements. We
will assume the existence of a predicate SAF (Simple Atomic Formulas) on the names of
sentences to test this condition. The restricted completeness is:

SAF(A) A =in(A,RW) = in(-A, RW) (weak completeness of RW)
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Now the double implication, A < in(A,RW), does not hold in general, and this is enough
to prevent the liar paradox. Therefore in addition to positive introspection and consistency,
we will have the above weak completeness and veridicality.

RW (veridicality of RW)

We regard this solution as the minimal set of properties for RW allowing to characterise
this special viewpoint in such a way that paradoxes are avoided. It is worth noting that the
axioms imposed on RW, and those imposed on viewpoints for beliefs, are to be considered
logical axioms of an extended theory of viewpoints and as such, in virtue of Az2, they are
included in any viewpoint. Therefore, for example, since veridicality is a logical axiom,
in(RW, vp) holds for any vp. However, the fact that any viewpoint is aware that RW holds,
does not imply that any viewpoint is aware of all the true facts. In fact, the property:

in(A,RW) & in(A, vp)

cannot be proved. This is due to the restriction on reification and the consequent
restriction on the “proof in context” rule. When truth is used in connection with beliefs,
we have:

in(in(A, vp), RW) & in(A4, vp)

However the following cannot be derived, due again to the restriction on the reification
rule:

in(in(A, RW), vp) & in(A, vp)

5.3 Knowledge

One way to model knowledge is as a true belief:
K(g,A) = Bel(g, A) A True(A) = in(A,vp(g)) A in(A,RW)  (definition of knowledge)
All the properties usually ascribed to knowledge can then be derived
K(g,A)= A (knowledge axiom)

which immediately follows from in( A, RW), by means of reflection and veridicality.

5.4 Situations

Similarly to what was done for beliefs, we associate to each situation s, a set of basic facts
which define the situation, forming a viewpoint vp(s), and define what holds in a situation
as provability in such viewpoint.

Hold( A, s) = in(A, vp(s)) (definition of “holding” in a situation)

Like for being true, holding in a situation is intuitively different from provable in a
theory. Stronger properties should apply, like the fact that a sentence holds or does not
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hold in a situation, completeness again. But, as discussed before, a restricted form of
completeness is only possible. One can argue about consistency of situations: after all it
is possible to hypothesise situations which are incoherent and have no hope of being real.
Nevertheless we will assume consistency, while veridicality is definitely not appropriate for
situations.

We will therefore characterise situations with the following axioms:
SAF(A) A =in(A,vp(s)) = in(—A, vp(s)) (weak completeness of situalions)
=in( false, vp(s)) (consistency of situations)
The fact that veridicality does not apply, prevents the proof of
in(A,s) = A

which would not be appropriate for situations.
In conclusion, the modalities that we have discussed are modeled as viewpoints with
increasingly larger set of axioms, as summarized in this table:

Beliefs Situations Truth
Positive introspection | Posilive introspection | Posilive introspection
Consistency Consistency Consistency
Weak Completeness Weak Completeness
Veridicality

An example combining all these notions was presented in [Simi 91]. We believe that
other more esoteric propositional attitudes could be similarly defined.

5.5 McCarthy’s Contexts

Our notion of viewpoint has much in common with recent proposals towards the formali-
sation of contexts [Guha 91, Shoham 91, McCarthy 93]. In fact the formalisation of some
notion of context was also among our original motivations [Attardi 84].

A naive way of representing contexts with viewpoints would be to map them into view-
points and use in to represent ist:

ist(c,p) = in(p,c)

This translation would not capture however some aspects of McCarthy’s contexts, like
the fact that the meaning of a term may be different in different contexts. A simple technical
way to mimic this feature would be to distinguish the symbols in various contexts by adding
an index denoting their context. For instance, if we wanted to distinguish the meaning of
at in context ¢y

in(at(jme, Stan ford), c1)
where it means “works at”, from its meaning in context ¢,

in(at(jme, Stan ford), c3)
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where it means “is present at”, one could translate the first sentence into:
in(at., (jme, Stan ford), ¢1)

It is not clear whether it is always necessary or appropriate to add such indexing to
symbols. One might argue for instance that the difference in meaning between the two
occurrences of at could be just as well captured by different assertions present in the two
viewpoints ¢; and c¢y. Different conclusions from these assertions could be drawn which
would account for the difference in meaning in the two contexts.

One may question whether, for the notion of context envisaged in [McCarthy 93], the
generality and the expressive power of reflexive viewpoints are not needed.

But, since contexts can be used for representing epistemic attitudes (see for example
Shoham [Shoham 91]), self referential statements like John believes that he has a false belief
should be accounted for:

in(JA. in(A A False(A), vp(John)), vp(John))

and it seems very unnatural to disallow self referential sentences just because they might
cause trouble.

6 Exploiting the taxonomy of viewpoints

Given that viewpoints are sets, it is quite natural to think of exploiting the algebra of
sets and to allow union, intersection and complement operations on viewpoints. Several
interesting properties follow in an obvious way.

A very natural a subsumption relation among viewpoints is induced by the subset rela-
tion:

vpy subsumes vpy = vp; C vpay
The following property of monotonicity of viewpoints would then ensue:
vpy subsumes vpy < in(A, vpy) = in(A4, vpy) (monotonicity of viewpoints)

Viewpoints, so defined, constitute a complete lattice whose top is the empty viewpoint,
where only logical truth hold (we called it the tautological viewpoint), and whose bottom is
the contradictory viewpoint, where anything holds.

An algebra of viewpoints along these lines was proposed together with the first version
of viewpoints presented in [Attardi 84] and exploited in the implementation of the Omega
system.

7 Implementation of viewpoints

The Omega system [Attardi 86] provides a viewpoints mechanism. Each viewpoint may
represent a different theory and may be used to express different knowledge bases, or differ-
ent situations, or different logic theories or to perform hypothetical reasoning. Viewpoints
can be arranged in a hierarchy, where a viewpoint inherits from another by including all the
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sentences that belong to it. Thereafter a viewpoint will inherit all the logical consequences
from its ancestor viewpoints. This is useful for instance to create viewpoints describing a
basic theory (e.g. natural deduction), from which more specific viewpoints can be created
by adding new statements.

Operations are available to enter and exit a viewpoint, to create a viewpoint combining
previous viewpoints, to assert a fact in a specific viewpoint.

The implementation uses bit masks to represent viewpoints, so that operations such
as determining whether a statement belongs to a viewpoint or merging two viewpoints for
combining knowledge from different sources, can be performed efficiently. The metalevel
capability is used in the Omega system to associate deductive strategies to statements: since
these can differ between viewpoints, the effect is to have different deductive capabilities in
each viewpoint.

8 Conclusions

We have explored the idea that through the notion of viewpoint a variety of other concepts
can be expressed, thereby providing a unifying framework for dealing with beliefs, knowl-
edge and situations. In developing a theory of viewpoints several hard issues had to be
dealt, such as those connected to the presence of paradoxical sentences which inevitably
arise in reflective theories. The semantic account for viewpoints that we provided is an
essential requirement for further developing this approach. The solution that we presented
is simple, elegant and powerful compared to previous proposals for syntactic treatment of
modalities. Since the semantics clearly identifies the sentences which lead to paradoxes, it
is now possible to study further the reflection rules to determine conditions under which
they can be strengthened.

The formalisation and the proof theory presented here can be adapted to the notion of
context as conceived by McCarthy. We on purpose restrained to do so, since we wanted to
keep our theory as simple as possible, without overloading it with features that might ob-
scure its essence. For instance, McCarthy allows his contexts to have different vocabularies.
While there are good motivations for this, it is not clear that this is an essential feature
of the notion of context, since there are several ways to achieve the same effect. On the
contrary, by sticking to a single vocabulary, we could develop a proof system which need
not rely heavily on default reasoning.
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