INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center Street @ Suite 600 ® Berkeley, California 94704 e 1-510-642-4274 e FAX 1-510-643-7684

Constructive Deterministic
PRAM Simulation on a
Mesh-Connected Computer

*

A. Pietracaprinal G. Pucci*® J.F. Sibeyn"
TR-93-059
October 1993

Abstract
The PRAM model of computation consists of a collection of sequential RAM machines accessing
a shared memory in lock-step fashion. The PRAM is a very high-level abstraction of a parallel
computer, and its direct realization in hardware is beyond reach of the current (or even foreseeable)
technology. In this paper we present a deterministic simulation scheme to emulate PRAM compu-
tation on a mesh-connected computer, a feasible machine where each processor has its own memory
module and is connected to at most four other processors via point-to-point links. In order to achieve
a good worst-case performance, any deterministic simulation scheme has to replicate each variable
in a number of copies. Such copies are stored in the local memory modules according to a Memory
Organization Scheme (MOS), which is known to all the processors. A variable is then accessed by
routing packets to its copies. All deterministic schemes in the literature make use of a MOS whose
existence is proved via the probabilistic method, but that cannot be efficiently constructed. We
introduce a new constructive MOS, and show how to employ it to simulate an n-processor PRAM
on an n-node mesh-connected computer. Our simulation achieves almost optimal slowdown for
small memories. This is the first constructive deterministic PRAM simulation on a bounded-degree

network.

*This research was supported in part, through the Leonardo Fibonacci Institute, by the Istituto Trentino
di Cultura.

'Department of Computer Science, Brown University, Providence, RI 02912, USA. Email
aap@cs.brown.edu.

{Dipartimento di Elettronica e Informatica, Universita di Padova, Padova 135131, Italy. Email
geppo@art.dei.unipd.it. The work of the author was partially supported by MURST, Italy.

$International Computer Science Institute, Berkeley, CA 94708-1105, USA.

Max-Planck Institut fir Informatik, Im Stadtwald, W-6600 Saarbriicken, Germany. Email jopsi@mpi-
sb.mpg.de. The work of the author was partially supported by project ALTEC (basic research actions
1C1000) of the EC.

i

1 Introduction

The PRAM is undoubtly the most attractive computational model for designing parallel
algorithms. Its popularity mainly derives from the generality of its definition, that allows
n processors to read/write any set of n cells (variables) of a shared memory, in constant
time. This powerful feature is, however, unfeasible from a technological standpoint, and
has challenged many authors, in the past decade, to simulate PRAM computation on more
realistic models. A typical approach consists of partitioning the shared memory into n
modules, local to the processors, and having the processors connected by some network.
In one time unit, each processor is now able to access a single variable from its module,
or communicate with one of its neighbors. A PRAM step, where up to n variables are
requested, is simulated by sending a message through the network between each processor
issuing an access to a variable and the processor storing that variable. The goal is to devise
simulation schemes that are easy to implement and exhibit a good time performance. In
order to minimize the time needed to simulate one PRAM step, one has to minimize both the
memory contention, caused by requests addressed to the same module, and the congestion

in the network, caused by the routing of the messages.

Several randomized simulation schemes have been presented in the literature, [MV84,
KUS88, LPP88, Ran91, Mey92, KLM92, DM93]. In all these schemes, the PRAM shared
memory is distributed among the modules using one (or more) hash functions randomly
drawn from a specific universal class [CW79]. One of the most significant results is Ranade’s
simulation of an n-processor PRAM step on an n-node Butterfly, in O(logn) time, with
high probability [Ran91]. Recently, [Mey92, KLM92, DM93] showed that if each variable
is replicated into a (small) number of copies, distributed among the modules by distinct
hash functions, more efficient simulations are achievable. For example, with three copies
per variable, an n-processor PRAM step can be simulated on a complete network of n
processors (Module Parallel Computer (MPC)) in time O(loglogn), with high probability.

On the other end, the development of efficient deterministic simulation schemes, that
is, schemes that guarantee a worst-case bound on the access time, appears to be much
harder. A simple argument shows that in order to avoid the trivial worst-case, where all the
requested variables are stored in the same module, one has to use several copies for each
variable, so that only a subset of “convenient” copies needs to be reached by each operation.
The number of copies for each variable is called the redundancy of the simulation scheme.
Mehlhorn and Vishkin [MV84] pioneered the multiple copy approach devising a PRAM
simulation on the MPC, with redundancy c. In their scheme, only one copy is needed to
read a variable, whereas all the copies have to be updated when the variable is written. An

involved access protocol is given that satisfies a set of n read in time O(en'='/¢), in the

worst-case, whereas for n write operations, the protocol can take up to O(cn) time.

Later, Upfal and Widgerson [UWS87] proposed a more balanced use of the copies based
the majority concept, previously adopted for databases [Gif79, Tho79]. Each variable is
replicated into 2¢ — 1 copies. Each copy contains the value of the variable and a time-stamp
indicating the last time that the copy has been accessed. Thus, a read/write operation
needs to access only a majority ¢ of the copies to assure that the most recent value of the
variable is always retrieved. The partitioning of the copies into modules is done according
to a bipartite graph G = (V,U; E), where V represents the set of variables, U the set
of modules, and 2¢ — 1 edges connect each variable to the modules where its copies are
stored. With ¢ € O(logn), [UW87] show that there exist graphs G with suitable expansion
properties so that n variables can be accessed in O(log n(loglogn)?) worst-case time on the
MPC. They do not provide an explicit construction for G' but show that a random graph
exhibits the desired properties, with high probability.

Several authors followed the ideas in [UW87] improving the time complexity and using
bounded-degree networks instead of the MPC [AHMP87, HB88, Her89, LPP90, Her90b,
AS90]. However, all these schemes are based on the existence of highly expanding graphs,
which represents the basic shortcoming (maybe fatal from the practical standpoint) of this
class of approaches, since the construction and testing of such graph is hard (see [PP93a]).
Moreover, if one resorts to random graphs, the internal representation of the memory map

becomes extremely space-inefficient [Her90a).

In two recent works, Pietracaprina and Preparata [PP93a, PP93b] presented the first
explicit deterministic PRAM simulations that exhibit a sublinear time complexity for both
read and write operations. Both results are for the MPC. In [PP93a], a simulation scheme
for a PRAM with at most n? variables is given where, using constant redundancy, a set
of n (read/write) requests can be satisfied in O(y/n) time in the worst-case. In [PP93b],
an O(n'/?log* n) access time is achieved for a shared memory of at most n'*® variables,
again using constant redundancy. In both cases, an approach similar to that by [UWS87] is
followed; however, the graph G underlying the memory distribution is explicitly constructed,
and the implementation of the memory map is simple and requires only constant internal

storage in each processor.

Unfortunately, the MPC itself is an unrealistic model, since it assumes a complete inter-
connection among the processors. A simulation strategy on the MPC focuses on the memory
contention problem, but completely ignores routing issues. Therefore, there is the need to
develop efficient and explicit deterministic schemes that run on realistic interconnections,
that is, networks of bounded degree. In this paper we present the first explicit deterministic
scheme to simulate a PRAM with n processors and n® variables, 1 < a < 2, on an n-node

square mesh. Each variable is replicated into ¢* copies, where ¢ € O(1) is a prime power

and k£ > 2 an integer. The organization of the copies among the processors and an ad-hoc
access protocol enable the processors to perform any set of n read/write operations in the

time bounds stated by the following theorem.

Theorem 1 Given an n-processor PRAM with a shared memory of n® cells, 1 < a < 2,

one computational step can be simulated in time

1 .
nate zf0<€<1anda§%;
T(n)eq n3t% if3<a<i

1, 2a=3
= . 5
nitTs if2<a<2,

with constant redundancy, and
T(n) € n%polylog(n) ifo<3,

with polylog(n) redundancy.
The simulating machine is a square mesh of n nodes. The scheme is deterministic and

fully constructive.

Note that an Q(y/n) lower bound applies to any simulation on the mesh because of the
network diameter.

The core of the simulation is a Hierarchical Memory Organization Scheme (HMOS) that
governs the distribution of the copies among the processors. There are k levels of logical
modules, for a suitably chosen value & > 1. First, each variable is replicated into ¢ copies,
assigned to the modules of the first level. Each one of these modules is in turn replicated
into ¢ copies assigned to modules of the second level, and so on for k times. Note that
eventually each variable will be replicated into ¢* copies.

At any level 2, the assignment of copies of modules of level i — 1 to modules of level
is done according to a Balanced Incomplete Block Design, which is the distribution graph
underlying the memory organization scheme in [PP93a]. The construction of such graph is
simple and allows a very efficient representation of the memory map.

As we will see in the following sections, as the level number grows higher, the modules
become fewer and bigger. On the mesh, modules of the same level are mapped onto sub-
meshes of the same size. Different levels correspond to different tessellations of the mesh
into disjoint submeshes.

In order to read/write a set of n variables, first a subset of their copies is selected
according to a consistency rule that fits the hierarchical structure of our memory organi-
zation. These copies are also chosen so that contention within the modules of any level
is conveniently bounded. Once selected, the copies are then accessed using a new routing

strategy that takes each request packet through smaller and smaller submeshes, towards its

destination. The low congestion in each submesh, ensured by the copy selection mechanism,
is crucial for the performance of the routing.

The relevance of our result is twofold.

1. It is the first explicit deterministic scheme for PRAM simulation on a bounded-degree

network, and, when a < 3/2, its time complexity is nearly optimal.

2. It introduces the HMOS, a new mechanism that enables to control both memory
contention and network congestion, and, therefore, is suitable for deterministic simu-

lations on bounded-degree networks.

The rest of the paper is structured as follows. In the next section, we present some results
concerning the specific routing problems arising in the simulation. The PRAM simulation
scheme is given in Section 3, which is subdivided into several subsections that describe in

detail the memory organization, the selection of the copies, and the access protocol.

2 Routing on the Mesh

Consider an ({1, l3)-routing problem on an n-node mesh where each processor sends at most

l; packets and receives at most [packets. In [SK93] the following theorem is proved

Theorem 2 Any (l1,l3)-routing can be performed on an n-node mesh in \/lilan+ O(l1y/n)
steps.

In the general case, this result is optimal, however we will show now that under certain
conditions a better routing time can be achieved. Subdivide the mesh into n/m submeshes
of m nodes each, with m € o(n), and consider a (ly,/3)-routing problem where each submesh
receives at most ém packets, i.e., § is the average number of packets that each processor
receives in any given submesh. Call this problem an (11,3, 8, m)-routing. An algorithm that
first sends each packet to its destination submesh and then to its final destination, within
the submesh, turns out to be more efficient that the general (I1,l3)-routing algorithm, for

certain values of the parameters. More precisely, the algorithm works as follows.

1. Index the processors in each submesh from 0 to m — 1;
2. Sort and rank all packets in the mesh according to their destination submeshes;

3. Route all packets to their destination submeshes so that a packet with rank 7 in its

submesh is sent to the processor of index ¢ mod m in the submesh;

4. Route all packets to their final destination.

Sorting and ranking can be done in O(l14/n) steps (see for example [KSS94, Kun93]),
and the two routing stages require, using Theorem 2, \/I;6n+0(l14/n) and \/dl;m+0O(6y/m)
steps, respectively. Observing that [; < § <y, we have that the total time complexity is

O(Vé(Vlin + /lm)).

Comparing the O(y/I;l3n) complexity of the general (I1,[3)-routing with the above formula,
we conclude that the (Iq, 13, 8, m)-routing algorithm is more profitable when Iy, 6 € o(l3) and
Vém € o(\/Tin).

These ideas will be exploited in the access protocol of our PRAM simulation scheme,
where an (ly,l3)-routing problem has to be solved in order to access the copies of the
variables. Several tessellations of the mesh into submeshes of different sizes are defined,
and bounds on the number of packets destined to each submesh, ensured by a careful copy
selection, allow us to adopt a more efficient routing strategy, where the packets are gradually

routed to their destinations through a sequence of smaller and smaller submeshes.

3 PRAM Simulation Scheme

In this section we present an explicit deterministic scheme to simulate an n-processor PRAM
on an n-node mesh. Suppose that the PRAM shared memory contains n® variables, for
some « > 1. The goal is to distribute the shared memory among the processors of the
mesh, so that any set of n distinct variables can be efficiently accessed (read or written).
To avoid incurring trivial lower bounds, we need to replicate each variable into a number of
copies so that, when the variable is requested, we select an appropriate subset of the copies
that minimizes the congestion in the network while maintaining consistency. The way the
copies are organized in the network, the selection of the copies to access for each operation

and the access protocol are presented in the following subsections.

3.1 Hierarchical Memory Organization Scheme

What we will use for our simulation is a Hierarchical Memory Organization Scheme, HMOS.
Each variable is first replicated into ¢ copies, ¢ € O(1), and the set of all n*¢ copies is evenly
distributed among G)(nO‘/Q) level-1 modules. Each level-1 module is, in turn, replicated into
g copies, and the copies of all the level-1 modules are evenly distributed among @(no‘/4)
level-2 modules. This process is iterated for £ levels. In general, there are @(na/{‘)i) level-i
modules replicated into ¢ copies each, which are distributed among @(na/QiH) level-(7 4 1)
modules, for 0 < ¢ < k (here, the variables are considered as level-0 modules). Level-k
modules are not replicated. Note that higher numbered levels consist of fewer modules. We

will reserve the term copy for the copies of the original variables, and will call level-i pages

the copies of the level-t modules. For the level-k modules, the terms “module” and “page”
will be used indistinguishably. It is easy to see that this setting generates ¢*~* level-i pages
for each level-2 module, for 0 <7 < k.

The HMOS can be conveniently represented by a (k + 1)-partite graph G =
(Ugy...,Uk; Eq, ..., Ey), where U;, 0 < ¢ < k, denotes the set of level-i modules, and
FE;, 1 <1<k, the set of edges between U;_1 and U;. More precisely, ¢ edges connect each

level-i module to distinct level-(7 + 1) modules containing its pages (see Figure 1).

T

(Uk—1,Ux; Ex)

/ (U1,Usz; Eg)
T (Uo,Us; En) T T T T

level-1 level-2 level-(k — 1) level-k

variables modules modules modules modules

Figure 1: Structure of the HMOS.

The construction of the actual graph is based on a well known combinatorial structure,
the Balanced Incomplete Block Design [Hal86], which has been first exploited for PRAM
simulation on the MPC in [PP93a].

Definition 1 A Balanced Incomplete Block Design with parameters m and ¢, a (m,q)-
BIBD), is a bipartite graph G = (W, U;) such that

o |U] = m;
o The degree of any node in W is q;
o For any two nodes uy,uy € U there is exactly one node w € W connected to both'.

It immediately follows from 1 that |W| = %Z‘_—_ﬁl and that the degree of each node in U is
T;T_ll. An explicit construction of a (¢¢, ¢)-BIBD, suitable for use in PRAM simulations, is
given in [PP93a] for any prime power ¢ and integer d > 1.

One basic property of the BIBD, which we will heavily exploit in our simulation, is

stated in the following lemma.

!The more general definition of BIBD found in the literature includes a third parameter A and requires
that for any two nodes ui,u2 € U there are exactly A nodes in W connected to both. However, we always
have A = 1, and omit the parameter A.

Lemma l Let G = (W,U; E) be an (m, q)-BIBD and let w € U. Consider a subset S C W
such that for any w € 5, (w,u) € E. For each w in S fix k < q oulgoing edges including
the edge (w,u) and let I'y(5) denote the set of nodes of U reached by these edges. Then

[Te(S)] = (k= 1)]5] + L.

Proof: By the property of the BIBD, the nodes of § cannot share any neighbor other than
u. Since for each w € § we fix k£ < ¢ outgoing edges including (w,u), I';(.5) must include
w and (k — 1)|.5| other nodes. O

We refer to this property as the strong expansion property.

Let us return to the graph G = (Uy, ..., Ug; E1, ..., E}) underlying our memory organi-

d—1¢%-1
g—1

subgraphs between consecutive levels are chosen as follows. Define the sequence of integers

zation. Let ¢ be a prime power and suppose that n® = ¢ , for some integer d. The

dy,...,dy as:

di = d,
diy1 = [dif2]+1, 1<Zi<k,
and set
dl—l
U] = o712 =n",
qg—1
U] = q¢%, 1<i<k.

By induction it can be proven easily that
|U;| = en®/? ce[=,q%, (1)

which implies |U;| € @(na/{‘)i), for 0 < i<k,
The graph (U;, Uit1; Fiy1), 0 < @ < k, is chosen as a subgraph of a (qdi+1,q)—BIBD7
where qdz‘+1—1 qd”fll—l
=

of the input of a (¢*, ¢)-BIBD:

— g% arbitrary input nodes are removed. Define f(s) to be the size

g—1
Note that for i > 1, f(d;y1 — 1) < ¢% < f(d;y1). Therefore, the (g%+1,q)-BIBD is the
smallest BIBD with ¢%+! outputs and at least ¢% inputs.

The HMOS is physically mapped onto the network by defining & tessellations of the mesh
into submeshes of appropriate sizes. The processors of each submesh of the 7th tessellation
store one level-i page. More details regarding the sizes of the submeshes in each tessellation
and the actual mapping of the pages onto such submeshes will be given later when the

access protocol is presented.

As observed before, a variable v is replicated into ¢* copies. Such copies can be organized
as a labeled, complete g-ary tree 7, of k + 1 levels. The root is labeled with the name of the
variable v, and its ¢ children with the names of the level-1 modules storing the copies of v.
For 1 < i < k, given an internal node at level 7 of label [(I is the name of a level-i module),
its ¢ children are labeled with the names of the level-(¢ 4+ 1) modules storing the pages of [.
Thus, each copy of v can be identified with a distinct leaf of 7,, and the associated string
of labels (lg,lk_1,...,lp) of the nodes on the path from the leaf to the root.

When accessing any variable v during the simulation of a PRAM step, consistency can
be guaranteed by providing each copy with a timestamp, as customary in a multiple copy
approach, and extending the majority rule of [Gif79, Tho79, UWS8T7] to fit the HMOS, as

follows.

Definition 2 A leaf of 7, is accessed if it is reached during a read or write step. A node

of T, at level i, 0 < ¢ < k — 1 is accessed if a majority of its children is accessed.

It is straightforward to show that any write protocol that accesses the root of 7, (i.e., a
protocol that writes enough copies of v so that the root of 7, is accessed) guarantees that
any subsequent read protocol that accesses the root of 7, will always reach at least one
updated copy of v, retrieved by looking for the most recent timestamp. Any set of copies
which guarantees, when reached, that the root of 7T, is accessed will be called a targetl set
for variable v. A minimal target sel is a target set that does not properly include another
target set. Note that when only the copies in a minimal target set are reached, the accessed

nodes in T, form a complete (|g/2| + 1)-ary sub-tree.

3.2 Copy Selection

Consider a PRAM step, where each of the n processors wants to read or write a distinct
variable, and let R denote the set of requested variables. Suppose that each processor of
the mesh emulates a PRAM processor and is in charge of one variable. The simulation of
the PRAM step on the mesh is divided into two stages:

1. Copy selection.
2. Access protocol.

The copy selection stage determines, for each v € R, a target set C,. Such selection has
to guarantee that the subsequent access protocol, where packets for the copies in |J, C,, are
routed through the network, can be performed efliciently.

The C, are selected by a procedure called cULLING. This procedure consists of k itera-
tions, in which for each variable v € R a conveniently chosen initial subset C'¥ of copies of v

is progressively shrunk to reduce the congestion of the induced packet routing problem. Let

C', 0 < i < k, denote the set of selected copies after the ith iteration of CULLING, where
CF = (C, is the final set of copies that will be actually requested in the following access
protocol. For reasons that will be made clear by the analysis, we need C? to contain enough
copies of v to guarantee exlensive access al level ¢ to v. This notion of access is defined
on the nodes of 7, and coincides with Definition 2, for the nodes up to level ¢ — 1, but
requires that a node at level 7 > ¢ be considered extensively accessed only when more than
a majority of its children (i.e., at least |¢/2] 4 2) are extensively accessed. A level-i target
sel for a variable v is a set of copies that grants extensive access at level 7. A level-: target
set is called minimal if it does not properly include another level-iz target set. Clearly, a
minimal level-i target set contains a target set.

Procedure CULLING is executed in parallel by the n processors of the mesh, and main-

tains, for each variable v € R, the following invariants:
e C!CCi7l for0 < i<k

o C!is a minimal level-i target set for v, for 0 < i < k.
The code for the procedure is given below.

procedure CULLING;
begin
for each variable v € R do
Set C? to be a minimal level-0 target set for v;
endfor;
for::=1to k do
for each level-1 page P do
Mark at most qunl_l/y arbitrary copies of UU ci-? belonging to P
endfor;
for each variable v € R do
Let M! C Ci~! be the set of marked copies for v;
if M} contains a level-i target set for v
then extract a minimal level-z target set C;i_l from M:
else
Mark a set S! C Ci=! — M} such that S U M} contains a level-s target set;
Extract a minimal level-: target set C;i_l from S: U M!
endif;
Cli= C;i_l;
endfor
endfor
c, :=ck
end.

As we noticed before, the goal of the procedure is to select a target set for each variable so that
when the copies are requested in the access protocol, the congestion in the network is conveniently
bounded. More specifically, the ith iteration of CULLING aims at reducing the number of requests
destined to any level-: page, which is assigned to a submesh of the ith tessellation. This is stated in

the following theorem:

Theorem 3 For each level-i page P, the number of copies in |J, C? belonging to P is at most
4gFnt-12" 0<i<k.

Proof: The proof goes by induction on ¢ > 0. For ¢ = 0 the statement is trivial. Suppose there is a

level-i page P containing more than 4¢*n'~1/%'

1-1/2°

copies in |, C?. Since the algorithm places at most

1-1/2°

2¢*n copies from any page in |J, M}, there are more than 2¢*n copies in P belonging

to |, S!. Such copies are relative to variables v/ for which Mj, does not contain a minimal level-2
target set.
Since each level-(i — 1) page, by the inductive hypothesis, contains at most 4qknl_1/2l_1

of U, Ci7t D U, SE, there are at least

copies

2qkn1—1/2’ B nl/2

4qkpi-t/27? -9

level-(i—1) pages in P that contain copies in | J, S¢. Note that these are pages of distinct level-(i—1)
modules. Consider any such module u. The fact that a page of u contains copies in J, St implies
that there exists a variable v’ such that a node in 7, labeled with u is not accessed when only the
copies in le, are reached, but it is extensively accessed when the copies in C'f;,_l) le, are reached
(recall that C'7! is a minimal level-(i — 1) target set for v/, whereas C?, has to be a minimal level-i
target set for v’). Therefore, there must be at least two pages of u that contain copies of v that
are in Cf;,_l but not in M!,. Applying the strong expansion property (Lemma 1), we conclude that
1/2°

there are more than n'/? /2 level-i pages belonging to distinct level-i modules containing copies in

U, (Ci=t — M{). Any such page contributes exactly 2¢Fn1=1/2" distinct copies to U, M, hence
1/2¢
oo ;
(Jagil > 524" = g¥n,
v
a contradiction. a

Before concluding this section, we analyze the time complexity of CULLING. As we said earlier,
the procedure is executed in parallel by the n processors of the mesh, each processor being in charge
of a distinct variable. It is easy to see that the selection of the copies at the ith iteration can be
accomplished by first sorting the copies according to their destination level-i page and then ranking
the copies destined to the same page. Since there are at most ng® copies, sorting and ranking
take O(q*/n) time. Also, each processor must check whether a level-i target set for its variable is
included in the selected copies, and then must extract a minimal target set. This can be done in

O(g*) time. Since there are k iterations, the time complexity of CULLING becomes
Tculling S O(qu\/ﬁ); (2)
and each processor uses O(q*) internal storage.

3.3 The Access Protocol

After progressive culling is completed, the selected copies (set |J, C») have to be accessed. Each
copy is requested by a distinct packet, routed from the requesting processor (origin) to the processor

storing the copy (destination), and back to the origin. The idea is to route the packets in stages

10

so that they are moved gradually closer to their destinations, in accordance with the tessellations
defined on the mesh. Such strategy results more profitable than simply sending the packets directly
to their destinations, since the culling procedure provided us with bounds on the maximum number
of packets destined to any level-2 page, 1 < 7 < k, and such bounds can be exploited to limit the
congestion in each stage.

We first describe in detail how the HMOS is mapped onto the nodes of the mesh. Let m; denote
the number of level-i modules (i.e., m; = |U;]), 1 < i < k. For uniformity, set mg = |V| = n®*. By

(1), we have that, if ¢ is constant,
m; € O(n*/?), 0<i<k.

Also, let p; denote the number of level-(i — 1) pages contained in a level-i module, 1 < i < k, where
level-0 pages are the copies of the variables. By the definition of G, the graph between U;_; and U; is
a subgraph of a (¢%i, ¢)-BIBD, where some of the inputs nodes have been removed. In the Appendix,
we will show how such subgraph can be chosen so that each level-i: module receives almost the same

number of level-(i — 1) pages, that is
qmi—1 qm;—1
. I il N 3
e T, 2y)

Define the outermost tessellation as a subdivision of the mesh into level-k submeshes of size
n
th= — € @(nl—a/Zk)’

m

associated with the distinct level-£ modules. Each such submesh M 1is in turn subdivided into pg
level-(k — 1) submeshes, which are associated with the py pages contained in the module assigned to

M. The size of each level-(k — 1) submesh is

1
te_1 =1t —.
Pk

Level-(k — 1) submeshes are in turn subdivided into level-(k — 2) submeshes, and so forth. In

general, for 1 <i < k, a level-(¢ + 1) submesh is subdivided into p; 41 level-i submeshes of size

n 1
ti=———7—
Mmg Pk " Pk—1" " Pi+1

each assigned to a distinct level-i page. By applying (1) and (3) we get

. L —(k—i), 1—a/2 .
tz€®<qk‘imi) —G(q n) 1<i<k. 4)

Note that if a < 2 (1 — lfg_qln) then ¢; > 1 for every ¢ > 1. A level-1 page stores p; € @(qnall?) copies
of distinct variables, which are evenly distributed among ¢; processors; therefore, each processor
stores py/t1 € ©(¢*n*~1) copies.

We are now ready to present the access protocol. First, each processor generates distinct request

packets for the copies of its variable which have been selected by the culling procedure. Then, each

11

packet is routed from its origin to its destination, where the access takes place, and then back to
the origin, carrying the result of the access. Consider the origin-destination part of the journey.
It consists of k£ + 1 routing stages, numbered, for convenience, from k£ + 1 down to 1. Stage ¢,
k+1>i>1,is executed in parallel and independently in every level-i submesh (here, the original
mesh is viewed as a level-(k + 1) submesh). In Stage ¢, for k 4+ 1 > ¢ > 1, the packets are routed
to arbitrary positions within the level-(¢ — 1) submeshes containing their destination, in such a way
that the processors of each submesh receive, approximately, the same number of packets. This can
be achieved by first sorting the packets according to their destination submeshes, and ranking the
packets destined to the same submesh so that they can be evenly distributed among the processors
of the submesh. Finally, in Stage 1, each packet is sent to its destination and its request is satisfied.
Then the packets return to their origins following the same path through the k intermediate nodes
whose addresses have been recorded along the way.

We analyze now the time complexity of the origin-destination routing. Let é;, k+ 1> 7> 1,
denote the (maximum) number of packets held by any processor at the beginning of Stage . Clearly,
8k+1 < ¢F. For i < k, 6; can be seen as the number of packets received by any processor at the end

1-1/2°

of Stage i + 1. By Theorem 3, a level-i page is addressed by at most 4¢*n packets, and since

there are t; processors assigned to each level-i page, we have
Aghnt=1/7"

<2 <o (q%—in(a—l)/?’) k>i> 1. (5)

S:
i > tz

Set tp41 = n to denote the size of the entire mesh. For £+ 1 > ¢ > 1 the time complexity of
Stage ¢ is given by

. € 0O (52'\/5-# (\/ 661 + 62’) \/E)
€ 0 (62»\/15_1-—1— \/(2'52'—115@') :

where the term &;+/%; is the complexity of sorting and ranking, and the term (\/6“52'_1 + 6i) V1 s
the complexity of the (6;, §;—1)-routing problem involved in this stage. As for the complexity of Stage
1, note that at the beginning each processor holds §; packets. Furthermore, since a level-1 page has

1/2 kpo—1

at most 4¢¥nt/? packets (Theorem 3) and a processor stores ©(g*n*~1) copies, each processor will

recelve at most

6o € O(qk min(nl/z, na_l)). (6)

packets. Since this stage consists only of an instance of (6, ég)-routing, its complexity is

TlEO((m+51)\/E)~

Noting that the complexity of the first part of the routing (origin-destination) dominates that of
the second part (destination-origin), we conclude that the complexity of the entire access protocol
is

1
Tprotocol = § T;.
i=k+4+1

12

Assuming 1 < a <2 (1 — £=L) and applying (4), (5) and (6), we get
g g g

log, n

a—1
Ty € O(an%+ﬁ);

T, € O(q—“‘zl+1n%+i7+_f) k>i>2
1 € O(qkn%).

Therefore,

k
1, a—1 k—it 1, 2a—3
Tprotocoleo (qkn2+2k+1 _1_2((13 2 lné+21+1)) . (7)
i=2
Finally, the total simulation time becomes

Tsim = Tculling + Tprotocol

k
. O(an% (Hnﬁﬂ%z(q—%niﬁf))). (8)

i=2

We are now able to state our main theorem.

Theorem 4 Given an n-processor PRAM with a shared memory of n® cells, 1 < a < 2, one

computational step can be simulated in time
nite z'f0<€<1andoz§%;

T(n)eq n¥**% if3<a<i
n3t=s if%gc)zg?,

with constant redundancy, and
T(n) € nZpolylog(n) if o< 3,

with polylog(n) redundancy.
The simulating machine is a square mesh of n nodes. The scheme is deterministic and fully

constructive.

Proof:

Fixed the value for «, Formula (8) allows one to choose the parameters ¢ and k so that the
simulation time 7y, and the redundancy ¢* (i.e., the number of copies per variable) are bounded
as stated by the theorem. First note that both Ty, and ¢* are increasing functions of ¢, therefore
we use the smallest possible ¢ which, as it turns out from the previous analysis, is ¢ = 3. Also
recall that 1 < o < 2 (1 .) In the following, the logarithms are taken to the base 2, unless

log, n

differently specified.

Let us first consider schemes with constant redundancy. Fix o < 2 and let € be a constant,

2
0 < e< 1. Then if
a—1
k= [log <max <2,—>)-‘,
2¢

13

we get from (8)

¢ e o0y
Tsm € O(n%“).

For o > % and k£ = 2, (8) instead yields
Tom € O (n3*55). (9)

k—1
log, n

Note that if the largest possible value for «, i.e., @ = 2 (1 —), is used in the above example,
we get that n® € ©(n?), the redundancy is ¢> = 9 and Ty, € O(n%/3). For other values of a > %,

however, Ty, is minimized for £ = 3 and ¢ = 27 copies per variable. Indeed we have:
O (n¥+=) it
O (n¥+*5) it

roj
IN

Q
v
wlet Q

<

3

wlwt

(10)

Tsim €

Faster running times can sometimes be obtained when more than constant redundancy is allowed.

Namely, let o < % and let £ = [k"], where &’ is such that

k41 a—1
q 2 — p 2k’ +1 |

Observe that k£ € O (log (%gol%og—n)) € O(loglogn). We have

log n log, 3 log n 1.59
Feoll ——— ~0|—F— ,
loglogn loglogn
log n 2log, 3 . log n 2.38
o ~0|n? | ———— .
loglogn loglogn

For slighly smaller memories we can do even better. Let k = [k], where k' is such that

and

[SIE

Tsim S (@] (n

a—1

K = n3e

Observe that k£ € O (log (log%g?o—gn)) € O(loglogn). Then, for a < 2 — @, we have

. c 0 IOg n log, 3 o IOg n 1.59 .
1 logloglogn - logloglogn ’

1 logn logz 3 1 logn 159
Tim | logl ~ | — log1 .
€ Ofn <log loglogn) ogloen Ofn (loglog logn) ogloen

Acknowledgements

This paper benefited from discussions with Matteo Frigo, Tim Harris and Franco Preparata.

14

References

[AHMP87] H. Alt, T. Hagerup, K. Mehlhorn, and F.P. Preparata. Deterministic simulation of

[AS90]

[CWTY]

[DM93]

[Gif79]

[Hal86]

[HBSS]

[Her89]

[Her90a]

[Her90b]

[KLM92]

[KSS94]

[KUSS]

[Kun93]

idealized parallel computers on more realistic ones. STAM J. on Computing, 16(5):808-
835, 1987.

Y. Aumann and A. Schuster. Improved memory utilization in deterministic PRAM

simulations. Manuscript, 1990.

J.L. Carter and M.N. Wegman. Universal classes of hash functions. J. of Computers
and System Sci., 18:143-154, 1979.

M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory simu-
lations. Proc. of the 5nd ACM Symp. on Parallel Algorithms and Architectures, pages
110-118, 1993.

D.K. Gifford. Weighted voting for replicated data. Proc. of the 7th ACM Symp. on
Operating System Principles, pages 150-159, 1979.

M. Hall Jr. Combinatorial Theory. John Wiley & Sons, New York NY, second edition,
1986.

K.T. Herley and G. Bilardi. Deterministic simulations of PRAMs on bounded degree
networks. Proc. of the 26th Annual Allerton Conference on Communication, Control
and Computation, pages 1084-1093, 1988.

K.T. Herley. Efficient simulations of small shared memories on bounded degree networks.
Proc. of the 30th IEEE Symp. on Foundations of Comp. Sc., pages 390-395, 1989.

K.T. Herley. Deterministic simulation of shared memory on bounded degree networks.

Tech. Rep. TR90-1090, Cornell University, Ithaca, 1990.

K.T. Herley. Space-efficient representations of shared data for parallel computers. Proc.

of the 2nd ACM Symp. on Parallel Algorithms and Architectures, pages 407-416, 1990.

R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on distributed
machines. Proc. of the 24th ACM Symp. on Theory of Comp., pages 318-326, 1992.

M. Kaufmann, J.F. Sibeyn, and T. Suel. Derandomizing routing and sorting algorithms
for meshes. Proc of the 5th ACM-SIAM Symp. on Discrete Algorithms, 1994. To appear.

A.R. Karlin and E. Upfal. Parallel hashing: An efficient implementation of shared
memory. J. ACM, 35(4):876-892, 1988.

M. Kunde. Block gossiping on grids and tori: Deterministic sorting and routing match
the bisection bound. Proc. of the 1st European Symp. on Algorithms, pages 272-283,
1993.

15

[LPP8S]

[LPPYO]

[Mey92]

[MV84]

[PPY3a]

[PPY3b)

[Ran91]

[SK93]

[Tho79]

[UWS87]

F. Luccio, A. Pietracaprina, and G. Pucci. A probabilistic simulation of PRAMs in
VLSIL. Information Processing Lett., 28(3):141-147, 1988.

F. Luccio, A. Pietracaprina, and G. Pucci. A new scheme for the deterministic simulation

of PRAMs in VLSI. Algorithmica, 5:529-544, 1990.

F. Meyer auf der Heide. Hashing strategies for simulating shared memory on distributed
memory machines. Proc. 1st Heinz Nizdorf Symp. on Parallel Architectures and their
Efficient Use, 1992. To appear in LNCS.

K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by
parallel machines with restricted granularity of parallel memories. Acta Informatica,

9(1):29-59, 1984

A. Pietracaprina and F.P. Preparata. An O(y/n)-worst-case-time solution to the gran-
ularity problem. Proc. of the 10th Symp. on Theoretical Aspects of Comp. Sc., LNCS
665:110-119, 1993.

A. Pietracaprina and F.P. Preparata. A practical constructive scheme for determinis-
tic shared-memory access. Proc. of the 5nd ACM Symp. on Parallel Algorithms and
Architectures, pages 100-109, 1993.

A.G. Ranade. How to emulate shared memory. J. of Computers and System Seci.,
42:307-326, 1991.

J.F. Sibeyn and M. Kaufmann. 1-k routing on meshes, with application to hot-potato
worm-hole. (submitted to STACS94), 1993.

R.H. Thomas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Transactions on Databases Systems, 4(2):180-209, 1979.

E. Upfal and A. Widgerson. How to share memory in a distributed system. J. ACM,
34(1):116-127, 1987.

16

Appendix

We show here how to contruct a bipartite graph G = (V,U; E) which is a subgraph of a (¢¢,¢)-
BIBD with the same number of output nodes, i.e., |U| = ¢¢, fewer input nodes, say |V| = m, with
d-1¢%-1
1<m< g™ i,
u € U has degree p,

and such that each input v € V has degree ¢, as in the BIBD, and each output

5] 5]

In other words, we want to select a subset of inputs from the BIBD, whose edges are distributed
among the outputs as evenly as possible. This can be done by modifying the construction given
in [PP93a]. Let ¢ be a prime power and let Iy, denote the finite field with ¢ elements, with its
elements represented by the integers 0,1,...,9 — 1. Recall that the (¢¢,q)-BIBD constructed in
[PP93a] has the outputs associated with the set of d-dimensional vectors over [y, and the inputs
with the qd‘lq:_—_ll pairs ov vectors of kind

(ag—2 , ... , an , 0 , ap-1 , ... , a1 , ag)

(o0 , ..., 0 , 1, bp_r , .., by, by).
Let each such pair be denoted by ®(h, A, B), where h is an index between 0 and d — 1, A is the
integer in [0, ¢9~!) whose representation in base q is (@42 ...apan—1 ...a1ao), and B is the integer
in [0, ¢") whose representation in base q is (bs_1 ...b1bo). The graph G is obtained from this BIBD
by taking the same output set and selecting a subset of m inputs, as follows. Let | < d be the index
such that

I _ 1 +1 _ 1
P g L m—
g—1 g—1
so that
¢ —1
m = qd—l < 1 +w) + z, (11)
q—

for some w, 0 < w < ¢' and 2z, 0 < z < ¢%~1. The m pairs ®(h, A, B) that we select to represent the
nodes of V' consist of the union of the three sets Vi1, V5 and Vs defined below:

Vi = {®h,A,B):0<h<l,0<A<q¢", 0<B<q"};
Vo = {®h,A,B):h=10<A<¢" 0<B<uw};
Vs = {®h,AB):h=1,0<A<z B=uw}.

It is easy to verify that [Vi|+ |Va| + |V3| = m.
The edges are those incident on the selected nodes in the original BIBD, that is, a node v € V

associated with the pair

(aAqg—2 3 ..., QGp 3 0 ; Ap—1 3 e, , @p)
(0)t 0 3 1 3 bh—l I bl) bO):

will be connected to the ¢ output nodes
(ad_Q,...,ah,x,ah_l +x-byp_1,...,a1+x-by,a9 +.Z‘~Sbo)
for every z € Iy, where + and - are operations in the field.

We have to show that the edges are evenly distributed among the outputs.

17

Theorem 5 Any node uw € U is connected to p nodes of V', where

qm qm
w<os |2

{ g J q?
Proof: Let u be associated with the vector (aq_1, ..., ag). We determine the value of p by counting
separately the contributions of the nodes in the three subsets V7, Vo and V3. Consider Vi and fix
h < 1. Using the properties of field operations, one can easily show that for any B, 0 < B < ¢",
there exists exactly one value A such that the node ®(h, A, B) is connected to u. Therefore, there
are exactly Els;lo " = %;_;11 nodes of V] connected to u. A similar arguments shows that exactly w
nodes of V5 are connected to u. Finally, it can be seen that the z nodes of V5 are connected to gz
distinct output nodes, therefore, according to whether u is one of such nodes or not, we have that

either p = %;_;11 +wor p= %;_—_11 + w+ 1. By (11) we conclude that

==l

18

