Second Order Backpropagation —
Efficient Computation of the
Hessian Matrix for Neural
Networks

Raul Rojas *
TR-93-057
28 September 1993

Abstract

Traditional learning methods for neural networks use some kind of
gradient descent in order to determine the network’s weights for a given
task. Some second order learning algorithms deal with a quadratic ap-
proximation of the error function determined from the calculation of the
Hessian matrix, and achieve improved convergence rates in many cases.
We introduce in this paper second order backpropagation, a method to
calculate efficiently the Hessian of a linear network of one-dimensional
functions. This technique can be used to get explicit symbolic expres-
sions or numerical approximations of the Hessian and could be used
in parallel computers to improve second order learning algorithms for
neural networks. It can be of interest also for computer algebra systems.

*Freie Universitat Berlin, Takustr. 9, Berlin 14195

1 Introduction

Traditional learning algorithms for feed-forward neural networks use gradient de-
scent techniques to find a local minimum of the error function and the corresponding
network’s weights. Several authors have proposed going further than the standard
first-order methods by using some kind of second-order approximation to the er-
ror function and appropriate learning algorithms [Battiti 92]. Newton’s method, in
particular, uses this kind of approach. For these and some other reasons, methods
for the determination of the Hessian matrix in the case of multilayered networks
have been studied recently [Bishop 92].

We show in this paper how to compute efficiently the elements of the Hessian
matrix using a graphical approach which reduces the whole problem to a compu-
tation by inspection. Our method is more general than Bishop’s because arbitrary
topologies can be handled. The only restriction that we impose on the network is
that it should contain no cycles, i.e. it should be of the feed-forward type. We first
show how backpropagation itself can be visualized as a graph labeling algorithm,
and how second order partial derivatives can be introduced. The method should
be of interest for researchers who do not want to derive analytically the Hessian
matrix each time the network topology changes and also for practitioners looking
for efficient algorithms for the computation of the Hessian.

This paper is organized as follows: in the second section we give some definitions
and look at the backpropagation algorithm introducing our graphical approach for
first-order methods. In the third section we handle the case of second order deriva-
tives in networks of functions. The next section discusses some examples and the
general case for the computation of the Hessian. We conclude with a discussion of
these results.

2 First order backpropagation

The kind of neural networks we consider are directed graphs without cycles. In-
formation is fed into the network through selected input nodes and flows through
the weighted edges of the graph. All other nodes in the network collect incoming
information additively and compute a one-dimensional function of this input giving
the result off. The result of the computation is produced at the output nodes and
represents a function of the input which we call the network function.

In the learning phase, backpropagation networks are extended by including new
nodes connected to the output nodes in which the current output is compared with
the expected target value and the square of the difference is computed. The sum of
all differences at the additional nodes is collected at another node and the result is
the error function for a single input pattern (Figure 1). We call it an error function
because it depends on the weights selected for the edges of the directed graph.
In a network with n different weights wi, ws, ..., w, the error function for the i-th
pattern will be denoted by F;. The total error function F for all p patterns presented
to the network is just £ = F; 4+ Fa + --- + E,. The backpropagation algorithm
performs gradient descent on the error function trying to find the combination of
weights which minimizes the mean squared error for all patterns. It is thus necessary

Figure 1: Extended neural network

to compute the gradient of the error function

oL 0k ok

The weight corrections are performed according to the updating rule

9B 0B 0B, OE,
Awl a Pya‘wi o 7(8102' + 6102' + 8wi)’

where 7 is a learning parameter. We are thus lead to consider the following problem:
given a neural network and its i-th input, how do we derive the partial derivatives
of F; fori =1,..., p according to each weight in the network?.

Figure 2 shows the most simple case: a composition of two one dimensional
functions f and ¢g. The input to this network is x and we look for the partial
derivative of the network function f(wzg(wi2)) with respect to wy. This is of course
F(wag(wy2))wag' (wiz)z. This result can be computed graphically from Figure 2
by thinking of each node in the network as divided in two parts: the right side stores
the result of the feed-forward computation; the left side stores the derivative of the
node’s function evaluated at the received input. The backpropagation algorithm
amounts just to going backwards multiplicatively collecting all the left sides of the
nodes and transmitting the result through the weighted edges of the network. This
is backpropagation in a nutshell: a node labeling algorithm to efficiently implement
the chain rule of differential calculus. It is evident that the above procedure can be
generalized by induction to any number of nodes connected in sequence.

The only additional case that we have to consider is when there exist several
paths from the output of the network to the weight being considered. Figure 3 shows
such a network. The network function being computed is F'(z) = f1(wz) + fa(wz).
The partial derivative of F' with respect to w is evidently

Figure 2: Function composition

Figure 3: Addition of functions

r
o0 (i) + By,

In this case the backpropagation algorithm just prescribes going from the output
of the network backwards, collecting multiplicatively all left sides of the neurons
found on each possible path up to the weight being considered. At the points
where alternative paths meet again the partial results are added up. Note that
to implement this algorithm only the reversibility of the network is assumed, that
is absence of cycles. Tt is very easy to show [Rojas 93a] that the two rules given
above lead to the same expressions for the backpropagation algorithm in multilayer
networks derived with so much pain in some books. It is only necessary to inspect
the network and collect the necessary terms. The proof by induction that the
method works with any kind of feed-forward network is easy to perform and can be
found in [Rojas 93b].

We need a little bit of additional notation in order to describe first and second

order backpropagation. We will label the weights in a network consecutively, just
like w1, wa, ..., wy,. The nodes of the network will be labeled in the same manner.
But we will refer also to weight w;;, meaning the weight associated with the edge
between node ¢ and node j. Both forms of labeling will be used concurrently. This
helps to avoid notational clutter.

Note that in a feed-forward network for every input pattern not only an output
node produces a result F' which is a function of the network’s weights, but also
every single node in the network computes a subnetwork function. We will call the
subnetwork function computed by the :-th node just F;. At the tip of an edge w;;
going from node ¢ to node j the subnetwork function Fj; = w; F; is computed. We
can look at any subnetwork function F;; in a neural network, select a weight wy,, and
compute 0F;; /0wy. We call the union of all paths going backward from the point
where Fj; is produced to the edge with associated weight wy the backpropagation
path between these two points, and the result of doing backpropagation over this
path its backpropagation path value.

Summarizing: the backpropagation algorithm can be reduced to the following
prescription:

o Feed-forward step: transport information through the network and compute
at each node its associated one-dimensional function f and its derivative f’.
Store the first value on the right side of the node and the second on the left
side.

e Backpropagation: from the network’s output node, with network function F,
being considered go back to the selected weight w;r. To compute OF /0w
collect multiplicatively all left sides of the nodes found on the backward path.
When a backward path splits, follow each path independently using the partial
result accumulated so far. When backward paths meet add the partial results
for each path and continue. Multiply finally with F; (the input to the edge
with weight w;y)

3 Second order derivatives

Now we set the stakes higher and investigate the case of second order derivatives,
that is expressions of the form §?F/dw;dw;, where F is the network function as
before and w; and w; are network’s weights. We can think of each weight as a small
potentiometer and we want to find out what happens to the network function when
the resistivity of both potentiometers is varied.

Figure 4 shows the general case. Let us assume without loss of generality that
the input to the network is the one-dimensional value #. The network function F is
computed at the output node with label ¢ (shown shaded) for the given input value.
We can think of the inputs to the output node also as network functions computed by
subnetworks of the original network. Let us call these functions Fy, g, Fr,q, ..., Fr,.q-
If the one-dimensional function at the output node is ¢, the network function is the
composition

F(2) = g(Feiq(2) + Frog(2) + -+ Fepg(2))

We are interested in computing 9 F(z)/dw;0w; for two given network weights w;

Figure 4: Second order calculation

and w;. Simple differential calculus tells us that

LW@ D haln
8wi8wj 6wi 8wj
62F4 (l’?) ang (I)
! 14 . m 4
+ g (S)(6wi8wj + + &wiawj

where s = Fpq(2) + Fe,q(2) + ... + Fy, o(z). This means that the desired second
order partial derivative consists of two terms: the first one is the second derivative
of g evaluated at its input multiplied with the partial derivatives of the sum of
the m subnetwork functions Fy,,, ..., Fe, 4, once with respect to w; and once with
respect to w;. The second term is the first derivative of g multiplied with the sum
of the second order partial derivatives of each subnetwork function with respect to
w; and w;. We call this term the second order correction. The recursive structure
of the problem is immediately obvious. We already have an algorithm to compute
the first partial derivatives of any network function with respect to a weight. We
just need to use the above expression in a recursive manner to obtain the second
order derivatives we want.

We thus extend the feed-forward labeling phase of the backpropagation algo-
rithm in the following manner: at each node which computes a one-dimensional
function f we will store three values: f(z), f'(x) and f”(z), where x represents the
input to this node. When looking for the second order derivatives we apply the
recursive strategy given above.

4 Examples of second-order backpropagation

Consider the network shown in Figure 5, commonly used to compute the XOR
function. The left node is labeled 1, the right node is labeled 2. The input values
xz and y are kept fixed and we are interested in the second order partial derivative

Figure 5: A two neuron network

of the network function Fy(x,y) with respect to the weights w; and ws. By mere
inspection and using the recursive method mentioned above, we see that the first
term of 92 Fy /0w, 0w, is the expression

9" (w3z 4+ w5y + waf(wrz + way))(wa f' (w12 + way)z)(wa f' (w12 + way)y).

In this expression (w4f’'(w1z + way)z) is the backpropagation path value from the
output of the node which computes the function f, including the multiplication
with the weight w4 (that is the subnetwork function w4F), up to the weight w;.
The term (w4 f'(wi2 + way)y) is the result of backpropagation for wsFy up to wa.
The second order correction needed for the computation of 92 Fy/dw;0ws is

62'lU4F1
l M)’ p P M - p P .
g (w3r + wsy + wa f(wiz + wzy))iawlaw2
Since it 1s obvious that
(92w4F1 62F1 7
Hwidws wa HwiOwy waf"(wiz + way)zy

we finally get

92 F
ﬁ = ¢"(wsr + wsy + waf(wrx + way))(wa f (w1 + way)z)(waf' (wiz + way)y)
10W3
+ ¢'(wsz + wsy + wa f(w1z + way))wa f' (w1 + way)zy.
The reader can wisually check the following expression:

02 Fy

Buwrduws ~ ¢ (st wsy t waf(wiz + way))(waf(wiz + way)e)y.

In this case no second order correction is needed, since the backpropagation paths
up to w1 and ws do not intersect. What is the general strategy to make these kind
of computations? Figure 6 shows the main idea:

e Perform the feed-forward labeling step in the usual manner, but store addi-
tionally at each node the second derivative of the node’s function evaluated
at its input

Figure 6: Intersecting paths to a node

o Select two weights w; and w; and an output node whose associated network
function we want to derive. The second order partial derivative of the network
function with respect to these weights is: the product of the stored ¢” value
with the backpropagation path value from the output node up to weight w;
and with the backpropagation path value from the output node up to weight
wj. If the backpropagation path for w; and w; intersect, a second order
correction is needed which is equal to the stored value of ¢’ multiplied with the
sum of the second order derivative with respect to w; and wj; of all subnetwork
function inputs to the node which belong to intersecting paths.

This looks like an intricate rule, but it is again the chain rule for second order
derivatives expressed in a recursive manner. Consider the multilayer perceptron
shown in Figure 7. A weight w;p, in the first layer of weights and a weight w;,, in
the second layer can only interact at the output node m. The second derivative
of F,, with respect to w;; and wj, is just the stored value f” multiplied with the
stored output of the hidden neuron j and the backpropagation path up to w;j, that
is wpmh'z;. Since the backpropagation paths for w;, and wj,, do not intersect this
is the required expression. This is also the expression found analytically by Bishop
[1993]

In the case that one weight lies in the backpropagation path of another a simple
adjustment has to be done. Let us assume that weight w;;, lies in the backpropaga-
tion path of weight w;. The second order backpropagation algorithm is performed
as usual and the backward computation proceeds up to the point where weight
w;, transports an input to a node & for which a second order correction is needed.
Figure 8 shows the situation. The information transported through the edge with
weight w;y is the subnetwork function Fjj. The second order correction for the node
with primitive function g is

’ 82Fik ' 82wikFi

9 6wik8wj =9 awikawj -

but this is simply
, OF;

8w]'

Figure 7: Multilayer perceptron

since the subnetwork function F; does not depend on w;;. Thus, the second order
backpropagation method must be complemented by the following rule:

5

If the second order correction to a node k with activation function ¢ involves
a weight w;p (that is, a weight directly affecting node k) and a node wj, the
second order correction is just ¢’ multiplied with the backpropagation path
value of the subnetwork function F; with respect to w;.

Explicit calculation of the Hessian

For the benefit of the reader we put together in this section all the pieces of what we
call second order backpropagation. We consider the case of a single input pattern
into the network, since the more general case is easy to handle.

Second order backpropagation

Extend the neural network by adding nodes which compute the squared differ-
ence of each component of the output and the expected target values. Collect
all this differences at a single node, whose output is the error function of the
network. The activation function of this node is the identity.

Label all nodes in the feed-forward phase with the result of computing f(z),
f'(xz) and f"(z), where x represents the global input to each node and f its
associated activation function.

Starting from the error function node in the extended network, compute the
second order derivative of F with respect to two weights w; and wj, by pro-
ceeding recursively in the following way.

— The second order derivative of the output of a node G with activation
function g with respect to two weights w; and w; is the product of the

Figure 8: The special case

stored g"" value with the backpropagation path values between w; and
the node G and between w; and the node GG. A second order correction
is needed if both backpropagation paths intersect.

— The second order correction is equal to the product of the stored g’ value
with the sum of the second order derivative (with respect to w; and wj)
of each node whose output goes directly to G and which belongs to the
intersection of the backpropagation paths of w; and w;.

— In the special case that one of the weights, for example, w; connects
node h directly to node G, the second order correction is just g’ multiplied
with the backpropagation path value of the subnetwork function Fj with
respect to wj.

A final example is the calculation of the whole Hessian matrix for the network
shown in the previous section (Figure 5). We omit the error function expansion and
compute the Hessian of the network function Fy with respect to the five network’s
weights. The labelings of the nodes are f, f’, and f” computed over the input
w1z + way, and g, ¢', ¢" computed over the input wyf(wiz + way) + wzz + wsy.
Under this assumptions the components of the upper triangular part of the Hessian
are the following:

Hi = g"wif”e® + g'waf"e?
Hyy = g”'wifﬂ;lf + g waf"y’
Hss = g'2°

Hy = ¢'f?

Hss = ¢"y

Hi = g"wif’zy+gwif'zy
Hizs = g¢"waf'2”

Hyy = g'wsf'zf+4¢'fx

His = g¢"wsf'zy

Hyz = g"waf'yzx

Hyy = g¢"waf'yf+4'f'y
Hys = g¢"waf'y’

Hsy = g'af

Hss = g"xy

Hy = g"yf

All these results were obtained by simple inspection of the network shown in
Figure 5. Note that the method is totally general, in the sense that each node can
compute a different activation function.

6 Conclusions

We have shown in this paper how to compute the Hessian matrix in an efficient way
by mere inspection of the neural network being considered. With some experience
it is easy to compute the Hessian even for convoluted feed-forward topologies. This
can be done either symbolically or numerically. The importance of this result lies
in that once the recursive strategy has been defined it is easy to implement it in a
computer. It is the same kind of difference as the one existing between the chain rule
and the backpropagation algorithm. The first one gives us the same result as the
second, but backpropagation tries to organize the data in such a way that redundant
computations are avoided. This can be done also for the method described in this
paper. The calculation of the Hessian matrix involves the repeated computation of
the same terms. The network itself provides us in this case with a data structure in
which we can store partial results and with which we can organize the computation.
This explains why standard and second order backpropagation are also of interest for
computer algebra systems. It is not very difficult to program the method described
here in a way that minimizes the number of arithmetic operations needed. The
key observation is that the backpropagation path values can be stored to be used
repetitively and that the nodes in which the backpropagation paths of different
weights intersect need to be calculated only once. It is then possible to optimize
the computation of the Hessian using graph traversing algorithms.

A final observation is that computing the diagonal of the Hessian matrix involves
only local communication in a neural network. Since the backpropagation path to
a weight intersects itself in its whole length, the computation of the second partial
derivative of the associated network function of an output neuron with respect to a
given weight can be organized as a recursive backward computation over this path.
Pseudo-Newton methods [Becker, le Cun 89] used by some learning algorithms can
profit from this computational locality.

References

[Battiti 92] Roberto Battiti, “First- and Second-Order Methods for Learn-
ing: Between Steepest Descent and Newton’s Method”, Neural
Computation, Vol. 4, 1992, pp. 141-166.

10

[Becker, le Cun 89] Sue Becker and Yann le Cun, “Improving the Convergence

[Bishop 92]

[Rojas 93a]

[Rojas 93b]

of Back-Propagation Learning with Second Order Methods”,
in: D. Touretzky, G. Hinton and T. Sejnowski (eds.), Proceed-
ings of the 1988 Connectionist Models Summer School, Morgan
Kaufmann Publishers, 1989.

Chris Bishop, “Exact Calculation of the Hessian Matrix for the
Multilayer Perceptron”, Neural Computation, Vol. 4, 1992, pp.
494-501.

Raul Rojas, Theorie der neuronalen Netze, Springer-Verlag,

Berlin, 1993.

Raul Rojas, “A Graphical Proof of the Backpropagation Learn-
ing Algorithm”, in V. Malyshkin (ed.), Parallel Computing
Technologies, PACT 93, Obninsk, 1993.

11

