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Theorem 7 The algorithm of section 2 with the self-tester incorporated runs in time poly-
nomial in n,e1 and log 6~ and satisfies properties (i)-(iii) above. O

It is worth noting that, while the primary motivation for the self-tester is to check the
unverified conjecture C2, this idea could greatly increase the efficiency of the algorithm even
if conjecture C2 were proven for some polynomial g. The self-tester is computing a close
estimate for a,,, so that simulating the Markov chain for about O(n%a;!) steps is sufficient
to allow us to sample from close to the stationary distribution. This might be far more
efficient than basing the number of simulation steps on some proven, but potentially loose,
upper bound g(n).

The idea of a tester has been used before, but in a much more restrictive sense. For
example, Berretti and Sokal propose testing possible “errors in scaling” due to the conjecture
that f(n) ~ An?~! by trying other specific polynomial forms for f(n) [2]. This gives
evidence that f(n) might be of the correct form, but falls short of proving it probabilistically.
In contrast, the tester we present is designed to verify exactly the conjecture we require,
and therefore offers precisely quantified statistical evidence that our algorithm is operating
as we expect.

4 Open questions

Our most obvious open problem is verifying conjecture C2. This would constitute a sub-
stantial breakthrough in the classical theory of self-avoiding walks. However, it is less well
studied than conjecture C1, and its more elementary combinatorial nature should make this
task more feasible. Resolving either of the conjectures would result in the first provably
polynomial time Monte Carlo approximation algorithms for self-avoiding walks.

Another direction is to find other natural problems that can be approached using the
Monte Carlo techniques described in this paper. For example, matchings in lattices can be
uniformly generated using a Markov chain based on a similar sub-Cayley tree, and again
the efficiency of the algorithm rests on a single combinatorial assumption. Unfortunately,
however, unlike conjecture C2, in this case the analogous conjecture seems unlikely to be
true. Nevertheless, perhaps it is possible to further adapt the algorithm so that it works in
this context.

Finally, we predict that there are other applications in which the type of self-testing
described in this paper can be used to convert heuristics into robust algorithms. It would
be interesting to explore the generality of this method for testing a conjecture in the region
where it is sufficient to verify the correctness of an algorithm.
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guarantee that the algorithm is correct, independent of conjecture C2. Moreover, by exam-
ining the growth rate of successive values !, we can simultaneously fest conjecture C2.
The algorithm will proceed successfully for as long as we never exceed some projected upper
bound g(n) on a;!; however, should a,;! grow too quickly we will detect this fact and we
will have found a counter-example to the conjecture.

More precisely, after each stage n of the algorithm of the previous section, we use the
procedure shown in figure 2 to compute a quantity &, such that, with high probability,
a,/4 < @, < a,. Then we use the conservative estimate a;' in place of a;! when
computing the mixing time of the Markov chain M, from theorem 5. We also test con-
jecture C2 by comparing our estimates a;! at each stage with (a constant multiple of)
the projected polynomial upper bound g(n). The algorithm with the self-tester has the

following properties:

(i) if a;t < g(n) (i.e., C2 holds), then the algorithm outputs a reliable numerical
answer;

(ii) if a;! > 4g(n) (i.e., C2 fails “badly”), then the algorithm outputs an error
message;

(iii) if g(n) < a;! < 4g(n) then the algorithm either outputs an error message or
outputs a reliable numerical answer.

In every case the algorithm runs in polynomial time, and any numerical answer which is
output is reliable with high probability.

Qp, = Qp_q
for:=1,2,...,n do
repeat ¢ times
generate u; € S;
generate v; € S,_;
1 if u; extends v; to make a self-avoiding walk;

X, = .
g 0 otherwise

Qni = Zz Xz/t

G, = min{ay, qn,i/2}
if a;! > 4g(n) then output “Warning: conjecture fails”
else continue

Figure 2: The self-tester

Our method for computing the estimate @, again uses random sampling from the sta-
tionary distribution of the Markov chain M,,. The idea is to generate self-avoiding walks
of lengths ¢ and n — ¢ uniformly at random, and thus estimate the probability that such a
pair can be glued together to form a self-avoiding walk of length n. The details are given
in figure 2. Elementary statistics show that the sample size ¢ required to ensure that the
estimate ¢, is within the bounds specified above with high probability is a polynomial
function of n, so the self-testing portion of the algorithm also runs in polynomial time.
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the algorithm of figure 1, we abort in the unlikely event that the sample does not contain
enough walks of length n — 1.
Summarizing this discussion, we get:

Lemma 6 In the algorithm of figure 1, assuming that stages 1,2,...,n — 1 are good,
stage n is good with probability at least (1 — §/2n?), provided T,, > cn?e~?(logn + log6~1)
for a suitable constant ¢ (which depends on the dimension d). O

The runtime of stage n of the algorithm is dominated by 2nT, = 2cn3¢=2(logn +
log 6—1) times the time required to produce a single sample from M,,_;. From our analysis
in the previous subsection (theorem 5), this latter time is O (n%a;!(logn 4 loge~!)) for
any fixed dimension d.®> Run to the nth stage, the algorithm is therefore an approxima-
tion scheme satisfying the requirements of theorem 1. By the same reasoning, simulating
the Markov chain M, for O (n?a;!(logn +loge=1)) steps gives us the almost uniform
generator claimed in theorem 1.

3 Making the algorithm self-testing

In this section we show how to place the algorithm of the previous section on a firmer
theoretical base by replacing our assumption of conjecture C2 by an algorithmic test of the
conjecture. This is a particular instance of what we believe is a generally useful idea of
using self-testing to make an algorithm whose correctness depends on a conjecture more
robust.

Recall that we have reduced the problem of constructing polynomial time approximation
algorithms for self-avoiding walks to that of verifying a single widely believed conjecture
about the behavior of the walks. An important feature of this reduction is the structure
of the conjecture. Conjecture C2 bounds the probability that one can glue together two
random self-avoiding walks to produce a new self-avoiding walk; since the algorithm also
lets us generate random self-avoiding walks, we can actually estimate this probability. This
allows us to verify the conjecture, and therefore the algorithm itself, for a new value of n
by using the algorithm in the region in which it has already been tested. This is precisely
the idea behind the self-tester which we introduce in this section.

We showed in the last section how to construct a sequence of Markov chains for uniformly
generating and counting self-avoiding walks of successively longer lengths. The runtime of
these algorithms is polynomial in the walk length n and the unknown parameter a;!;
this quantity enters into the time bound because it governs the mixing time of the Markov
chains (see theorem 5). We then appealed to conjecture C2 to argue that a;! is itself
polynomially bounded in n. The idea behind the self-tester is to obtain a good estimate
for a;! in advance, so that we know how long to simulate our Markov chains to ensure our
samples are sufficiently close to the stationary distribution. This will give us a probabilistic

#Once again, we should point out that the analysis of theorem 5 refers to the idealized Markov chain in
which all values @; are exact. However, it is a simple matter to check that, assuming all stages are good,
the effect on the mixing time of these small perturbations of the ; is at most a constant factor.
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G =1/2d; ¢ = 2d
for n = 2,3,4,... do
using M, _q, generate a sample of size 2nT,, from
(approximately) the distribution 7,_; over X},
let Y be the subset of walks in the sample that
have length n — 1
if |Y| < 7T, then abort
else set 3, = |Y|/(XC ey {w' € Sn : w' is an extension of w}|)
output ¢, = ¢,_1/5n

Figure 1: The algorithm

The algorithm, which is spelled out in detail in figure 1, works in a sequence of stages,
corresponding to the iterations of the for-loop. Let the accuracy and confidence inputs to
the algorithm be ¢ and é respectively. We call stage n of the algorithm good if it runs
to completion and computes a value /3, that approximates the value ¢,_1 /¢, within ratio
(1 + ¢/4n?). The algorithm is designed so that, assuming all previous stages 1,2,...,n — 1
are good, stage n will be good with probability at least (1 — §/2n?). The reason for
this requirement is the following. If all stages 1,2,...,n are good, then the value ¢, =
| = ﬁi_l output by the algorithm at the end of stage n approximates [[j; ==

=1 Ci—1

= C?'L
within ratio []7;(1 + €/4i?) < 1 + ¢; moreover, this happens with probability at least
[T-1(1 —§6/2:2) > 1 — 4. Thus we get a randomized approximation scheme for ¢, , which
was one of our principal goals. Moreover, by the end of stage n we have computed values 3,
for 1 < i < n; thus we have constructed a Markov chain M, which we can simulate to
generate random self-avoiding walks of any length up to n. This was our second principal
goal.

Let us consider the operation of stage n in detail. To compute a good approxima-
tion /3, of the ratio ¢,_1/¢,, we randomly sample walks of length n — 1 using the Markov
chain M,,_1 and calculate the average number of extensions of a walk. (An eztension of a
walk w is a walk w’ such that w < w’ and |w’| = |w|+ 1.) We can compute the number
of extensions of w by explicitly checking each of the 2d — 1 possibilities. The sample size
in this experiment is controlled by the parameter T,,. Elementary statistical calculations
show that T, need not be very large in order obtain a good estimate with sufficiently high
probability. Since we are in fact sampling from the larger set X,_1, we need to generate
a sample of size 2nT,, to ensure that, with high probability, we get at least 7T, walks of
length n — 1; that this sample is large enough follows from the fact that, by (3), in the
stationary distribution of the chain M,_; walks of length n — 1 have weight 1/n.2 In

2 Actually the Markov chain we are simulating here is not precisely that analyzed in sections 2.1 and 2.2,
since the parameters 3; will differ slightly from their ideal values. However, it should be clear from lemma 3
that the stationary distribution is always uniform within each level of the tree, and that, if all previous
stages are good, then the distribution over levels of the tree differs from the uniform distribution by at most
a constant factor.
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Now let e be any edge of the tree, and suppose the endpoints of e are a walk w
of length k& and a walk w’ of length k£ + 1. Let S be the subtree rooted at w’, and
S = X, — 5. Since e is a cut edge, it is clear that (4) becomes

p(T) = max Q(e)™m(5)ma(S). (5)

In what follows we will make essential use of the fact that the tree defining M, is a sub-
Cayley tree, so that the number of vertices at level [ in any subtree is bounded above by
the total number of vertices at level [ of the whole tree. This is evident since any initial
segment of a self-avoiding walk is also self-avoiding.

Now we have )

Qe) = (0 Pulw' w) = g

and

T(9) = D ()

wrw!
n 1
= > o Hw = @] = )
j=k+1 777
1 n Ck+1
= 2 Mz ] =g}
nCk+l gy
n
1 Ck41Cj—k—1
T ZnCrir =kl €
n
<0
chk+1an

where the first inequality follows from the sub-Cayley property of the tree. Putting this
together, we see that Q(e)~'m,(9)ma(S) < Q(e)™'mn(9) < 2dna;!. Since e was arbitrary,
(5) now gives us the required upper bound on p(I'). a

Remark. A similar bound on the mixing time of the Berretti-Sokal Markov chain was
obtained using ad-hoc methods by Sokal and Thomas [20]. Again the essential feature that
makes the argument work is the sub-Cayley property of the tree underlying the chain. A
rather weaker bound was obtained by Lawler and Sokal [14], using the discrete Cheeger
inequality or conductance. This latter proof is very similar in spirit to the one above;
essentially, the effect is to replace p by p? in the bound of theorem 4. O

2.3 The overall algorithm

Our analysis so far has assumed that the parameters 3, governing the transition probabil-
ities of the Markov chains satisfy 3, = ¢,_1/¢, for each n. However, these values are not
available to us; in fact, calculating the quantities ¢, is one of our main objectives. Instead,
our overall algorithm computes estimates of these ideal values ¢,,_; /¢, for each n in turn,
using the previous Markov chain M,,_; .



Now for each ordered pair of distinct vertices 2,y € X, we specify a canonical path v,
in the graph G from z to y. Then, for any such collection of paths I' = {74, : 2,y €
X,z # y}, define

1) = max s 3 w(w)x() (4)

RETEL

where the maximization is over oriented edges e. Thus p measures the maximum loading
of any edge e by paths in I' as a fraction of its capacity )(e), where the path from z to y
carries “flow” m(z)m(y). Note that the existence of a collection of paths I' for which p(T")
is small implies an absence of bottlenecks in the graph, and hence suggests that the Markov
chain should be rapidly mixing. This intuition can be formalized and a bound obtained
on the mixing time in terms of the quantity p = minrp p(T'), using the conductance [19].
However, we can get a slightly sharper bound in this case by following an idea in [5] and
using the alternative measure p = minr p(I'){(T"), where {(I') is the maximum length of
a path in I'. The appropriate version of this bound can be found in [18] and is stated
precisely in the theorem below.

As a measure of rate of convergence, let P!(z,-) be the probability distribution of the
Markov chain at time ¢, starting in state z, and for € € (0,1) define

7e(€) = min{t : [|P'(z, )= 7| < e V' > 1},
Here || - || denotes variation distance.

Theorem 4 [18] For an ergodic, reversible Markov chain with stationary distribution T,
we have

T(€) < Kﬁ(log m(2)™' + log 6_1),

where K is a universal constant. 0

We now use theorem 4 to show that the mixing time of the Markov chain M, can
be bounded in terms of the quantity a, defined at the beginning of section 2. Assuming
conjecture C2, this will imply that the Markov chain is rapidly mixing. For simplicity we
will work with the idealized version of M, discussed at the end of section 2.1, in which
each f; is exactly equal to ¢;_1/¢;. It should be clear that our analysis is not unduly
sensitive to small perturbations in the values of the ;.

Theorem 5 For the Markov chain M, , starting at the empty walk 0, we have
To(€) < Kdn’a ! (log n + log e_l)
for some constant K .

Proof. From (3) we have that 7,(0) = 1/(n+ 1). Also, since the graph corresponding
to the Markov chain M, is a tree, there is only one choice of (simple) paths between each
pair of vertices; we will denote this collection of paths I' = {y.,}. Since the depth of the
tree is n, we have {(I') = 2n. Therefore, the result will follow from theorem 4 if we can
show that p(T') < K'dna;! for some constant K'.



Proof. It suffices to show that the chain is reversible with respect to the distribution =, ,
i.e., that it satisfies the detailed balance condition

To(w)Po(w,w') = mp(w')Py(w',w)  Yw,w' € X,. (2)
This is readily verified from the definition (1) of P, . O

Note that the stationary distribution is always uniform over all walks of a given length,
for any choice of values of the parameters 3;. However, by choosing the 3; carefully we
can achieve a distribution over lengths which assigns sufficiently high weight to S, . Ideally,
the value we want for /3; is the ratio ¢;_1/¢;. Of course, this is unrealistic since we do not
know the quantities ¢;_y and ¢;, but we will see in section 2.3 how to compute a good
approximation to these ideal values. For the moment we consider the ideal behavior of the
Markov chain assuming that each f; is equal to ¢;—1/¢;.

Under this assumption, lemma 3 says that the stationary probability of any walk w € A,
is
1 Mo
c; Zn €|

(3)
=1
Thus the stationary distribution is uniform over lengths, and the probability of being at a
walk of length ¢ is 1/Z, = 1/(n+ 1) for each ¢. This means that the Markov chain M,
has the first of the two properties identified in section 1.3 that are required for the Monte
Carlo approach to be effective: the stationary distribution is reasonably well concentrated
on &,, and uniform over §,. We may therefore, at least in principle, generate random
self-avoiding walks of length n by simulating M, , starting with (say) the empty walk, until
it has reached equilibrium, and outputting the final state if it has length n. The next
subsection quantifies the simulation time required to do this, which is a key component of
the runtime of our algorithm.

2.2 The mixing time

The question of how many simulation steps are required to produce a sample from a distri-
bution that is very close to m, is precisely that of how long it takes for the Markov chain
to get close to equilibrium. This is often referred to as the mizing time. Note that, if
the overall running time of our algorithm is to be polynomial in n, the Markov chain M,
should be rapidly mizing, in the sense that its mixing time is very small compared to the
number of states (which grows exponentially with n).

In recent years several useful analytical tools have been devised for analyzing the mixing
time of complex Markov chains of this kind. In this paper we make use of the idea of
“canonical paths”, first developed in [11, 17]. Consider an ergodic, reversible Markov chain
with state space X, transition probabilities P and stationary distribution 7. We can
view the chain as a weighted undirected graph (G with vertex set X and an edge between
each pair of vertices (states) z,y for which P(z,y) > 0. We give each oriented edge
e = (z,y) a “capacity” Q(e) = Q(z,y) = w(z)P(z,y); note that, by detailed balance (2),
Q(z,y) = Qy,z).



2.1 The Markov chain

As indicated in section 1.2, we consider a Markov chain that explores the space of self-
avoiding walks by letting a walk expand and contract randomly over time, under the in-
fluence of a weighting parameter . Rather than working with a single Markov chain and
a global value of the parameter 3, we incrementally construct Markov chains My, Mo, .. .,
the nth of which, M, , has as its state space the set X, = [JiLyS; of all self-avoiding
walks of length at most n. The transition probabilities in M,, depend on parameters
By ey Bn € (0,1), discussed below.

Transitions in the Markov chain M, are defined as follows. In state w € A),, a self-
avoiding walk of length ¢ < n, choose one of the 2d edges incident to the free endpoint
of w uniformly at random. If the chosen edge coincides with the last step of w, remove this
last edge from w. If the chosen edge extends w to a walk which is self-avoiding and has
length at most n, add the edge to w with probability 3;4;. Otherwise, leave w unchanged.
More precisely, define the partial order < on the set of all self-avoiding walks by w < w’
if and only if |w| < |w’| and the first |w| steps of w’ coincide with w. Then the transition
probabilities P, of the Markov chain M, are defined by

Bjuri/2d, if lw|+1 = |w'| and w < w’;
1/2d, if jw| = |w'| 4+ 1 and w’ < w;
r(w), ifw = w;
0, otherwise,

P (w,w") = (1)

where r(w) is the remaining probability and w,w’ are in the state space X, (i.e., |w|, |w'| <

Note that we may view M, as a weighted random walk on the tree defined by the partial
order <. This tree has the trivial walk of length 0 at the root, and the children of walk w
are walks w’ with |w'| = |w|+ 1 and w < w’. Thus the tree has n + 1 levels, the ith of
which contains all walks of length ¢ — 1. The transition probability from any state to its
parent is 1/2d, and from a state at level i to each of its children is f;411/2d. In the case
that 8y = ... = 8, ~ p~! this is just the Markov chain used by Berretti and Sokal [2], but
truncated at level n.

It is evident that the Markov chain M, is irreducible (all states communicate) and
aperiodic. This implies that it is ergodic, i.e., it converges asymptotically to a well-defined
equilibrium or stationary distribution 7, over X,,. Thus,if P!(z,w) denotes the probability
that the chain is in state w after ¢t steps starting in some specified initial state z, then
Pl(z,w) — m,(w) as t — oo, forevery w € A,. It is straightforward to show the following;:

Lemma 8 The stationary distribution 7, of the Markov chain M, is given by

1

T (w) = 7 Hﬂ“ for w € X,
=1

where 7, is a normalizing factor.



2 The algorithm

First let us make more precise the properties we want our algorithms to have.

Definition. (i) A randomized approzimation scheme for the number of self-avoiding
walks in some fixed dimension d is a probabilistic algorithm which, on input n, and €,6 €
(0,1), outputs a number ' such that Pr{c,(1 4+ ¢)~! < é < ¢, (1 +€)} > 1 —§. The
approximation scheme is fully-polynomial if it is guaranteed to run in time polynomial in
n, €', and log 6-1.

(i1) An almost uniform generator for self-avoiding walks is a probabilistic algorithm which,
on input n and € € (0,1), outputs a self-avoiding walk of length n with probability at
least 1/g(n) for a fixed polynomial ¢, such that the conditional probability distribution
over walks of length n has variation distance at most ¢ from the uniform distribution. The
generator is fully-polynomial if it runs in time polynomial in n and loge™!. 0

The following quantity associated with self-avoiding walks will play an important role
in what follows. For a fixed dimension d and each n, define
Citk

a, = min .
J+k<n Cjck

For fixed 57 and k, CC]]JE: represents the probability that a random self-avoiding walk of

length j and a random self-avoiding walk of length k& can be “glued” together to form a
self-avoiding walk of length j + k. Note that conjecture C2 says precisely that a,, > g(n)™!

for a polynomial ¢ (which may depend on the dimension d).

Theorem 1 There is a randomized approximation scheme and an almost uniform gener-
ator for self-avoiding walks in any fized dimension d, which run in times polynomial in
n,e 1 logé~1 and a;' and polynomial in n,loge™! and o' respectively.

Since conjecture C2 claims that a,, > ¢(n)~! for a polynomial g, the following corollary
is immediate.

Corollary 2 Assuming conjecture C2, there is a fully-polynomial randomized approxima-
tion scheme and a fully-polynomial almost uniform generator for self-avoiding walks in any
fized dimension d. 0

The approximation scheme is based on randomly sampling walks of length n using
Monte Carlo simulation of a series of successively larger Markov chains My, ..., M,. In
section 2.1 we define the nth Markov chain M, , and in section 2.2 we derive a bound on its
rate of convergence to stationarity. With this machinery in place, in section 2.3 we specify
the overall algorithm and analyze its runtime, thus proving theorem 1.



strong evidence (in the form of a counterexample) that the conjecture is false, or we will
know that we can trust our simulations. This notion of self-testing, which either gives
us confidence in our results or warns us that they may be erroneous, has been previously
explored in the context of program checking (see, e.g., [3]).

The conjecture we require is the following, for a given dimension d:
for some fixed polynomial ¢, ¢,¢m < Cpym g(n+m) Vn,m. (C2)

This conjecture says that, if we choose random self-avoiding walks of lengths n and m, then
with non-negligible probability we can glue the walks together to produce a self-avoiding
walk of length n + m. Conjecture C2 is no more restrictive than conjecture C1, on which
previous Monte Carlo methods, including that of Berretti and Sokal, rely. To see this, note

y—1
that ¢, ~ Au"n?~1 implies fatm ~ A nﬂ_—mm) < A(2tm)7=1. Thus conjecture C2 is

also widely believed to hold for a specified polynomial ¢ which depends on the dimension
(see [15]).

The behavior of our algorithm may now be stated more precisely as follows. Fix a
dimension d and a polynomial ¢, and suppose first that conjecture C2 holds. Then, on
inputs €, € (0,1), the algorithm outputs a sequence of numbers ¢;,¢,,¢s, ..., such that,
for each n, the time to output ¢, is a polynomial function of n, ¢~! and logé~' and, with
probability at least (1 — §), ¢, approximates ¢, within ratio (14 €). An algorithm with
this behavior is an example of a fully-polynomial randomized approzimation scheme [12] for
the number of self-avoiding walks. If, on the other hand, the conjecture happens to fail
for some value n = ng, then with high probability an error will be reported and we will
know that the algorithm is reliable in the region previously explored (i.e., for n < ng), but
may be unreliable for larger values of n. Moreover, in this case the algorithm will actually
have discovered a counter-example to the conjecture, which would in itself be of substantial
interest in the theory of self-avoiding walks. The details of the self-tester are described
explicitly in section 3. Note that, in the presence of the self-tester, the answers output by
our algorithm are always correct (with high probability), and the algorithm is guaranteed
always to run in polynomial time.

The algorithm is in fact more flexible and can be used in addition to solve problem (ii)
of section 1.1 by generating random self-avoiding walks of any specified length in the region
where conjecture C2 holds: once the algorithm has output ¢, , it provides a method for gen-
erating, in time polynomial in n and log ="', a random self-avoiding walk of length n from
a distribution whose variation distance from the uniform distribution is at most 6. Such an
algorithm is called a fully-polynomial almost uniform generator [12] for self-avoiding walks,
and can be used in the obvious fashion to obtain good statistical estimates in polynomial
time of quantities such as the mean-square displacement.

In section 2 we present an approximation algorithm which works assuming conjecture C2.
In section 3 we show how to make the algorithm robust by adding a self-tester to verify the
conjecture.



single parameter 3 < 1 to control the relative probabilities of extending or contracting the
walk by one edge. Given a walk of length 7, one of the 2d lattice edges incident to the free
endpoint of the walk is chosen with equal probability. If the edge extends the walk so as
to be self-avoiding, then it is added with probability 3; if the edge is the last edge of the
walk, then it is removed; otherwise, nothing is done.? Assuming conjecture C1, Berretti
and Sokal argue that, for any given value of n, taking / sufficiently close to (but smaller
than) p~=', where p is the connective constant, ensures that the stationary distribution
assigns reasonably high weight (i.e., 1/¢(n) for some polynomial ¢) to S,,. Furthermore,
again assuming conjecture C1, Sokal and Thomas [20] (see also [14]) argue that with such
values of 3 the Markov chain is rapidly mizing, i.e., it gets very close to stationarity after
a number of steps that is only polynomial in n. In order to appreciate the role of 3 here,
consider a truncated version of this Markov chain in which the length of a walk is never
allowed to exceed n, so that the stationary distribution is always defined; if 3 is too much
smaller than ="' then we will only generate short walks, while if 3 is too much larger, then
the Markov chain will not backtrack often enough and consequently will take a long time
to reach stationarity. Thus S must be very carefully chosen. Berretti and Sokal perform
their experiments by “fine-tuning” 5 and observing the Markov chain until the observations
suggest that 3 is sufficiently close to p~!.

Berretti and Sokal’s algorithm suffers from two drawbacks. First, we must assume
conjecture C1 (or something similar) in order to bound the time required before the Markov
chain reaches stationarity. Aslong as conjecture C1 remains open, there is no guarantee that
the algorithm produces reliable answers in polynomial time. Second, in order to implement
the algorithm it is necessary to have a good estimate of u already, since 3 needs to be
taken a little smaller than p~'. This leads to circularity, since determining u is one of
the principal goals of the algorithm. While many similar Monte Carlo algorithms have
been used to study self-avoiding walks (see Chapter 9 of [15] for a summary), all of these
apparently suffer from a similar lack of rigorous justification, and thus offer no guarantee
that their results are reliable.

1.3 Our results

In this paper we develop a Monte Carlo algorithm for self-avoiding walks by modifying the
Markov chain used by Berretti and Sokal so as to overcome the difficulties discussed in
the last subsection. We make two elementary but important innovations. First, we allow
the parameter 3 to vary at each level of the Markov chain (i.e., we let 5 depend on the
length of the walks), and we calculate an appropriate value of 3 at each level based on
observations of the Markov chain at earlier levels. Thus we require no prior knowledge
of . Second, we show that, while the efficiency of our Markov chain simulation is still
based on an assumption (conjecture C2, defined below), this is apparently less restrictive
than conjecture C1 and, more importantly, is tested in advance by the algorithm in the
region in which it is being assumed. Thus when we run our algorithm, either we will gather

2Actually, these transition probabilities are a slightly simplified version of those used in [2], but this
difference is inessential to the behavior of the chain.



by the correction term f(n) of the form conjectured in C1. Here v is a so-called critical
exponent. (Note, however, that +, unlike p, is not even known to exist.)

Although unproven, conjecture C1 is supported by extensive (though non-rigorous) em-
pirical studies and ingenious heuristic arguments, which have also been employed to ob-
tain numerical estimates for the constants p and 7. Elementary considerations show that
pw € (d,2d —1). For d = 2, it has actually been proven that u € (2.62,2.70) [1, 4]. (See
also [10] for similar bounds in higher dimensions.) However, these rigorous bounds are much
weaker than the nonrigorous estimates obtained by empirical methods, which are typically
quoted to four decimal places (see Chapter 1 of [15] for a detailed summary).

Much effort has been invested in obtaining statistical estimates of the above quantities
using Monte Carlo simulations. However, the error bars on these estimates are only justified
heuristically. In this paper, we attempt to put such experiments on a firmer footing. We
present polynomial time Monte Carlo algorithms for approximating the number of self-
avoiding walks of a given length for a given dimension d, and for generating self-avoiding
walks of a given length almost uniformly at random, such that the statistical errors in
the algorithms are rigorously controlled. Our algorithms are based on modifications and
extensions of a Monte Carlo approach studied originally by Berretti and Sokal [2]. In the
next subsection we sketch this approach and point out its limitations. Then, in section 1.3,
we summarize our algorithms and explain how they overcome these problems.

1.2 Monte Carlo methods

Monte Carlo simulations have proved to be a powerful tool for developing approximation
algorithms for a range of combinatorial problems. Briefly, the idea is as follows. Let & be
a large but finite set of combinatorial structures. It is well known that much information
about & can be gained by sampling elements of § from an appropriate probability distri-
bution 7. This sampling can be performed by simulating a Markov chain whose state space
includes § and whose conditional stationary distribution over § is 7: to get a sample from
a distribution very close to m, one simply simulates the chain for sufficiently many steps
that it is close to stationarity, and outputs the final state if it belongs to §. In order for this
method to be effective, the stationary distribution must be reasonably well concentrated
on S (so that we get a valid sample reasonably often), and the Markov chain must converge
rapidly to its stationary distribution (so that the number of simulation steps required is not
too large).

In the case of self-avoiding walks, we are interested in sampling from the uniform dis-
tribution over the set S, of walks of length n. A natural Markov chain to use here has
as its state space all self-avoiding walks of various lengths: if the chain is currently at a
walk w, it extends the walk in an allowable direction with some probability, while with
some other probability it deletes the last edge and “backtracks” to a shorter walk. (Note
that the naive approach of simply growing the walk one edge at a time breaks down because
of the self-avoidance constraint: the number of possible extensions of a given length can
vary hugely for different walks due to the possibility of walks “getting stuck.” This is why
we require the more sophisticated dynamic scheme provided by the Markov chain.)

The above type of Markov chain was considered by Berretti and Sokal [2], who used a



1 Summary

1.1 Background

A self-avoiding walk in a graph is a walk which starts at a fixed origin and passes through
each vertex at most once. This paper is concerned with self-avoiding walks in lattices, in
particular the d-dimensional rectangular lattice Z¢ with origin 0.

Self-avoiding walks in Z¢ have been studied by mathematicians and natural scientists
for many years and are the subject of an extensive literature; for a state-of-the-art survey,
see the recent book of Madras and Slade [15]. (See also the book by Lawler [13] for related
topics.) One of the most important applications is as a model for the spatial arrangement of
linear polymer molecules in chemical physics. Here the walk represents a molecule composed
of many (perhaps 10% or more) monomers linked in a chain, and the self-avoidance constraint
reflects the fact that no two monomers may occupy the same position in space.

The length |w| of a self-avoiding walk w is the number of edges in w. For any fixed
dimension d, let S, denote the set of self-avoiding walks of length n in Z¢, and let ¢, = |Sy]
be the number of walks of length n. The two most fundamental computational problems
concerning self-avoiding walks are:

(i) count the number of walks of length n;i.e., compute ¢, for any given n;

(ii) determine the characteristics of a “typical” walk of length n — for example,
compute the mean-square displacement, which is the expected squared distance
of the free end of the walk from the origin under the uniform probability distri-
bution over walks of length n.

Despite much research in this area, and many heuristic arguments and empirical studies,
almost nothing is known in rigorous terms about the above problems for the most interesting
cases of low-dimensional lattices with 2 < d < 4. In higher dimensions rather more is
known, essentially because the self-avoidance constraint becomes less significant and the
behavior resembles that of simple (non-self-avoiding) walks, which are well understood.

One key fact that holds in all dimensions was discovered in 1954 by Hammersley and
Morton [8]; they observed that lim, . ci/m = p exists, and that p” < ¢, = p"f(n),
where lim, ., f(n)'/™ = 1. This is a straightforward consequence of the obvious fact that
the sequence a, = loge, is subadditive, i.e., apim < @n + @ for all n,m. Hammersley
and Welsh [9] later showed that f(n) = O(a"'’”) for some constant a. It is a celebrated
and long-standing conjecture that f(n) is in fact polynomially bounded, and more precisely
that

~ B Any—1, d=2,3;
e, = P f(n) (1 -|—o(1)), where f(n) = {A(log n)V/4, d = 4 (C1)
d > 5.

9
Here 11, A and v are all dimension-dependent constants. Note that the dominant behavior
of ¢, is the exponential function p"; comparing this with the case of simple walks, whose
number is precisely (2d)", we see that the effect of the self-avoidance constraint is to reduce
the effective number of choices the walk has at each step from 2d to p. The dimension-
dependent number u is known as the connective constant. This crude behavior is modified
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Abstract

We present a polynomial time Monte Carlo algorithm for almost uniformly generating and approx-
imately counting self-avoiding walks in rectangular lattices Z?. These are classical problems that
arise, for example, in the study of long polymer chains. While there are a number of Monte Carlo
algorithms used to solve these problems in practice, these are heuristic and their correctness relies on
unproven conjectures. In contrast, our algorithm relies on a single, widely-believed conjecture that
is simpler than preceding assumptions, and, more importantly, is one which the algorithm itself can
test. Thus our algorithm is reliable, in the sense that it either outputs answers that are guaranteed,
with high probability, to be correct, or finds a counterexample to the conjecture.
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