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2 J. F. TRAUB H. WOZNIAKOWSKI

1. Overview of Information-Based Complexity

The goal of this article is to report some of the recent progress in information-based complexity, which
for brevity will be denoted as IBC. We have selected topics which might be of particular interest to the
EATCS audience. We take an informal approach in this article, focusing mainly on ideas. For precise
formulations and results, as well as proof techniques, see the books TW1![80], TWW [83], Novak [88], TWW
[88], Werschulz [91], and recent surveys , PT [87], PW [87], TW [91a, 91b], Heinrich [92], and Novak [93].

We begin by presenting a greatly simplified picture of computational complexity to indicate where IBC
fits in. For our present purpose, computational complexity may be divided into two branches, discrete
and continuous. Continuous computational complexity may again be split into two branches. The first,
which we’ll call continuous combinatorial complexity, deals with problems for which the information is com-
plete. Problems where the information may be complete are those which are specified by a finite number of
parameters. Examples include linear algebraic systems, matrix multiplication, and systems of polynomial
equations. Blum, Shub and Smale [89] obtained the first NP-completeness results over the reals for a problem
with complete information.

The other branch of continuous computational complexity is IBC. Typically, IBC studies infinite-dimen-
sional problems. These are problems where either the input or the output are elements of infinite-dimensional
spaces. Since digital computers can handle only finite sets of numbers, infinite-dimensional objects such as
functions on the reals must be replaced by finite sets of numbers. Thus, complete information is not available
about such objects. Only partial information is available when solving an infinite-dimensional problem on a
digital computer. Typically, information is contaminated with errors such as round-off error, measurement
error, and human error. Thus, the available information is partial and/or contaminated.

We want to emphasize this point for it is central to IBC. Since only partial and/or contaminated infor-
mation is available, we can solve the original problem only approzimately. A goal of IBC is to obtain the
computational complexity of computing such an approximation.

In Figure 1 we schematized the structure of computational complexity described above.

Computational Complexity

Discrete Complexity Continuous Complexity
Information Continuous
Based-Complexity Combinatorial Complexity
Figure 1

The motivation for studying IBC is two-fold:

(1) Continuous models, typically infinite-dimensional, are very common in science, engineering, econom-
ics, and even in finance. Examples of the mathematical problems which arise from these models are

partial or ordinary differential equations, multivariate integration, and optimization.

1When one of us is a co-author, the citation will be made using only initials
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(2) The subject matter covered by IBC is rich from a complexity point of view with many results and

numerous open questions, as we hope to illustrate in this article.

Although IBC typically studies infinite-dimensional problems there are important exceptions. These
include probabilistic complexity of processor synchronization with stochastic delays, Wasilkowski [88a], and
complexity of solving large linear systems, TW [84], Nemirovsky [91, 92].

IBC is formulated as an abstract theory; see the Appendix. The applications often involve multivariate
functions over the reals. For example, in multivariate integration, the integrand is a multivariate function.
In optimization, one seeks an extremum of a multivariate function subject to multivariate constraints. In
an initial-value problem, such as the wave equation, the initial condition is again specified by a multivariate
function.

The observation that a function over the reals cannot be entered into a digital computer lies at the heart
of IBC. (In the general case, an element of an abstract space cannot be entered.) We call a multivariate
function @ mathematical input, denoted by Iyatn. Let S be a linear or nonlinear operator which specifies the
problem we want to solve, S : F' — (G for some sets F' and G. The operator S carries I .t from F' into a

mathematical output Opash in G; see Figure 2(a)

Imath S Omath

Figure 2(a)

Of course, this is too general to characterize an IBC problem. For example, I ,¢n could be the locations
of a set of cities and Opatn could be an optimal tour; which is a typical discrete problem. This is an IBC
problem when I, ,4¢n cannot be entered into a digital computer, and it must be replaced by a computer input
denoted by Icomp.-

The computer input, Icomp, consists of a finite set of numbers. For example, if Inan is a function then
Icomp might consist of its values at certain points. Icomp is obtained from Iyatn by information operations.
Different disciplines have different names for these information operations. Computer scientists called them
oracle calls, mathematicians call them functionals, and engineers call them black-box calls. The replacement
of Imath by lcomp may be viewed as a discretization.

Denote the set of information operations by N(Imatn); we call N the information operator. Since many
(typically, an infinite number of) mathematical inputs map into the same computer input, the mapping N

is many-to-one. That is, discretization is irreversible. The situation is diagrammed in Figure 2(b).

Imath S Omath

Icomp
Figure 2(b)
Although there has been mention of neither computer output nor algorithm, we can already draw certain

conclusions. Since N is a many-to-one map, the computer does not know the mathematical input. Therefore,

it is impossible to solve this problem exactly; the best we can hope for is an approximation.
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We assign the same cost to each information operation. Given an error threshold ¢, we can define the
information complexity, COMPinfO(E), as the minimal cost of the information operations needed to obtain
an e-approximation. (In computational learning theory this is called sample complexity.) Information
complexity can be defined in different settings such as the worst case, average case or probabilistic setting.

Using the concept of radius of information, r(N), see TW [80, pp. 9-15], TWW [88, pp. 43-45, 197-
200, 327-328], we can often obtain sharp lower and upper bounds on the information needed to get an

e-approximation. The information N is powerful enough to obtain an e-approximation iff
r(N) < e.

Since the information complexity is a lower bound on the computational complexity, defined below, this has
led to proven (not conjectured) intractability and unsolvability results which we’ll describe in Section 2.

Because of the basic role played by information-level results we decided to name this area information-
based complexity. This level typically does not exist for discrete problems. However, combinatorial issues
will play an increasingly important role in IBC; see Section 4.

Let the computer output be denoted by Ocomp and the operator that maps leomp into Ocomp by ¢. We
call ¢ a combinatory algorithm (algorithm for brevity). Since ¢ maps the computer input into the computer
output it plays the same role as algorithm does elsewhere in computer science. Figure 2(c) completes the

picture.

Imath S Omath

Ocomp

Icomp
Figure 2(c¢)

Observe that Ocomp 7 Omath because N is many-to-one. In other words, S does not commute with ¢
composed with N.

We now discuss the model of computation used in IBC. For simplicity, we restrict ourselves to the case
that G = R. We assume that the real number model is chosen as our model of computation. (See Section 5
for a discussion of why the real number model is often used in IBC and also of research on finite models.)
That is, we assume that arithmetic operations and comparisons on real numbers are carried out exactly and
at unit cost.

We define the combinatorial complexity, COMP<°™"(¢)  as the minimal cost of the combinatory operations
needed to compute an e-approximation if all information operations were free.

Finally, we define the computational complexity, COMP(¢), as the minimal cost of computing the com-
puter output with error at most ¢ under the assumption that information and combinatory operations are
charged.

As before, combinatorial and computational complexity may be defined in the worst case, average case

and probabilistic settings. Note that,

COMP(g) > max{COMP™® (), COMP™(¢)}.
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We conclude this overview by characterizing IBC and stating its major goals. IBC studies problems which

have the properties listed below.

(1) Icomp 7& Imath~
(2) There is a charge for obtaining Icomp.

We discuss the first of these. These are two major reasons why lcomp # Imath. The first is that the
mathematical input cannot be represented by a finite set of numbers. We say the information about I ach
is partial. An important example in applications is when I,tn is a multivariate function. A second reason
is that the information about I, atn i contaminated. Information may be contaminated because of round-off
or measurement errors.

We list some of the major goals of IBC.

(1) Obtain good lower and upper bounds on the computational complexity, information complexity, and
combinatorial complexity.
(2) Find information N and an algorithm ¢ for which the computational complexity is attained or nearly

attained. Such N and ¢ are called optimal, or nearly optimal.

We summarize the reminder of this article. We will present a selection of recent results from a number
of IBC areas. We then conclude this article with a discussion of similarities and differences with discrete

complexity and a brief history. An abstract formulation of IBC may be found in the Appendix.

2. Breaking Intractability

It has been established that in the worst case deterministic setting many problems studied in IBC are
unsolvable or intractable. More precisely, let the mathematical input f be a multivariate function of d
variables. Let the smoothness of the set of inputs be denoted by r. For example, we might require that all
partial derivatives of f up to order r exist and are uniformly bounded by 1. Assume we want to guarantee an

error at most €. Then, for many continuous problems the worst case computational complexity, COMP(¢),

COMP(e) = © (G)d/) . (1)

For example, multivariate integration, function approximation, partial differential equations, integral equa-

is given by

tions, and nonlinear optimization all have this computational complexity, see Bakhvalov [59], Heinrich [93],
Nemirovsky and Yudin [83], Novak [88], Pereverzev [89], TWW [88], and Werschulz [91].

Furthermore, many problems in science, engineering, economics and even finance use mathematical mod-
els with large d. For example, computational chemistry, computational design of pharmaceuticals, and
computational metallurgy involve computation with large number of particles. Since the specification of
each particle requires three variables for static problems and six variables for dynamic problems, this leads
to problems with very large d. For path integrals, important in the foundation of physics, d = +oco; they
invite approximation by multivariate integration with huge d. Problems with large d are also important in
mathematical disciplines such statistics and geometry.

Observe that we can conclude that if the smoothness r is fixed and positive then the computational com-
plexity is an exponential function in d. Thus, problems whose complexity is governed by (1) are intractable

in d. If r = 0, that is, if the class of inputs is only continuous, then COMP(g) = 400 for small ¢; that is,
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the problem is unsolvable.

The only way to break unsolvability or intractability is to weaken the assurance of an e-approximation
by shifting to another setting. Three settings have been used for trying to break intractability: randomized,
average case, and probabilistic settings. Here we confine ourselves to recent advances on breaking intractabil-
ity in the average case setting. See TW [91a] for a survey of how to break intractability in the randomized
setting.

We describe recent advances in breaking intractability for multivariate integration and multivariate func-
tion approximation. Multivariate integration is especially common since computing the expectation of any
stochastic process leads to this problem.

In the average case setting the average computational complexity, COMP?"8(¢), is defined as the minimal
expected cost such that the average error is less than €. One has to put a measure on the space of inputs.
Although for discrete problems one can assume that all inputs are equiprobable, no such assumption can
be made for typical sets of functions. The most commonly used measures on function spaces are Gaussian
measures, and, in particular, Wiener measures which are a special kind of Gaussian measure.

It was known that multivariate integration is tractable on the average but the proof is non-constructive.
That is, the optimal points at which the integrand should be evaluated and the average computational
complexity were unknown.

Then W [91] established a relation between discrepancy and the average complexity of multivariate in-
tegration. Discrepancy has been extensively studied in number theory and sharp bounds on discrepancy in
d dimensions were established by Roth [54,80]. The use of the results from discrepancy theory solved the
multivariate integration problem.

We describe the results more precisely. Let » = 0. Recall that in the worst case deterministic setting the

problem is unsolvable. Assume the measure on the integrands is the Wiener sheet measure. Then

Ly D
COMPan(E) =0 g (10g g) .

Thus a problem which is worst-case unsolvable becomes tractable on the average.? Either Hammersley points
or hyperbolic-cross points are nearly optimal as the evaluation points in d dimensions. These results were
generalized to the case of smooth inputs by Paskov [93].

We turn to the average complexity of function approximation. This is particularly important since unlike
for multivariate integration, it is known that randomization does not help for function approximation, see
Wasilkowski [88b], Novak [92]. Again, let » = 0 and assume a Wiener sheet measure. Then

1 1 2(d-1)

and again hyperbolic cross-points can be used; see W [92b].

Roth’s discrepancy results and the average computational results quoted above are big theta results in ¢.
That is, the dependence on ¢ is known, but there is a multiplicative factor, g(d), which is not known. If we’re
serious about solving problems with large d we must be able to bound g(d). It is believed that obtaining

good theoretical estimates of g(d) is very hard.

?By tractable (in 1/¢) we mean that the complexity is bounded by K (d) (1/¢)? for all d and ¢ < 1 for a number p which is
independent of d and e.
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The problem may be solved by getting rid of the factor g(d) in the following way, W [93]. A problem
is said to be strongly tractable if the number of information operations, m(e, d), needed to compute an

g-approximation is independent of d and depends polynomially on 1/¢, that is,?

14
m(e,d) < K (1) . Vd, Ve<l,
1>

for certain numbers K and p.

That might seem to much to expect but multivariate integration and multivariate approximation are
both strongly tractable on the average* and it is sufficient to take the information operations as function
evaluations, W [93]. Usually in computational complexity, an upper bound is given by an algorithm and
a lower bound by a theorem. But in this case, the upper bound has been determined by a theorem and
is non-constructive. That is, we know that there must exist sample points at which we should evaluate
the function and a combinatory algorithm which make multivariate integration and approximation strongly
tractable. The construction of such sample points and algorithm is being studied; WW [94].

Due to the relation between discrepancy and average case multivariate integration, strong tractability for
multivariate integration implies that the discrepancy of n points in d dimensions can be bounded, indepen-
dently of d, by K n~P with the same K and p for both problems. This estimate is of interest in its own
right since discrepancy is of considerable interest in number theory, see Beck and Chen [87], and Niederreiter
[92]. Furthermore there are numerous applications of discrepancy; for example, for applications in computer
graphics, see Dobkin and Mitchell [93].

3. Verification

Most of IBC has been devoted to the computational complexity of computing an e-approximation. Re-
cently, the computational complexity of verification has been studied, that is checking whether an answer
is correct, see W [92a]. In addition to being given a problem, we are also given an “answer” g and asked
whether it is true that g is within € of the mathematical output; see the Appendix for a precise definition.

The reader’s reaction may be that, of course, verification is no harder than computation. Indeed, if the
mathematical output can be computed exactly at finite cost, as is the case for discrete problems, then with
one extra comparison one can solve the verification problem.

However, for typical IBC problems the mathematical output cannot be computed with finite cost, and
the relation between verification and computation is not obvious. As we shall see, in the worst case setting
verification may be unsolvable while the corresponding computational problem is easy.

We illustrate this with a simple example. The computational problem is to compute an e-approximation
to fol f(z) dz where the mathematical input f is an arbitrary function over [0, 1] satisfying a Lipschitz
condition with constant at most one. The computational input is given by values of f at some points. The
computational complexity in the worst case setting is known to be of order 1/g; thus the computational
problem is “easy”.

Suppose now that we’re given the purported answer g and asked to check whether this is within ¢ of the
integral of f. We show that the verification problem is unsolvable.

2More precisely, it is required that the computational complexity can be bounded by K ¢(d) (1/¢)P for certain numbers K
and p, independent of d and e, where c(d) is the cost of one information evaluation of a function of d variables.

4We stress that this holds for the Wiener sheet measure. For an isotropic Wiener measure, function approximation is still
intractable even on the average, see Wasilkowski [93].
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Suppose that we compute f at a finite number of points z; and that for every such point f(z;) = g + €.
If we answer NO the adversary will choose f(z) = g + £. This function is certainly Lipschitz (with constant
zero), and compatible with the computed function values. Since fol f(z)dz = g+ ¢ is within € of the answer
g, we made a mistake by answering NO.

If we answer YES the adversary will choose a hat function f going through the points (z;,¢9 + €) and
with Lipschitz constant one. Clearly, fol f(x)dz > g + ¢ which is not within ¢ of the answer g. We made a
mistake by answering YES. Hence, as long as we have finitely many function values, there is no way to solve
the verification problem in the worst case setting.

It can be shown that verification for IBC problems is often unsolvable in the worst case setting. Verification
is therefore studied in the probabilistic setting. Here we want to verify that g is an e-approximation with
confidence §; see the Appendix. In this setting the probabilistic complexity of verification depends on how
¢ and 6 are related. Any relation between the probabilistic complexities of verification and computation is
possible. In particular, verification can be exponentially (in 6) harder than computation.

NW [92] studied relazed verification in the worst case setting. That is the answers can be YES, NO,
or DON’T CARE. The size of the DON’T CARE region is specified by a parameter «; see the Appendix.
For a positive «, the worst case complexity of relaxed verification is finite. It is related to the worst case
complexity of the computational problem with ¢ replaced by roughly £ a? with ¢ € [0, 1] depending on the
problem. Hence, if « is not too small, the complexity of relaxed verification is roughly comparable to the
complexity of the computational problem. If, however, « is small then the complexity of relaxed verification

is usually much larger than the complexity of the computational problem.

4. Combinatorial Complexity

To date, IBC problems have usually been proven unsolvable or intractable by showing that their informa-
tion complezity was infinite or exponential. Recent results establish unsolvability or intractability by showing
that the combinatorial complexity is infinite or, if PZNP, not polynomial. We report these results and also
pose an open question.

Papadimitriou and Tsitsiklis [86] is a pioneering paper which proves that a nonlinear problem in decen-
tralized control theory is intractable if PZNP. More precisely, the information complexity is a polynomial in
1/e but the combinatorial complexity in a Turing machine model of computation is not polynomial in 1/,
if P£ANP.

WW [93] show that there exists a linear problem whose information complexity is a polynomial in 1/¢
but whose combinatorial complexity is infinite®, making the problem unsolvable. An “artificial” problem is
constructed to show that even a linear problem can be very hard combinatorially. Chu [94] shows that the
combinatorial complexity can be any increasing function of the information complexity.

We pose an open question. So far, tight bounds on the computational complexity of IBC problems are
achieved when the minimal amount of information is used. Is there a problem for which more information
operations should be used to achieve the computational complexity? That is, does there exist a problem for
which the minimal amount of information is very hard to combine but if more information operations are

computed then it is easier to combine them and the total cost of computing an e-approximation is minimized

5This result holds if we allow arithmetic operations, comparisons of real numbers, and precomputation. It is open if there
exists a linear problem with finite information complexity and infinite combinatorial complexity in the extended real number
model in which logarithms, exponentials and ceilings are allowed.
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in the latter case.
We believe that in the future, progress in IBC will increasingly require results in both information com-

plexity and combinatorial complexity.

5. Similarities and Differences with Discrete Complexity

We begin with similarities. As in the rest of computational complexity, IBC studies lower and upper
bounds on the computational difficulty of solving mathematically posed problems. Optimal and near-optimal
algorithms are sought. To attempt to break the intractability results and conjectures of the worst case
deterministic setting, both IBC and discrete complexity turned to other settings such as the randomized and
average case settings.

There are also significant contrasts, three of which we will discuss in the remainder of the section. IBC
has the following characteristics:

Problems cannot be exactly solved

Intractability has been proven for many problems

Real number model usually used
We discuss each of these.

Problems Cannot Be Eractly Solved
As discussed in Section 1, it is impossible to solve IBC problems exactly because lcomp # Lmach. It is
possible, in principle, to solve discrete problems exactly although one may choose to solve them approximately

to reduce the cost.

Intractability has been proven for many problems

Using information-level arguments, unsolvability and intractability has been established for many IBC
problems. With only a few exceptions, there are no non-trivial lower bounds on the combinatorial complexity
of IBC problems. Since only combinatorial arguments are available, intractability of many discrete problems
has been conjectured. (Of course, lower bounds, as well as unsolvability results, have been established for

some combinatorial problems.)

Real number model usually used

To date, the real number model of computation has usually been used in continuous computational com-
plexity. After discussing the motivation, we turn to finite models for continuous computational complexity.

Scientific problems are usually solved using fixed precision floating point arithmetic. The cost of floating
point operations and comparisons is independent of the size of the operands. Furthermore, all arithmetic
operations and comparisons cost about the same to execute. Qur goal is to choose a model of computation
that corresponds to performance of a digital computer executing floating point arithmetic. The abstraction
we choose is the real number model, which assumes that arithmetic and comparisons on real numbers can
be executed exactly and at unit cost. (The choice of unit cost is just scaling.) Rounding errors occur when
a digital computer executes operations in fixed precision floating point arithmetic. In our abstraction we
assume arithmetic is performed without error. This separation of complexity theory from error analysis
is done for technical reasons; computational complexity theory is hard enough without including round-off
error. When an interesting new algorithm is discovered from computational complexity considerations, a

stability analysis in fixed precision floating point arithmetic must be performed.
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We stress that the real number model is not polynomially equivalent to the Turing machine model. For
example, TW [82] shows that the cost of Kachian’s algorithm is not polynomial in the real number model
and conjecture that linear programming is not polynomial in this model. This conjecture is still open.

Several finite models of computations have also been analyzed. One of them is a model based on recursive
analysis, see Ko [91].

In the bit model it is assumed that one can get a rational binary approximation of a real number or of a
function value to within any accuracy with the cost depending on the number of bits. This model has been
studied for problems with complete information, for instance, for finding roots of polynomials, see Schonhage
[86]. A mixed model, in which the bit model is used for information operations, and the real number model
for combinatory operations, is utilized by Kacewicz and Plaskota [90] to analyze certain IBC problems.

It is, of course, desirable to fully explore finite models for IBC problems and we believe this to be an

important direction for future research.

6. A Brief History

We present a very brief history of IBC. Research in the spirit of IBC was initiated in the Soviet Union
by Kolmogorov in the late 40’s. Nikolskij [50], a student of Kolmogorov, studied optimal quadrature. This
line of research was greatly advanced by Bakhvalov, see e.g., Bakhvalov [59, 71]. In the United States
research in the spirit of IBC was initiated by Sard [49] and Kiefer [53]. Kiefer reported the results of his 1948
MIT Master’s Thesis that Fibonacci sampling is optimal when approximating the maximum of a unimodal
function. Sard studied optimal quadrature.

Golomb and Weinberger [59] studied optimal approximation of linear functionals. Schoenberg [64] realized
the close connection between splines and algorithms optimal in the sense of Sard.

T[61,64] initiated the study of iterative computational complexity, emphasizing the central role of infor-
mation. Maximal order results, needed to obtain lower bounds on computational complexity, were obtained
for scalar nonlinear equations. W [75] introduced the concept of order of information in an abstract space
which provides a general tool for establishing maximal order of an algorithm.

Micchelli and Rivlin [77] studied optimal recovery and considered optimal error algorithms for the ap-
proximation of linear operators. Linear noisy information was permitted.

A general formulation of IBC, primarily in the worst case deterministic setting, is presented in TW [80],
where a somehow more detailed history and an annotated bibliography of over 300 papers and books up to
1979 can be also found. At the time IBC was called analytic complexity to differentiate it from algebraic
complexity. TWW [88] extend the study of IBC to numerous settings including average case, randomized,

probabilistic, and asymptotic settings, as well as mixed settings.

Appendix

We present an abstract formulation of IBC. Let
S:F—=G

where F'is a subset of a linear space and G is a normed linear space.
For f € F', we wish to compute an approximation to S(f). To do this we must know something about

f- A basic assumption is that we have only partial information about f. We gather this partial information
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about f by information operations L(f). Here we will assume that L is a linear functional. Let A denote
the class of information operations we will permit. The choice of A will depend on the problem we wish to
solve. If we wish to approximate a definite integral we must exclude definite integration as a permissible
information operation, and for this problem A is usually defined as the class of function evaluations. For

other problems, such as the solution of nonlinear equations, we may permit any linear functional. Let

N =12 (), Ln ()],

for L; € A. Here L;, as well as n, can be adaptively chosen depending on the already computed information
operations.

N(f) is called the information on f and N the information operator. The motivation for introducing
the information operator N is to replace the element f, which is often from an infinite-dimensional space,
by n numbers. An idealized algorithm® ¢ is an operator ¢ : N(F') — G. The approximation U(f) is then
computed by

U(f)=o(N(f)).

(The assumption that the approximation is the composition of ¢ with N is made without loss of generality.)

We seek U(f) such that
IS —UNII<e.

We say U(f) is an e-approzimation.

We illustrate the abstract model by an integration example with

S(f) = /0 f(t)dt,

F=A{f: FeC(0,1) and [[fllpax <1},

and G as the set of real numbers. The functionals are chosen as L;(f) = f(¢;). An example of an algorithm
is

U() = 6N () = Yt

To define computational complexity we must first introduce our model of computation, which is defined

by two postulates:

(i) Let © denote the set of permissible combinatory operations including the addition of two elements
in GG, multiplication by a scalar in G, arithmetic operations on real numbers, and comparison of real
numbers. We assume that each combinatory operation is performed exactly with unit cost.

(ii) We assume that we are charged for each information operation. That is, for every L € A and f € F,

the computation of L(f) costs ¢, where ¢ > 0. Typically, ¢ > 1.

We assume the real number model, that is, we can perform operations on real numbers exactly and at
unit cost. See Section 5 for a discussion and motivations underlying the model of computation and the real
number model.

We briefly describe how the computation is carried out and how its cost is calculated. Let cost(N, f)
denote the cost of computing the information N(f). Knowing the information N(f), the approximation

6By using such a general definition of algorithm, we strengthen the lower bound conclusions. For upper bounds, we restrict
the algorithms to those constructed from permissible combinatory operations.
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U(f) = ¢ (N (f))is computed by combining the information to produce an element of G which approximates
S(f)-

Let cost(¢, N (f)) denote the cost of computing U(f) = ¢ (N (f)), given N(f). Then the total cost of
computing U(f), cost(U, f), is

cost(U, f) = cost(N, f) + cost (¢, N(f)).
We are ready to define the computational complexity, comp(e), as
comp(e) = inf {cost (U) : Usuch that e(U) < ¢},

with the convention that inf() = co. The definition of cost(U) and e(U) varies according to the setting.
Settings studied in IBC include worst case, average case, probabilistic, randomized and asymptotic. Mixed
settings are also studied. We confine ourselves here to the definition of just the worst case and average case

settings.

Worst Case Setting: The worst case error and worst case cost of U are defined by
e(U) = sup [|S(f) = U (NI,
fer

cost(U) = sup cost (U, f).
feF

Average Case Setting: Let p be a probability measure defined on F'. The average case error and

average case cost of U are defined by

o(U) = ¢ /F 1S(f) — UCHI? uldf),

cost(U) :/Fcost (U, Fu(df).

The concept of complexity permits us to introduce the fundamental concepts of optimal information and
optimal algorithm. Information N and an algorithm ¢ that uses N are called optimal information and

optimal algorithm, respectively, iff U = ¢ - N satisfies cost(U) = comp(e) and e(U) < e.

We define the verification problem. For given g € G we want to check whether ||S(f) — g|| < e. That is,
we define VER(f, g) =YES if ||S(f) — ¢|| < &, and VER(f, g) =NO otherwise. In the worst case setting, we

wish to find an approximation operator U such that
U(f,9) = VER(f,9) VfEF g€C.

In the probabilistic setting, we assume that the set F' is equipped with a probability measure . For a given
confidence parameter é € [0, 1], we wish to find an approximation operator U such that
p{f € F; U(f,9) = VER(f,9)} > 16, Vgeai.
For relaxed verification, we assume that o € [0,1] and we redefine VER(f,g) as follows. We set
VER(f,9) =YES if |S(f) — g|| < &, VER(f,g9) =NO if ||S(f — g|| > (1 + a)e, and VER(f,¢9) =DON’T
CARE, otherwise.

The complexity of verification or relaxed verification is defined similarly as for computational problems,

that is, by minimizing the cost of computing U that solves the corresponding verification problem.
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