INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center Street @ Suite 600 ® Berkeley, California 94704 e 1-510-642-4274 e FAX 1-510-643-7684

Dynamic maintenance of
approximated solutions of
Min—Weighted Node Cover and

Min—Weighted Set Cover
problems *

Giorgio Gambosi' Marco Protasi?

Maurizio Talamo$

August 1993

Abstract

In this paper, we introduce new algorithms for the dynamic maintenance of approximated solutions of Min—Weighted
Node Cover and Min—Weighted Set Cover. For what concerns Min—Weighted Node Cover, for any sequence of edge
insertions and deletions, the algorithms maintain an solution whose approzimation ratio (that is, the ratio between the
approzimate and the optimum value) is equal to the best asymptotic one for the static case. The algorithms require O(1)
time for edge insertion, while an O(1) amortized time is required for edge deletion.

For what regards Min—Weighted Set Cover, we present dynamic algorithms whose approximation ratio matches one
of the two different and tncomparable best approzimate bounds for the static case. The time complexity for element
insertion and its amortized complexity for element deletion are proportional to the maximum redundancy of an element
in the approximate solution.

*The work of the first two authors was partially done while visiting the International Computer Science
Institute, Berkeley, Ca. Work partially performed in the framework of Esprit BRA projects “ALCOM” and
“ALCOM 27, and of Italian MURST 40% project “Algoritmi, Modelli di Calcolo e Strutture Informative”
and partially supported by the National Research Council (CNR) Project “Sistemi Informatici e Calcolo
Parallelo”

'Dipartimento di Matematica Pura ed Applicata, University of L’Aquila, Vetoio di Coppito, I-68100
L’Aquila, Italy. E-mail: gambosi@smaq20.univaq.it

{Dipartimento di Matematica, University of Rome IT “Tor Vergata”, via della Ricerca Scientifica, 1-00133
Roma, Italy. E-mail: protasi@mat.utovrm.it

$Dipartimento di Informatica e Sistemistica, University of Rome “La Sapienza”, via Salaria 113, I-00198
Roma, Italy. E-mail: talamo@disparcs.ing.uniromal.it



i



1 Introduction

The topic of the dynamic maintenance of problem solutions, while problem instances are
evolving in the time, currently represents an extensively studied research area in the field
of the theory of algorithms. In contrast with classical (off-line or static) algorithms, which,
after finding a solution for a problem instance, have to compute ”from scratch“ a solution for
a different problem instance, dynamic algorithms try to gain efficiency by computing a new
solution starting from an old one. In fact, dynamic algorithms are especially designed to
manage (possibly unbounded) sequences I, I3, I5 ... of problem instances (where I, differs
only “slightly” from Ij_1), with the aim of deriving the solution for a new instance I; by
updating the one previously derived for Ij_;.

The importance of the study of dynamic algorithms is testified by the large amount
of combinatorial and geometric problems such as graph connectivity, minimum spanning
trees, planarity, transitive closure, convex hull, etc. that have been considered in this
framework. It is worthwhile to underline that dynamic algorithms have been applied, in
the large majority of cases, to problems solvable in polynomial time. On the other hand,
an interesting research topic is the design of dynamic algorithms for the maintenance of
approximate solutions for optimization problems whose decision version is NP—complete.
Generally speaking, such a topic has not been sufficiently studied, in spite of the fact that
approximation algorithms are acquiring more and more relevance [19], [18], [1], [2].

In contrast to this general situation, the Min—Bin—Packing problem is an example of an
NP—complete problem previously considered in terms of the maintenance of approximate
solutions [10], [11], [9], [24], [25], [16].

Another important computationally intractable problem that has been studied from a
dynamical point of view is the Min-Node Cover problem. In [15] a dynamic algorithm that

maintains an approximate solution whose value is at most 2 times the optimal value is

presented. The amortized running time is arbitrarily close to O((v + 6)72), where v is the

number of nodes and e denotes the number of edges at the time that the operation is made.

In this paper we continue the investigation of on-line algorithms for this kind of problems
studying the the Min-Weighted Node Cover and the Min-Weighted Set Cover problems. As
a particular case the new algorithms we are going to present can be therefore applied to the
Min-Node Cover problem. Many research efforts have been aimed to the design of efficient
off-line approximation algorithms for such problems ([4], [5], [7], [8], [13], [14], [17], [20],
[22], [23]) and in order to design efficient on-line algorithms we will start from the approach
introduced in [13] and then exploited in [3]. We will use the algorithm presented in [3]
because, while obtaining the same approximation ratio found in [13], it achieves a better
time complexity.

In this paper, we first study Min—Weighted Node Cover and present a dynamic algorithm
which, for any sequence of edge insertions and edge deletions, maintains an approximate
solution whose value is at most 2 times the optimal value. Note that this bound is the
best (asymptotic) bound till now achievable even in the case of static algorithms [3], [5],
[22]. The algorithm requires O(1) time for edge insertion, while an O(1) amortized time is
required for edge deletion. We note that this algorithm obtains better complexity bounds
with respect to the approach given in [15].

The approach introduced for the design of the previous algorithm can be extended



to the the Min—Weighted Set Cover problem. In such a case, the algorithm achieves an
approximate solution whose value is k times the optimal value, where k is the maximum
redundancy of an element in the approximate solution, that is the maximum number of
sets in the approximate solution containing a same element. In the static case, there are
two different and incomparable best approximation ratios [13], [7]. The approximation
ratio of our algorithm is equal to the one given in [13] and in [3], while its complexity for
element insertion and its amortized complexity for element deletion are proportional to the
maximum redundancy of an element in the approximate solution.

In Section 2 some definitions and previous results about static algorithms for the the
Min-Weighted Node Cover and the Min—Weighted Set Cover problems are presented. In
Section 3 the dynamic algorithm for the Min—Weighted Node Cover is introduced and an
evaluation of its behavior in terms of complexity and of approximation bound is provided.
Finally, we extend our approach to study the Min—Weighted Set Cover problem .

2 Definitions and previous results

In this section, after a formal definition of the Min—Weighted Node Cover and Min—Weighted
Set Cover problems, we present some approximation results for these problems, which we
will exploit for the design of dynamic algorithms.

Definition 2.1 Let SU = {51, 5%, ...,59,} be a finite family of finite sets, where each set S;
has a non negative weight w; € N. Let U = {e1,€q,...,e;} be Ul S;. The Min-Weighted
Set Cover is a subfamily SC C SU, such that Us;escSi = U and ) g csc wi is minimum.

Let us now define for each e;,7 =1,...,t, F(5) = {5: | ¢; € 5:}.

Note that, in the case | F(j) |= 2 for all j = 1,...,¢, the Min-Weighted Set Cover
problem reduces to Min—Weighted Node Cover as follows:

A problem instance becomes a weighted graph G = (V, E), where the set of nodes
V = {vy,v,...,v,} with associated weights {wq, wy, ..., w,}, corresponds to the set family
51,859, ...,5,, while £ = U and each element e; with #'(5) = {5;, Sk} is represented by an
edge (v;, vg).

In this case, a Min—Weighted Node Cover can be interpreted as a subset NC' C V such
that:

1. for each edge (v;, v;) at least one among v; and v belongs to NC.
2. > ,.eNc Wi is minimum.

As usual, we will denote as Min Node Cover (Min Set Cover), the case of Min—Weighted
Node Cover (Min-Weighted Set Cover) where w; = w;Ve,5,1 < ¢,j < n.

Several efficient (polynomial-time) approximation algorithms for Min-Weighted Node
Cover have been introduced in the literature. In particular, in [13] and in [3] it was shown
how to derive an approximated solution whose value is at most two times the optimum
value. This result has been slightly improved in [14], in [22], [5], where the ratio between
the approximated value and the optimum is bounded by 2 — o(1).

For what concerns Min—-Weighted Set Cover, the two best approximated algorithms are
due to Chvatal [7] and Hochbaum [13].



1. begin

2 for :=1,...,n do

3 W; 1= W;;

4. Sol :=0;

5. J=U;

6 while J #( do

7 begin

8 Choose ¢; € J;

9. min_weight := Min{w; | S; € F;};
10. Let S} € F; such that wj = min_weight;
11. for each S5; € F; do

12. w; = w; — min_weight;
13. Sol := Sol U {Sk};

14. J::J—{€i|€i65k}

15. end

16.end.

Figure 1: Bar-Yehuda, Even algorithm

The approach introduced in [13] was exploited in [3] to get a more efficient algorithm.
Because of this reason we will start from the Bar-Yehuda, Even algorithm.

Roughly speaking, the algorithm in figure 1 at each step considers an uncovered element
e, selects, among all sets containing e, the one with the minimum current weight w and
adds such a set to the current Set Cover, while decreasing the current weights of all the
other sets containing e.

The following theorem has been proved in [13] and in [3].

Theorem 2.1 The above algorithm provides an approximate solution Sol of value W for
the Min—Weighted Set Cover problem, which satisfies the following inequality:

W < Weps - Mazi<j<; | F(5)N Sol | .
In particular, for the Min—Weighted Node Cover problem:

W <2 Wy

3 Dynamic algorithms for Min—Weighted Node Cover and
Min—Weighted Set Cover Problems

In this section, we introduce a dynamic algorithm for Min—Weighted Node Cover and study
its performance with respect to time complexity and approximation ratio. The approach
introduced for this problem will be then extended to deal with the Min-Weighted Set Cover
problem.



Of course the algorithms that will present for the Min-Weighted Set Cover problem
apply to the Min-Weighted Node Cover as a particular case. However, in order to have a
simpler presentation and to stress the techniques we use, we prefer to present our results
starting from the node cover case.

Given a graph G = (V, F), we are going to introduce two algorithms for supporting two
different update operations:

- insert_edge(v;, v;). That is, E' := E U {(v;,v;)}. The current Node Cover NC has to
be updated accordingly.

- delete_edge(v;, v;). That is, I/ := E — {(v;,v;)}. Again, the current Node Cover NC
has to be updated accordingly.

Algorithms for both inseri_edge and delete_edge use the following information associated
to nodes and edges:

- for each node v; € NC an edge, denoted as mark(v;), such that, if »; has been
introduced in NC' in correspondence to an insert_edge( e ) operation, then mark(v;) =
e. Note that mark(v;) is incident to v;.

- for each node v; € NC, a set list(v;) of incident edges such that (v;,vy) € list(v;) iff
v ¢ NC. We assume that list(v;) = () in case v; ¢ NC.

- for each node v; € V' a current weight @,, initially set to w;.
- for each edge (v;,v;) € E, a weight p;;.

The insert_edge(v;, v; ) algorithm behaves as follows: if at least one node between v; and
v; is in NC, the current Node Cover is not updated. Otherwise (neither v; nor v; belongs
to NC'), edge (v;,v;) is covered by the node with minimal current weight. W.l.o.g, let v; be
such node, then w; is decreased by w;.

Moreover, in order to allow an efficient implementation of the delete_edge operation,
node v; is marked by edge (v;, v;) (that is, mark(v;) = (v;,v;)) and weight p;; is set to @;.
Finally, we observe that also sets list(v;),list(v;) are maintained for the same reason.

In Figure 2, we formally present the algorithm for insert_edge(v;, v;).

Let Fp C F be the set of edges incident to node vg: the following Lemma can be stated
for what regards the inseri_edge operation.

Lemma 3.1 Vv, € V, the following equality Ry is maintained by an insert_edge operation:
Wk + 2 (v; ;)€ By, Pis = Wk-

Proof. Let us assume equality Ry is verified for £ = 1,...,n just before an insert_edge
(v;,vj) operation. Two cases are then possible:

1. At least one among v; and v; belongs to NC.

2. Both v; and v; do not belong to NC.



1. begin

2 if v, e NCvv;e NC

3 then p;; :=0;

4 if v; e NC

5. then list(v;) := list(v;) U{(v;,v;)}
6 else list(v;) := list(v;) U {(v;,v5)};
7 if ?JigJVC/\?J]'é]VC

8 then

9. Let v; such that w; < w;
10. then

11. begin

12. NC := NC U {v;};

13. Pij = W;;

14. W =W — Wy ;

15. w; = 0;

16. w; = 0;

17. mark(v;) == (vi,v);
18. list(v;) := {(v;,v5)}

19. end

20.end.

Figure 2: Algorithm Insert_Edge



In case 1 edge (v;, v;) is covered by the current Node Cover. From the inseri_edge algorithm,
pi; gets value 0, while neither current weights associated to nodes nor weights associated
to edges are modified. This immediately implies that equality Ry remains verified for all
k=1,...,n.

In case 2 one between v; and v; must enter NC'. According to the inseri_edge algorithm,
the node with smaller weight is chosen to be added to NC. W.l.o.g., let v; be the chosen
node: according to the algorithm, w;, w; and p;; are the only weights modified. This
implies that all values considered in equalities Ry, k # 7,7 are not modified, thus leaving
such equalities still verified.

For what concerns R; and R;, it is to note that in the left side of these equalities the
same quantity is added and decreased while the right side does not change, thus leaving
both equalities still verified. O

Let us present in Figure 3 an algorithm for the delete_edge(v;, v;) operation. Such an
algorithm first checks whether one among v; and v; is marked by (v;,v;). W.l.o.g. let v; be
such a node: then, the current weights of both v; and v; are increased by p;;, v; is deleted
from the Node Cover and all edges (v;, vg)€ list(v;) are considered as potential candidates
to be inserted again, since they are now uncovered as a consequence of the deletion of node
v; from NC.

The following Lemma can now be stated for what regards the delete_edge operation.

Lemma 3.2 Vv, € V, equality Ry, is maintained by a delete_edge operation.

Proof. Let us assume equality Ry, is verified for k = 1,...,n just before a delete_edge(v;, v;)
operation. Two cases are then possible:

1. Exactly one between v; and v; belongs to NC'. In this case, w.lo.g. let v; € NC.
Two subcases are possible:

(a) mark(v;) = (v;,v;). Then, the weights of both nodes v; and v; are increased
by the weight p;;. Since edge (v;,v;) is then deleted from both E; and E;, the
equality is verified for both »; and v; just before the execution of the loop at
line 13 of the algorithm. The equality is also immediately verified for the other
nodes. By lemma 3.1, after the execution of the same loop, the equality is still

holding for all nodes.

(b) mark(v;) # (vi,v;). Then, p;; = 0 by the inseri_edge algorithm and, since no
node weight is modified by the delete_edge algorithm, the equality remains true.

2. Both v; and v; belong to NC'. In this case, it is not possible that both mark(v;) =
(vi,v;) and mark(v;) = (v;,v;). Two subcases are then possible (again, we assume
w.l.0.g. that v; € NC.

(a) mark(v;) = (v;,v;): then, we are in the same situation as in subcase la above
and the lemma can be proved as in such subcase.

(b) neither mark(v;) = (v;,v;) nor mark(v;) = (v;,v;): then, the considerations
given in subcase 1b above can still be applied for both nodes.



1. begin

2 Erase edge (v;,v;);

3 if mark(v;) = (v;,v;) V mark(v;) = (v, v;)

4 then Let v; be such that mark(v;) = (v;,v;)
5. begin

6 w; = w; + pij;

7 Wi 1= Pijs

8 NC :=NC —{v;};

9. Let list(v;) = {(vi, vk, ), (03, Vky )y« - oy (05, Uk, ) } 5
10. q:=1;

11. while v; ¢ NCAg<r do

12. begin

13. insert_edge(v;, vk, ) ;

14. if v, € NC

15. then

16. begin

17. list(v;) := list(v;) — {(vi, vr, )} 5
18. list(vg,) := {(vi, vk,) }3
19. end;

20. qg:=q+1;

21. end

22. if v, e NC

23. then

24, for s:=1 tog—1 do

25. list(vg,) =0

26. end

27 .end.

Figure 3: Algorithm Delete_edge



O

Lemma 3.3 Vv, € V, equalily Ry holds under an arbilrary sequence of inserl_edge and
delete_edge operations, starting from E = ).

Proof. The relation is trivially true for £ = (), since E; = () for each node vy and wy is
initialized to wy.

The equality is proved to be maintained under any sequence of insert_edge and delete_edge
operations by Lemma 3.1 and Lemma 3.2. O

In order to prove the next theorem, we also need the following Lemma.

Lemma 3.4 Given any weighted graph G = (V, E,w) and any Node Cover NC of G, the
ratio between the value of NC and the value of minimum Node Cover is bounded by 2 if
there exists three functions w : V — N, p: E— N, mark : E — NC (where mark is a
partial function) such that the following condilions hold:

1. Voe NC :w(v) =0.

2 Vo €V B(0) + T pyers 1E) = 0(0)

3. Ve € E, if p(e) > 0 then mark(e) is defined.

4. Yv € NC there exists exactly one edge e incident to v such that mark(e) = v.

5. the subgraph G' = (V, E') induced by the set of edges E' = {e | mark(e) is defined},
s acyclic.

Proof. Given the functions w, p, mark, and a Node Cover NC', there must exist, in the
case G' = (V, E’) is acyclic, a node v; € NC such that exactly one edge e; = (vq,v;) € £’
is incident to v;. Notice that, by condition 4, mark(e;) = v;. Notice moreover that, if e;
is selected by deleting v, and all incident edges in £ and by updating the value w(v;) to
@(v;) + p(e1), it is possible to iteratively select a sequence ey, ez,...,en¢) of [ NC [=] £ |
edges (and nodes).

It is easy to see that such a sequence corresponds to a possible sequence of edges (and
nodes) chosen during some application of the Bar-Yehuda and Even algorithm.

The Lemma derives by observing that any Node Cover returned by the algorithm in [3]
has an approximation ratio bounded by 2. O

Theorem 3.5 Algorithms insert_edge and delete_edge maintain an approximate solution
of the Min—Weighted Node Cover problem with approxzimation ratio 2.

Proof. Given any sequence Oq,03,... of inseri_edge and delete_edge operations, let us
denote as G; = (V, E;) the graph resulting by the execution of operations Oy, ...,0; and as
NC; the current Node Cover.

Let us now consider the relations in Lemma 3.4, instantiated on weights w; and p;;, on
marks mark(v) and on Node Cover N}, as resulting from sequence Oy, ..., O;.



Relations 1, 3, 4 immediately hold by the algorithms’ structure, relation 2 is verified
by Lemma 3.3 and relation 5 can be easily proved by induction. Hence the approximation
ratio is achieved by Lemma 3.4. O

For what concerns complexity issues, the following theorems can be proved:
Theorem 3.6 Algorithm insert_edge has time complexity O(1).

Proof. Derives immediately by the algorithm structure. O

For what regards the delete_edge algorithm, it is possible to prove an Q(n) lower bound on
the number of operations to be performed in the worst case in correspondence to an edge
deletion.

Fact 3.1 A single delete_edge operation requires 2(n) nodes to be inserted in the Node
Cover in the worst case.

Proof. Let us consider the graph in figure 4. Assume NC = {vp} and assume also that
a sequence of operations inseri_edge(vo, v1), insert_edge(vg, v2), ..., insert_edge(vo, vy,) has
been performed. Then, in correspondence to a delete_edge(vg, v1) operation, vy is extracted
from NC' and all edges (vg,v2), (vo,v3), ..., (vo,v,) have to be considered, since it is
immediate to verify that, when edge (vg,v;) is considered, node v; is inserted in NC'. O

U3

Figure 4: A lower bound case

It is however possible to show that a sequence of delete_edge and insert_edge operations
presents a good amortized complexity. This is proved in the following Theorem.

Let us first consider edge (v;,v;) and let us assume that v; € NC. We denote (v;,v;)
as stabilized if mark(v;) = (v;,v;). In the case that both v; € NC and v; € NC, (v;,v;) is
stabilized if either mark(v;) = (v;,v;) or mark(v;) = (v;, v;).

We denote the edge as stabilized since it cannot remain “uncovered” as a consequence
of the deletion of another edge. This implies that we are sure that we will not have to find
a cover for a stabilized edge again.

Theorem 3.7 Algorithm delete_edge has O(1) amortized time complexity.



Proof. As noticed above, it may happen that, as a consequence of the deletion of an
edge (v;,v;) with v; € NC, a certain set of edges (v;,v;,), (v, v4,), ..., (v;, v, ) have to be
reconsidered, since they are not covered anymore. By definition of stabilized edge, all such
edges are not stabilized.

The delete_edge algorithm covers all such edges by making a subset (v;, vy, ), (vi,vi,), .. .,
(vi,v;,), t <k of them stabilized and performing O(¢) operations.

Since, by definition of stabilized edge, an edge can be stabilized only once during its
lifetime, such O(t) complexity is amortized by the complexity of the corresponding in-
sert_edge(v;, vy, ), insert_edge(v;,v;,), ..., insert_edge(v;, v;,) operations already performed.
This implies that the amortized complexity of a delete_edge operation is O(1). O

Exploiting the technique in so far used, we may extend our approach to the Min—
Weighted Set Cover problem. In this case, the operations we consider are insert_elem(e, S)
(where & C SU) and delete_elem (e). The first operation introduces a new element e both
in the universe U and in all sets contained in &, while the second one eliminates an element
e from the universe U (and, as a consequence, from all sets in SU in which e is included).

The algorithms for inseri_elem and delete_elem are extensions of the corresponding al-
gorithms for Min—Weighted Node Cover.

As for the Min—Weighted Node Cover, we assume each set 5; has weight w;. Moreover,
our algorithms refer to a weight p(e) for each element e € U; we also introduce two functions
mark and Sets. The (partial) function mark : SU — U, similarly to the Node Cover case,
associates to each set S; € SC the unique element e € 5; whose insertion caused 5; to be
included in the Set Cover SC'. The function Sets : U — SU associates to each element the
collection of sets in which the element is contained.

Let us now introduce the algorithms for the insert_elem and delete_elem operations.

The approximation ratio mantained by this algorithms can be proved by some lemmata,
whose proofs are omitted because are generalizations of analogous proofs presented for the
Min—Weighted Node Cover problem.

Lemma 3.8 V5, € SU, the following equality T}, is maintained by an insert_elem operation:
Wr + Y ees, Pl€) = wg.

Lemma 3.9 Vv, € V, equality Ty is maintained by a delele_edge operation

Lemma 3.10 VS5, € SU, equality T}, holds under an arbitrary sequence of insert_elem and
delete_elem operations, starting from S = 0 for all S € SU.

Theorem 3.11 Algorithms insert_elem and delete_elem maintain an approzimate solution
Sol of Min-Weighted Set Cover with approximation ratio Maxy<j<¢ | F(5) N Sol |.

Proof. The Theorem is a generalization of Theorem 3.5, resulting from the application of
the same approach used in the proof of such a theorem to equalities 1. O

For what concerns complexity issues, the following theorems can be proved:
Theorem 3.12 Algorithm insert_elem has time complexity O(Mazxi<j<¢ | £(j) |).

Proof. Derives immediately by the algorithm structure. O

10



1. begin

2 if there exists 5; € § such that 5; € SC
3 then p(e):=0;

4 if there exists no 5; € § such that S5; € SC
5. then

6 begin

7 Let 5; be such that w; = min{w; | S; € S}
8 then

9. begin

10. SC :=5CU{S;};

11. ple) == w;;

12. for each 5; € S do

13. begin

14. Wy = Wi — Wi
15. mark(S;) = e
16. end;

17. Sets(e) :=0;

18. for each 5; €S do

19. Sets(e) := Sets(e) U S

20. end

21. end

22.end.

Figure 5: Algorithm Insert_elem

11



1. begin

2. Erase element e;

3. if there exists 5; € SC such that mark(S;) =€
4, then

5. begin

6. for each S5; € SU such that e € 5; do
7. w; = w; + ple);

8. w; = ple);

9. SC :=8C —{5;};

10. for each ¢ € §5; do

11. insert_elem (€', Sets(e’) — {S5;})
12. end

13.end.

Figure 6: Algorithm Delete_elem

Theorem 3.13 Algorithm delete_elem has an O(| U | -Mazi<j<; | F(7)|) time complexity.

Proof. Derives immediately by the algorithm structure. O

It is anyway possible to show that a suitable modification of the above algorithms
makes it possible to manage a sequence of delete_elem and insert_elem operations with a
good amortized complexity.

In fact, it is possible, for each set 5 € SC, to maintain a set List(S) C S, where list(.5)
is the set of elements in 5 which are not covered by other sets in SC. Given an element e
and a set 5 € SC such that mark(S) = e, this will make it possible, in correspondence to
a delete_elem(e) operation, to consider as candidates for insertion only those elements of 5
which are not covered by other sets. Note that this corresponds to the management of sets

List(v) in the Min-Weighted Node Cover case.

Let us consider element e: we denote e as stabilized if there exists S € SC such that

e € 5 and mark(S) = e.

Theorem 3.14 [t is possible to manage a sequence of insert_elem and delete_elem opera-
tions in O(Max,<;j<; | F(j)|) amortized time complexity.

Proof. The proofis similar to the one of Theorem 3.7. It is in fact immediate to show that
an element can be stabilized only once during its lifetime and that a non stabilized element
becomes stabilized the second time it is considered. On the other hand, considering element
e; requires at most O(| F(j) |) steps, from which the amortized bound derives. O

12



References

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy. Proof Verification and Hardness of Approx-
imation Problems. Proceedings 33rd IEEE Symposium on Foundations of Computer Science (1992),
14-23.

S. Arora, S. Safra. Probabilistic checking of proofs. Proceedings 33rd IEEE Symposium on Foundations
of Computer Science (1992),2-132-13

R. Bar-Yehuda, S. Even. A Linear—Time Approximation Algorithm for the Weighted Vertex Cover
Problem. Journal of Algorithms, 2 (1981), 198-203.

R. Bar-Yehuda, S. Even. On approximating a vertex cover for planar graphs. Proceedings 14th ACM
Symposium on Theory of Computing (1982), 303-309.

R. Bar-Yehuda, S. Even. A Local Ratio Theorem for Approximating the Weighted Vertex Cover Prob-
lem. Annals of Discrete Mathematics, 25 (1985), 27-45.

A. Borodin, N. Linial, M. Saks. An Optimal on-line algorithm for metrical task systems. Proceed-
ings 19th ACM Symposium on Theory of Computing, (1987), 373-382.

V. Chvatal. A Greedy Heuristic for the Set—Covering Problem. Mathematics of Operations Research, 4
(1979), 233-235.

K.L. Clarkson. A modification of the greedy algorithm for vertex cover. Information Processing Let-
ters, 16 (1983), 23-25.

D. Coppersmith, P. Raghavan. Multidimensional on-line bin packing: algorithms and worst-case anal-
ysis. Operations Research Letters, 8 (1989), 17-20.

G. Gambosi, A. Postiglione, M. Talamo. New Algorithms for on line bin packing. Proceedings 1st Italian
Conference on Algorithms and Complexity, (1990).

G. Gambosi, A. Postiglione, M. Talamo. On-Line Maintenance of an Approximate Bin—Packing Solu-
tion. Submitted for publication.

M.R. Garey, D.S. Johnson. Computers and intractability: A Guide to the theory of NP—completeness.
W.H.Freeman and Company, (1979).

D. Hochbaum. Approximation Algorithms for the Set Covering and Vertex Cover Problems. SIAM
Journal on Computing, 11 (1982), 555-556.

D. Hochbaum. Efficient Bounds for the Stable Set, Vertex Cover and Set Packing Problems. Discrete
Applied Mathematics, 6 (1983), 243-254.

7. Ivkovic, E.L. Lloyd. Fully dynamic maintenance of vertex cover. Proceedings International Workshop
on Graph-Theoretic Concepts in Computer Science, (1993).

Z. Ivkovic, E.L. Lloyd. Fully dynamic algorithms for Bin Packing. CIS Tech.Rep., n0.92-26, Univ. of
Delaware, (1993).

D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System
Sciences, 9, (1974), 256-278.

T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardds, S. Tragoudas. Fast approximation algorithms
for multicommodity flow problems. Proceedings 23rd ACM Symposium on Theory of Computing, (1991),
101-111.

J.H. Lin, J.S. Vitter. e-approximations with minimum packing constraint violation. Proceedings 24th
ACM Symposium on Theory of Computing, (1992), 771-782.

13



[20] L. Lovdsz. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13, (1975),
383-390.

[21] M.S. Manasse, L.A. McGeoch, D.D. Sleator. Competitive Algorithms for Server Problems. Journal of
Algorithms, 11, (1990), 208-230.

[22] B. Monien, E. Speckenmeyer. Ramsey numbers and an approximation algorithm for the vertex cover
problem. Acta Informatica, 22, (1985), 115-123.

[23] G.L. Nemhauser, L.E. Trotter. Vertex packing: structural properties and algorithms. Mathematical
Programming, 8, (1975), 232-248.

[24] P. Ramanan, D.C. Brown, C.C. Lee, D.T. Lee. On-line bin packing in linear time. Journal of Algo-
rithms, 10, (1989), 305-326.

[25] A.C. Yao. New algorithms for bin packing. Journal of the ACM, 27, (1980), 207-227.

14



