like tight hierachies can be obtained this way, both for the time complexity and the complexity
of the distributions. Based on these notions, starting with distributional complexity classes we have
presented meaningful definitons of average case complexity classes the elements of which are languages
in the standard sense. They are directly comparable to worst case classes.

These ideas can also be applied to other cases like the analysis of average space complexity.

References

[BCGL 92] S. Ben-David, B. Chor, O. Goldreich, M. Luby, On the Theory of Average Case Complez-
ity, J. CSS, 1992, 44; see also Proc. 29. FoCS, 1989, 204-261.

[Gure 91] Y. Gurevich Average Case Completeness, J. CSS 42, 1991, 346-398.

[ImLe 90] R.Impagliazzo, L. Levin, No Better Ways to Generate Hard NP Instances than Picking
Uniformly at Random, Proc. 31. FoCS, 1990, 812-821.

[John 84] D. Johnson, The NP —Completeness Column, J. of Algorithms 5, 1984, 284-299.

[Levi 86] L. Levin, Average Case Complete Problems, SIAM J. Computing 15, 1986, 285-286.

[Milt 91] P. Miltersen, The Complexity of Malign Ensembles, Proc. 6. StruC, 1991, 164-171, see
also STAM J. Computing 22, 1993, 147-156.

[MiSeLe92] D. Mitchell, B. Selman, H. Levesque Hard and Fasy Distributions of SAT Problems,
Proc. 10. Nat. Conf. on Artificial Intelligence, 1992, 459-465.

[ReSc93] R. Reischuk, C. Schindelhauer, Precise Average Case Complezity, Proc. 10. STACS, 1993,
650-661.

[Schi9l] C. Schindelhauer, Neue Awverage Case Komplexzititsklassen, Diplomarbeit, Technische
Hochschule Darmstadt, 1991.

[VeLe 88] R. Venkatesan, L. Levin, Random Instances of Graph Coloring Problems are Hard,

Proc. 20. SToC, 1988, 217-222.

34

eAvDTime(T, V —rankable)

A
14 e C o
I
°
h(T)
POL 1
o C o
? o C o
° N
°
N : >
N POL T

Figure 3: Hierarchies between expected average case complexity classes eAvDTime(T)

AvDTime(T, V —-rankable)

A
v
T(N/6),
. 6>1
POL L :
o C o
? e C o
° N
.
N ;. >
N POL T

Figure 4: Hierarchies between average case complexity classes AvDTime(T)

33

Remember that 77 < Th(o(N)). So f is well-defined, and such simulations of M; on input z can
be performed in time T5(|z|).

P € DTime(T3) follows as above.
PNL ¢ AvDTime(Ty, {ranky}):

Assume PN L € AvDTime(7T},ranky) and let M; be a DTM for this language with
(timeps,, ranky) € Av (T1) . Again letting [:= Rr(n;) + 227t1 we get the contradiction

7,1 imepy, (z T, NTy(2 - |z
) t|x| (z) >) (|x(| |z[)

rankz (z)<I Ryi(n;)<rankg(z)<Rp(n;)+22nit+!

(Rp(ng) + 22 —Rp(ny) +1) -2 > 2F2 41 > [+1.

Combining the last four lemmata we get

Theorem 10 Let § > 1. Then for all bounds T,T',V1,Va with N < Vi <o(Va), Vo < O(T) and
Va(6 - N) < O(T") holds

eAvDTime(T, Va—rankable) C eAvDTime(T, Vi -rankable) |
AvDTime(T', Vo-rankable) C AvDTime(T', Vi -rankable) .

Proof: Choose T = Ty where Ti is the complexity bound considered in the previous Lemmata.
The language P N L constructed above in Lemmata 9 and 11 is contained in the average class
eAvDTime(T}, Vi —rankable) according to Lemma9, but not in eAvDTime(T, V5 —rankable) according
to Lemma 9 since ranky € V5 -rankable (Lemma 9). The analogous property for the Av-measure
holds for the language obtained from Lemmata 10 and 12 and 77 =T . |

Corollary 9 For N <V; <o(Va), V1 <O(T) and T € POL

AvDTime(T, Vo —rankable) C AvDTime(T, Vi —rankable) .

Figures 3 and 4 give a pictorial description of the hierarchies implied by the last two theorems.
Each point e in the diagram represents a complexity class eAvDTime(T, V —rankable), respectively
AvDTime(T, V —rankable). e C e means strict inclusion between the two classes, e = e equality
and e 7 e that the relation cannot be deduced from the results obtained above.

8 Conclusions

We have shown that the average case time complexity of an algorithm can be estimated as precisely
as in the worst case. Ranking the input space and measuring the complexity of a distribution with
respect to its rankability has turned out to be an appropriate and natural concept. Classical results

32

and a diagonal language like in the proof of theorem 9 by
P = {z|for i with f(i) <|z|< f(i+1) holds:
i-Ti(lz|]) < To(|z|) and [timepy,(z) > 2 -Ti(|z]) or ¢ L(M;)] } .

Since Tj < o(T3) the sequence n; is well defined (always < o).

1. P € DTime(T3):

On input z, first compute all f(j) and n; smaller than log|z|.
Because of the strong growth of f and the time constructibility of all time bounds this can

easily be done in time Ty(|z|).
Compute ¢ with f(i) < |z| < f(+ 1) in time O(|z|) using the last computed n; .

Test whether i-T1(|z]) < Ta(|z]) .
If this does not hold reject, otherwise simulate the machine M; for 2.Ti(|z|) steps.
Accept iff M; does not accept within that period.

This simulation costs at most 2 - 71(|z|) -7 < 2-T5(|z|) many steps.

2. PNL ¢ eAvDTime(Ty, {rankz }):
Assume that M; computes P N L in expected average time 77 with respect to the ranking
ranky . By definition of n; and R it holds for all i
{z € L] f(i) < |z[< f(i +1) and Ty(|z]) -i < To(|z)} > Rr(ni) + 227+
Furthermore, there exists an infinitive set of machine indices 71,45... such that L(M;,) = P.
Hence, the set PN L is infinite.

Observe that for inputs ¢ € PN L it must hold # € L(M;) and hence timeps, > 277 (|z]) . Let
I := Rp(n;)+ 227+, Then | < 22*2 since Rp(n;) < n;.

The time complexity of M; can be estimated by

timenpy, ()
2 T C 2

ranky, (z)<1 Ri(n;)<rankg(z)<Rp(n;)+22nit+!

2-Ti(|z])
Ti(|z])

= (RL(ni)+22ni+1 —RL(nZ)—i-l) -2 > 221’“4_2—}—1 > [+1 ,

contradicting the assumption that M; were 71 —time bounded on the average.

Lemma 12 Let § > 1, Vo > N, Va(6 - N) < Ty and Ty < Ta(o(N)). Then for all infinite
L € DTime(Va) there exists a language P € DTime(T2) such that

PN L ¢ AvDTime(Ty, {rankr}) .

Proof: Define P and the sequence n; as above, but replace the condition %‘d—% >1 by %J—JL) > 1.
Modify the simulation in the proof of lemma 11 to testing whether a machine A; does not accept an
input z in time T7(2 - |z|).

31

e rank; € V4 -rankable\ Vi -rankable and
e PN L € AvDTime(T1, Vi —rankable) for all P € DTime(T5).

Proof: Use the same L as in the previous lemma. The time bound T3 is now defined as:
To(n) = Ti([n-Re(n) (1-671)]) .

We already know that rank; € V;-rankable\ V; -rankable. It remains to show that for all P €
DTime(T3) :
PNL € AvDTime(T1(2-N), Vi —rankable) .

For a given P € DTime(T5) and for a given rank function r € V; —rankable construct a machine A
as above.
e For the finitely many z with r(z) < (rankz(z) + 1)? the answer is encoded into the machine
and obtained in linear time.

o M testsif z € L and rejects if not.
This now takes time at most O(T3(|z|/6)).

e In the remaining case, rankz(z) < oo and r(z) > (rankr(z) + 1)?, decide z € P within at
most T5(]z|) additional steps.

Then for all { € IN:
Z Tl_l(timeM(a:))

r(z)<I |l‘|
T, NT 6 YT

< > | (|;(||x|/)) | (|m2|(|r|))

r(z)<l and r(z)<Il and

7‘(:L‘)§(r‘ankL(:t:)+1)2 r‘(:t:)>(r‘ankL(1:)+1)2
V1] -1

l Re(l))-Je|-(1-%) 1 1 .

< s+ X o] <z+(1-3) X i<l
rankL(:c)S\/f—l i=1
Therefore (timepr,r) € Av (TY) . |

7.2 The Separation

Lemma 11 Let N < Vo < o(Th) and Ty < o(T2). Then for all § > 1 and for all infinite L €
DTime(Vs), there exists a P € DTime(T3) such that

PnNnL ¢ eAvDTime(Ty,{rankr}) .

Proof: Define

n; = min{b > f(3) ‘ Vje [b...RZl(RL(b) + 220+1y] 238; > z} ,
fi+1) = g

30

For a language L with rank function ranky(z) define

Rr(n) := max{rankz(z) | |z| < n, rank;(z) < oo} .

Lemma 9 Let Ty, Vy, V2 be complezity bounds with the properties N < Vi < o(V2) and Vo < O(Ty) .
Then there exists a language L € DTime(Va) and a complezity bound Ty € w(Ty) such that

e rank;, € Vi -rankable\ Vi —rankable and
e PN L € eAvDTime(Ty, Vi —rankable) for all P € DTime(Ts) .

Proof: Let L be a language with the properties as described in lemma 8, and define Th(n) :=

Ti(n) - Rp(n).

1. ranky € V3 -rankable\ V; —rankable follows immediately from the construction of L since any
rank function of complexity at most Vi will infinitely often generate rank values larger than
ranky, .

2. VP € DTime(Ty) PNL € eAvDTime(Ty, Vi —rankable):

Let » be the rank function of a distribution that is V; —rankable, and choose P € DTime(T3) .
To decide whether z € PN L do the following:

e For the finitely many inputs z with r(z) < (rankp(z) + 1)? prepare a decision table
beforehand to get the result in linear time.

e Otherwise, test whether = € L. Reject, if not.
Since L € DTime(V>) and, by assumption, Vo> < O(T1) this question can be decided in
time T3(|z|) (using a linear speedup if necessary).

e In the remaining case it holds z € L and thus rank;(z) < oo, and furthermore r(z) >
(rankz(z) + 1)2.
Then, use a Ty —time bounded algorithm to decide whether z € P .

To estimate the average time complexity of a machine M performing this computation we get

for any [€ IN:
tlmeM T1(|C'3|) T2(|l’|)
< St AN VAR 2zl
Z 2-Ty(|:1: - Z 2-Ti(|z]) Z 2-Ti(|z|)
r(z)<1 r(z)<Il and r(z)<Il and
1‘(:{:)S(r‘ar1kL(z‘)+1)2 1'(:L‘)>(r‘ankL(z')+1)2

V1] -1
n 3 (|1‘|) Re(lz]) <bylosyicn

T 2
rankL(:c)<\/7—1 1(|l‘|) i=1

IN
N | =~
—_

l
2
Therefore (timepr,r) € eAv (2-T7) . By a linear speedup, one can find a machine M’ with

L(M")=L(M)=PnNL and (timep,r) € eAv (T}) .
|

Lemma 10 Let § > 1 and Ti,Vi,Va be complezity bounds with N' < Vi < o(Va) and Vo(6N) <
O(T1) . Then, there exists a language L € DTime(Va) and a complezity bound Ty € w(Ty) such that

29

RANKL (z)
for input z = 1™ find [such that m = n;
if | does not exist then return (—,—, o)

if =1

then return (1,1,1)
else (j,k,7) := RANKL(z;_1)

let I be the output of a V; -rank accumulator on input 1%
I:=I;N[l..b], where b := min {], M}
forall 1 €7

6-Vi(m)

simulate machine A; on input z for at most Vi(|z|) steps
if by that time M; has output a rank less than (r + 2)?
then return (j,k+1,00)

return (j+1,j5,r+1)

We have to show that the language L constructed this way possesses the properties stated above.

1.

ranky € V5 —rankable:
Assume inductively that on input z;_;1 the time complexity of RANKL is bounded by Va(n;_1).
Now consider z = 1™ with m > n;_; . We may assume that determining n;_; , resp. n; takes
time at most éVg(m))

If m = n; then due to the properties of this sequence the time for the recursive call of
RANKL (z;—1) is bounded by %Vz(m) . Also, we may assume that the output of the rank accu-
mulator can be obtained in time %VQ(m) . The time needed for the simulation of all machines
in 7 is bounded by

Va(m)

b-Vi(m) < W-Vl(m) = —Va(m) .

This proves that rank; can be computed in time V5 .

. L 1is infinite:

Assume that for some input z; a finite rank r is computed by RANKL. As long as the next
candidates © = Zi41,Z142,... do not get a finite rank the variable j stays fixed and &k is
increased each time. By definition of a Vj -rank-accumulator, eventually for some k the set
I = IN[1..b] with b = min{j, V5(|z|)/6Vi(|z|)} only contains indices of machines that compute
a pseudo rank function. Any one of them can hurt the condition ”output” < (r + 1) only a
finite number of times. Thus, eventually the rank r 4+ 1 will be assigned to some successor of
Zy .

. For all R € Vi —rankable and for almost all z:

rankr(z) < oo = R(z) > (rankr(z) + 1) .

The index of a Vj -time bounded machine M computing R will eventually be considered in
the for -loop on some input z;. Then for all inputs z; with s > holds:
if RANKL generates a finite rank r it will not be larger than /R(z,) — 1.

28

Lemma 8 For all complezity bounds Vi,Va with N < Vi < o(Va) there ezists an infinite language
L with the following properties:

o ranky, € V5 —rankable,
e for all R € Vi —rankable: rankp(z) < oo = R(z) > rankr(z)?> for almost all z .

Proof: The language L to be constructed will be a subset of 1* . Remember that according to our
general assumption on complexity bounds V5 is monotone and time-constructible. We start with a
sequence n; =1 <ny <ng< ... C IN with the following properties:

o Va(niy1) 22 Va(m)

e for any m € IN the element n; with n; < m < niy1 can be computed in time O(V3(m)).

For example, such a sequence can be obtained as follows: Assume n; has been defined. Then, for
k=1,2,3,... consider the sequence V5(2% - n;) till the first k£ such that

V2(2k -m) Z Qk -V2(7‘L1) .

It is easy to see that such a value, let us denote it by k, must exist. Otherwise, the partial sums
of Vo were bounded quadratically, which contradicts the condition that V5 grows faster than linear.
Considering n; fixed and m growing, one would get

ni4+2m ny—1 n+2™ m
Yo Vala) = D Vala) + Y Vala) £ O(1) + D271 1427)
a=1 a=1 a=n; al=1
< O + Y2727 V() < O(1) + 27 Va(m) < O((mi+2m)%) .
a'=1
Define n;y; := 2k -n;. Then this sequence obviously fulfills the first condition. Since V5 is time

constructible, given n; the next value n;y; can be computed in time

E k-1
D oVa2Fm) < D028 Va(n) 4+ Va(2F ng) < 2 Va(nuga)
k=1 k=1
Thus, the whole sequence ni,...,ni41 can be computed in time O(Va(ni41)), and for m = nj4q
the second condition holds, too. For arbitrary m first compute V2(m) and then set a time limit of
O(Va(m)) . Start computing the sequence nq,... until either n;yq1 has been found or the time limit

is over. In the second case, the last value computed is the desired n;. Define
;= 1"

The following algorithm computes ranky , and thus implicitely defines L. On input z; a triple
(j, k,r) is generated where r denotes the rank of z; in L. Thus z; € L iff r < oco. j and k are
additional parameters that are needed in this recursive procedure.

27

Definition 12 A pseudo rank function is function r : ©* — INU{co} with the property that for
all 1 € IN holds: |{z|r(z) <1} < 1.

An example of a pseudo rank function that is not a rank function is the function 1 +— 4, 2 +— 5,
3+— 6, Some rank values never appear, but it does not happen that too many small ranks
are generated. One cannot enumerate all machines computing pseudo rank functions either, but at
least one can construct a dynamic set of candidates such that each machine fulfilling this property
will eventually be contained in this set, and each machine not fulfilling this property will eventually
be thrown out.

Definition 13 Let V be a time bound. A V -rank-accumulator is a DTM M that on input 17
computes a set of machine indices I, C IN with the following property:

o Vi€ IN holds: M; computes a pseudo rank function and 1s V -time bounded <~
dng Vn > no 1€, .

Lemma 7 For every complexity bound V there exists a V -rank-accumulator M . Furthermore, M
can be made to run wn linear time.

Proof: Let ¢ :IN — IN be a monotone, unbounded function that can be computed in linear time.
The following algorithm defines a V -rank-accumulator.

on input 17 compute ¢(n) and define I:=[1...¢(n)]
forall 1€17
R; = 0
for all z € n<e(n)
simulate machine M; on input z for at most V(|z|) steps
if M; has not terminated by that time
then remove i from I
else add its output to the multiset R;
forall | € R;
if {reR;|r<I} >1 then remove i from 7
return [

The correctness of this algorithm can be seen easily. Its time complexity on input 1" is given by
Tye(n) < O(c(n) - B+ V(e(n))
(remember that complexity bounds like V' were assumed to be monotone increasing). For any V one

can find a monotone and unbounded function ¢ such that Ty . grows at most linearly, and ¢(n) can
be computed in time O(n) . For example, the following function has these properties

e(n) = min{V‘l(\/ﬁ),%} .

26

1
Z |lz| + < gl =

x
27i <rankyni(z)<22nit! | |

1
Z 1+ = < 22ut! =
||

27 <rankyni(z)<22mit!

(22n,+1 _in). (1 + 231)

2.27 < 241

22n,~+1 =

IN

|
Now observe that if V; < V5 then Vj -rankable C V5 -rankable and hence
eAvDTime(T, Vi —rankable) O eAvDTime(T, V> —rankable) .
Therefore, for V3 > N
DTime(7T) C eAvDTime(T, V;-rankable)
C eAvDTime(T, {uni})
and similarly for the other measure. This implies
Corollary 8 Let T1,V > (1+)N and T, € w(T1). Then
eAvDTime(Th,V -rankable) C eAvDTime(T>,V -rankable)
AvDTime(Ty,V -rankable) C AvDTime(Ty,V -rankable) .
|

7 Distribution Hierarchies of Average Case Classes

In the previous section we have seen that like in the worst case any slight increase in the average time
bound gives more computational power. Now we want to investigate the same question with respect
to the complexity of the distributions. Will a more severe restriction on the set of distributions, for
which one requires a good average case behaviour, allow to solve more algorithmic problems within a
given average time bound?

7.1 Diagonalization with respect to Sets of Rank Functions

Again a proof for this property is likely to use a special kind of diagonalization, but there is a slight
technical problem arises. In general, it is not possibile to enumerate exactly those machines that
compute rank functions of a certain time complexity because this task is equivalent to the halting
problem. We circumvent this difficulty by considering a broader class of rank functions.

25

e To exceed the average time bound 77 we let the index i grow very slowly. So, we get for each
index i at least as many finite ranks (relevant for the diagonalization) as for all indices 1...i—1
together. This is achieved by the rapid growth of the n; .

e To be able to compute the inverse of the resulting function f in time 75(|z|) we choose f(i+1)
as 22nitl

1. L € DTime(T3) :

To decide L by a DTM M, first for an input z compute the corresponding ¢ such that
f(i) < |z| < f(i +1). For this aim the machine succesively computes all f(j) for j < |z].
This is easy in the given time bound since f grows very fast (f € w(itexp)). For a given f(j),
f(j +1) is computed by incrementing two counters b,j until & fulfills the condition for n; .
If j > log|z|, the algorithm halts: the last computed value of f is f(¢). This costs at most
(log f(7+1)—f(4)) Ta(log f(7+1)) < To(j+1) many steps for almost all j . It is not necessary
to compute f(i+1). Hence, i is computed in time O(T3) .

If i Ti(|z]) > To(]z|) the machine rejects z.

Otherwise, M simulates 2-7j(|z|) steps of the machine M; on input z. By assumption this
can be done in time 7-Ty(|z|) < Ta(|z|). If M; accepts x within that many steps M rejects
z, else it accepts.

2. L ¢ eAvDTime(Ty, {uni}):

Assume that L € eAvDTime(T7, {uni}). Let M; be a machine that accepts L. By construction
of the sequence n; we have that for all z € [n;,2n; + 1] : 7-T1(|z|) < T2(|z]) . Hence, the first
condition in the definition of L is always fulfilled for such z. Now L = L(M;) implies that for
such z the case z € L(M;) in the definition cannot occur, hence timeps,(z) > 2 - Ti(|z]) . We
claim that the average time complexity of M; with respect to the uniform distribution is larger
than 77 both for the eAv and the Av—measure. Otherwise, for the first measure we would get
the following contradiction. Let [= 227i+1 — 1 then

y tmewl) oy _
rankuni(e)<! 1(l2)
S tmean(z) ¢ _
2mi <rank gai(c)< 2271 1(|513|)
> 2w o

27i <rankyni(z)<22nit!
2. (22nl+1 _ Qn,) S 22ni+1 =
22nitl < 9. gn

3. L ¢ AvDTime(Th, {uni}):

For the other measure a contradiction is derived similarly.

IA
U

Z Tl_l(timeMl(a:))
rankyni(z)<1
Z Tl_l(timeMl(:n))

2mi <rankyuni(z)<2mit!

IA
U

24

loglog(22'22j)
L+ > 1+ > ——

<
rank, (2)<I ranku(fj)SI
and 2¢Lg and 1%’ g{zy}
1
= 14+l-e+ Z L+ 5
rank#(fj)Sl
and 1*"¢{zy}
< l—-eg+l4+(ag—-2)+1 = 1.
Thus, L € AvDTime(T,) for all distributions z . |

6 Time Hierarchies of Average Case Classes

For average case complexity classes with a fixed bound on the rankability of the distribution we get
tight hierarchy results. First we show that even under uniform distribution we cannot always solve a
problem of a higher worst case complexity class. This substantially improves theorem 4.2 in [Milt 91],
which gives a weaker separation for the expected measure.

Theorem 9 For time-constructible and monotone increasing time bounds Ty, Ty with T1 < o(Ty)

holds

DTime(T5) \ eAvDTime(Th,{uni})

40
DTime(Tz) \ AvDTime(Ty, {uni}) # 0

Proof: Define a function f :IN — IN as follows.

fo)y =1
ng = min{bzf(i) Vj € [b;2b+ 1] fﬁgg > z}
fi+1) = 22wt

With the help of f we define a diagonal language L by
L := {z|for i with f(i) <|z|< f(i+ 1) holds:
i Ti(|e) < To(le]) and| timey,(z) > 2 Ti(lz]) or =g L(M;) | }.

The motivation for these definitions is as follows:

e Like in a normal diagonalization a string z belongs to L if a corresponding machine M; on
input z computes longer than 2-Tj(|z|) steps or rejects.

e To guarantee L € DTime(75) such a simulation of A4; should only be performed if there is
enough time, that means i - Ti(|z]) < Ta(|z]) .

23

Corollary 6
eAvDTime(T,C) = DTime(T)

for a set C of distributions that are O(T -log® T') -rankable with an oracle for Hreay (6>1).

Using the fact that the time bound hr grows at most like 7'(n) - 2" and that for polynomial bounds
the constant § can be omitted one obtains

Corollary 7 For complexity bounds T, T’ with T' € POL holds:

eAvDTime(T, (T - EXL)-rankable) = DTime(T),
AvDTime(T', (T’ - EXL)-rankable) = DTime(T").

Notice that for the stricter average case measure the equality is only claimed for polynomial bounds
T’ . The motivation for considering average case measures other than the expectation was to keep the
concept of polynomial time reductions. This aim seems to imply that the precision of the measure
has to be weekened. Levin’s approach is very coarse grain, while the one presented here will turn out
to be as precise as the worst case measure in the most interesting range of polynomial bounds. But
for time bounds much larger than polynomials the situation becomes somewhat different.

Theorem 8 For T > FEXL and the set of all distributions U holds:

DTime(T) C AvDTime(T,U) .

Proof:

The relation ” C” follows from the definition.

That the deterministic class is strictly contained in the average time class can be seen as follows. Let
T =expexp be the double exponential time bound and Lg := {1 |i € IN}.

Let L C Ly be alanguage in DTime(7?) \ DTime(T) and p be an arbitrary distribution. Let z,
y be the elements in Lg with the two smallest ranks according to g . One can construct a machine
M for L that takes linear time for all inputs in Lg U {z,y} and time T? else.

This means for input z that

T~ (timeps(z)) loglog |z|
||

1/2

|z
and similarly for y.

Then, for each [let e; := |{2|rank,(2z) <! and z € Lg}|:

Z T=1(timep(2))
|| :

rank, (z)<I rank, (2)<I ranku(l_gj)fl
and z¢Lg and 12]&{1‘#}

. T 3 T (timepr (12'))

127

IN

22

long-time(z)
if |z|=1 then return (0,0,0,c0);
(index, j,s,r) = long—time(zitlogdﬂ)_l)
case 1: error (index,z) = true then
if (c(index,itlog(|z| — 1)),z — 1) € Hsr
then return (index+ 1,0,s+ 1,00);
then return (index+ 1,0,s,00);
case 2: (c(index,itlog(|z| — 1)),z — 1) € Hsp then
return (index,j+ 1,5+ 1,00);
case 3: timey, | (z) < 6T(|z]) then
return (index, j, s, c0);

case 4: j > Z—:{- then
include z into X; and return (index+1,0,s+41,s+ 1);

case 5: else
include z into X; and return (index,j+1,s+1,s+1);

In case 1 the index can be increased since L(M;) # L and one does not have to worry about machine
M; anymore. If case 2 applies there is already one string from the interval]Zitlog(|x|)—1)Zitlog(|x|)]
included into Xjpqex and we will not choose anymore. In the last two cases M; spends too much
time on input z and hence this input will be put into X5nqex - If we now have enough such strings
(case 4) the index will be increased, otherwise we still have to find more strings for this set.

This procedure will not get stuck at some index ¢ because this would imply that only for finitely
many z holds timeas,(2) > 67(|z|). But then another machine would accept L in worst case time
6 -T . By a linear speedup L could also be accepted in worst case time 7', a contradiction to the
choice of L.

By construction, the sets X; fulfill the desired conditions (a), (b) and (c).
Lemma 6 rankp € O(hsr) —rankable

Proof: Let d(n) be an upper bound on the run time of long — time on input of length n.

1. The computation of long-time (zlog(|s|)—1) Tequires at most d(log|z|) steps.

2. test (index,z) can be computed in time |z|-index?/log|z|, where index < itlog|z].

3. The simulation of Mingex for 6 -T'(|z|) steps costs time &8 - T'(|z|) - itlog(|z])? < hsr(|z]) .
4. To simulate the oracle, time hsr(|z]) is sufficient by definition of hsp .

Therefore, rankp € O(hsr)—rankable. |

The proof for the Av-measure is almost identical replacing 67" by T(6-N') in the construction above.
|

Miltersen has shown that there exists a distribution p malign for DTime(N*) with respect to the
expected time measure, which can be computed in polynomial time with an %7 —oracle ([Milt 91]).
The theorem above shows that an NP —oracle suffices.

21

3. AvDTime(T, hrp(s.ay —rankable) C DTime(T(8N)) :

As above, consider any language L ¢ DTime(T(8N)). Now replace the first property of X;
by

(a’) Ve € X; timey, > T(6]z]).
Assume that there exists a DTM M; with L(M;) = L and (timeps,,rankp) € Av (T , that

means
vi Z

rank p(z)<I

T-1 (timenps, (2))

||

Again, for [= 22:1 |X;| we derive a contradiction

g T @) g TUTORD) g Bl

2] 2] 2]
p(x)<1 reX; reX;
The sequence X; is constructed as follows. Define the iterated exponential function and its inverse
by itexp(n) = exp((---exp(1)---)), itlog := itexp~! and strings z; := 1'***() . Note that for
—_———
n times

any string z with respect to the lexicografical ordering zitiog(jz)-1 < = < Zitlog(z]) -
Let M* be a DTM for L.

To make the computation of the ranks efficient for each machine M; we we will use another machine
with identical time behaviour for large inputs, but a linear time bound for small inputs. It is irrelevant
whether this machine accepts the same language as M;. More formally, let ¢ : IN x IN — IN be a
function such that for all 7

) | timen,(z) ifz >z
tlmeMc(l,k)(x) = { || if 2 < zkf

It is easy to see that such indices ¢(i, k) of size bounded by O(i-k) can be computed time O(i- k).

Below we describe a recursive algorithm long-time, which on input z outputs a tupel (index,s,j,r).
The meaning of these components are as follows. index denotes the index of the set Xingex into
which z might be inserted. j counts the number of strings lexicographically smaller than or equal to
z that are contained in Xjndex , while s counts those in D . r equals rankp(z). Thus in particular,
the last component gives the rank function. The other information will be needed in the recursive
calls to achieve the porperties discussed above.

As a subroutine we will check whether a machine M; behaves different from M* for any inputs =z
much smaller than the current input z . This is done by the following procedure.

error (i,z)
for all z with |z| <loglog |z|
simulate machines M* and A; on input z for |z|/(log|z|)? steps;
if either (both have accepted) or (both have rejected or have not terminated)
then return true
return false

The main algorithm looks as follows.

20

Theorem 7 For all § > 1 and T > 26N holds

eAvDTime(T, hsp —rankable) DTime(T),
AvDTime(T, hp(spry-rankable) C DTime(T(8N)).

Proof:

1.

eAvDTime(T, hsr —rankable) O DTime(T')
follows from the definition.

. eAvDTime(T, hsy —rankable) C DTime(T):

We will prove this inclusion indirectly. Let L be a language that is not in DTime(7T') . It suffices
to show that their exists a distribution in hsp —rankable with respect to which I is not average
T -time bounded. To obtain the rank function of this distribution we will construct a sequence
of finite sets X; containing all inputs of finite rank and hence positive weight. Then

D:=Jx
icIN
is the support of this distribution and the ranking will be the lexicografical one
rankp(z) = {ze€D|z<z}| forzeD

according to Definition 2. The X; and the ranks of their elements will be obtained by the
algorithm long-time defined below. We will show in Lemma 6 that a DTM can compute the
rank function rankp in time hgsr .

The idea behind the construction of the X; is as follows. X; will be used to diagonalize against
machine M;. If L(M;) = L then the following properties will be achieved:
(a) Vz e X; timenr, (2) > 6 T(|z|),

that means each set X; contains only inputs on which M; spends much time (sufficiently
more than the average).

() 1l > (=17 Y1

these sets are chosen large enough such that there are enough long computations to prevent
a good average case behavior.

(c) Forall j <! holds: lz| < |y VeeX; VyelX,

this way, the rank function is strictly monotone increasing and the problems with too many
small ranks or holes in the ranking do not occur.

Assume that for each 7 we have constructed such an X; and that there exists a machine A;
that accepts L in average time T with respect to the distribution defined by rankp . This
would requrire

Vi Z timeny, (2) <1

rank p (z)<I T(|l‘|)
Let [:= Zj.:l |X;|. Then using property (b), we get the contradiction

timeyr,(z) T ()
> T(e) = Z:T(Irl)

rank p (z)<I zeX;

81X = [Xl(6 =)+ [X:| > (= |Xal)+ X = 1.

19

5.2 More Complex Distributions

Next, we will show that allowing arbitrary distributions there is no difference between the average
case and the worst case.

To this aim we want to construct a rank function that for any DTM M with L(M) ¢ DTime(T)
gives small ranks to inputs with long computations exceeding the time bound T . So, there is no
difference between DTime and eAvDTime (or AvDTime) with respect to this distribution. The
main difficulty is to control the number of small ranks. If, for example, a machine outputs the number
1 twice this machine does not compute a rank function. On the other hand this machine must not
leave any gaps in the ranking it outputs. For example, in the sequence of ranks 2,2,5,5,6,7,8,9...
rank 3 is missing. One solution to this problem is first to compute all ranks the machine outputs for
smaller strings. But this requires exponential time.

Another solution is to use the following language as oracle.
Definition 11

Hy = {(z,1)) |3z < z : timep,(2) > T(|2])} .

timen, (z) 4 -/T(|m|)

B |

0 1 0'0I 01 10 11 000 X

-

(l‘,i) Q Hrp (l‘,l) € Hrp

Figure 2: The definition of Hp .

Figure 2 visualize this set Hr. Note that Hrp is in NP if T is polynomially bounded and
constructible. It is also complete for AP since the bounded halting problem

NBH := {(z01°0%) | timen, (z) <t}
can be reduced to it.

Let Q(7T?) < hr < O(exp-T) be a time bound such that Hy € DTime(h7).

18

Proof: For T € w(N) holds: Solving the equation
Toexp%[= T . exp

with 7" as unknown one gets a complexity bound 7" € w(T') . Construct a language L as in the last
two proofs: For the AvDTime classes this is done with respect to the complexity bound T, for the
eAvDTime classes with respect to 7”. In both cases we get the same language and it holds

L € AvDTime(T, {uni}) ,
L ¢ eAvDTime(o(T"),{uni}) DO eAvDTime(T, {uni}) .

If we restrict complexity classes to unary languages defined over a one letter alphabet then measuring
the average complexity by the expectation obviously does not make sense because it will be exactly
equal to the worst case measure. However, both of our new measures are able to provide a meaningful
tool as the following result shows.

Theorem 6 There erists a unary languages L in DTime(N?) whose average case complezity cannot
be bounded by any function in o(N?) when taking the expectation. However,

L € eAvDTime(2N, {uni}) N AvDTime(2N, {uni}) .

Proof: Let Ly C 1* be aunary language in DT'ime(exp N?)\ DTime(o(exp N'?)) . Define the unary
language L by
L = {1"|n=2" for some m &N and 1™ € L} .

Then L € DTime(N?)\ DTime(o(N?)), which also implies that the time complexity measured by
the expectation cannot be bounded by o(N?). A simple calculation on the other hand yields

timeps () |z| |z|?
M\ < il =
2. 5 S 2 gt 2. o
rankuni(z)<I rankyni(z)<I rankyni(z)<1
le| ¢ {2* | keIN} le| € {2% | keN}

I 1log.’—l
= 2n < 1.
+35 ; <

IN
N

This example shows that in the case of unary languages these measures tolerate larger peaks in the
runtime of a machine if they do not happen too often. Thus, for unary languages we also get an
averaging effect, but now over different input lengths. On the other hand, it is not hard to see that
restricted to unary languages there can be at most a linear factor difference between these average
case and the worst case measure.

Note that this result does not contradict Theorem 1, where we have shown that for the uniform
distribution the standard average time complexity based on Time’,;(n) defines the same complexity
classes as eAv (T') . In that case the average was taken with respect to a ground set of strings defined
over an alphabet of size at least 2.

17

More precisely, there exists a machine M for L that rejects all strings not of the form 1%02" =% in
linear time, and takes time 17 -exp for the remaining inputs. This yields L € eAvDTime(T, {uni})
since for all /

Z timens ()
rankyni(z)<! T(|l‘|)

N 12l T(ja])
< - 5
rankZ%:c)<I T(|l‘|) rankZ%:c)<I 2 T(|CE|)

e g {1%02° % | peIN} e € {1%02°~* | peIN}

l 1 logi—1
< -4 = 2 < 1.
S gty L Vs

Note that the previous theorem implies L ¢ eAvDTime(o(T), {uni}). |

The AvDTime-classes behave very differently in this respect. For any bound T the blowup is not
necligible, it is fully exponential, as it is the case, for example, when comparing nondeterministic or
probabilistic time classes with deterministic ones. This may be another indication that this concept
is the more natural one for complexity investigations.

Theorem 5 For T > 2N

eAvDTime(T, {unz}) \ DTime (o(T o exp %f)) £ 0.

Proof: Again, let L; be again an unary language in
: N . N
L; € DTime(exp(T o exp 7))) \ DTime(o(exp(T o exp 7)))

and define L :={zy|z € Ly and y = 02|x|_|z|} .
L € DTime(T o exp "\7/) \ DTime(o(T o exp "\7[)) , and all strings not of the form 1¥02*~* can be
rejected in linear time by an appropriate machine M . Then L € AvDTime(T, {uni} follows from

Z T~(timeps(z))

rank yp;(z)<I |l‘|
uni —

$ =D T T (T(exp(|z]/2)))

<
rankyni(z)<I |£C| rankyni(z)<I |£C|
e g {1%0%2" % | reIN} e € {1%0%* % | reIN}
logl-1
1
-+ - < |
S gty L Vs
Note that L ¢ AvDTime(T(o(N)), {uni}) due to Theorem 3. |

Corollary 5 Let T € w(N) and the function T/N be monotone increasing, then
eAvDTime(T,{uni}) C AvDTime(T(2-N,{uni}) .

16

5.1 Uniform Distributions

Theorem 3

eAvDTime(T, {uni})
AvDTime(T, {uni})

C DTime(T - EXL)
C DTime(T o EXL) .

Proof: For L € eAvDTime(T,{uni}) let M be a expected T -bounded DTM with L(M) = L.
Then for all strings z it must hold

timeps (2) timeps ()

7T(|z|) (2] < rankyyi (2) .

e<z
Thus, for every input z we get the worst case estimate

timepr(z) < rankuni (2) - T(|2]) < expO(|z])| - T(z]) -
Now, assume L € AvDTime(T, {uni}) and let M be DTM for L such that for all strings z,

T~1(timep(2)) Z T~ (timepr(z))

< kyni .
E : B < renk ()

r<z

Then

)

timepr(z) < T(rankyni (2)-|z]) < T(expO(]z])) .
|

Note that for the eAvDTime-classes there is an exponential increase in the worst case bound if the
time bound T is a polynomial. On the other hand, if T itself is exponential the additional factor
EXL has only little influence. It is not hard to show that for small time bounds the exponential
increase cannot be avoided.

Theorem 4 For any complexity bound T > 2N holds

eAvDTime(T,{uni}) \ DTime(o(T -exp)) # 0.

Proof: Let Li C1* be a unary language in

DTime (exp(%T . eXp)) \ DTime (exp(o(T . exp)))

and define
L = {zy|e€Ll;and y= 02|I|_|”|} .
Then,
L € DTime (%T ‘ exp) \ DTime (o(T - exp)) .

15

Theorem 2 For arbitrary 6,¢ > 0 and T > (1/6 4+ €) N with the additional property that the
function T/N is monotone increasing and all classes of distributions C' holds

eAvDTime(T,C) C AvDTime(T((1+ §)N),C) .

Proof: For L € eAvDTime(T,C') and p € C,let M be a DTM with L(M) = L and (timeas, pt) €
eAv (T') . Then, by a linear speedup there also exists a machine M’ for L with timep(z) <
6 - timeps(z) for all inputs on which M spends time at least T'(|z|). Again, divide the inputs into
the two subsets

I {z | timep/(2) >
I, = {z|timey(z) < T(|z

For z € I; one can conclude as in Lemma 5

timey(z) _ T~ 1(timeys (2))

T(lzl) — ||
Thus,
timepy: () timep: ()
6-1 > i S SN
B z€el rgl; (z)<1 T(|J}|) B zel r; (2)<1 T(|l‘|)
b uim = 1) ulZ)S
T~Y(timeps (z))
> _
= >]
z€ly, rank, (¢)<I
For z € Iy 1t holds
T~(timeps (z)) <1
||
Therefore,
1y
yoo tmen@) g

rel k |£E|
1, ran ‘L(Z)SI

(s
Z T=(timeps (2)) < 1146,
rank, (z)<I |:C|

The investigations in the next section will show that in general the second measure defines broader
complexity classes. Already for the uniform ranking and a polynomial bound 7' it thus holds

eAvDTime(T, rankyni) C AvDTime(T, rankypn;) .

5 The Relation between Average Case and Worst Case Com-
plexity Classes

From a complexity point of view sticking to a fixed distribution also does not make much sense for the
following reason. If one restricts the average case analysis to a simple distribution like the uniform one
the best relation between average and worst case classes that seems to be obtainable is an exponential

gap.

14

Lemma 5 Let T be a time bound and the function T/N (n ﬂnﬂ) be monotone increasing, then

eAv(T) C Av(T(2-N)) .

Proof: Let (f,p) € eAv (T) . Thus,

vi ZfD

To prove the claim one has to show

Divide the inputs into the two subsets

L= Az [f(z) > T(lz])},
L = Az f(z) < T(|z])}.

If f(z) > T(|z]) then T=1(f(z)) > T-YT(|z])+1) > |z|. Using the assumption that g(n) :=

T(n)/n is monotone increasing a simple calculation yields for such z

g(TH(f(=) = g2 <
T(T~'(f(2))) T(]z])
TE) S =
f(z) T(|z))
T-1(f(z) = [=
f(2) T-'(f(2))
ENRE
e T-'(f(2)) f(2)
z <
zefl,zp(:z)« || B zelth(:z)S,TUzD B
For z € Iy 1t holds
T‘1|(f|(r)) 1
Therefore T_l(f())
)<
zeIz,Zp(:z)SI 2]

13

Theorem 1 For all T > aN holds
eAvDTime(T,{ptuni}) = {L |3 a DTM M with L(M) =1L and Timey™ <T } .
Proof: 7 C7”:

Let L € eAvDTime(T, {ftuni }) . Thus, there exists a machine M with L(AM) = L and (timeas, ftuni) €
eAv (T) . Thus,

timens(z) timeps () <
Vi —— L <] <<= Vn E———A N DRSS
Ty < 2 Ty =
rankyni(z)<1 || <n
= ¥ Y % < |S|-T(n) .
|z|=n

If M is sped up by the factor 2-|X| we get a machine M’ with L(M’) = L and

timeyr (z) < max{%, (1+ €)|93|}

for some € > 0. If T' grows at least as " for an appropriate « (for example o = 8|X|?) then one
can show)
t /
S %@) < T(n) |

|z|=n
which means that M’ is expected T -time bounded.

”» D 77:
Let M be a DTM such that L(M) = L and Timel;* < T, which means

timeps (z) timeps ()
Vn — < T(n < Vn — < |Z"
l; gpo < T l; Ty S 1F
timeps () <n
= Vn lg Ty S sl
timeps (z)
= Vi > Ty < 1

rankyni(z)<!
<= (timepy, puni) € eAv(T) .

4.2 eAvDTime versus AvDTime

Let us now compare these two concepts of bounding the average run time. It will be shown that the
generalized expected time measure is at least as strict as the average measure. Thus, algorithms with
known expected running time can be used to get upper bounds for the average time complexity with
respect to the Av (7") measure.

12

4 Modification of the Expected Measure

4.1 Bounds for the Expectation Using Rank Functions

The generalization by monotone transformations can also be applied to the classical expected measure.

Definition 9 The set eAv(T) (ezpected average T) contains all pairs (f,p) such that for all
monotone transformations m of p

3) i <1

xr
Similar to above this condition can be simplified to

Proposition 3

(f, 1) € eAv(T) = vi >

Proof: ” =7 by definition.

»

< 7: Identical to the proof of proposition 1 and corollary 1 when substituting T_ll(zfl(x)) by Jf((ﬁ?) .

As for the classical expected measure one can easily find examples showing that this measure is not
closed under polynomial transformations, too. The complexity classes eAvDTime(T') are then defined
similarly to AvDTime(T) .

Definition 10 Let C' be a set of distributions, then

eAvDTime(T,C) = {L|VueC IDTM M withL(M)=L and (timey,p)€ eAv(T)} .
It is not hard to see that the average run time being bounded by T for every input length, that means
Vn Timeh, < T(n), is a stricter condition than membership in eAv (7') . A machine contradicting

the property Timeh, < T(n) for some n may still be average bounded with respect to the eAv-
measure if for smaller input length n’ the average is sufficiently smaller than T'(n’) .

There is at least one special case, where both measures define the same complexity class. Consider
uniform distributions fi,,; with the rank function

rankyni (2) = |E§|x||.

Thus as ranks only values of the form | = |Z<I#l| appear. In this case one can prove for an appropriate
constant « that only depends on ¥ the following equality.

11

We then define the following complexity classes.

Definition 5

DistDTime(T) = {(L,p)|3IM € DTM: L(M) =L and (timen,pu) € Av(T)}
DistP := || DistDTime(T) .
TePOL

These sets are called distributional complexity classes. Their elements are pairs of an algorithmic
problem (a language) and a probability distribution. They are formally different from the standard
worst case classes. But the ultimate goal is to compare the worst case and the average case complexity
of problems. Therefore the following definition turns out to be suitable for this purpose. We consider
the distributional complexity of languages L with respect to a set C' of distributions and require
that the average complexity is bounded for all these distributions.

Definition 6 Let T be a complexity bound and C a set of distributions, resp. rankings. Then
AvDTime(T,C) = {L|VpeC (L,u) € DistDTime(T)} .

In order to restrict the complexity of the input distributions a natural approach is to put a time limit
for computing the corresponding rank functions.

Definition 7 Let T —rankable be the set of all distributions p, resp. rankings p for which there
exists ¢ DTM M that on input = computes bin(p(z)) in time T(|z]).

Most average complexity classes we will be studying in the following will be of the form
AvDTime(T, V -rankable) ,
where T and V are complexity bounds.

Alternative notions for restricting distributions have been defined in [Levi 86], [Gure 91] and [BCGL 92].

Definition 8 A distribution p belongs to the class T -computable if there is a deterministic TM
that on input (z,1%) outputs the first i bits of the binary ezpansion of p*(z) = 3., <, p(2) in
time T(|(z,19)]) . -

p is T -sampleable if one can find a probabilistic TM that outputs each string x € X* with probability
u(z), and this within T(|z|) steps.

These concepts are not directly comparable because each rank function represents a whole equivalence
class of distributions. In a subsequent paper we will discuss the relation between these conditions and
the rankability property in more detail.

10

b) follows similarly by applying ¢~!, which is monotone, to go f and goT and noticing that for

strictly increasing functions g~ log =N . |

In particular, we get the result that this measure is closed under linear or polynomial transformations.

Corollary 3 For any constants c,cy,co holds:

(fip) € Av(T) = (eif+ea,pn) € Av(erT + ¢o) and

(
(£, 1) € A(T)
JEPoIf) and (fu) € AUT) = (g,1) € Au(Pol(T))
g € Pol(f) and (f,p) € Av(Pol) = (g,n) € Av(POIL)

To estimate sums and products of complexity bounds is a little more complicated. For this purpose,
we first will consider the maximum operator. For two functions f, ¢ let max[f, g] denote the function

defined by n +— max{f(n),g(n)}.

Lemma 4 For 0 < < 1 holds:

(f) € Au(Ty) and (g,p) € Av(Ty) = (maxlf,glp) € Av(max{Ty(¥),T,(:25))

Proof: Let D := maX[Tf(%),Tg(%)]. Then,

(fu) €AV(T) = VI > min{a”f(az)STf (%-m)}gl.ﬁ

rank, (z)<i
= VI Y min{a,|f(z) < D(ay - |2)} < 1-5.

rank, (¢)<1

Similarly,

(9, 1) € Av (Ty) = v Y minfaslg(z) < D(ag - |z} < 1-(1-5).
rank, (z)<1
Therefore,
Vi Z min{a, | g(z) < D(ag - |2]) and f(z) < D(ag - |2])} < 1,
rank, (z)<i
which implies by Proposition 2 that (max[f,g],) € Av (D) . |

Hence, for sum and product using that f+ g < 2-max{f, g}, resp. f-g < max{f?,¢?} we obtain

Corollary 4
(f,pn) € Av(Ty) and (g,p) € Av(T,) = (f+yg,p)€ Av(? max[Ty(2 - N), T,(2 N)])

and (f-g, u)EAv(max[Tf(Q N2 Ty(2 - N)?])|

Corollary 2 If pq, ps are distributions with rank,, = rank,, then

(f, 1) € Av(T) — (f,p2) € Av(T) .

A rank function p represents a whole equivalence class of distributions, namely those p with rank, =
p . Therefore, in the following we do not differentiate between pairs (f,) containing distributions
and pairs (f,p) referring to the corresponding rank functions.

The folowing gives another useful characterization of these sets which helps to simplify estimations.

Proposition 2

(f, 1) € Av(T) — Vi > min{ag | f(2) < T(as-l2))} < 1.
rank, (z)<1

Proof: By Corollary 1

(f, 1) € Av(T) = Vi >

rank, (z)<I

By the definition of the inverse of T

Vi Z min{m | f(z) < T(m)}

e
|z

IN

rank, (z)<!

Now we substitute m by «y - ||

= Vi)" minfa, | f(z) < T(ap - [2])} < 1.
rank, (z)<I

Before we will use this notion to define complexity classes let us investigate closure and transformation
properties of these sets of average case bounds.

Lemma 3

a) For a monotone function g : N — N holds:
(f,p) € Av(T) = (9o f n)€Av(goT) .

b) If, in addition, g > 0 is strictly increasing also the inverse implications holds:
(gofpu)€Av(geT) = (f,p) € Av(T) .

Proof: a) By proposition 2,

(fim) €AVT) = W Y min{aelf(z) < T(aw-|al)} < I

rank, (z)<1

= VI Y minfaulg(f(2)) < 9(T(az - |z)))} < I
rank, (z)<1

= (gof,n) €Av(goT).

We will show in lemma 3, that this generalization does not destroy polynomial bounds that are
increased by a polynomial.

Because of the universal quantifier over all monotone transformations the above condition for Av (T')
is hard to verify. But there exists an equivalent, more practical characterization of Av (T'). Consider
the special case of threshold functions thr; :[0,1] — [0,1] as monotone transformations, where for
| =rank,(z) we define thr;(z):=1/1 if z > p(z) and 0 else.

Proposition 1

(f, 1) € Av(T) = VI thry(u(z))

Proof: 7 =7 follows from the definition.

”«<”: Let 1, 3, ... be an enumeration of all strings s with p(z) # 0 such that p(z;) > p(zi41) -
Let a" :=(ay,...,a,) where a; := T~1(f(z;))/|zi|. Assume (f,) € Av(T) . Then there exists an
integer n with p(z,) > p(2np41) such that for some transformation m

n

Zm(u(mi))ai >1.

i=1

To obtain the maximum value of this sum with respect to m we must solve a linear optimization
problem. The solution consists of a set of vectors which describe an (n—r)-dimensional simplex (r is
the number of indices ¢ < n where u(z;) = pt(2;41)). The extremal points are (1/4,...,1/4,0,...,0).
—_————
1 times
The solution is the set of points of largest distance from the (n— 1)-dimensional hyperplane with the

normal vector a that contains the origin (0,...,0). This set contains at least one extremal point of
the simplex. Hence, there exists an integer [with a; = ay = --- = a@; = 1/l such that the sum above
achieves its maximum. |

As an immediate consequence of this proposition we obtain the following fundamental result, which
shows that an average bound can be computed without considering all possible transformations.

Corollary 1

(f, 1) € Av(T) = Vi > wgl.

rank, (z)<I |£L‘|
ulZ)S

Proof: Observe that for a threshold function thr;

;thrzw))w: y e

|£L‘| rank, (z)<I
" <
So, Corollary 1 follows from proposition 1. |

In the following we will use this simpler characterization to decide membership in Av (T') . Since the
condition only involves the ranking of the input space derived from the distribution one also gets

Definition 2

— JHzeXZ [pu(z) 2 p(x)}| if p(z) >0,
rank,(z) = {oo if p(z) = 0

where oo plays the role of a number that 1s greater than any natural number. A machine computing
the rank function is assumed to output a special symbol in the second case. Uniform distributions
gwe tdentical weights to inputs of the same length. Shorter inputs receive strictly larger probabilities
than longer ones. Corresponding to such distributions we have the uniform ranking of the input
space X* defined by

rank, +(z) = 1+ S|+ [SP+... + ||l

Later, we will also consider special rankings derived from subsets L C X* . For this purpose, let us

introduce the notion '
ranky(z) = {|{y€L|yS~’U}| fzel,
00 else.

The set of distributions g equivalent to g can be generated by monotone transformations of p .
Figure 1 shows a sample of a probability distribution and its rank function.

rank,
ur) 4 1 =rank,(701”)

2

4 4 =rank,("117)

5
7

770077 { l ° ° o

0 1 00 01 10 11 000 x

Figure 1: The rank function derived from a distribution g .

Definition 3 A real-valued monotone function m : [0,1] — [0,1] is called a monotone transfor-
mation of the distribution p if >, m(p(z)) <1.

Definition 4 The set Av (T) (average T) contains all pairs (f, 1) consisting of a function f :
¥* — IN and a distribution p such that for all monotone transformations m of p

Lemma 1 For a monotone decreasing strictly positive function u : ¥* — [0;1] and a real-valued
function h:[0,1] — [0,1] with a monotone increasing first deriative h' in (0,1) it holds for u(z) #
u(z —1)

e 1 < REE) R =1)
Wiule 1)) < TEEIIEES < W ()

Proof: Applying the mean value theorem there exists zy € (0;1) such that

iy — h(u(x)) = h(u(z —1))
W(z0) = u(z) — u(z — 1) '

Since h’ is monotone increasing, it holds h'(u(z — 1)) < h/(z0) < A'(u(z)) . |

Lemma 2 For every monotone decreasing strictly positive probability distribution p : X* — [0,1]
there exists a distribution ji such that

Proof: Let p*(z):= >, <, #(2z) be the distribution function of g according to the lexicographical
ordering of strings in ¥ . Then we define a new probability distribution ji by the distribution function

i) = 1= T— () .

Thus the probability distribution is given by j(z) = jg*(z) — #*(z — 1). Then by lemma 1 for

h(z):=1—+/1—z and u(z) := p*(z) we get

pz) . we-l
plz) ~ 1—p*(z—1)
Note that ﬂ%L tends to infinity. |

V1-p*(z)

Hence, Levin defined only the term polynomial on the average as a bound for the time complexity:

Definition 1 A function f :X* — IN belongs to the class 1Av(POL) (Levin average polynomial)
with respect to a distribution p iff for some number k

CL
> ul@) - <

T

We will now present a stricter average case measure. The idea is to look simultaneously at all distri-
butions g which generate the same ordering of the inputs by their probabilities as p, for example
if ©(10001) < p(11) then f(10001) < f(11). p-—average bounded by T is then defined to be
[t —average bounded by T in the sense above for all such g . Thus, only the ranking of the inputs
by decreasing probabilities matters. We therefore define for a distribution g its corresponding rank
function rank, by

The following sets of complexity bounds will be of special interest:

POL = | Jow*),

keN
EXL := exp(O(N)) and
EEXL := expexp(O(N)).

If 7 is a set of complexity bounds 7' < 7 means that for some 7" € 7 holds T' < T’. For a
complexity bound T', which does not necessarily have to be injective, we define the inverse 7T~! by

T='(n) := min{m|T(m) >n}.

Useful properties of this definition are

T(T~'(n)) > n,
TT(m) < n,
T-Y(T(n)+1) >
Let Mj, Ms, ... be an enumeration of all deterministic Turing machines (DTM). In some cases we

will also consider nondeterministic machines (NTM). We may assume that all machines have only
two work tapes, implying that one can use a universal machine with only a constant factor slowdown.
More explicitely, we assume that there is a machine U that can simulate each M; on any input z in
time at most 7-timeps,(z), where timeas,(2) denotes the number of steps of Af; on input z. M(z)
denotes the output that M generates on an input z € ©* and L(M) (in case of acceptors) the
language accepted by M . Unless otherwise stated, we will always assume that the alphabet ¥ has
size at least 2. At least for the standard approach using the expectation unary alphabets obviously
do not make much sense.

For an ordering of binary strings, # < y, we refer to the lexicographical ordering. We consider
probability measures (density functions) g : ©* — [0,1] over the input space. p has to satisfy
S, () <1. bin: IN — {0,1}" denotes the standard correspondence between natural numbers
and binary strings.

3 Refinement of Levin’s Average Case Measure

In the introduction we already discussed the problem how to measure the average time complexity of
machines with respect to different probability distributions precisely. Levin’s solution essentially can
only distinguish between polynomial and superpolynomial growth. The problem with the uniform
distribution mentioned above can somehow be diminished, by giving X" instead of a total weight
n=2 weight proportional to n=!-log™?n or even better proportional to

n~'.log™tn. ... (log[k_l] n)~t. (log[k] n)~2

for some k, where log[k] denotes the k-th iteration of the logarithm function. Still, it can never be
completely resolved which can be seen as follows.

In practice, one often does not know the values of the distribution exactly, but for each pair of inputs
at least one can decide which input is more likely. This way, the whole analysis is greatly simplified.
Each ranking of the input space describes a whole equivalence class of distributions, and we get rid
of the influence of the asymptotic growth of the probability measure.

A distributional problem is a pair (L, y), consisting of a language defined over an alphabet X
and a probability distribution p on X* . We define distributional complezity classes DistDTime(T)
containing all pairs (L, p), for which there exists a DTM accepting L that is p-average T —time
bounded in this generalized sense.

Given a language L € DTime(T) and a DTM M for L, it is easy to see that by cycling through all
inputs of length n one can find an z, on which M spends the maximal time for inputs of length n .
If a probability measure p gives all its weight for inputs of length n to this z then the average time
of M (in the expected sense) with respect to this p equals the worst case complexity. p(z) can be
computed in time O(2°1.T(|z|)). Using this idea, Miltersen has shown that allowing exponential time
overhead a measure p can be constructed that is malign for all expected T —time bounded machines
([Milt 91]). That means their expected time complexity with respect to this x4 is no more than a
constant factor smaller than their worst case complexity.

On the other hand, restricting an average case analysis to some simple distributions may yield results
with little practical value. The satisfiability problem, for example, has been shown quickly solvable
for certain symmetric distributions, but the input space generated this way seems to be of not interest
for applications in Al (see for example the discussion in [MiSeLe92]). These observation motivate to
consider average case complezity classes AvDTime(T, C) consisting of all languages L that can be
recognized in p —average time T for distributions g of complexity at most C', for certain bounds
C'. That way, average case complexity classes are directly comparable to the standard worst case
classes since both contain only languages.

In this paper a notation different from the one in previous research on average case complexity will
be used because we feel that this new one is more appropriate and natural. There should be a
clear distinction between distributional classes, where distributions appear explicitly, and average
case classes the elements of which are languages in the usual sense. From a complexity theoretic point
of view one is more interested in the second kind of classes.

The complexity of a distribution is measured by its rankability, that is the effort to compute the ranks
of the elements in the input space. Previous approaches have bounded the complexity of distributions
using the notion of computable and sampleable ([Levi 86],[Gure 91],[BCGL 92]). A preliminary
version of some of these results was presented at the 10" STACS-Conference [ReSc93].

2 Notations

A complexity bound is a function 7' : IN — IN. Let A denote the identity function on the natural
numbers, i.e. the linear complexity bound. All complexity bounds T considered in this paper are
assumed to be monotone increasing, time-constructible and at least as large as A". To simplify the
notation, for a constant « > 0

T(aN)
means the function defined by n — T(|e - n]).

1 Introduction and Overview

Levin observed that a sound definition of average case complexity and complexity classes is not at
all obvious ([Levi 86]). The classical notion of average-case time complexity of a machine M with
respect to given probability distributions p, on inputs z of length n takes the expectation

Timel(n) = Z pn () - timep (2)
|z|=n
where timepr(z) denotes the running time of M on z and g := pi,p9,.... The machine M

is p—average T —time bounded (in the expected sense) for a resource bound 7' :IN — IN, if
Timeh; < T, that means for all n

timenr (z)
S pale))
2 T(j2])
The problem with this definition is that polynomial time simulations of polynomial average time
machines can result in superpolynomial average time complexity. It was resolved by Levin by applying
the inverse of T' to the fraction, thus requiring

T-(timey (2
|z|=n
This definition does not take into account that the weights of different input length may be very
unequal. Thus one considers only distributions g defined over the whole set of inputs and requires

IN
—

Z () - T (timen (2))

||

M is then called (Levin)- p —average T —time bounded. For a discussion of this approach see the
detailed exposition in [Gure 91].

Still there remains an unpleasant property, the influence of the functional growth of x(z) on the time
bound T'. If, for example, one takes the “standard” uniform probability distribution, which assigns
probability

fruwi(2) = 6/ [2|77 271

to a string z € {0,1}" a machine making n” steps on every input of length n would already be

average O(N11¢)—time bounded for arbitrary € > 0, where N denotes the identity function on IN.
This problem can be resolved to a certain extent (see [Gure 91]), but not completely.

Our first contribution to the average case analysis will be a new definition of average T —time bounded,
which gets rid of this problem. It will allow us to differenciate between bounds 7} and T, for any
T; < o(T) . The idea is to bound the complexity of a machine not only with respect to the probability
distribution g, but with respect to all monotone transformations of . At first glance, it seems that
this complicates the analysis even more. But we will show that this larger set of conditions is equivalent
to a very simple property of the distribution g, which does not involve probabilities explicitly anymore.
The only thing that matters is the ranking of the inputs by p, that is the sequence of inputs ordered
by decreasing probabilities.

Precise Average Case

Complexity Measures

Rudiger Reischuk*
Christian Schindelhauer®

TR-93-049
August 1993

Abstract

A new definition is given for the average growth of a function f : X* — IN with respect to a probability
measure g on X* . This allows us to define meaningful average case distributional complexity classes
for arbitrary time bounds (previously, one could not guarantee arbitrary good precision). It is shown
that basically only the ranking of the inputs by decreasing probabilities are of importance.

To compare the average and worst case complexity of problems we study average case complexity
classes defined by a time bound and a bound on the complexity of possible distributions. Here, the
complexity is measured by the time to compute the rank functions of the distributions. We obtain
tight and optimal separation results between these average case classes. Also the worst case classes
can be embedded into this hierarchy. They are shown to be identical to average case classes with
respect to distributions of exponential complexity.

Key words. worst case complexity, expectation, average case complexity, distributions, distributional
complexity classes, time hierarchies, rank functions, rankability hierarchies

AMS(MOS) subject classifications. 68Q10, 68Q15, 68Q25, 60E05

*Institut fiir Theoretische Informatik, Technical University Darmstadt, Alexanderstrafie 10,
64283 Darmstadt, Germany, e-mail: reischuk@iti.informatik.th-darmstadt.de
Part of this work was done during a visit at the ICSI in Berkeley

tInstitut fiir Theoretische Informatik, Technical University Darmstadt, Alexanderstrafe 10,
64283 Darmstadt, Germany, e-mail: schindel@iti.informatik.th-darmstadt.de

