References

10.

11.
12.
13.

14.

15.

16.

17.
18.

19.
20.
21.

22.

23.
24.

25.

. H. Alt, Lower bounds on space complexity for context-free recognition, Acta Inform. 12, 1979, 33-61.

H. Alt, V. Geffert, and K. Mehlhorn, A lower bound for the nondeterministic space complexity of
context-free recognition, Inform. Process. Lett. 42, 1992, 25-27.

H. Alt, and K. Mehlhorn, Lower bounds for the space complexity of context free recognition, Proc. 3rd
ICALP, 1976, 339-354.

B. von Braunmiihl, Alternation for two-way machines with sublogarithmic space, Proc. 10. STACS,
Wiirzburg, 1993, 5-15.

B. von Braunmiihl, R. Gengler, and R. Rettinger The alternation hierarchy for machines with sublog-
arithmic space is infinite, Research Report, Universitat Bonn, January, 1993.

J. Chang, O. Ibarra, B. Ravikumar, and L. Berman, Some observations concerning alternating Turing
machines using small space, Inform. Proc. Letters 25, 1987, 1-9.

R. Freivalds, Fast Probabilistic Algorithms, Proc. 8. MFCS, 1979, 57-69.

V. Geffert, Nondeterministic computations in sublogarithmic space and space constructability, STAM
J. Comput. 20, 1991, 484-498.

. V. Geffert, Sublogarithmic %2 -space is not closed under complement and other separation results,
Technical Report, University of Safarik, 1992.

V. Geftert, Tally version of the Savitch and Immerman-Szelepcsényi theorems for sublogarithmic space,
STAM J. Comput. 22, 1993, 102-113.

V. Geffert, A hierarchy that does not collapse: alternations in low level space, manuscript.
S. Ginsburg, The mathematical theory of context-free languages, McGraw-Hill, 1972.

N. Immerman, Nondeterministic space is closed under complementation, STAM J. Comput. 17, 1988,
935-938.

M. Liskiewicz, and R. Reischuk, Separating the lower levels of the sublogarithmic space hierarchy,
Technical Report, Technische Hochschule Darmstadt, Institut fiir Theoretische Informatik, 1992, see
also Proc. 10. STACS, Wiirzburg, 1993, 16-27.

M. Liskiewicz, and R. Reischuk, The sublogarithmic space hierarchy is infinite, Technical Report,
Technische Hochschule Darmstadt, Institut fiir Theoretische Informatik, January 1993.

B. Litow, On efficient deterministic simulation of Turing machine computations below logspace,
Math. Systems Theory 18, 1985, 11- 18.

P. Michel, A survey of space complexity, Theoret. Comput. Sci. 101, 1992, 99-132.

D. Ranjan, R. Chang, and J. Hartmanis, Space bounded computations: review and new separation
results, Theoret. Comput. Sci. 80, 1991, 289-302.

M. Sipser, Halting space-bounded computations, Theoret. Comput. Sci. 10, 1980, 335-338.
R. Stearns, A regularity test for pushdown-machines, Information and Control, 11, 1967, 323-340.

R. Stearns, J. Hartmanis, and P. Lewis, Hierarchies of memory limited computations, Proc. 1965 TEEE
Conf. Record on Switching Circuit Theory and Logical Design, 1965, 179-190.

R. Szelépcsenyi, The method of forced enumeration for nondeterministic automata, Acta Informatica
26, 1988, 279-284.

A. Szepietowski, Turing machines with sublogarithmic space, unpublished manuscript.

K. Wagner, Editorial note: The alternation hierarchy for sublogarithmic space: an ezxciting race to

STACS’93, Proc. 10. STACS, Wiirzburg, 1993, 2-4.
K. Wagner, and G. Wechsung, Computational complezity, Reidel, Dordrech, 1986.

39

Hence, the r-dimensional grid G := {y+(k161,...,k:6,) | k1,... k, € N} with v = a+(n+Lal!)s
is a subset of V(L) , which implies G C V(L) . From this and the property V(L)NC = @ shown
above we obtain that GN C = @ for the r-dimensional cone C'. This yields a contradiction to
the following result.

Lemma ([1]) Let G CIN" be an r-dimensional grid and let C' C IN" be an r-dimensional cone.

Then GNC#0. |

Recall that a language I is called strictly nonregular if there are strings u,v,w,z and y such
that LN {u}{v}*{w}{z}*{y} is context-free and nonregular. It was shown by Stearns ([20]) that
every nonregular deterministic context-free language is strictly nonregular. Therefore, from the
proposition above we obtain immediately that if L is a nonregular deterministic context-free,
a strictly nonregular language, or a nonregular context-free bounded language, then for ATMs
without any bound on the number of alternations it is not possible that L and I both belong to
ASpace(o(log)) . Moreover, from Theorem 7 it follows that the class of languages recognized by
space-bounded ATMs with a constant number of alternations is closed under complement. Hence
it follws that the language L does not belong to (J;cp ZrSpace(o(log)) . This completes the proof

of Theorem 6.

6 Conclusions

The obvious question remaining is how X;Space(S) and II; Space(S) compare. It is somewhat
annoying that the techniques developed in this paper do not give any help for the case k=1. It
is not completely unrealistic to believe that both classes may be equal, which would give the novel
result that a hierarchy is infinite, although its first level collapses.

If one restricts to bounded languages 3;Space(S) is closed under complementation and both
classes are identical, which has been shown in [2] and [23]. But for k£ = 2 the situation changes
completely. The languages Lx2 and Lps are unary — the most stringent form of a bounded
language — and still separate X5Space(S) from II;Space(S). Thus a separation of the first
level would require a syntatically more complex languages than the second level. For k£ > 2 the
languages Lyj and L used in this paper to establish the separation are no longer bounded. But
by Proposition 4 the third level can also be separated using simple bounded languages Axs N Byo
and Ams U Brz that both are subsets of {1}*{0}{1}*.

Nothing seems to be known for level 4 and higher. Thus, the sublogartihmic space hierarchy for
bounded languages may be even more complex. We have made some observations leading to the
conjecture that for bounded languages this hierarchy might indeed consist of only a finite number
of distinct levels.

Finally, it would be nice to characterize the exact relationship between co- XjSpace(S) and
My Space(S) for sublogarithmic space bounds S and the class of arbitrary languages.

38

Remark: In [1] a different definition of extended set has been used. However it is easy to check
that both definitions are equivalent.

If V(L) is not extended then one can show similarly as in [1] that there there exists a nonregular
languagein {ai}*...{a,-1}* fulfilling the assumptions of the proposition. Hence, by the inductive
hypothesis we obtain a contradiction. Therefore, we can assume that V(E) is extended. Let
a=(ar,...,a,) and 8 = (B1,...,5,) with a1,...,a, € IN and f,...,3. € INy, be vectors
such that

VEEN a+kBeV(L).

Moreover, let M be an ATM which recognizes L in space S . Define the function S’ by

S'(n) = S(Zai +n Z[)’Z))
i=1 i=1
Since S € o(log) also S’ € o(log) . Let 7 := Ny o . Then we define
R = {a‘f1+(ﬁ+€1m)ﬁ1 oalrtrEaNse g 4, €N} and L= RNL.
A contradiction will be obtained from the following claims
Claim 1 [can be recognized in constant space.

Claim 2 [is nonregular.

Proof of Claim 1: Using for every ¢ = 1,...,7 f; -times the Small-Space-Bound Lemma we
obtain that for any sequence of integers ¢; > 0

i = SpaceM(an1+(ﬁ+E1ﬁ!)ﬁ1 o agT+(ﬁ+€rﬁ!)ﬁr) — S/(a(f1+ﬁ’61 o agzr+ﬁ,@T)) (1)

Let M be an ATM which performs the following algorithm:

Step 1. Check deterministically if the input X has the form af1+(ﬁ+€1m)ﬁ1 ... ARG,
for some integers £1,..., 4, .
Reject and stop if this condition does not hold.

Step 2. Move the head to the first symbol of the input and start to simulate the machine M .
It is obvious that A/ accepts an input X = a‘f1+(ﬁ+£1m)ﬁl I AR T IV accepts X .
Hence, we have L(Ajf) = L. Tt is easy to see that step 1 can be performed within space O(logn!
which is a constant. Moreover from (i) it follows that step 2 also requires only constant space

Hence M recognizes L within constant space. |

2)

Proof of Claim 2: A set of the form
{7-1—(/4:161,...,143,&)|k1,...,kr EIN}

with ¥ € IN" and 61,...,6, € IN is called a grid. We show that if L is regular then there exists
an r-dimensional grid in V().

Assume that L is regular. Then, using the pumping lemma for regular languages one can show
that there exist integers £ > 0 and 61,...,6, > 0 such that for all k4,...,k. >0

a+ (4B + (kiéy, ... ked,) € V(L) .

37

It is obvious that A accepts an input X = 17+*4!01A+4! if and only if A accepts X . Hence we
have L(A) = L. Tt is easy to see that step 1 can be performed within space O(logn!), which is
a constant. Moreover from (i) and (ii) it follows that step 2 also requires only constant space §.

Hence A recognizes L within constant space. We get a contradiction, since L is non- regular. |

Using a similar proof one can show that the language
L_ = {1"01" : n € IN}
is not in ASpace(o(log)) , too.

The rest of this section is devoted to the lower space bounds for a large subset of nonregular
context-free languages.

The block structure of a bounded language L can equivalently be represented using a finite

alphabet {ai,...,a,}. Then L is a subset of {ai}*...{a,}*.

Definition 9 Let V(L) denote the set {(v1,...,v,) € IN" | aj*...a% € L}. Sets of the form
{a+ni1p1+ ...+ nibe|n1,...,np € N} with «,81,...,8r € IN" | are called linear sets. A finite
union of linear sets is a semilinear set. A language L is semilinearif L C {a1}*...{a,}* and
V(L) is a semilinear set.

Proposition 6 Let L C {ai}*...{a,}* be semilinear and let L, € ASpace(S) for some S €
o(log) . Then L is regular.

Proof. For r =1 the proposition is true because every semilinear tally language is regular. Let
us assume that 7 > 1 and that the proposition holds for » — 1. Sets of the form

{ae+gm+.. . +avwla, ¢ € Ry}

with 41,...,9% € IN" are called cones (see [1]). Assume now, to the contrary, that L is nonregular.
To show that this cannot occur we first construct a semilinear language L € ASpace(S) that is
also nonregular and for which there exists an r-dimensional cone C' such that V(L)NC =0 . To

this end, methods developed by Alt and Mehlhorn in [1], [3] will be used.

Lemma ([1]) There exists an r-dimensional cone C' and a regular language R C {ai}*...{a,}*
with
V(IL)NnC = V(R)NC .

Let R and C' be as in the lemma. Define Ly := L\ R and Ly := R\ L. Obviously L; or
Ly is nonregular since L is nonregular. We set L := Ly if Ly is nonregular and L := I,
otherwise. The language L is semilinear since the class of semilinear sets is closed under Boolean
operations ([12]). Moreover, L € ASpace(S), because L, T € ASpace(S) and V(L)NC =0 for
the r-dimensional cone C'.

Definition 10 Let us call aset K C IN" extended if there exists o € IN" and # € IN', such that

VkeIN a+kBe K.

36

1. XpSpace(S) and Iy Space(S) are not closed under complementation.
2. XjSpace(S) is not closed under intersection,

3. I;Space(S) is not closed under union.

4. XySpace(S) and II;Space(S) are not closed under concatenation.

(1) follows immediately from Lemma 12, Theorem 8 and the following equations: Lxy = Li N T,
and Loy = Ly N L, where Ly is the regular language introduced in Definition 6.

By (i) Ask, Bnr € XpSpace(llog) and Amyg, By € HpSpace(llog). On the other hand, from
Proposition 4 Asy N Bxp € Tpy1Space(o(log)) and Amp U Brgx € Ig41Space(o(log)). This
proves (2) and (3).

Property (4) for Xj, classes follows from the fact that for any k& > 2 Lsi {0} Lyr = Asr N Bxg
does not belong to XxSpace(o(log)), but Lsy € X Space(llog) . To see that I;.Space(S) is not
closed under concatenation define the languages

Li =Ly U {5}
where ¢ denotes the empty string and
L = {w10w50...0w,0 | p € IN, w; € Ly and wy € Lyp_1} .
Obviously, both languages belong to II;Space(llog), but from Theorem 8 follows

L Li = Lsy, ¢ Ty Space(o(log)) .

5 Lower Space Bounds for Context-Free Languages

Proposition 5 L; = {1"01™ :n # m} ¢ ASpace(o(log)) .

Proof. Let us assume, to the contrary, that L is recognized by an S space-bounded ATM A
for some S € o(log). Let S’(n) := S(2n+ 1). Obvously, S’ € o(log) . Let n := N s . Then
by the Small-Space-Bound-Lemma for all k,¢> 0

Space 4(17017%) = Space 4 (17121017421, (1)
Let o
§ = Space 4 (17017). (i)

For this fixed 7 we define the following language L = {17+kag1a+00! - | 0 € IN and k # ¢}, and
construct an automaton A that recognizes L. A performs the following algorithm:

Step 1. Check deterministically if the input X has the form 17+k7!(17+%" for some integers k
and /; reject and stop if this condition does not hold;
Step 2. Move the head to the first symbol of the input and start to simulate the machine A .

35

Proof. It is well known that for any function S the classes Xy Space(S) are closed under union,
and symmetrically the II;Space(S) are closed under intersection (see e.g. [25]). Hence by (i),
Asp N By € Hp41Space(llog) and Amp U B € Eg41.Space(llog) . To prove that Axy N Byy ¢
Yit+1Space(o(log)) and Amr U Brr ¢ Hipy1Space(o(log)) first we modify Proposition 2 in the
following way:

Proposition 2’ Let k£ > 2 and M be an ATM of space complexity S with S € o(log). Then
there exists a bound S” € o(log) such that for all n > Nyr s» and words Wy, Ws € {Wg, , Wi, }

Spacen (W1 0W5) < S”(n) .

Proof. Let S”(n) := S(2pr(n) + 1), where pj is the polynomial specified in the proof of
Proposition 2. Tt is easy to check that the proof of Proposition 2 generalizes to this situation. N

Let us assume, to the contrary, that Asy N Bygp € Yp41Space(S), for some S € o(logn). Let
M be an S space-bounded Xji1 TM for Axp N Byp . Choose n € F sufficiently large. By
Lemma 13 W, € Lx; hence M has to accept

X =Wg 0Wg,

which means that there exists an existential computation path starting in initial configuration
(0, 0) and ending in a universal configuration (3,j), with

(CVO;O) |:M,X (ﬂ;])) (11)

and
acck (3,7, X) . (iii)

(The trivial case that A accepts X without alternation could be handled similarly.) Now let
Yy = W, 0Wf, and Y := Wi, 0W§, . By Proposition 2’ there exists S € o(logn) such that

Spacenr(X), Spacenr(Y1), Spacer(Ys) < S"(n).

Therefore, applying Claim 1 (from the Proof of Proposition 1) and Proposition 1 to (ii) and (iii),
resp., we obtain
(ao,O) |:M,Y1 (ﬂ)]) and acc?\l(ﬂ)j)yl)

if j <|W2,0| and otherwise

(a0,0) Emy, (B,5) and acch(3,5,Y2),

where j = j + |Y3] — |X|. Hence M also accepts input Y; or Y. This yields a contradiction
since, by Lemma 13, Y1,Ys € Asr N By .

Similarly, one can show that if a T41 TM accepts Amp U B within space S € o(logn), then
it has to reject X, but it also rejects input Y; or Y5, which both belong to Anr U Bor — a
contradiction!

This result can be applied to prove Theorem 3:

For all k > 2 and any S € SUBLOG holds:

34

Such an m exists since A <, B. Then define
k = A(m)
n = f(m).

By (i) and (ii) n > Nas,s: . Moreover, n € F and M makes no more then k— 1 alternations on
any input of length m . Let
X =V (n) 0¥(m)

with the word V;}(n) defined as in the proof of Proposition 2. Since the length of V}!(n) is p(k,n)
the string X is of length m . From the definition of S’ follows that

Spaceyr(X) < S(m) < max{S(m')| f(m') =n} = S'(n) and
Altery(X) < B(m) -1 < expS(m) < expS'(n) .

Hence, for the machine M and the function S’ the assumptions of the Small-Space-Bound-Lemma
and the Small-Alternation-Bound-Lemma are fulfilled. Using the Small-Space-Bound-Lemma for
the input X in the similar way as in the proof of Proposition 2 one can show that

Spacenrr (Wg; 01™)) | Spacepr (W, 04™) = Spacep (X) < S'(n) .
Similarly, by the Small-Alternation-Bound-Lemma one obtains that
Alteryr (Way, 010™)) | Altery (Wi, 040™)) = Alterpyr(X) < B(m) —1=k —1.

Now we can finish the proof. Let us assume that M is a Xp TM accepting Lm(A) in space

S. By Lemma 13 holds W{j, € Lty , hence M has to accept W, 0t(m) But this means that

acch (o, 0, W, 01™) is true, where (ag,0) is the initial configuration of M . From Proposi-

tion 1 we conclude that acch,(ag,0, W, 01(™) holds, too. Therefore M accepts W, 0™
which by Lemma 13 does not belong to Li(A) — a contradiction.

In the same way, one can show that if M is a Iz TM that accepts Ly(A) in space S then M
accepts Wg, 01(m) |

4 Closure Properties
In this section we discuss closure properties of Y Space(S) and Iy Space(S) classes for subloga-
rithmic bounds S'. First for any integer k& > 2 we define the languages

Asyp = Lg {0} Lyg , Bysp := Ly {0} L

and symmetrically
Al‘[k = Lk {0} Ll'[k s Bl‘[k = Ll'[k {0} Lk .

It is easy to see that
Asp, Bsi € LpSpace(llog) and Amg, By € I Space(llog) . (1)
Proposition 4 For all £ > 2 holds:

Asp N By € Hpyi1Space(llog) \ Xp41Space(o(log))
Ay U By € Xpy1Space(llog) \ Mpy1Space(o(log)) .

33

For m > mg we can bound & by

h(m) < exp (log;m) = m'/?,
exp llog m llog m
h > = > .
(m) 2 3logm / llog m 3 23

and hence f(m) € F. Moreover, from Lemma 14 it follows

1 1/4
Fm) 2 b/t > (glogm) (i)
Define the function S’ : IN — IN as follows
S'(n) = max({0} U {S(m) | f(m) = n}) .
Because f grows unboundedly S’(n) will always be a finite number.
Lemma 16 S’ € o(log) .
Proof. First we show that .S € o(logof). By assumption,

SEO(IOIg) and logA < llogm < S.

This implies
Sco (107%_5) -0 (1"7@3 _1ogA) = o(logh) = oflog f) .

Thus, if n goes to o

S(n)

log f(n)

and
S _ S _ S(m)

max = ———— .
logn {m|f(m)=n} logn {m|f(m)=n} log f(m)
If n goes to oo also m has to do this, and hence all quotients converge to 0. But this means

that S’ € o(log) . |

Consider the function ¢ defined by
t(m) = m—pam)(f(m))
where pg(n) has already been defined in the proof of Proposition 2, and note that
Pagm)(f(m)) < (3 A(m) f(m)A™ < m .
Thus, t(m) > 0.

Now let M be an ATM that works in space S(|X|) and makes at most B(|X|) — 1 alternations.
Let m be an integer with

m > max{mg, expexp3(Nu,s)*} and A(m)= B(m) (i)

32

Obviously, for all £ > 3 holds F(¢;) = pr, and furthermore, F(n) < p; for any n < 4.
Therefore ¢ € F . Since it is well known that pry1 < 2pp we can conclude

1
pry1 <2 p° L

which implies the upper bound for £y :

k k-1
£k+1 = Hp;k-'—l’l S Ek . Qk_l pk . sz S (gk)4 .
i=1

i=1

|
Definition 8 Let A :IN — IN be a function with A(n) > 2 for all n and define
Ly(A) = {X|X =W0" forsomereIN and W € Lyj for some k < A(|X|)},
Ln(4) = {X|X =W0" for somer €N and W € Lm; for some k < A(|X])} .

The separating results for A -alternation-bounded space classes (Theorem 2) follow from the propo-
sitions below.

Lemma 15 For any S € SUBLOG and all functions A4 > 2 computable in space S holds:

Ls(A) € XaSpace(S)
Ln(A) € MaSpace(S) .

Proof. On input X = W0" the machine first computes a := A(]X|) and initializes a counter
with that value. It remains to check whether W € Ly; for some k£ < a. This can be done
similarly as in the case for fixed k&, decrementing the counter each time an alternation has been
performed. |

For functions A, B:IN — IN let A <, B denote that A(m) < B(m) for all m € IN with equality
for infinitely many m .

Proposition 3 For any S € SUBLOG and for all functions A and B with 1 < A <, B and
B - S € o(log) holds:

Ly (A) ¢ TpSpace(S) ,
Lu(A4) ¢ XpSpace(S) .

Proof. Let S € SUBLOG and let A, B be functions with 1 < A <, B and B-S € o(log). These
assumptions imply that there exists a constant mo > expexp 9 such that A(m) < ﬁ%gﬂm for all
m > mg . Define functions h and f as follows

)
(m) 3 A(m)
f(m) = max{{|Le FU{0}, £ < h(m)}.

31

Therefore, by (i), we obtain that
Spacepr (VE~1(n)) < S'(n) . (i)

Now let ng denote a word W&, where all substrings 177" are reduced to 17 . Similarly, Wﬁk
is obtained from W}, . Obviously, by the Small-Space-Bound-Lemma, SpaceM(ng) < S'(n)
implies Spacepr (W) < S'(n) and Spacen (W,) < S'(n) implies Spacepr(Wg,) < S'(n). The
proposition holds since

We, = Wi = V¥ '(n)
and by (ii) the space used by M on input V;*~'(n) is bounded by S'(n). |

Now we are ready to prove Theorem 8. Let us assume that M is a X TM accepting Lpr in
sublogarithmic space S. By Proposition 2 there exists a function S’ € o(log) such that for any
n 2 NM’SI

Spacenr (Wii,) < S'(n) and Spacey (Wgy) < S'(n) .

Let n with n € F be an integer larger than Ay s/ (such an n exists since F is infinite).
By Lemma 13 W2, € Lmy , hence M has to accept WS, , which means that acck,(aq, 0, Wg,)
is true, where (ap,0) is the initial configuration of A/ . From Proposition 1 we conclude that
acck (ap,0,W2,) holds, too, and hence M accepts W2, , which by Lemma 13 does not belong
to Lip — a contradiction.

In the same way one shows that if A is a I TM that accepts Ly in space S then M accepts
Wi -

3.2 Unbounded Number of Alternations

In the previous section we have proved the lower space bounds for recognizing Lxi and L on
ATMs with a constant number of alternation. These results hold for all languages Ly and L
defined on the base of a subset of natural numbers F with the properties as in Definition 6. In
this section we fix the set F to the example given at the beginning of this section:

F = {n>2|VLe3...n-1] F{)<F(n)}.

The following property of F will be useful in a proof of lower space bounds on ATMs working
with unbounded number of alternations.

Lemma 14 For any = > 3 there exists an £ € F such that

gt <i<z.

Proof. For z < 12 the claim holds choosing ¢ = 3. To prove it for z > 12 we will construct a
sequence fs,04, 05, ... of elements in F such that ¢35 = 12 and for all & > 3

loyr < (Ge)* .

Let p; denote the ¢-th prime number and define for k& > 3

k-1
by = Hp;k” with ry; = |[log,, pr] -
i=1

30

Proposition 2 Let k > 2 and M be an ATM of space complexity S with S € o(log) . Then
there exists a bound S’ € o(log) such that for all n > Ny, s

Spacenr (Wii,) < S'(n) and Spacey (Wgy) < S'(n) .

Proof. The idea of the proof is as follows. If in W[}, and W3, all substrings generated in the
recursive construction which are multiplies of n!, are cancelled, then the remaining word has a
length pg(n), which is polynomial in n. Using the Small-Space-Bound-Lemma, which shows that
a sublogarithmic space-bounded machine A does not notice a difference when an arbitrary block
of the input is added n! times, it follows that A/ must obey a space bound S(pr(n)) on Wi,
and Wg, . If S grows sublogarithmically in n so does S(py(n)).

Below the technical details of this proof are outlined. Let
Vil (n) :=1" .
For d > 3 define

)

le(”) = [Vd1-1(”) O]2dn+1

and for 1 =2,...,d-1
i i-1 2Mma,nt1
Vit) = [Visi(m) o]
Define also a sequence of polynomials ps(n) as follows:

p2(n) :=n andford > 3 pi(n) = (2dn+1)-(ps—1(n)+1).

Obviously, for any d > 2 and for all n

pa(n) = V4 (n)] .

Let M be an ATM of space complexity S with S € o(log) . Define S'(n) := S(pr(n)). Obviously,
S" € o(log) . Let n be an integer with n > Ny g/ .

Since M is S space-bounded
Spacem (Vi (n)) < S(pr(n)) = S§'(n) . (i)

It is easy to check that for any n and for any 7 € [1...k — 2] there are words 7y, Zs, ..., Z, over

the alphabet {0}, where
k

r = H 2myp, + 1,
t=k—i4+2

or 2 =1 take r := , such that for = Vi_i(n , a:=2n(k—1)+n+1 an = —1+1):
for 7 =1 tak 1 h that for W := VL .(n) 0 2n(k—1 1 and b:=2(k—i+1

Vi(n) = W 2y Wt 25 2,y Wt 2,
Vki+1(n) — Wa+n+bn! Zl Wa+n+bn! Z2 o ~Zr—1 Wa+n+bn! Zr)

By the Small-Space-Bound-Lemma the following implications hold for 1 =1,2,...,k —2

el

Spacep(ViE(n)) < S'(n) = Spacepr (Vit'(n)) < S'(n).

29

We can assume that
F<NU or j > U W (vi)

because if |U'| < j < |U" Wg,_,| the Configuration-Shift-Lemma implies
(a,i) Fux (B7—A) Fux (8,7 —A).
Hence, (v) and (vi) are fulfilled for j' := j — A . Form (i) and Claim 1 follows
(a,) = (a,i) Emy (6,)) Fuy (B,)) -
This means that for input Y there exists an infinite computation path, which is universal and

starts in (a,7). We get a contradiction to acck,(a,7,Y). |

Now we want to show that for any final or existential configuration (3,j) that can be reached
from («, i) on a universal computation path holds

accﬁ[l(ﬂ,j,X) .

According to Claim 2 this proves acck,(a,i, X). Let (a,i) Emx (B,j). Two cases will be
distinguished.

Casel. j<|[U| or j>|U Wa_l.

From Claim 1 it follows that . }
(a,2) = (a,7) Fmy (8,7) -

The assumption acck,(a, i, Y) implies

accyr '(8,4,Y) (vii)

For a final configuration (/,j) one can conclude from property (vii) that S must be accepting,
hence acck=1(3,4, X) holds.

For an existential (3,;j) the same implication holds using the induction hypothesis.
Case 2. |U'|<j<|U W& _,l.
The Configuration-Shift-Lemma implies
(a,i) Fux (8,7 —A).
In the proof of Case 1 it was shown for the configuration (3,j — A) that
acchi1(8,j — A, X)

holds. Using the Position-Shift-Lemma we obtain accﬁ,j_l(ﬂ,j, X). This completes the proof of
Proposition 1. |

Next, we will show that the second requirement of the proposition above is always fulfilled.

28

A.) First we consider existential configurations («,7). Assume that
acck (a,i, X)

is true. Hence there exists an existential computation path from («,i) to a final or universal
configuration (f,j):
(a,9) FEmx (8,4) (i)
with the property
aceir (8,4, X) - (i)

We may assume that
JWI or §> U WE (iv)

because if |U'| < j < |U" Wg,_,| then for Zy := U, Zy .=V, W := W&, _, 0, and s :=
2mg , +1—n— (n+n!) the Configuration-Shift-Lemma implies

(Oz,i) |:M7X (/)))J - A) -
Moreover, for r:=t:=my, and for s:= 1, from the Position-Shift-Lemma we can deduce
acchm (B, — A, X) .

Therefore, if |U'| < j < |U’ W&, _,| the configuration (3,;') with j/ := j — A instead of (8,)
satisfies properties (ii)-(iv).

Since 7 =1 according to (i), Claim 1 applied to (ii) yields

(a,i) = (a,i) Ewmy (8,7) -
A terminating configuration (f,j) must be accepting because of (ii) and (iii), hence (B,7) is
accepting and acck,(a,1,Y) is true.

For a universal (3,j) we apply the induction hypothesis. Because of (iv) the requirements 1. and
2. of the proposition are fulfilled for £k —1 and ¢ := 5. Property (i) implies for this choice of i
that ¢ = j. Therefore, in (iii) replacing j by i one can conclude

acch; (83,1, X) = acerr H(8,4,Y) = aceh '(5,7,Y) -

Hence, we can conclude that accfw(a,;,Y) holds. This proves the proposition for existential

configurations.

B.) Now let us consider universal configurations (e, i), for which acck,(a,7,Y) holds. We have
to show that acck, («a,i, X) is true.

Claim 2 For input X any universal computation path starting in (e,) is finite.

Proof. Assume, to the contrary, that there exists an infinite computation path which is universal
and starts in (e, i) . This means that there exists a universal configuration (f,j) such that

(i) Emx (8,7) Fux (B,7) - (v)

27

Proof. Remember that i was defined as

- {2 ifi < |U|,
i+ ((Weel = [Wil) i 4> U Wi

For k = 2 the implications above follow from the 1-Alternation Lemma.

To establish the proposition for k& > 2 we consider the first time when the machine M makes an
alternation and inductively use the corresponding properties for the strings W3, _, and W[, _, .
The argument concentrates only on the block in the middle of a W3, string, which is a W[, _,
word, and analogously for W[}, strings with a W3, , word in the middle. The main technical
difficulty for the following argument is the possibility that in an accepting computation the machine
may just make its first alternation in the middle block, and therefore may notice the difference
between the W3, and Wj, strings. But the Configuration- and Position-Shift-Lemmata imply
that there also exist accepting computations with the first alternation outside this critical region.

The details are as follows. Assume that the configuration («,i) fulfills properties 1. and 2. Let
n > Ny s, and define

X = UWR,V = UWa_, V',
Y = UWV = U Wh_, V', where
U= U[ng_lo] """ and
M, n
Vo= O[ng_lo] v,
A = |We_10|-n!,
~ {j if j < U,
DT A (Wil = W8] iG> X = V7).

Note that i is defined with respect to the partition of the inputs X,Y with the prefix U and the
suffix V| where j is taken with respect to the prefix U’ and suffix V’. Since

|Wﬁk—1| - |W§k—1| = |W£k| - |Wﬁk|

i =i whenever both values are defined. (1)

First we prove the following

Claim 1 For any memory state |a1| < |as| < S(n) and all ji, j» with
Jrje € [0 (U U (U Weg 4[4+ 1 .. [X]+1]

holds: : y
(a1,71) Fmx (as,j2) = (a1,71) Emy (asz,j2) -

Proof. For suitable 71,75 € {0,1}* the words considered can be written as

Wg, = Z11"Z, and Wi, = Z; 1"t 2, if k is odd, and
Wg, = 71 17+ 7, and Wiie Z1 1™ Zy for even k.

The claim then follows from the Pumping Lemma (Lemma 3). |

26

Theorem 8 For any k£ > 2 holds

Lsr ¢ MySpace(o(log)) ,
Loy ¢ XiSpace(o(log)) .

We will define specific inputs that belong to Ly and L and show that any sublogarithmic
space-bounded machine cannot work correctly on both inputs.

Let L = Lz be fixed. Recall that infinitely many n € IN exist with n € 7, 1" € L and
1mtnt g I

Definition 7 For n € F define words

wa, = 17t and Wg, = 17,
and for k > 3
Wae o= W 0] W 0 W0
M, n Mk, n
W = [ngq O] Wep_1 0 [ng_1 0] ;

where the my , are the parameters already used in the Position-Shift-Lemma.

From the definition follows easily

Lemma 13 For k > 2 and every n € F

ng € sz and ng é Ll'[k ,
Wﬁk € L and Wﬁk ¢ Ly .

Let & > 2 and S € SUBLOG be a space bound. We will prove Theorem 8 by showing that if a
Xy TM M accepts Ly in space S then for sufficiently large n € F M accepts W3, , too.
Similarly, if a II; TM M accepts Lyj in space S then for large n € F it accepts W, and
hence makes a mistake. Recall that /\/M75 denotes the constant defined for M and S in Section
2.

Proposition 1 Let S € o(log) and M be an ATM. Then for any k > 2, for all n > Ny s, for
all strings U,V € {0,1}*, and for any configuration (e«,?) with

1. ¢<|U] or i>|UWj| and
2. Spacey(a,i, U Wi, V) < S(n) and Spacepr (a1, U W2, V) < S(n)
holds:
acchi(a,i, U Wh, V) = acck/(a,;,U W8, V) if (a, 1) is existential,

acck (a, i, UWE, V) = acch(a,i, U WS, V) if (o, %) is universal.

25

Lemma 11 For this specific F

Ly € MySpace(llog) and Lx € LaSpace(llog) .

Proof. We describe llog space-bounded M2TMs Mp and ¥2TMs My that recognize the
language Lz, resp. the complement of L.

The machine My works as follows. It checks first whether the input is of the form 1", for some
integer n > 2. Then, to verify the condition V£ € [3 ... n—1] F({) < F(n), Mn

— deterministically computs F(n) and writes down the binary representation of F'(n) on the
tape;

— universally guesses an integer £ € [3...n — 1]; to this end the machine moves in universal
mode the input head from the left to the right and it stops the head ¢ positions from the
right end of the string 17 ;

— existentially guesses an integer k € [1...F(n) — 1] and then moving the input head to the
right, checks deterministically whether & divides ¢. It accepts, if £ does not divide £.

The machine My also checks at te beginning whether the input is of the form 17 | for some integer
n. My accepts if this condition does not hold. Otherwise the machine writes down on the work
tape F'(n) in binary and tests whether

I¢e3...n=1] Yke[l...F(n)—1] k divides £.

Similarly as for machines Mp the input head position represents the integer ¢. The integer k is
stored in binary on the work tape.

It is obvious that My recognizes Ly and that My recognizes Lr .

The proof that these machines have low space complexity is based on the fact that for some
constant ¢, F(n) < clogn for each positive integer n. Hence, the binary representation of F'(n)

has length O(loglogn).

Thus languages L as described in Definition 6 exist. For the base case of the following inductive
separation we also need the property that Lz ¢ XaSpace(o(log)) and symmetrically that Lz ¢
I, Space(o(log)) . This has been shown for the example above explicitely in [14]. Below we will
give a general argument showing that this property simply follows from the condition n € F and

n+nl¢F.

3.1 ATMs with a Constant Number of Alternations

Lemma 12 For any k£ > 2 holds

Lsr € XpSpace(llog) ,
Lnr € TMiSpace(llog) .

The proof of these properties is straightforward using the fact that Lr € I3Space(llog) and
Lr € XaSpace(llog) . The separation now follows from the following

24

Theorem 7 Let S, A, 7 be bounds with A < oo and Z < expS computable in space S. Then
for every S —space-bounded Yo TM M there exists a Yo TM M’ of space complexity S such
that for all inputs X

o M' accepts X iff M accepts X and X 1is 7 -bounded, and
e cvery computation path of M' on X is finite.

The identity of X; and co- II; for Z -bounded languages (Theorem 4) now follows easily.

3 Hierarchies

For a subset of the natural numbers A let L4 be the language over the single letter alphabet
{1} defined by 1€ Ly iff ne 4.

Definition 6 Define Ly := {1}* and for k¥ >3 Ly := (Ly-1 {0})T.
Let F be an infinite subset of the natural numbers with the properties:
e neF = n+n!¢ F and
e Ly €TySpace(llog) and Lz € EaSpace(llog) .
Then we define

Lnes = Ly and Lyy:={1}tNLs,
Ly = {w10w20 .. .pr0 |p €N, w; € L1 and 117 € [lp] w; € LHk—l} ,
Lor = {w10w20 .. .pro |p €N, w; € L1 andVie [lp] w; € Lgk_l} .

Note that Lss and Lpy are just complementary. For larger & the corresponding languages are
“almost” complementary, that means if restricting to strings with a syntactically correct division
into subwords by the 0-blocks (more formally Ly = Ly N Tk). An example for a set F is the
following;:

F = {n>2|VLe3...n=-1 F{)<F(n)},

where F(n) denotes the smallest positive integer that does not divide n. It is easy to show that
F is infinite. The property, n € F implies n+ n! & F | follows from

Lemma 10 For any integer n > 2 holds n+n! ¢ F.
Proof. This follows easily from the equation
F(n)=F(n+n!).

To see this equality note that any divisor of n divides n+n!, too. Hence F(n) < F(n+n!). On
the other hand from the definition of F° we know that

F(n) does not divide n

and, since F'(n) < n, that
F(n) divides n! .

Therefore F'(n) does not divide n + n!, which means that F'(n + n!) < F(n). |

23

where b is the amount of space used in C, .

On the other hand, a sequence C without alternations or crossings is a long hop if the positions 7
and j of the input head in C, , resp. C, are at least at a distance M? + 1 apart and within C
the input head never leaves the region between these two positions.

Now we are ready to describe the behaviour of the machine M’ . Tt first computes the value
Z(|X]), which by assumption can be done in space S(|X]), and then simulates M step by step.
Let b; be the amount of work space used by M by its ¢ —th step.

After having simulated step ¢ of M the machine M’ stops and rejects iff

al
a2

) M rejects at this step, or
)

3) since its last alternation M has executed 2(Z(|X]|)+ 1) - M;, + 1 many crossings, or
)

M has just finished a long turn that contains only existential configurations, or

o

4

[

within the last 2/\/12’1 + 1 steps M has not made any progress, that means performed an
alternation, a crossing, a long turn or a long hop.

M’ stops and accepts iff

bl) M accepts, or

b2) M has just finished a long turn that contains only universal configurations.

To check these conditions one counter for the number of crossings, one counter for the number of
steps since the last progress and a sliding window for the most recent furtherst distance to the
right or left, which can also be realized by counters, suffice. The length of all counters is bounded

by O(S(|X])). Thus, M’ is O(S)-space bounded.

It is obvious that Alteryn (X) < Altery(X) . To see that all computations of M’ are finite, first
notice that if M does not make progress inifinitely often M’ will stop the simulation eventually.
Assume that A’ does not stop on some path. If Alterpy(X) < oo this cannot be due to alter-
nations nor to crossings of M since their is also a finite bound set by M’. Thus it remains the
case that M within one block of identical input symbols performs infinitely many steps without
an alternation. M’ would stop if M makes a long turn, thus M has to make an unbounded
number of long hops. After a long hop to one side it cannot make a long hop to the other side,
because this would result in a long turn. Thus, M eventually has to reach the boundary of this
block and performs a crossing, a contradiction.

From Lemma 1 follows that M’ accepts the same set of Z-bounded strings as M . In case a2)
there is a shorter turn that brings M into a configuration identical to C, . Thus, if M has
an accepting subtree for configuration () then it still has after chopping of that), which is
reached by the long turn. The dual argument holds in case b2). Observe that in case a3) M
must have gone through a loop and one can stop the simulation. This is because there are at
most 2(Z(|X|) + 1) different positions on the input tape (counting both directions) to perform
a crossing on a Z -bounded string X . Hence, at some position a memory state must repeat. A
similar argument holds in case a4) for the at most M? many input positions that can be visited
without performing a long turn or hop. |

Using this lemma we can show the following theorem that extends Sipser’s space-bounded halting
result to alternating TMs.

22

n+s+n n! n! n! n+4s+n n!

et Ve NI e N et Ve N N
0WW e . W2, WWW e . W2,

(a,i—A)

J

(B,j+A)

a) (a,i—A) Eux (8,7) b) (a,i) Emx (B,j+A)

Fig. 6

Otherwise the input head is located in B, i.e. |A| < j < |AB| (see Fig. 6a). By Lemma 7 (2.), one
can deduce that (a,i) |=ar.x (B,j+A), which implies acck7?(3,j+A, X) . Using the induction
hypothesis for configuration (3,5 +A) and for k—1 with »':=r—n, s :=n+s+n+n! and
' :=t — (n+n!) we obtain accir?(3,, X), which completes the proof. |

2.5 Halting Computations for ATMs

Let S and Z be functions such that Z is computable in space S and Z <expS. We say that
a binary string X is Z -bounded if it contains at most Z(|X|) zeros.

Lemma 9 For every S -space-bounded ATM M there exists an ATM M’ , which is also S -
space-bounded, such that for all 7 -bounded strings X holds:

o M' accepts X iff M accepts X,

o Altery (X) < Altery (X),

o if Altery(X) < oo then every computation path of M' on X is finite.

Proof. Let M be an ATM and let X be a Z —bounded input. In the proof below, M; denotes
the number of memory states of M as defined in Section 2.1.

Let us call by a crossing any transition of M from a configuration, in which it reads an input
symbol a to a configuration reading an input symbol b # a , where a,b € {0,1}U{$}. A sequence
C=0Cy, Cyuti,...,0, of consecutive configurations of a computation path on X is a long turn if
C does not contain alternations, nor crossings, if in C, and C, the input head is at the same
position i for some 1 <7< |X|, and within C

— either the input head visits position i+ M2, but never moves to the left of 7,

— or it visits position i — M? | but never moves to the right of 7,

21

n! n! n4s+n n! n+s+n n!
ZWW T T T W2y ZWW LT T W2y
§ (@) (i8] i
g > >
e G- 1
a) (a,i) Fmx (8,]) b) (ai=A) Fux (5,7—A4)

Fig. 5

In this case using property (ii) and Lemma 7 (2.) — for 7} := Z; Wr=2(n+nh) 70 .= Wi=2n7,
and s’ :=n!+n+ s+ n — we conclude that

(,i=A) =mx (8,5 —A).

Now apply the induction hypothesis for k¥ — 1 with parameters »' := r» — (n + n!), s’ and
t' :=t—n to configuration (3,j). By definition of the parameters my , the requirements 1. and
2. are fulfilled. Therefore (iii) implies

accﬁc\d_z(ﬂij - AJX))
and hence accﬁ[l(a, i— A, X). This completes the proof for existential configurations.

For a universal (a,), similar to the case k = 2, it will be shown that for any final or existential
configuration (f3,j) that ends a universal computation path

(@yi=A) ux (8,4) implies acch’(8,4,X) .

Remember that because of Claim 1 only finite paths have to be considered. Let (3,j) be such a
configuration. Divide the input X into three regions A, B,C' as above. Depending on which region
is visited by the input head in configuration (f3,j), two cases are considered. If the input head is
in region A or C' (as in Fig. 4b) then from Lemma 7 (3.) we obtain that («,i) =umx (5,7)-
acchr!(a,i, X) thus implies acck=?(3,4, X).

20

(The trivial case that M accepts without alternations could be handled as above.) Let us divide
the input X = Z; W™ W* W? Z5 into three regions A, B,C as follows:

A = ler—(n+n!) ’
B = WUWrWEWT,
c = Wt_nZQ .

According to j, the input head position in configuration (5, j), the following situations will be
distinguished:

Case 1. The input head is located in region A or C' (see Fig. 4a),i.e. j <|A| or j > |AB].

A B C A B C
n! n4s+4n n+s+n n!
ZIWW e W Zs ZIWW e e W Za
(a: l) (a, l — A)

(B,3) (8,3)

a) (a,i) Fumx (8,7) b) (a,i—=A) Emx (87)
Fig. 4
From property (ii) and Lemma 7 (3.) — for Z; := A, and Zy := C' — we obtain that

(a,i—A) =mx (3,7)

(see Fig. 4b). Therefore condition (iii) implies acck (a,i— A, X).

Case 2. The input head in (3,) visits region B (see Fig. 5), i.e. |[4| < j < |AB|.

19

Proof. Let us assume, to the contrary, that there exists an infinite universal computation path
that starts in («,? — A). Hence there exists a universal configuration (f3,j) such that

(a)i_A) IZM,X (/))1.7) and (/))1.7) |:M,X (/)))J) .
If |Z;Wn] < j < |ZyWrtstt=(n4n)| then Lemma 7 (2.) implies
(a,i) Fmx (B,5+4A) and (8,7+A) Eux (8,i+A4).

This means that in (a,i) M starts an infinite universal computation path with X on its input
tape. This yields a contradiction to acchy!(a,i, X).

On the other hand, if j < |Z;W"| or j > |Z;Wrtstt=(n+n)| then by Lemma 7 (3.)

(a)i) |=M,X (ﬁ;j)~

Since (8,j) Fmx (B3,j) M also generates an infinite universal computation from (a,1).
Note that we can apply the Configuration-Shift-Lemma both to a and 3 because by the second
assumption |a| < |3| < S(n). This ends the proof of Claim 1. |

First we will solve the base case k = 2 and consider an existential configuration («,). Because
of accl;(a,i, X) there exists an accepting (/3,j) with

(a:i) |:M,X (ﬁ)]) .
Using the Configuration-Shift-Lemma one can conclude that

(,i—A) Eumx (B,j—4) if |[ZyWntn!| < j < |Z Wrtstt=n| and
(,i—=A) Emx (B8,7) otherwise.

Since 3 is accepting accl,(a,i— A, X) holds.

For universal configurations (e,) it will be shown that any terminating configuration (3,) with
(a,i—A) =mx (B,]) is accepting. Together with Claim 1 this proves that accl,(a,i— A, X)
holds. Let (3,j) with (a,i— A) [=ar x (5,7) be a final configuration. By Lemma 7

(Oz,i) |:M7X (/)))J + A)
if |Z1Wn] < j < |ZWrtstt=(r4n)| Cotherwise
(a:i) |:M7X (ﬁaj) :
Hence, if 2 is non-accepting then accl,(a, 7, X) does not hold — a contradiction.
Now let k& > 2 and consider an existential configurations («,¢). Since, by assumptions, M

starting in (o, %) with X on the input tape accepts there exists an existential computation path
ending in a universal configuration (3, j), with

(a,9) Fmx (8,4), (i)

and
acchr%(8,4,X) . (iii)

18

1 (ali) |:M7X (6)]) = (a’i) |:M,X (ﬂ)] - A):
2. (a)j) |:M,X (/)))) = (a)j_A) |:M,X (/)))E_A)¢
3 (a)j) |:M,X (/))) Z) — (a)j - A) |:M,X (/)))Z) :

Proof. First note that the conditions on j and ¢ guarantee that all positions j, ¢, j — A £— A
considered are at least n blocks W away from the boundaries 7; and 7. Define

X' = ZLWPWEW™ Zy and X7 = 2y WRWE W 7,

Set i:=1 if i <|Z;|, otherwise i := i— A . Using the Pumping Lemma twice — first for the input
pair X, X’ and then for X', X" — we obtain:

(a,i) Emx (B,J) <= (a1) Eux (B,j—4) <= (a,i) Emxe (8,5 —A)
(a)j) |:M,X (/)’,f) = (a,j—A) |:M,X’ (/)))E_A) = (a,j—A) |:M7X” (/)))K_A)
(a,) Emx (B1) <= (2,i—A) Fux: (B1) <= (a,j—A) Euxn (B,1)

The claim of the lemma follows because X/ = X . |

In the inductive argument for the proof of Theorem 1 (Proposition 1 in section 3 below) we have
to guarantee a certain distance of the input head from the boundaries. For this purpose we define

My, = k-(n+n!).

)

Lemma 8 (Position Shift) Let k > 2, r;s,t be integers with »,¢ > my, and s > 1, and
let 71,75, W € {0,1}* be arbitrary strings. Then for X = Z; W™ W* W' Z5 and for any
configuration («,¢) fulfilling the requirements

1. |Z1 W] < i < |Z W W*| and

2. Spacey(a,i, X) < S(n) and Spacen(a,i — A X) < S(n)

holds:

acch=(a,i,X) S accfw_l(a,i—A,X) .

Proof. Let input X and configuration («,7) be as above. We will only give a proof for
acch(a,i, X) = acchrM(a,i— A, X) .
A similar argument yields the opposite implication. Let

acchr!(a,i, X) (1)

be true. First we will show the following property for computations that start in (e,i— A). Call
a computation path of finite or infinite length universal if all its configurations are universal.

Claim 1 For a universal configuration («,7) of M on X any universal computation path that
starts in (a,7 — A) is finite.

17

Fig. 3

Let (4,7), for j = hy or j = hs , be the last configuration of ;. Without loos of generality,
assume that j = hy . Since Cy is infinite there exsists hy < d < ilQ and a memory state v such
that (y,d) occurs on C; at least twice. By assumption, all memory states on computation path
between the two instances of (v, d) use at most S(n) space. Lemma 1 implies that there exists
a computation path D such that D starts and ends in (v,d), and that the input head is never
moved farther than M%(n) -|W| positions to the left nor to the right of d. Let €3 denote the part
of Cy between (f,j) and the first (y,d) on Cy. Using Lemma 1 and 2 one can easily construct
from Cl a computation path D! such that

- D! starts in (3,),

— D! ends in (v,d'), for some d’ such that

— the input head is never moved to the left of j nor to the right of
J+ M (Msny+2) - [W| < j+n'-[W].

Finally, let ¢} denote a computation path for input X starting in (8o,) and ending in (3,7) .
By Lemma 3’ such a path exists. M starting in (/o iz) and making the same sequence of moves
as in C{D'DDD... makes an infinite universal loop on X .

This completes the proof of the first implication of the lemma. Let us now assume that acc?;(a, i Y)
holds for a universal configuration (a,?). If acc?,(«a,i, X) is not true then there exists an existen-
tial configuration (3o, h) such that: M starting in («,?) and working in universal states reaches
(Bo, h) and each computation C of M on X started in (S, h) is rejecting or along C M makes
at least one alternation. Using the similar methods as above one can show that acc3,(«, ;,Y)
does not hold, too — contradiction.

2.4 Fooling ATMs by Shifting the Input Head

In the following two lemmata we consider the influence of shifting the input head between identical
copies of a fixed string T . For this purpose let us denote the shift distance by A := |W|-n!.

Lemma 7 (Configuration Shift) Let X = 7; Wnt?» W* W" Z, be a binary string with
s > 1 and let «,3 be memory states with |a| < |3| < S(n). Then, for any 7 with i < |Z;| or
i> |7y Wrtnt We Wn| and any j, € [|Z WP+ 1 ... |Z; WP W4] holds:

16

Let C be an infinite universal computation path for input X’ that starts in (So, 71) From C
we will construct an infinite computation path for input X that also starts in (S, iz) . Let hy
denote the index of the first symbol of the string V$ on the input tape with input X’ i.e. let
hhy := hy 4+ [WE"!| | Three cases have to be distinguished.

Case 1: The boundary between the prefic U and the string W™ 7" or the boundary between
the string Wn'+'n" and the suffiz V is crossed infinitely often in C (see the figure below).

h.1 h.2
| U Wn’+£’n’! 1% |
(501 il) . ;

Fig. 1

Let the boundary between the prefix U and the string W' +£'7"! be crossed infinitely many times.
Then there exists a memory state 3 such that the configuration (3, h1) occursin C at least twice.
From Lemma 3’ one can conclude that

(o, h) Ewmx (B,h1) and
B h) Eumx (B).
So, we obtain that M starting in (So, 71) makes an infinite universal loop on X . The subcase

when the boundary between the string W' +£7"t and the suffix V is crossed infinitely many times
in C is similar to this one.

Case 2: There is an initial part C; of C and an infinite rest C2 of C such that in C» M scans
only the input to the left of h1 or to the right of hy (see the figure below).

j=h 7{2
| U Pty
(Bo, h) ' ;

Fig. 2

Let (3,7), for j=hy or j= hs , be the last configuration of C;. From the Lemma 3’ we have
that (8, 7) is reachable from (fp,h) on X , too. Let C'; denote a computation path from (g, h)
to (B,j) for input X . Then C’1C, is an infinite computation path for X .

Case 3: There is an initial part C; of C and an infinite rest Cy of C such that in Co M scans
only the string W™'+£'n"t (see the figure below).

15

2.3 Fooling ATMs by Pumping the Input

Lemma 6 (1-Alternation) For any configuration («,7) with

e i<|Z| or i>|Z; W"| and
o Spacey(e,1,X) < S(n) and Spacepr(a,1,Y) < S(n) holds:

accl;(a,i, X) = acci(a,i,Y) if («, 7) is existential, and

accis(a, i, Y) = acci(a,i,X) for universal (a,).

Proof. Assume that («,) fulfils both conditions above. First, let this configuration be existential
and let acc};(a,i, X) be satisfied. Then there exists a universal configuration (or if M does not
alternate a final accepting configuration) (5o, k) with 0 < h < |X|+ 1, such that

(A) (a,i) =mx (Bo, k), and

(B) each computation path C on input X that starts in (3, k) is finite. In addition, along
each such C M does not alternate, and the final configuration of C is accepting.

We divide the string X according to h into three parts. Let n’ := |n/2|. Define hy :=|Z; W™'|
if h <|Z, W'|, and hy := |Zy|, otherwise. Let hy := hy + |W™'|+1. Now let U/ denote the
prefix of X of length hy ie. U :=2; wn' if hy = |71 W”I| and U := 7 , otherwise. Moreover
let V denote the suffix of X of length |X|+1—hy,ie. if hy = |Z; W"'| then V := Wn=20" 7,
else V :=Wn="" Z, (note that V can be an empty word). Then, X =U W™ V.

For such a partition of X | the head of M in memory state (3, h) is located on string $U , if
h < |Z; W™ | and on string V$, otherwise. Let a := (n' + 1)(n’ +2)...n and let ¢ :=fa. We
will show that A/ started in («,?) with X' :=U Wn'+n"t ¥ on its input tape accepts making
at most one alternation. This proves the lemma since

X' = U Wn’-{-é'n'! vV = Zl Wn+l’n'! Z2 — Zl Wn+£n! Z2 - Vv

Since Mys < n < (n'+1)? from Lemma 3’ (for n := n’ and m := n) and by (A) it follows
that R
(a,1) FEmx: (Bo,h)

where h := h if h < |Z; W"'| and h := h+ ¢n'! otherwise. Our lemma follows from this
property and from the fact that R
acch(Bo, hy X')

holds. Below we prove that this predicate is true.

Assume, to the contrary, that accl, (S, h, X') does not hold. We can distinguish two cases:

(a) (Bo,h) Emx: (B,t) for some rejecting or existential configuration (3,t), or
(b) M starting in (fo, iz) performs an infinite universal computation on X' .

From Lemma 3’| it follows that the memory state 3 is reachable on X | too. We get a contradic-
tion since by condition (B) it must hold: if M reaches a non-universal memory state on X then
it should be accepting. Therefore case (a) cannot occur. Below we will prove that case (b) cannot
occur, too. More precisely, we will show that if (b) holds then there exists an infinite universal
computation path for input X which starts in (3, k), also yielding a contradiction to (B).

14

position in [|Zy W1 |+1...|Z Wnitna+£n2!] then, applying Lemma 3’ in the same way as above,
one can construct a computation path for the input X which starts and ends in (e, 7) and (5, 7),
resp. and has the same number of alternations. Therefore, to complete the proof we have to show
that there exists such a computation path for Y if we assume that A/ started in (e, ;) reaches
(8,7) making k — 1 alternations.

Let m be the largest integer such that for some ny,n3 € IN, with ny + m+ n3 = n + £n!, there
is a computation path C between («,:) and (5,;) of k—1 alternations such that A/ alternate
only on the prefix Z7;W": and suffix W27, . Assume to the contary that

m < [Va] + €1 Val!,

where ¢ := ¢n(n—1)...(|\/n] +1). Then either in W™ orin W™"s there exists a substring of
the form W™ | with m’ > 2|+/n]| , such that A does not alternate on W™ too. W.lo.g. let
W™ be a substring of Wns. Then Wn"s = W"sW™ ¥ for some integers n4 and nY . Below
it is shown that C can be cut and paste such that in the obtained computation path A/ does not
alternate with the input head over W™*! . This yields a contradiction since m was the largest
integer of this property.

Let us define the following head position bounds

L1 = |Z1Wn1| , Rl :
L2 = |len1+m+n3| R2 :

L+ W™ +1
Lo+ WAl 41 .

Not that from the assumption that m’ > 2|\/n| it follows that
Ry + |WWVAL| < |z, wntent) (ii)

Let C’' be a subsequence of computations of C which starts and ends with the head position in
{Li, R2}. We claim that C’ can be modified to the computation path of the same number of
alternations, which starts and ends in the same configurations as ' and such that A/ does not
alternate with the head positions in [L1, Ry + |W]]. Only the case when C' starts and ends with
the head position L; and Rs, resp. will be described.

Let (a1, L1) be the first configuration of €’ and (8a, Ra) the last one. Moreover let (31, R1) be
the first configuration in €’ with the head position R; and let (as, Ls) be the last one with the
head position L2 . Using a similar counting argument as in the proof of Lemma 2 one can show
that

E'Cl E[l Mb] VdE[l Mb] (al,Ll) |:M7Y (ﬂl,R1+Cld|W|) .

Moreover by Lemma 2 we have:
3626[1 Mb] VdE[l Mb] (ag,L2+ng|W|) |:M7y (/))Q)RQ) .

Therefore for é := c¢jeq|W| holds

(a1, L1) |=my (P, Ri+9)
(a2, La+6) [Emy (f2,Ra).
By (ii) M making the same moves as in C’' between (31, R1) and (as, L2), reaches (aq, La + 6)
when started in (81, R1 +6) . Therefore there is a computation path which starts in (ay, L1) ends

in (fa, Ra) of the same number of alternations as C’ such that M does not alternate with the
head position in [L1, Ra 4+ |W]]. This completes the proof of the claim and the lemma. |

13

Let us consider first that C’ is a tail of C. By Lemma 2 there exists a constant ¢, with 1 < e < M,
such that M starting in (ar, L) reaches (agr, R—c-|W]), with the head positions in [L, R]. If
additionally M starting in (ag, R — ¢ - |¥|) makes the same sequence of moves as in €’ when
started in (ag, R) then we obtain a computation for M with the same number of alternations as
in ¢’ but with the head never moving to the right of i/ — ¢ |WW].

Assume now that €’ is not a tail of C. Then the last configuration of ¢’ has a form (o, L), for
some memory state af . Let (a’s, R) be the last configuration in €’ with the head position R.
By Lemma 2 there exist constats e1,¢cq, with 1 < 1,0 < My such that M starting in (ar, L)
reaches (ar, R—cicq-|W|) and starting in (ay, R—cica-|W]) reaches (o, L) . It is obvious that
M starting in (ag, R — ¢1¢2 - |I¥|) and making the same sequence of moves as between (ag, R)
and (a/p, R) in (', reaches (a/z, R — cica - |[W]). Hence we obtain a computation path of the
same number of alternations as in €’ that starts and ends also in («r,L) and (o}, L), resp. but
with the head never moving to the right of i’ — ¢yeq - |W].

Note that by Claim 1 and the assumption that Alteray(a,i, X) < exp S(n) it follows that if M
with Y on the input tape starts in («,:) and makes k— 1 alternations with the hed never moved
beyond W7+! then k — 1 < exp S(n). To see this assume the opposite. Then by Claim 1 M
starting in («,i) makes k — 1 = expS(n) 4+ 1 alternations such that the head is never moved
farther than 6 positions from 7. By the assumption that n > Nur s we conclude:

6 = (257 4 2) - M7 - (My +1) - [W] < 25067 (MG 4+ 1) [W] < 020/ W] = n - 17|

what means that M can make the same computation on X . We obtain a contradiction since
Alterpyr (e, i, X) < exp S(n) . Hence our lemma follows from Claim 1 and from the following

Claim 2 Let k— 1 < expS(n). Then for any memory state 8 and for j € {|Zi],|Z1W"| + 1}
holds: M started in («,i) with X on the input tape reaches (f,j) making k£ — 1 alternations
iff M started in (a,7) with the input ¥ reaches (8,;j) making also k — 1 alternations.

Proof. We prove the claim for ¢ = |7;| and j = |Z;W"| + 1. In the other cases a similar proof
can be used.

Assume that M started in (o, ¢) reaches (3,j) on X making k — 1 alternations. Since
k<expS(n)+1<23967=2 4 1< |/n]

hence there exist non—negative integers ni,ns and ns with
ni+ny+n3=n and |[Vn]<ny<n (1)

such that M alternates only on the prefix Z; W™ and on the suffix W"375 | but not on Wnz.
Hence by Lemma 3', for #,j/ € [0...|Z W™ |JU[|Z; W™ t72| +1.. . |X|+1], m' == n, n’ 1= ny
and ¢ := fn(n—1)...(ny+ 1)

(alii/) |:M,X (ﬁ/:j/) — (a/’;/) |:M,Y (ﬁ/aj/)

for any configurations (o’,4') and (3',j’) that are reachable by M on the computation path
between («, i) and (3, 7). Using this property one can easily obtain a computation path of &k —1
alternations which starts in («,:) and ends in (53,7) for the input Y .

On the other hand if for integers ni,ne, ns fulfilling (i) there is a computation path for M on
Y which starts in (a,:) and ends in (3, j) and such that M does not alternate with the head

12

Otherwise, using a similar pumping argument one can show that A on input X can reach a
configuration (e,), in which the input head is located on W" and reads the same symbol as in
(a,j’) . Thus it can also get to memory state [in one more step. We get a contradiction since
|B| > Spacerr (X) .

Lemma 5 (Small Alternation Bound)

Spaceyr(X) < S(n) and Altery(X) < exp S(n) == Altery (V) = Altery(X) .

Proof. Let i be an integer, with ¢ € {|Z1],|Z1W"| + 1} and let a be a memory state, with
Spacepr(a, 1, X) < S(n)
and
Altery (e, 1, X) < exp S(n) .

Assume that k is an arbitrary positive integer and let
b = k- Mi - (My+1)-|W],
where b := S(n). We show first that for the input Y the following claim holds:

Claim 1 Let M starting in (e, 2) makes k — 1 alternations with the input head never moved
beyond W”+%' Then there exists a computation for M of k—1 alternations such that it starts
also in (e, i) but the input head is never moved farther than &, positions to the right of i, if
i =|Z1| and to the left of 7, if 1 = |Z, WP+ | 41,

Proof. We show this claim for 7 = |Z;|. A similar proof can be used in the case 1 = |7, W +!| 4
1.

Let us note first that for integers k such that ép > n + ¢n! the claim holds trivially. Therefore in
the proof below we consider only k, with é; < n + fn!.

Let 7' be the smallest integer such that A/ started in (e, ;) makes k — 1 alternations with the
head never moving to the left of ¢ nor to the right of ¢ . Assume, to the contrary that i’ > i+ 6, .
Therefore by the pigeon hole principle there is an interval [L, R], with

i+ M} W <L<R<i and R—-L>M} (My+1) |W|,

and a computation path C of k — 1 alternations such that M with the head position in [L, R]
does not alternate.

Let C’ be a subsequence of configurations of C of the maximal length such that all configurations
of C' have the head position greater or equal to L and there is a configuration in €’ with the
head position i’. Note that the first configuration of €’ has a for (ar, L), for some memory state
ar . Moreover there is a configuration in C’ with the head position R. Let (agr, R) denote such
a first one.

Below we show how to cut and paste C’ to obtain a computation path of the same number of
alternations but with the head never reaching the position i’ . This yields a contradiction to the
assumption that ' > i+ & .

11

where 71,75, W are arbitrary binary strings and ¢ € IN.

Since in the following we will often compare computations on such an input X and a pumped
version Y let us introduce a special notation for positions within these strings. If ¢ is a position
within X outside the pumped region W" | that means for the example above either in Z; or in
Zs , then i denotes the corresponding position within Y . Thus

L[ifi< |74
TLi4 Y] = |X| ifi> |2

The main technical tools for the analysis of sublogarithmic space-bounded ATMs are stated in the
following Lemmata. Here, X and Y denote strings as defined above and M an arbitrary ATM.
Note that n now is not necessarily identical to the length of the input X . Actually, X will in
general be much larger than n. But by a repeated application of the following implications we
can show that any machine M still obeys a sublogarithmic bound with respect to n .

Lemma 3 (Pumping) Let «, be memory states with |a| < |3| < S(n), then for any 7,5 €
0...1Z1]1 U [|Z1 W"|+1...|X|+1] holds:

L. (1) FEmx (8,7) = (a,4) Fuy (B,
2. (O‘:i) |:§\4,X (ﬂ;]) — (a,;) |:§\4Y (ﬂ))

In the analysis below we will use the Pumping Lemma in the following more general form:

Lemma 3’ Let n and m be integers with ANy s < m < (n+1)? and let a,3 be memory
states with |a| < |3| < S(m). Then for any i,j7 € [0 ... |Z1|] U [|Z0 W™+ 1 ... | X|+1]
the properties 1. and 2. above hold.

These claims can be proven using the method developed in [8] and the fact that /\/lg(m) <n.

2.2 Space and Alternation Bounds

Lemma 4 (Small Space Bound)

Spacey(X) < S(n) = Spacey (Y) = Spacepy(X) .

Proof. Let Spacey (X) < S(n). Assume, to the contrary, that Spacerr(Y') # Spacep(X) . We
will show that Spacepr(Y) > Spacepr(X) cannot occur. A similar contradiction can be obtained
for the case Spacen (V) < Spacepr(X) .

Assume that Spacear(Y') > Spacenr(X) . Hence, for Y there exists a computation path C that
starts in the initial configuration («,0) and ends in a configuration («, j) with |a| = Spacerr(X)
such that from («,j) M can reach a configuration (3,;') with |3| = Spacey(X) + 1 in one
step:

(040;0) |:§J,Y (a,j) |=}Kv1,y (5;]") .
If j fulfills the condition j < |Zy| or j > |Z;WW"| of the Pumping Lemma then one can conclude
immediately:

(20,0) Farx (o) Fux (8,5 -

10

Let (y1,71) |=i; (72,42) denote the same property as (y1,41) [Fm,x (72,i2), but with the
restriction that M going from (y1,41) to (72,72) does not move the head to the left of ¢ nor to
the right of j. Then we can write:

(1) iy (e, h(p1) Fij o (a1 k(@) i
(a2, h(p2)) iy (a2,h(g2)) iy

(@, h(pe)) iy (e h(q)) =iy (B7)

Since there are ¢ pairs (ps, ¢s) and the difference between any pair is at most My , by the pigeon
hole principle there exists an integer ¢ € [1...M}] and t/ My = M, pairs (ps,, ¢s,), (Pss, €s2), - - -
with identical difference ¢, that means ¢;, —ps;, = ¢ for £ =1,2,..., My . Define & := c-|W].

Let d be an arbitrary integer in [1...M;] and define o) := a,, and i; := h(ps,). Then we
obtain:

(i) iy (oh,d) iy (ag,ii4+8) =i

(ag,82) iy (ah,i2+6) Fij

(g, da) iy (agia+96") iy (agyr,iapr) = (8,7)

The input X contains a sequence of identical blocks W between the positions ¢ and j. For any
te[l...d], M starting in (aj, i, + &') reaches (aj,;,i¢41) without mowing the head to the
left of i, + ¢’ . Therefore M making the same sequence of moves reaches (a,/e+1: ig41 — £8") when
starting in (o, 4, 4+ (€ — 1)¢’) . Thus we obtain

(1) =i (@, 1) =i
(ah,ip — &) =i

(hyia— (d—1D)&) |=o; (B,)—do')

which proves that (a,i) |=;; (8,7 —6) for 6§ := d-c-|W]|. In a similar way, one can show that
there exsists a computation path that starts in (o, ¢+) and ends in (3,). |

In the following M will always denote an arbitrary ATM and S a space bound in o(log). De-
pending on M and S, we choose a constant NM75 > 2% such that for all n > NM75

(Mg(n) + 1)2 < n

and

S(n) < %logn—Q.

Remark: In this section all claims following hold for any integer n > Ny s .

In [8] Geffert has shown that for sublogarithmic space bounded computations for any natural
number ¢ the behavior of a nondeterministic TM on input 17+¢?" is exactly the same as on 17 .
The proof is based on the so called “n — n+n! technique” developed by Stearns, Hartmanis, and
Lewis in [21]. We will show that a corresponding property holds for ATMs and for all inputs of
the form

X =2Z21W"Zy and Y = 7, Wrtinlz,

2.1 Inputs of a Periodic Structure

In this section some properties of TM computations for binary inputs of the form ZiWW ... W27,
will be described. Let M be an ATM. Then for any integer & > 0 we define

My = F#{a| ais a memory state of M with |a| < b} .

The first two results characterize ”short” computations i.e. computations restricted to substrings

Lemma 1 Assume that

X = 71 W™ 7,y

where Z1,W, Z, are arbitrary binary strings and n € IN. Moreover let b be an integer and («, 1)
and (3,j) configurations with |a| < |8] < b and |Z1]| < 1,5 < |Z; W"|. Then the following
holds:

e If M can go from (a,7) to (f,j) without any alternation and without moving the input
head out of the substring W™ then M can also do so such that the head never moves
M2 - |[W| or more positions to the left of min(z, j) nor to the right of max(i,j) .

This Lemma is a generalization of a result in [16]. It is easy to check that the same counting
argument also yields this claim.

Lemma 2 Let |i — j| > M7 (M, +1)-|W]|. Assume that M can go from configuration (1)
to configuration (f3,j)

& without alternating and without leaving the region between the input positions i and j.
Then,

e there exists an integer ¢ € [1..M}] such that for all d € [1..M;] there is a computation
path satisfying (#) which starts in (o, ¢) and ends in (3,5 —d -sgn(j — i) - c- |WW|), where
sgn(z) = z/|z|.

e Moreover, there also exists a computation path satisfying (#) that starts in

(a,i4+d -sgn(j—i)-c-|W]|) and ends in (f,7).

Proof. In the folowing we will only discuss the case ¢ < j when considering the computation

from configuration (a,i) to (3,7). Let |i —j| > MZ(M;+1)-|W].

Define for integers p > 0 the function h(p) := i+ p-|W]| and let ¢ := M2 . Partition integers in
[1...M?3] into the ¢ intervals [Li, Ri],[La, Ro]...[L¢, Rs] of equal length A, with boundaries
Ly = (s=1)(Mp+1)+1

R, = Li+M;.
For s € [1...¢] consider all input positions h(p) with p € [L;, R;] and the last configuration of

M (before (f3,7)) that visits position h(p). Among these configurations there must exist a pair
with positions ps < qs € [Ls, Rs] and identical memory states a .

2 Properties of Sublogarithmic Space-Bounded ATMs

The Turing machine model we consider is equipped with a two-way read-only input tape and a
single read-write work tape. The input word is stored on the input tape between end-markers $.

Definition 4 A memory state of a TM M is an ordered triple a = (¢, u,%), where ¢ is a state
of M, u a string over the work tape alphabet, and ¢ a position in u (the locaton of the work
tape head). A configuration of M on an input X is a pair (o, j) consisting of a memory state «
and a position j with 0 < j < |X|+ 1 of the input head. 7 =0 or j = |X|+ 1 means that this
head scans the left, resp. the right end-marker. For a memory state o = (¢, u,7) let |a| denote
the length of the memory inscription u .

We may assume that for a successor (a',j’) of a configuration («,j) always holds |&/| > |a].
The state set of an ATM is partioned into subsets of existential, universal, accepting, and rejecting
states. We say that a configuration ((¢,u,?),j) is existential (resp. universal, accepting, or
rejecting) if ¢ has the corresponding mode. All accepting and rejecting configurations C' are
assumed to be terminating, i.e. there are no more configurations that can be reached from C'.

Definition 5 Let

(i) FEux (8,7)
denote the property that the ATM M with X on its input tape has a computation path Cy =
(a,1),Co,...,Ce=(5,7) -

(a,1) Emx (8,7)

denotes the same fact, but with the following restriction: ¢ > 2 and the mode of the configurations
Cy,...,Cy_1 is the same as that of Cy (i.e. if Cy is existential then all Cy for [=2,...,t -1
are existential, otherwise they are all universal).

acck;(a,i, X)

denotes the predicate saying that M starting in configuration («,i) with X on its input tape
accepts (i.e. has an accepting subtree), and on each computation path of that tree it makes at
most k£ — 1 alternations. Let

Spacen (e, i, X)

denote the maximum space used in configurations A can reach on input X starting in configu-
ration («,i) and Spacey(X) := Spacenr(ap,0,X), where (ap,0) is the initial configuration
of M . Similarly let

Altery (e, i, X)

denote the maximum number of alternations M can make on input X starting in configuration

(o,) and Altery(X) = Altery(ao,0,X).

Definition 3 We say that an ATM M is (strongly) S space-bounded if on every input X it only
enters configurations that use at most S(|X|) space. M is weakly S space-bounded if, for every
input X that is accepted, it has an accepting computation tree all of which configurations use
at most S(|X|) space. DSpace(S) denotes the class of languages accepted by S space-bounded
DTMs and weak DSpace(S) denotes the languages accepted by weakly S space-bounded DTMs.
A corresponding notation is used for NTMs and ATMs.

In this paper we consider only the more natural strong requirement for space complexity. For at
least logarithmic space bounds the two conditions do not make a difference, while in the sublog-
arithmic case they obviously do. When studying the closure under complement of a language L
and alternating hierarchies built on this the weak measure is not appropriate. This is because for
strings in I a machine for L may use arbitrary much space, while a machine for I were required
to be bounded. The example above shows that with respect to the weak measure already for DTM
weak DSpace(llog) contains languages that do not belong to co-weakDSpace(o(log)) .

In [6] Chang et al. stated as an open problem whether weak and strong sublogarithmic space-
bounded ATMs have the same power. Obviously, our lower space bound for recognizing Ly by
ATMs proves the following

Theorem 5 weakDSpace(llog)\ ASpace(o(log)) # @ .
As consequences one obtains

Corollary 3 For any k> 1 and each S € SUBLOG

YrSpace(S) C weakXypSpace(S) and
O, Space(S) C weakIl;Space(S).

Corollary 4 For each S € SUBLOG

ASpace(S) C weakASpace(S) .

We next generalize the specific lower bound above to arbitrary deterministic context-free languages,
which also improves a result for NTMs shown by Alt, Mehlhorn and Geffert [2]. Before stating the
result we need the following definition (see [20] and [12]). A language L is called strictly nonregular
if one can find strings w,v,w,z and y such that LN {u}{v}*{w}{z}*{y} is context-free, but
nonregular.

Theorem 6 Let L be a nonregular deterministic context-free, a strictly nonregular language, or
a nonregular contert-free bounded language, then L ¢ |Jpcn ZrxSpace(o(log)) . Furthermore, for
ATMs without any bound on the number of alternations it is not possible that I and L both belong
to ASpace(o(log)) .

This paper is organised as follows. In the next section the necessary technical tools for subloga-
rithmic space bounded ATMs will be developed. In section 3 we will define a sequence of pairs
of languages indexed by the level number k£ to prove the sublogarithmic space hierarchy. We
then investigate closure properties of sublogarithmic space classes. Section 5 is devoted to the
lower space bounds for context-free languages. The paper concludes with a discussion of the most
interesting open problems for sublogarithmic space classes remaining.

Preliminary versions of most of these results have been presented in [14] and [15].

Note that the class of functions that are approximable from below in space S € SUBLOG is quite
large. For example, it contains the bounds |log| , |log'/?|, [llog] and [log*| . Thus one obtains:

1. Yneg Space(llog) C T(og)+1Space(llog) .
2. YgSpace(S) C Xgy1Space(S) for S= logl/Q_6 , where 0 < e<1/2.
3. Urem ZxSpace(S) C TiogeSpace(S) for S € Q(llog) No(log /log™) .

It is well known that for any function S the complexity class X;Space(S) is closed under union
and intersection (see e.g. [25]). However, it is still an open problem whether for S € SUBLOG the
class X1 Space(S) is closed under complementation. More general, for arbitrary £ the classes
YrSpace(S) are closed under union, and symmetrically the I Space(S) are closed under inter-
section. In [14] we have developed a technique showing that for S € SUBLOG and for k = 2,3,
YrSpace(S) and MySpace(S) are not closed under complementation. Furthermore, X Space(S)
is not closed under intersection, and II;Space(S) not under union. Combining these ideas with
the separation results above we get the same closure properties for all levels.

Theorem 3 For any S € SUBLOG and all k > 1 X;Space(S) and IySpace(S) are not closed
under complementation and concatenation. Moreover, YiSpace(S) is not closed under intersec-
tion and I Space(S) is not closed under union.

Note that non-closure under complementation for ¥; and II; classes is not trivially equivalent to
Theorem 1, which says that sublogarithmic X Space and IISpace are distinct. Sublogarithmic
space-bounded machines do not have a counter, which could detect an infinite path of computation.
It is an interesting open problem whether IIpSpace(S) = co-XSpace(S) for k = 1,2,... (see
the discussion in [14]). Here, we obtain the following partial solution generalizing Sipser’s result
on halting space-bound computation for sublogarithimic space bounded deterministic TMs [19]:
For bounded languages it can be shown that there exist equivalent ATMs that always halt. This
implies

Theorem 4 Let S € SUBLOG be a space bound and Z be a function computable in space S with
Z <expS. Then for all k> 1 and for every Z —bounded language L C {0,1}* holds:

L € Xy Space(S) <= L € NySpace(S) .

Observe that for S > log the function Z can grow linearly and then Z does not put any restriction
on the structure of the strings in L . Thus, this theorem gives a smooth approximation of the fact
that for at least logarithmic space bounds ¥ and II; are complementary for arbitrary languages.
We conjecture that the computability of 7 is needed in the claim above. Furthermore, there are
some indications that the theorem might not be true in general for bounds Z much larger than
expsS.

Finally, we prove a logarithmic lower space bound for the recognition of context-free languages by
ATMs. We will show that the deterministic context-free language

Ly = {1"01™ | n # m}

does not belong to ASpace(o(log)). It is interesting to note that this language — but not its
complement — can be recognized even by a deterministic machine in weak space llog . Furthermore,
a probabilistic machine can recognize this language with arbitrary small error even in constant space

[7].

holds for all levels k. The base case is the existence of a language that separates II5Space(llog)
from X5Space(o(log)) . Its complement separates LoSpace(llog) from IsSpace(o(log)) .

Inductively we will construct a sequence of languages Ly and Lpp and prove that Ly can be
recognized by a 3 TM with llog n space, but not by any I, TM that is o(log) -space bounded.
The corresponding claim interchanging ¥ and Iy holds for Ly . For this purpose, for infinitely
many n we will explicitely pinpoint a pair of strings, one string in Ly and the other one in Ly ,
and show that any sublogarithmic space-bounded X TM or II; TM will make an error on at least
one of these strings. Thus we obtain

Theorem 1 For all &£ > 1 holds

Y Space(llog) \ ISpace(o(log)) #
I Space(llog) \ TpSpace(o(log)) #

and

0
0.

This result gives a complete and best possible separation for the sublogarithmic space world, except
for the first level £ = 1. It is left open whether also X1 Space(S) # II1Space(S) for S € SUBLOG.
The current techniques do not seem to be applicable to this case.

This separation implies that the sublogarithmic space hierarchy is an infinite one, contrary to the
case for logarithmic or larger space bounds.

Corollary 1 For any S € SUBLOG and all £ > 1 holds

YypSpace(S) C Xpy1Space(S)
Oy Space(S) C Mpy1Space(S) .

Independently the existence of this strict hierarchy has been shown by von Braunmihl with coau-
thors [5]. Geffert [11] has announced similar results. (For a chronology of events see [24].)

Furthermore, we can generalize the separation to machines with an unbounded number of alter-
nations.

Definition 2 A function A : IN — IN is computable in space S if there exists a DTM that for
all inputs of the form 1" writes down the binary representation of A(n) on an extra output tape
using no more than S(n) work space. A is approzimable from below in space S if there exists a
function A’ that is computable in space S with A’(n) < A(n) for all n € IN and A'(n) = A(n)
for infinitely many n € IN .

Theorem 2 For any pair of functions S € SUBLOG and A > 1 with A -S € o(log), where A is
approximable from below in space S, holds:
Y aSpace(S) \ T4 Space(S)
I 4Space(S) \ T aSpace(S)

0,

£ 0.

Corollary 2 For any S and A as in the theorem above holds:
Y aSpace(S) C Xat1Space(S)
M 4Space(S) C Iay1Space(S) .

1 Introduction

It is well known that if a deterministic or nondeterministic TM uses less than llog space then
the machine can recognize only regular languages, and that there exist non-regular languages
in DSpace(llog). Therefore, let SUBLOG := Q(llog) N o(log) denote the set of all nontrivial
sublogarithmic space bounds, where llog abbreviates the twice iterated logarithmic function n —
loglogn. On the other hand, the logarithm seems to be the most dramatic bound for space
complexity since most techniques used in space complexity investigations only work for bounds
above this threshold. There are several important results for such space classes known, and it is an
open question if they also hold for space bounds between llog and log. One of the most exciting
problem of this type is whether the closure under complement for NTM

NSpace(S) = co-NSpace(S)

shown by Immerman and Szelépcsenyi [13],[22] remains valid for sublogarithmic space bounds. If
this equality were not valid for a function S € SUBLOG then obviously DSpace(S) C N Space(S)
1

A special situation holds for bounded languages containing only strings of a certain block structure.

Definition 1 Let Z : IN — IN be a function. A language L C {0,1}* is Z -bounded if each
X € L contains at most Z(|X|) zeros. L is bounded if it is Z —bounded for some constant
function 7.

Recently Alt, Geffert, and Mehlhorn ([2]) and independently Szepietowski ([23]) have proved that
for the class of Z -bounded languages, where Z is a constant or a small growing function, the
closure under complement holds, that means in this case NSpace(S) = co-NSpace(S) even for
sublogarithmic bounds. Still, we conjecture that in general the above result does not hold. Towards
this direction we will prove in this paper that X;Space(S) is not closed under complementation
for any S € SUBLOG and all £ > 1.

Recall that for £ > 1 the class X;Space(S) is defined as all languages that can be accepted by
alternating S space-bounded TMs making at most £—1 alternations and starting in an existential
state. IIzSpace(S) denotes the set of languages accepted by the same kind of machines, except
that they start in a universal state. By definition X, Space(S) = N Space(S) . We will also consider
ATMs with a non-constant bound A for the number of alternations. In this case, the notation

Y aSpace(S) and I aSpace(S) is used.

By standard techniques it follows from Immerman-Szelépcsenyi’s theorem that for S € Q(log),
and for all k& > 1
Y1 Space(S) = TpSpace(S) = M Space(S).

Note that these techniques do not work for sublogarithmic space bounds. Recently, Chang et al.
([6]) have shown that there is a language in T Space(llog) that does not belong to N Space(o(log)) .
Clearly, this proves that for space bounds S between llog and log, the alternating S space hi-
erarchy does not collapse to the first level and that X,Space(S) C MySpace(S) . It was left as an
open problem whether the whole alternating hierarchy for sublogarithmic space is strict. Here we
will prove that the problem has a positive answer.

We develope techniques to investigate properties of sublogarithmic computations and then gener-
alize them to an inductive proof that the separation of the X;Space(S) and IjSpace(S) classes

n [25, p.419] it is incorrectly cited that DSpace(S) C NSpace(S), for S € SUBLOG, thus the problem if
DSpace(S) = NSpace(S) is still open for any S € Q(llog) (see Remark 6.1 in [17]).

Abstract

This paper tries to fully characterize the properties and relationships of space classes defined by
Turing machines that use less than logarithmic space — may they be deterministic, nondeterministic
or alternating (DTM, NTM or ATM). We provide several examples of specific languages and show
that such machines are unable to accept these languages. The basic proof method is a nontrivial
extension of the 17 + 1?*"! technique to alternating TMs.

Let llog denote the logarithmic function log iterated twice, and X;Space(S), MySpace(S) be
the complexity classes defined by S —space-bounded ATMs that alternate at most k—1 times and
start in an existential, resp. universal state. Our first result shows that for each k& > 1 the sets

YiSpace(llog) \ IpSpace(o(log)) and
Oy Space(llog) \ XxSpace(o(log))

are both not empty. This implies that for each S € Q(llog) N o(log) the classes

Y1 Space(S) C XoSpace(S) C XsSpace(S) C ...
C XpSpace(S) C Zgpyi1Space(S) C ...

form an infinite hierarchy. Furthermore, this separation is extended to space classes defined by
ATMs with a nonconstant alternation bound A provided that the product A -S grows subloga-
rithmically.

These lower bounds can also be used to show that basic closure properties do not hold for such
classes. We obtain that for any S € Q(llog)No(log) and all k£ > 1 X;Space(S) and ISpace(S)
are not closed under complementation and concatenation. Moreover, X;Space(S) is not closed
under intersection, and II;Space(S) is not closed under union.

It is an interesting open question whether for sublogarithmic bounds S the property that II; Space(S)
is the complement of XjSpace(S) is fulfilled. This is a nontrivial problem since there is no obvi-
ous way how to detect infinite computation paths. Here, we generalize Sipser’s result on halting
space-bound computations for sublogarithimic space bounded deterministic TMs [19] to ATMs
that recognize bounded languages. For the class of Z —-bounded languages with 7 < exp S we
obtain the equality

co-XpSpace(S) = ISpace(S) .

We also consider the space requirement for the recognition of nonregular context-free languages.
Alt, Geffert and Mehlhorn have recently shown a logarithmic lower bound for nondeterministic
TMs [2]. We improve this result obtaining the same lower bound for ATMs. Thus this last result
shows that even alternations do not increase the power of sublogarithmic machines substantially.

Finally, we investigate the power of weak vs. strong sublogarithmic space bounded machines.

The Sublogarithmic Space World

Maciej Liskiewicz*

Riidiger Reischuk!

TR-93-048
August 1993

Key words. space complexity, sublogarithmic complexity bounds, alternating Turing machines,
halting computations, complementation of languages, complexity hierachies, closure properties,
context-free languages, bounded languages.

AMS(MOS) subject classifications. 68Q05, 68Q10, 68Q25, 68Q45

*Institut fir Theoretische Informatik, Technical University Darmstadt,
Alexanderstrafle 10, 64283 Darmstadt, Germany
e-mail: liskiewi@iti.informatik.th-darmstadt.de
Research partially supported by the Alexander-von-Humboldt-Stiftung
tInstitut fiir Theoretische Informatik, Technical University Darmstadt,
Alexanderstrafle 10, 64283 Darmstadt, Germany
e-mail: reischuk@iti.informatik.th-darmstadt.de
Part of this work was done during a visit at the ICSI in Berkeley

