
Source-to-Source Code Generation
Based on Pattern Matching and

Dynamic Programming

Weimin Chen�, Volker Turau�

TR-93-047
 August, 1993

Abstract

This paper introduces a new technique for source-to-source code generation based on pattern matching and dynamic pro-
gramming. This technique can be applied to all source and target languages which satisfy some requirements. The main dif-
ferences to conventional approaches are the complexity of the target language, the handling of side effects caused by function
calls and the introduction of temporaries. Code optimization is achieved by introducing a new cost-model. The technique
allows an incremental development based on improvements of the target-library. These require only a modification of the
rewriting rules since those are separated from the pattern matching algorithm. Experience of an successful application of our
technique is given.

––
� GMD-IPSI, Integrated Publication and Information Systems Institute, Dolivostr. 15, 64293 Darmstadt, Germany.
 E-mail: chen@darmstadt.gmd.de

� On leave from: Fachhochschule Giessen-Friedberg, Fachbereich MND, Wilhelm-Leuschner-Str. 13, 61169 Friedberg, Germany.
 E-mail: turau@prfhfb.fh-friedberg.de

1

1. Introduction
In this paper a new technique for generating optimized code
for object-oriented programming languages based on
pattern matching and dynamic programming is presented.
It can be applied to translation on a source to source basis.
Pattern matching and dynamic programming have been
applied before in compilers based on the back-end
approach, i.e. where the target code of the compiler consists
of hardware-oriented instructions. However, when
applying this technique to target languages which are high
level programming languages, several essential differences
need to be overcome:

 • the target language is far more complex than
machine code,

 • the evaluation order can not be guaranteed by a
simple traversal strategy for the syntax tree, since
function calls may cause side effects,

 • temporal variables must be introduced, and
 • a new cost–model for code optimizing is needed.

Our technique is based on a set of rewriting rules, which
allow us to handle functions with a variable number of argu-
ments as well as temporal variables. A proof is given, that
the evaluation order in the generated code is consistent with
that of the source code.

The code generation starts from the syntax tree and is
done in the following way. All templates in the tree–rewrit-
ing rules are matched against the subtrees of the syntax tree
during a depth–first traversal of the tree. At each node, the
costs are used to determine the best match and, the selected
subtree is replaced by the associated replacement node. The
dynamic programming algorithm allows the rules to be

written in any order and obviates the need to deal with pat-
tern matching conflicts. It produces code that is optimal
with respect to the cost provided.

Compilers based on the front-end approach are used to
save the big effort to generate machine code instead the
translation is into another programming language for which
a compiler exists [4, 15]. This approach is very useful for
compilers of new languages, because it allows a flexible
and extensible implementation. Furthermore, it is platform
independent.

The general situation is depicted in figure 1. The front-
end compiler performs syntax and semantic analysis. Then
the phase of code generation starts. The output of this phase
is a semantically equivalent program in the target language
which contains calls to function, which are provided by a
target library. The target compiler utilizes this library to
generate executable code.

The introduced technique can be applied to all source
and target languages which satisfy some requirements. The
problems which arise when this techniques are applied in
the front-end approach are dicussed and are of independent
interest.

The remainder of this paper is organized as follows.
Section 2 states the background for the source- and target-
languages and details the translation rules. Section 3 out-
lines the general principle of our technique and presents the
new features. Section 4 discusses the control facility in the
pattern matching. Section 5 reports the experience gained
in applying the new technique. Section 6 surveys related
work and section 7 concludes the paper with a discussion of
our results.

Fig. 1. The module structure of the front-end compiler

code generation

target compiler

target code

target-library

semantic analysissyntax analysis
source

2

2. Background

In this section the requirements of the source- and target-
languages and of the translation rules are discussed. The fo-
cus of our work is on the basic concept of object-oriented
programming languages: the class-concept. A class defines
properties1 and methods.

Source language:
 • The language is strongly typed. It can be assumed

that the properties of the classes are globally identi-
fied during the phase of semantic analysis, where re-
name techniques are required. E.g. a property-refer-
ence can be written as p@expr, where the expression
expr is an instance of a class while p is a property of
that class. In the phase of semantic analysis, the type
of expr can be statically determined so that it is pos-
sible to globally identify all properties of all classes.
Let � be the set of all globally identified properties.

 • The methods of a class may cause side effects chang-
ing the values of properties in �. Most object-ori-
ented languages support dynamic dispatching. As a
consequence, in general it is not possible to statically
bind a generic method invocation to a concrete meth-
od at compilation-time. For a strongly typed lan-
guage, however, it must be possible to determine the
set of methods (in the corresponding classes) which
may be invoked for the given (generic) method in-
vocation. At compile-time, we can globally identify
the methods of all classes, and define the set of these
methods as �. For every m ∈� let �(m) ⊆ � be
the set of those properties which may be effected by
the method m. Let �D(m) ⊆� be the dispatching-
set of those methods which may be dispatched for a
given method invocation m ∈�. We denote

 �* = {{m} m ∈�} ∪ {�D(m) m ∈�}.

The set �* � 2� can be constructed at compila-
tion-time. Thus, for each (generic) method invoca-
tion m ∈�, we can always find the unique corre-

sponding element m*∈�* at compilation-time,
depending on the context that method m is stated as
dynamic dispatched or not. Therefore, for each (ge-

neric) method invocation m ∈�, let �*(m) be the
set of those properties which may be effected by an
invocation of m:

–––
1. Different languages have different concepts, e.g. in C++
it is called member attribute, in Smalltalk it is called instance
variable.

�*(m) = �
m��m*

�(m�)

where m*∈�*corresponds to m.
In the following discussion, a method invocation is
written as m(arg0, ... , argn)2, where m ∈� is glob-

ally identified and �*(m) is already constructed at
compilation-time.

 • The body of each method m ∈� may define local
variables, which are available in the method body
only. Let �(m) denote the set of these local variables
defined in method m. In contexts that do not lead to
ambiguity, we denote this set as �.

Target language:

 • The language supports the mechanism of function in-
vocation.

 • Functions are allowed to have a variable number of
arguments.

 • The language supports function polymorphism.
Therefore, for a source expression we can ignore the
types of the operands when applying pattern match-
ing to code generation. E.g. the polymorphic func-
tion
VOID writeProp(STRING, OB-

JECTS, TYPE),
where TYPE can be any target type, represents writ-
ing the v0 to p@v by

writeProp(”p”,v,v0),
regardless of what type of v0 is.

 • The language supports type casting.

Translation rules:

 • All source data types of the same kind are mapped
into the same target data type. Hence, only a fixed set
of target data types is defined in the target language.
For example, all source class-types are mapped into a
single target type: OBJECTS. All source array-types
are mapped into a single target type: ARRAY. Each
primitive source type is mapped into an individual
target type, e.g. INTEGER is mapped into INT.

 • The body of each method is translated into a corre-
sponding function.

 • There exists a set of functions of the target language
which represent the basic statements/expressions of
the source language. These are provided in the inter-
face of the target-library shown in Fig. 1.

–––––––––––––––––––––––
2. Some languages, e.g. C++, write a method call as
o.m(arg1, ... , argn). By syntax transformation, it is possible
to write that as m(o, arg1, ... , argn).

3

 • All property accesses are translated into function
calls in which the properties are passed as identifier-
reference arguments. The above function write-
Prop is an example. Another example is the func-
tion

VOID readProp(STRING, OBJECTS)

which represents reading the source expression p@v
by

(TYPE)readProp(”p”,v).
where the word TYPE is the name of the target type of
the expression p@v, and is needed for type casting.

 • The unit of the translation is a statement. Each state-
ment is translated into one or more target statements.

It is not the intention of this paper to cover all object-ori-
ented paradigms. Rather the focus is on source-to-source
translation at the statement/expression level.

In the following, the source/target code is represented
by Helvetian/courier font respectively. Letters p, v, and
m to denote the elements of �, �, � respectively.

3. Principle of pattern matching

In the conventional approaches for code generation which
are based on pattern matching, the machine description is
separated from the code generation algorithm. They
employ a formal machine description and use a code-gener-
ator-generator to automatically code generators. In this
scheme, pattern matching is used to replace interpretation
with case analysis. Rewriting rules may be tree-structured
[3] or linear [7]. Correspondingly, pattern matching is per-
formed by heuristic search or parsing.

3.1. Rewriting rules

A pattern matching system R is a finite set of rewriting
rules, each of the form l ← r, where l and r are terms built
from the set of labelled symbols and a set of patterns.

We use tree structures to represent the patterns. To illus-
trate this idea, consider an example.

Source expression: p@v1

Syntax tree:

p V1

prop

Rewriting rule:

R1: ←

v1

v v ←(prop↑ttp)readProp(”p”,v1)prop

p (where prop↑ttp denotes the target
type (ttp) at node prop)

Pattern matching:

v

p

 ←R1

V1

prop

Target code:
 v ← (TYPE)readProp(”p”,v2))

where TYPE denotes the value of prop↑ttp.
In this example, suppose that the variable v1 in the target
code has been declared corresponding to the source vari-
able v1, in an appropriate mapping.

Consider another example. Suppose the polymorphic
function

TYPE sum(TYPE,...),
where TYPE is an appropriate target type,

represents the source expression v1+v2+ ... + vn by
sum(v1,v2, ...,vn)

for any n > 1. This code can be matched by the following
patterns:

 v ← sum(�1,�2) ←v

 ←� v

R2:

� ← v

�1

 ←plus

�2

� � ← �1,�2R3:

R4:

�1

plus

�2

In the above rules, � denotes a nonterminal symbol while
the code of � consist of arguments for a function call.

E.g. given an expression v1+v2+v3, the syntax tree is

V1

plus V3

plus

V2 .

The matching procedure can be

V1

plus
R3→ V3

plus

�

� V2�

�

R4

R4

←V
R2

←

←→R4

so that the target code is
v ← sum(v1,v2,v3). (1)

Note that the matching strategy is not unique. Another
matching procedure can be

V1

plus
R3→ V3

plus

�

� V2�

�

R4

R4

←V
R2

←

←→R4

V →R2

so that the target code is

4

v ← sum(sum(v1,v2),v3). (2)
As a preliminary estimation, code (1) is better than code (2),
since in (1) only one function invocation is required.

As another example consider an array with multiple di-
mensions. Suppose a target function

VOID arr(ARRAY,INT,...)
represents reading a source expression v0[v1][v2]...[vn] by

(TYPE)arr(v0,v1,...,vn)

where TYPE is the target type of the source expression. The
corresponding rewriting rules are defined as follows:

 ← arr

� v1

v v ← (arr↑ttp)arr(�,v1)R5:

 ← arr � ← �1,vR6:

R7:

�1

�

v

 ← v� � ← v

E.g. given an expression v0[v1][v2], the syntax tree is

arr

arr

v2

v0 v1

(3)

The matching procedure can be

arr

arr

v2

v0
R7

� v1

R6
 → �

 →

R5
 → v

and the corresponding code is
v ← (TYPE)arr(v0,v1,v2).

Again there are several different matching procedures, e.g.
another matching will generate the code

v ← (TYPE)arr((ARRAY)arr(v0,v1),v2).

3.2. Costs of rules

In the conventional approach, each rewriting rule has a des-
ignated cost, so that the optimization degree for the target
code can be measured by the total cost of rules matched. In
the conventional approach, the target code of each rewrit-
ing rule consists of hardware-oriented instructions. It is rel-
atively easy to designate a cost to a rule, because the
instructions are relatively simple. However, in our front-
end approach where the target code is composed of a series
of function calls, the cost of a rule relies on how the target
functions are implemented. Generally speaking, the cost of
a rule can be estimated either by analyzing the function im-

plementation, or by counting up the average execution time
corresponding to the individual function calls.

In some situations, the cost of a general function call de-
pends not only on the function implementation itself, but
also on what the actual arguments are. For example, sup-
pose function union(SET1,SET2) is the target code for a
source expressions that builds the union of two sets. Thus,
the cost of the function union will dynamically depend on
the space-complexity of the arguments. Unfortunately, ana-
lyzing this space complexity at the compilation-time is a
difficult task and in some cases impossible. This fact leads
to an approach where each function call gets assigned an es-
timated average cost regardless of the dynamic space com-
plexity of the arguments.

There are two kinds of target functions: functions with a
fixed arity, and functions with a variable arity. In the first
case, the cost of a function call is a fixed nonnegative value;
in the second case, the cost of a function call depends linear-
ly on the number of the arguments. For instance, consider
the function sum where a variable number of arguments is
allowed. The cost of this function call can be calculated by
the following formula:

cost(sum(arg1, arg2, ..., argn)) = c0 + n × ca

where c0 is the cost in the case no arguments are present,
and ca is the incremental cost for each new appended argu-
ment.

This linear model is motivated by the following fact: in
the body of a function, a loop is always used in order to ac-
cess iteratively the arguments appearing in the function
call. Normally, the number this loop is executed linearly de-
pends on the number of the arguments. Meanwhile, the cost
of the function call will linearly depend on the number of
these runs.

For the expression v1+v2+v3 two different target codes
were generated. By the above model, the costs of alterna-
tives (1) and (2) are c0 + 3ca and 2c0 + 3ca, respectively.
Therefore, as we have stated, alternative (1) is better than
(2). According to this model, the costs of rules R2, R3, and R4

must be designated as c0, 0, and ca, respectively.
The discussion above shows that a target function call

may be generated by matching a sequence of rewriting
rules. Therefore, the cost of a function call is equal to the
sum of the costs of the corresponding rules.

In order to simplify the cost model, the set of rewriting
rules is restricted in a way that only the root can have vari-
able arity. In general, the cost of a rule is a nonnegative val-

5

ue, which may depend on the arity of the root of the tree-
pattern, if the root has variable arity.

3.3. Evaluation order

In a syntax tree, the evaluation order among its nodes is al-
ways fixed, e.g. left-right or right-left. On the other hand,
the evaluation order in the target code is also fixed. It is nec-
essary to ensure that both evaluation orders are conform-
able.

We denote the set of rewriting rules by �. Let operand1

and operand2 be two arbitrary different operands of the
syntax tree. Let arg1 and arg2 be the corresponding oper-
ands of the target code. Now two kinds of orders are consid-
ered. One is the evaluation order between operand1 and
operand2 in the syntax tree. The other one is the evaluation
order between arg1 and arg2 in the target code. We say, �
is consistent, if these orders are conformable for all pairs of
operands.

In the context of this paper, we assume that the evalua-
tion order in the syntax tree is right-left and in the target
code the arguments of a function call are also evaluated in
right-left order. A sufficient criteria to ensure that the set of
patterns is consistent is that if an operand appears on the
right-hand side of another one then the code corresponding
to the first operand must appear on the right-hand side of the
code corresponding to the second one.

It is clear that a non-consistent set of rewriting rules or
illegal traversal order of the syntax tree can result in a target
code with an illegal evaluation order. However, the correct
traversal order of the syntax tree as well a consistent set of
rewriting rules are still insufficient to ensure the correct
evaluation order in the target code by any pattern matching.

The problem is the following. A method m ∈� may

cause side effects modifying some properties in �*(m). If a
statement or expression contains m ∈� as well as some
properties of �(m), then the evaluation order between m

and the properties in �*(m) must be conformable between
the source- and the target-code. This will be illustrated by
an example.

On the one hand, the target code of m ∈� can be
matched by the following rules:

 R8: ← v ← m(�)mc

m �

v

 R9: ← v ← dispatch(”m”,�)mc-dpth

m �

v

 R10: ← exp-list�

v
*

� ← v*

R8 and R9 describe the rules for method calls in the context
of static binding and dynamic dispatching. In R10, the itera-
tion notion “*” indicates that the arity of node exp-list is
variable and � 0. Correspondingly, the code of � consists of
the concatenation of the code son’s code. Later this will
form the arguments of a function call.

Therefore, given an expression m(v1)[p@v2], the syn-
tax tree is

arr

v1

p V2

prop

m exp-list

mc
 (4)

Matched by rules R1, R5, R7, R8, and R10, the target code is
 v←(TYPE)arr(m(v1),readProp(”p”,v2)). (5)

Consider the case that the following new rule

 arrR11: ← v ← arr(v1,”p”,v2)v

v1

p V2

prop

is introduced in order to translate the source expression
v1 [p@v2] into

v ← (TYPE)arr(v1,”p”,v2)

Here the property p is dereferenced in the function body
arr but the value of v1 is evaluated in the argument part,
i.e. p is evaluated after v1. In this case the evaluation order is
not sensitive, so that the code is still correct.

However, if the tree (4) is matched by the rules R8, R10

and R11, then the target code becomes
 v ← (TYPE)arr(m(v1),”p2”,v2). (6)

In the case p ∈�*(m), thus the evaluation order between
the method m and the property p is illegal.

This example illustrates that the problem of illegal eval-
uation order does not result from the traversal strategy for
the syntax tree, but does result from the control in pattern
matching.

In this source-to-source background, the issue of evalu-
ation order comes from method calls which may cause side
effects. Besides this case, the evaluation order is not sensi-
tive where the code generator may evaluate expressions in
an order that reduces the cost of evaluation.

6

3.4. Temporal variables

So far we merely considered the rewriting rules which are
used to read expressions. However, for rules involving
reading and writing of variables or properties a problem
arises. Consider the source statement v1.p:=v3 with the fol-
lowing syntax tree

p

assign

v2prop

v1

(7)

As we assumed in section 2, the target code must be
writeProp(”p”,v1,v2).

However, if rule R1 is chosen to match the shadowed part as
follows

p

assign

v2prop

v1

→R1
v

the target code would be wrong, since the code of R1 just re-
turns the value of v1.p and does not perform the actual up-
date. Consequently, the target code only changes the (hid-
den) temporary v but v1.p.

4. Control in pattern matching

Several tree-pattern matching algorithms have been pres-
ented. For code generation applications, a scheme proposed
by Hoffman and O’Donnell [13] appears promising, and it
is successfully applied in the system Twig for code genera-
tor-generators by Aho, Ganapathi, and Tjiang [3]. They
suggested that template matching can be done efficiently
by extending the Aho-Corasick multiple-keyword patter-
matching algorithm [1] into a top-down tree-pattern match-
ing algorithm. Afterwards, applying the bottom-up heuris-
tic search, the cheapest tree-pattern matching can be found.
This algorithm can be extended to our application. In this
paper we do not intend to discuss the details of the algo-
rithm. Instead, we state some key problems which occur in
our application, but do not occur in the conventional ap-
proaches and present our solutions.

4.1. Controlling the evaluation order

Controlling the evaluation order can be divided into two
categories. One is the order between methods and methods.
Another one is the order between methods and properties.

Without loss of generality, in this section we can assume
that the method call is always in the context of static bind-

ing. From the view of controlling the evaluation order, a
method call in the context of static binding or dynamic dis-
patching does not make an essential difference.

In the syntax tree, we introduce the notion n�m if node
m is an ancestor of node n, and the notion n�m if n=m or
n�m.

We have the following results.

THEOREM 1. Suppose the set of rewriting rules is consis-
tent and that only rules R8 and R9 contain nodes for method
calls. Then for any pattern matching the evaluation order
between methods and methods is always correct.

PROOF: Let m1, m2 ∈� and mc1 and mc2 their correspond-
ing nodes in the subject tree c. Let the traversal of the sub-
ject tree be the bottom-up and the right to left order. Sup-
pose node mc1 appears before node mc2. Now we prove
that, by any pattern matching, the code of m1 is always eva-
luated before m2.

Clearly in the case that mc1�mc2 the code for m1 is em-
bedded in the argument of a function call which is the code
for node m2. Hence, the code for m1 is evaluated before that
for m2.

Note that the case mc1�mc2 can not occur. Consider
the remaining case of mc1 ��mc2. Suppose node n is the

first common ancestor of nodes mc1 and mc2. By any
matching, there always exists a node nf (nf�n) such that at
nf there is a function call f generated. According to the as-
sumption that only the rules R8 and R9 contain nodes for
method calls, the code of m1 and m2 must be embedded in
two different arguments, argi and argj. Moreover, argi

and argj are not identifier-references (c.f. the definition of
rule R8). Suppose the code argi and argj are generated at
nodes ni and nj respectively. Hence, the relation
n�ni�mc1 and n�nj�mc2 holds, while ni must be on the
right-hand side of nj since mc1 is on the right-hand side of
mc2.

� �

�
�

mc2

nj ni

n

nf

mc1

m2
m1

Therefore, in the function call f, argument argi must be on
the right-hand side of argument argj so that all code in
argi is evaluated before code in argj, hence the code of m1

is evaluated before m2.

7

Before discussing how to control the evaluation order
between methods and properties, we introduce some nota-
tions. For each node n in the syntax tree let �(n) ⊆� be
the set of those methods which occur in the subtree rooted at

node n. Moreover, at node n, let �*
�(n) be the set of those

properties which may be effected by the methods in �(n),
i.e.

�*
�(n) = �

m��(n)

�*(m) .

At node n, denote the target code associated with label l
as code(l, n). Here we can regard code(l, n) as a form of

some arguments3. Let �*
code(l, n) ⊆ � be the set of those

properties which occur as identifier-references arguments
in code(l, n). For example if code(l, n) is

”p1”,f(v,”p2”),”p3”

then �*
code(l, n) = {p1, p3}. Note that p2 does not belong to

�*
code(l, n) because f(v,”p2”) is an argument and but

”p2” is not.

THEOREM 2. Suppose the set of rewriting rules is consistent
and that only rules R8 and R9 contain nodes for method calls.
Given a syntax tree �, suppose � is matched by a set M =
{[Ri’, ni]} where the root of rewriting rule Ri’ matches at

node ni in �. Assume that label lj
i
 is the j–th leaf (counted in

left-right order) of Ri’ and matches at node nj
i
 in �. The tar-

get code generated by M has a correct evaluation order be-
tween methods and properties iff the following condition
holds:

�*
�(nk

i) � �
*
code(lji, nj

i
) = ∅,

for all i, j and k such that k < j.

PROOF: In the syntax tree �, let p ∈ �, m ∈ � and let mc
be the corresponding mc-node. Assume that the code of m
and the code of p are involved in a (nested) function call. It
is easy to verify, that the code of p occurs on the right hand
side of m iff node p appears before the node mc during the
traversal of the subject tree � in the bottom-up and the
right-left order.

Sufficiency: According to the restriction that in the set of
rewriting rules only rules R8 and R9 contain nodes for meth-
od calls, if the code of p occurs on the left-hand side of m,
then their evaluation order is always correct, since p is al-
ways evaluated after m. Now assume that the code of p oc-

curs on the right-hand side of m and p ∈�*(m), while in the

–––––––––––––––––––––––––––
3. In the case that the code is a function call, we can regard
the whole function call as an argument

target code the content of p is evaluated after m. This means
that there is a function call in the form of

f(...,codem,...,”p”,...),
where codem acts as an argument of f and directly or indi-
rectly includes the code of m. Therefore, there must be a
match like the following:

�

mc

Ri� :
match

...

�

p

nk
i

nj
i lki

lj
i

nf

ni

m

prop

�
...

where the function call f is generated at node nf and k < j.

Now �*(m) ⊆ �*
�(nk

i) and p ∈�*
code(lji, nj

i
). This leads to a

contradiction since p ∈ �*
�(nk

i) � �
*
code(lji, nj

i
) ≠ ∅.

Necessity: Assume that there is a match as above such

that �*
�(nk

i) � �
*
code(lji, nj

i
) ≠ ∅, i.e. there exists a p in the

subtree rooted at node nj
i
 (so that p ∈�*

code(lji, nj
i
)) and a

node mc in the subtree rooted at node nk
i (such that

p ∈�*(m) ⊆ �*
�(nk

i)). By this match, there is a function
call of the form

f(...,codem,...,”p”,...)

generated. Similar to the first part of the proof, the code
codem acts as an argument of f and directly or indirectly
includes the code of m. Consequently, in the function call f,
m is evaluated before p. This leads to a illegal evaluation
order between m and p which is a contradiction.

In an algorithm, ��(n) can be calculated recursively in
a bottom-up order for each node n in the syntax tree �. It is
independent of any pattern matching. On the other hand,

the value of �*
code(l, n) must be kept at node n associated

with the label l during pattern matching. In the conventional
approaches, the bottom-up heuristic search is applied,
where at each node n associated with the relevant label l
only the cheapest match of all rewriting rules l ← r is stored
[3, 13]. In our algorithm, however, at each node n
associated with the relevant label l, different matches that

can generate different �*
code(l, n) must be stored (due to

theorem 2). As a consequence, our algorithm for pattern
matching will use more space than the conventional one.

8

4.2. Handling of temporal variables

One way of handling updates for temporal variables is to
apply the pattern matching only to certain subtrees of the
syntax tree.

Given a source statement which modifies an object, the
path from the node corresponding to the modified object to
the node corresponding to the modifying operation4 is
called writing-path.

If a syntax tree includes a writing-path, then pattern
matching is only applied to those subtrees which do not in-
clude nodes of the writing-path. In other words, for the sub-
tree which includes nodes of the writing-path, code genera-
tion must be performed by traditional case analysis, since
the current matching strategies are not suited for syntax
trees containing writing-paths.

Informally speaking, given a syntax tree which includes
a writing-path, pattern matching is applied to the subtrees
obtained after deleting the nodes of the writing-path as well
as the edges leading to those nodes.

For example, in the tree (7), the bold path is the writing
path so that pattern matching is only applied to the subtrees
p and v2 (they are already nodes).

For a more illustrative example consider the statement,
v1[v0+v2] := v1[v0]. The syntax tree is

assign

v0

plus v0

V2

V1

arr (t1)

(t2) V1

arr

where the bold path is the writing-path. Thus, pattern

matching is applied to the shadowed subtrees (t1) and (t2).

Afterwards, the syntax tree becomes
assign

arr vtmp1

V1 vtmp2

which must be treated by traditional case analysis.

––––––––––––––––––––––––––––
4. We do not regard that the node of method call mc is
a modified operation, although certain method calls can cause
side effect.

5. Experience
We implemented this front-end approach successfully to
translate the schema language VML into C++ [5]. The gen-
eral issues of the VML compiler are described in [16]. VML
is the modelling language of the object-oriented database
system VODAK developed at GMD-IPSI. The target lan-
guage C++ satisfies the requirements stated in section 2. In
fact, from the point of view of compilation at statement lev-
el, we did not rely on other object-oriented features of C++.
By this experience several notes can be concluded as fol-
lows.

First, assigning costs to rewriting rules is a difficult task
and may undergo several revisions in order to reflect the
changes during the system maintenance. When introducing
new rewriting rules, the following assumption must be ob-
eyed:

ASSUMPTION 1. The semantics of rewriting rules does not
rely on the costs of the rules.

Secondly, we assumed that the arguments of a target
function call are evaluated in right-to-left order. However,
if the arguments consist of more than one identifier-refer-
ence (E.g. we can define a polymorphic function call

sumProp(”p1”,v1,...,”pn”,vn)

to represent a source expression p1@v1.+ ... + pn@vn, for
any n > 0.), then the evaluation order among these argu-
ments will rely on the function implementation. For
instance, in the function sumProp the values of p1 to pn

must be evaluated in right-to-left order. Nevertheless, this
requirement somehow can lead to an implementation in a
zigzag way. E.g. in the body of function sumProp, the ar-
guments should be counted in left-to-right order, because a
variable number of arguments is allowed. Thus, it is neces-
sary to introduce a stack in order to push all arguments, and
latter to pop them in the reverse order for the purpose of der-
eferencing these identifier-reference arguments. Clearly
this way more space would be required compared to the
more direct way of dereferencing these arguments as soon
as they are encountered. Fortunately, the correctness of
theorem 1 and 2 does not rely on this restriction.

ASSUMPTION 2. The bodies of target functions do not rely
on the order in which their identifier-reference arguments
are evaluated.

�

Third, as mentioned above, pattern matching only
needs to control the evaluation order either between meth-
ods and methods or between methods and properties. If a
rewriting rule specifies more than one method call or a mix-

9

ture of method calls and properties, then pattern matching
would be powerless to control the dereferencing order
among these method-calls and/or properties, since the con-
trol is already transferred to the body of target functions. As
a consequence of assumption 2, this case would not be un-
der control. Therefore, there is a necessity to restrict the
patterns to separate method calls from other kinds of nodes.

ASSUMPTION 3. The set of rewriting rules must be consis-
tent, such that only rules R8 and R9 contain nodes for method
calls. �

6. Comparison with previous work

Previous research in pattern-directed code generation can
be broadly classified into two categories: LR parsing and
tree-pattern matching. With the former one, the code gener-
ator is constructed as a syntax-directed translator in which a
linearized prefix form of the IR tree is parsed by an LR pars-
er built from a context-free grammar that describes the tar-
get machine [7, 8, 10-12]. With the later one, the approach
employed direct tree-pattern matching techniques [1-3, 6,
13]. But all of them are focusing on source-to-machine-
code translation.

On the other hand, the current approach for source-to-
source code generation is still the traditional case analysis.
This has been very useful for many applications. In general,
the algorithm for case analysis is distributively defined at
each node in the tree, and refers to the synthesized and in-
herited attributes. In the source-to-source background, one
target instruction may cover a variable depth of the tree
while there may be different alternatives to be chosen for
the same tree. It is necessary for case analysis to consider
the different combinations from the current node to its chil-
dren and/or parent, and even to deeper levels. By far the
largest problem of this approach is that the definitions of the
target instructions are difficult to modify, since the algo-
rithm for case analysis must follow this modification also.

Benefited from the theoretical and practical work that
has been done on the conventional dynamic programming,
this paper extends the tree pattern matching into source-to-
source code generation. However, there are several differ-
ences. The main point is that the pattern matching algo-
rithm must explicitly control the evaluation order. In our
source-to-source background, instructions are function
calls in which properties are passed as identifier-reference
arguments. As a result, the dereferencing order may violate
the semantic. In conventional approaches, however, the is-
sue of evaluation order is not resolved in the phase of pat-

tern matching. It is assumed that the evaluation order is cor-
rect provided a traversal strategy for the syntax tree
specifies a legal order [14], since the syntax tree must be re-
written into machine-level (intermediate representation)
before applying the pattern matching. Consequently, the re-
written tree already uniquely determines the evaluation or-
der. Suppose, for example, the syntax tree (4) is translated
into machine code. Before applying pattern matching, the
tree must be rewritten into a form of function calls so that
choosing the machine code corresponding to code (5) or
(6), which specify different evaluation orders, is actually
already determined in this phase, not in pattern matching.

7. Discussion & Conclusion

This paper extends conventional dynamic programming
into source-to-source code generation. Based upon this ap-
proach, the procedure for optimization shows good open-
ness. In the conventional background, target instructions
are predefined by hardware and are fixed. In contrast, in our
application the target instructions are a series of function
calls and can be developed incrementally. Generally speak-
ing, initially primitive instructions can be defined in the tar-
get-library. Latter, special composite instructions can be
added to improve the efficiency, especially frequently oc-
curring groups of primitive instructions can be defined as
composite instructions. Although from the point of view of
semantic completeness, the composite instructions are re-
dundant, but they play an important role in the optimiza-
tion, since more direct representations lead to a higher per-
formance.

To facilitate an incremental development based on the
improvements of the target-library, a modular design is
needed. The dynamic programming approach aims to
achieve this goal. Improvements of the target-library re-
quire only modifications of the rewriting rules since those
are separated from the pattern matching algorithm.

Acknowledgements

We thank Wolfgang Klas and Peter Muth, for reading a pre-
liminary version of this paper and suggesting improve-
ments for its presentation.

References

1. AHO, A. V., AND CORASICK, M. J. Efficient string match-
ing: An aid to bibliographic search. Comm. ACM 18,6
(June 1975), pp. 333-340.

10

2. AHO, A. V., AND GANAPATHI, M. Efficient string match-
ing: An aid to code generation. In Proc. of the ACM
Symp. on Principles of Programming Languages.
ACM, New York, 1985, pp. 334-340.

3. AHO, A. V., GANAPATHI, M., AND TJIANG, S. W. K. Code
Generation Using Tree Matching and Dynamic Pro-
gramming. ACM Trans. Program. Lang. Syst. 11. 4
(Oct. 1989). pp. 491-516.

4. AGRAWAL, R., DAR, S., AND GEHANI, N. The O++ data-
base Programming Language: Implementation and
Experience. Proc. on Data Engerienging 1993.

5. CHEN, W.-M., AND TURAU, V. VML Code Generatin
Based on Tree-Pattern Matching and Dynamic Pro-
gramming. Tech. Rep. 755, 1992, GMD-IPSI.

6. FRASER, C. W. Automatic Generation of code genera-
tors. Ph.D. Dissertation, Yale University, New Haven,
Conn., 1977.

7. GLANVILLE, R. S. A Machine Independent Algorithm
for Code Generation and Its Use In Retargetable Com-
pilers. Ph.D. Dissertation, University of California,
Berkeley, Dec. 1977.

8. GLANVILLE, R. S., AND GRAHAM, S. L. A new method for
compiler code generation. In Proc. ACM Symp. on
Principles of Programming Language. ACM, New
York, 1978, pp. 231-240.

9. GORLEN, K., ORLOW, S., AND PLEXICO, P. Data Abstrac-
tion and Object-Oriented Programming in C++. John
Wiley & Sons, 1990.

10. HENRY, R. R. Graham-Glanville Code Generators,
Ph.D Dissertation, Computer Science Division, Elec-
trical Engineering and Computer Science, Univ. of
California, Berkeley, 1984

11. HENRY, R. R., AND DAMRON, P. C. Performance of
Table-Driven Code Generators Using Tree-Pattern
Matching. Tech. Rep. 89-02-02, Dept. of Computer
Science, University of Washington, Seattle. Feb. 1989.

12. HENRY, R. R. Encoding Optimal Pattern Selection in a
Table-Driven Bottom-Up Tree-Pattern Matcher. Tech.
Rep. 89-03-04, Dept. of Computer Science, University
of Washington, Seattle. Feb. 1989.

13. HOFFMAN, C. W., AND O’DONNELL, M. J. Pattern Match-
ing in Trees. J. ACM 29, 1 (1982), pp. 68-95.

14. LANDWEHR, R., JANSOHN, H. S., AND GOOS, G. Experi-
ence with an automatic Code Generator Generator.
ACM SIGPLAN Notices 23, 7 (1982), pp. 56-66.

15. RICHARDSON. J. E., AND CAREY. M. J. Persistence in the E
Language: Issues and Implementation. Software ––
Practice & Experience 19, 12(Dec. 1989), 1115-1150.

16. TURAU, V., AND CHEN, W.-M. VML Compiler: Issues
and Implementation. (submitted for publication)

