Sather Iters: Object-Oriented
Iteration Abstraction

Stephan Murer, Stephen Omohundro, and Clemens Szyperski
The International Computer Science Institute
1947 Center St, Suite 600
Berkeley, CA 94704

Email: {murer, om, szyperski}@icsi.berkeley.edu
TR-93-045
August 1993

Abstract

Sather iters are a powerful new way to encapsulate iteration. We argue that such
iteration abstractions belong in a class’ interface on an equal footing with its rou-
tines. Sather iters were derived from CLU iterators but are much more flexible and
better suited for object-oriented programming. We motivate and describe the con-
struct along with several simple examples. We compare it with iteration based on
CLU iterators, cursors, riders, streams, series, generators, coroutines, blocks, clo-
sures, and lambda expressions. Finally, we describe how to implement them in terms
of coroutines and then show how to transform this implementation into efficient code.



i



1 Introduction and Motivation

Sather is an object-oriented language developed at the International Computer Sci-
ence Institute [10]. It has clean and simple syntax, parameterized classes, object-
oriented dispatch, multiple inheritance, strong typing, and garbage collection. It was
originally derived from Eiffel but aims to achieve the performance of C or C++ with-
out sacrificing elegance or safety. The initial release “Sather 0.2” of the compiler,
debugger, class library, and development environment were made available by anony-
mous FTP (ftp.icsi.berkeley.edu)in May, 1991 and it was retrieved by several hundred
sites. Feedback from these users and our own use has led to the design of “Sather
1.0” which incorporates a number of new language constructs. This paper describes
iters, a new form of iteration abstraction.

Sather 0.2 had a fairly conventional until ... loop ... end statement. While
this suffices for the most basic iterative situations, we felt the need for a more gen-
eral construct. The Sather 0.2 libraries made heavy use of cursor objects to iterate
through the contents of container objects [11]. While these work quite well in certain
circumstances, they have a number of problems which are described in section 3. That
section also describes approaches based on riders, closures, streams, series, generators,
coroutines and blocks.

We also felt a need to encapsulate the common operation of iterating through
a structure. Typical loops (such as Sather until loops) initialize some iteration
variables and then repeatedly execute the body of the loop, update the variables in
some way, and test for the end of the loop. An important simple example is the code to
step through the elements of an array. The code for initializing, updating, and testing
iteration variables is often complex and error prone. Errors having to do with the
initialization or termination of iteration are sometimes called “fencepost” errors and
they are very common. The code to step through more complex containers (such as
hash tables) typically must rely on the detailed internal structure of the container. We
also found that virtually the same code for stepping through structures was repeated
in many places. Each of these points argues for making the iteration operation a part
of the interface of a container class rather than a part of the code in a client of the
class. Another goal for the iter design was the wish to allow iters to be programmed
in an active style, i.e. without the need for inverting every control structure, as is
required for cursors and most other constructs.

Beyond its application in Sather, the iter-based loop construct fits well into other
block-structured programming languages. Its encapsulation of iter states decouples
separate iteration processes and allows the nesting thereof.

The name “iter” (short for “iterator”) and the initial design were derived from
a construct in the CLU language [7]. A CLU iter is like a routine except that it
may “yield” in addition to returning. They may only be called in the head of a
special “for” loop construct. The loop is executed once each time the iter yields a
value. When the iter returns, the loop exits. While CLU iters can deal with the



simplest iteration situations, such as stepping through the elements of arrays and
other containers, they have several limitations which Sather iters remove:

e One iterator per loop: There is no simple way to step through two structures
simultaneously.

o No way to modify elements: While CLU iters support the retrieval of elements
from a structure, there is no straightforward way to add or modity elements.

o [ter arqguments are loop tnvariant: There is no clean way to pass data which
changes during a loop to an iter.

o Dispatched iter calls: CLU does not support object-oriented dispatch for rou-
tines or iters.

We wanted Sather iters to retain the clean design of CLU iters while removing
these limitations. Similar to CLU, Sather iters look like routines except that they
may yield or quit instead of returning. They also may mark one or more of their
arguments as variable by appending an exclamation point to the type specifier of the
argument. Marked arguments are evaluated each time they are encountered in the
execution of a loop. Such arguments may be used to pass data to the iter which varies
on each iteration. In contrast to CLU iters which may only generate a sequence of
values, these arguments allow a class to define iters which modity successive elements
of a structure, i.e. to “consume” a sequence of values.

The rest of this paper is organized as follows. Section 2 introduces the iter syntax
and gives some simple examples for motivation. Section 3 compares iters with other
constructs serving similar purposes. Section 4 introduces a basic implementation
based on coroutines and uses this to define the operational semantics of iters. Finally,
section 5 shows how to implement iters efficiently.

2 Simple Examples

The Sather loop statement has the simple form: “loop ... end”. lters may only
be called within loop statements. When an iter is called, its body is executed until
it either quits or yields. If it yields, any return value is returned to the loop and
execution continues as if it were a routine call. The execution state of the iter is
maintained, however. The next execution of the iter call will cause execution of
the statement following the last executed yield statement. The local variables and
arguments not marked with exclamation points retain their previous values. When an
iter quits instead of yielding, the loop is immediately broken and execution continues
with the statement which follows the loop.

In practice, this construct is quite powerful, yet simple to use. Every class auto-
matically inherits the three iters: while! (BOOL!), until! (BOOL!) and break! which



may be used to obtain several standard forms of loop functionality. For example,
while! is defined as:

while! (pred:BOOL!) is
-- Yields as long as ‘pred’ is true, quits once ‘pred’ is false.
loop if pred then yield else quit end end end

It may be used to obtain the standard “while ... do”:
i:=0; loop while!(i<size); foo(i); i:=i+1 end

The while! iter takes a single Boolean argument which is evaluated on each iteration
of the loop. As long as the argument evaluates to true, the iter yields. This is an
example of an iter that “yields” without returning a value. It is merely used to control
the loop: Once the argument evaluates to false, the iter quits, thereby breaking the
loop. By placing the while! iter differently, a “do ... while” form is possible:

i:=0; loop foo(i); i:=i+1; while!(i<size) end

Note that the arbitrary placement of the while iter also makes structured program-
ming of loops with a single conditional exit in their middle, so-called “rn1/2 loops”,
easy.

The INT class defines a number of useful iters including upto!. In Sather iters
(and routines), the predefined local variable res is used to hold the value to be yielded
(to be returned) next.

upto! (1imit:INT):INT is
-- Yield successive integers from self up to "limit".
res:=self; loop while!(res<=limit); yield; res:=res+l end end
To add up the integers from 10 to 20, one might say:
x:=0; loop x:=x+10.upto!(20) end

A usetul iter for computing this kind of sum is:

sum'! (summand:INT!) :INT is
-- Yield the sum of the previous values of '"summand".
res:=0; loop res:=res+summand; yield end end

Using this, the values may be added with:
loop x:=sum! (10.upto!(20)) end

(Note that this is equivalent to writing:



loop 1:INT:=10.upto!(20); x:=sum!(i) end

This explains the meaning of iter calls within expressions used as variable arguments
in other iter calls.) With a similar iter for products, 20! can be computed with:

loop f:=product!(1l.upto!(20)) end

Most container classes define iters to yield and modify the contained elements. For
example, the ARRAY{T} class defines:

elts!:T is
-- Successively yield the elements of self.
loop res:=self[0.upto!(asize-1)]; yield end end;

set_elts! (x:T!) is
-- Set the elements of self to successive values of "x".
loop self[0.upto!(asize-1)]:=x; yield end end

These are also examples of using nested iters, where the iter upto generates a stream
of indices used by elts and set_elts to index the array. (Nesting iters allows the
formation of new iters by abstracting from existing ones.) Then, to set the elements
of an array a:ARRAY{INT} to the constant value 7, you simply write:

loop a.set_elts!(7) end
To double the elements:
loop a.set_elts!(2%a.elts!) end
To make b be a copy of a:
loop b.set_elts!(a.elts!) end
To compute the sum of the products of the elements of two such arrays:
loop x:=sum!(a.elts!*b.elts!) end

Other classes similarly define iters as part of their interfaces. For example, hash
tables can yield their elements and trees and graphs have iters to yield their nodes in
depth-first and breadth-first orders.

The interface of a class includes iters on an equal footing with routines. As with
routines, iters may define conditionally compiled preconditions and postconditions.
Any preconditions are checked on each call to the iter. Postconditions are checked
when the iter yields but not when it quits. As with routines, iters may be called by
object-oriented dispatch, delaying the particular choice of iter until runtime. Also,

4



Sather has a construct called “bound routines” which is similar to closures. It binds
together a reference to a routine and values for some of its arguments for later call.
Bound iters allow many of the powerful constructs based on higher-order functions
to be applied to iters. For example, it is easy to define iters which concatenate two
argument iters or filter iters which yield only the values of an argument iter which
satisfy a predicate.

[ters may be thought of as structured coroutines. In many languages, coroutines
can call other coroutines in an arbitrary fashion. Structured programming replaced
the undisciplined transfer of control by “goto” statements with more structured loop
constructs. In a similar way, Sather iters pass control back either to the point of call
or to the end of the calling loop. They are initialized when the loop is entered and
signal their return by breaking the loop.

3 Comparison with Other Approaches

We have seen above the ways in which Sather iters generalize CLU iters. In this section
we compare Sather iters with cursors, riders, streams, series, generators, coroutines,
closures, and blocks.

3.1 Generalized Control Structures

The idea of generalizing iteration control structures goes back to early work such as
the generators and “possibility lists” of Conniver [9]. Conniver includes activation
records (called “frames”) as first-class objects. It has a notion of pattern- or generator-
defined possibility lists, where “TRY_NEXT is used to get the next value from such a
list. Special tokens in possibility lists cause an associated generator to be invoked.
This is a means for lazily computing lists of values. A generator yields new values
and has the option of maintaining its state (“AU_REVOIR”) or of quitting (“ADIEU”),
similar to the yield and quit statements in Sather. Finally, the use of first-class
frames allows generators to have side-effects in their caller environment. This can be
used to simulate variable arguments and stream-consuming iters.

However, experience with the “hairy control structures” of Conniver [9] has been
found to lead to unintelligible programs. We agree with Hewitt who has found,
“that we can do without the paraphernalia of ‘hairy control structures’ (such as
possibility lists, non-local gotos, and assignments of values to the internal variables of
other procedures in Conniver” [5, page 341]. As an alternative, Hewitt proposes lazy
evaluation (using an explicit delay pseudo-function). While lazy evaluation allows
the efficient handling of multiple recursive data structures, it also poses a particularly
difficult problem for efficient implementations.

The Common Lisp loop macro [12] is a generalized iteration control structure.
While it contains about every iteration primitive that the authors could imagine
(somewhat following the PL/1 tradition), all of these are built-in features (“loop



clauses”) of the “Loop Facility”. The language definition explicitly states that “there
is currently no specified portable method for users to add extensions to the Loop
Facility”. This prevents the use of the 1loop macro to support encapsulation of data
structure specific iteration procedures.

3.2 Cursors, Riders, and C++ Iterators

As mentioned above, cursor objects are a way of encapsulating iteration without
additional language constructs. Riders are a similar idea introduced in Oberon [16]
and generalized in Ethos [14]. The idea is to define objects that point into a container
class and may be used to retrieve successive elements. Their interfaces include routines
to create, initialize, increment, and test for completion. The attributes of the cursor
object maintain the current state of the iteration. This may be as simple as a single
index into arrays, or as complex as a traversal stack and “seen-node” hash table for
traversing trees or graphs. Note that Ellis and Stroustrup [3] call the use of cursor
objects in C++ “iterators”.

We found that while cursors work quite well in certain circumstances, they can
also become quite cumbersome. They require maintaining a parallel cursor object
hierarchy alongside each container class hierarchy. Cursors often require the explicit
creation and garbage collection of the cursor objects. Cursors can be semantically
confusing since they maintain a location in a container for an indefinite period of time
during which the container may change. Since the storage associated with a cursor is
explicit, it is un-handy to use them to describe nested or recursive control structures.
Because cursors explicitly describe their implementation, they prevent a number of
important optimizations on inner loops.

Compared to the problems of cursors, iters are a part of the container class itself.
The iter implementation manages the use of storage and can often use the stack
instead of the heap. The state of iters is confined to a single loop. Iters maybe
arbitrarily nested and support recursion just like routines. Finally, even though the
Sather language doesn’t have explicit pointers, the array iters compile into efficient
code based on pointer arithmetic.

3.3 Streams, Series, and Generators

Iters also share many characteristics with streams [1]. One natural class of iters are
those of the form “it!:T” which have a return value but no arguments and yield
a potentially infinite stream of values. Another natural class are those of the form
“it ! (T!')” which have a single argument but no return value and which accept a
potentially infinite stream of values. The way in which iters suspend and transfer
control when yielding corresponds well to the lazy evaluation semantics of streams.
The Sieve of Eratosthenes for generating successive prime numbers has been used
to show the power of the stream concept [1, pages 267-269]. While it is a conceptually
simple algorithm, the control flow is rather complex. The stream solution is based



on a stream which takes a stream argument and filters out later elements which
are divisible by the first element. This solution may be implemented using bound
iters. However, the iter semantics allows the following much simpler implementation

(cf. Fig. 1).

sieve! (aprime:INT!):BOOL is -- Sieve out successive primes.
d:INT:=aprime; res:=true;

loop yield;
if d.divides(aprime) then res:=false else res:=sieve!(aprime) end
end end
primes!:INT is -- Yield successive primes.

res:=2; loop if sieve! (res) then yield end; res:=res+l end end

Figure 1: Sieve of Eratosthenes

The iter sieve tests the stream of values passed to it and yields true for the first
value in this stream, false for all later multiples of this value, and calls the next
higher sieve for all other values. Feeding sieve with a stream of integers starting at
2 leads to a recursive iter that yields true only on prime numbers. While this is not
likely to be the most efficient way to implement the Sieve of Eratosthenes in Sather,
it hints at the expressive power of iters.

There is, however, an important difference between streams and iters: Whereas
streams may be passed around in a half-consumed state, the state of an iter is confined
to its calling “loop”-statement. It is not possible to suspend iteration in one loop and
to resume it with the same internal state in another loop.

Common Lisp [12] is considering the incorporation of series or generators as two
proposals for defining iterative constructs. These constructs appear to require special
compilation and have a rather complex semantics. They include a large number
of built-in operations. These operations may each be implemented with iters and
encapsulated in classes.

3.4 Coroutines

A different approach is to view all the iters and the body of a loop as communicating
sequential processes [6] tightly coupled by communication through the arguments
and results of the iters. Since there is neither preemption nor true parallel execution
among iters, we may model iters and the loop body as coroutines [15] (section 4). Iters
are more structured than coroutines with respect to the freedom in passing control.
While a suspending coroutine may transfer control to any other waiting coroutine,
the flow of control is structured by the “loop”-statement in the case of iters.



3.5 Blocks, Closures, and Lambda Expressions

Traditionally, iteration abstraction is supported in object-oriented languages by pro-
viding anonymous blocks [4], lambda expressions [1], or closures [13]. The container
classes provide methods to apply a block to all or part of their elements. The exe-
cution of such block-based iterations is controlled by the container class. With iters,
the control is shared by the iter and the calling loop. For example, either the iter or
the loop body may abort the iteration.

This difference in control becomes apparent when trying to iterate synchronously
through multiple data structures. Consider the task of comparing the elements of two
trees according to a pre-order traversal. This is the classical “same fringe problem” as
defined by Hewitt [5, page 344-347]. A simple solution using iters is shown in Fig. 2.

class TREE{T} is
attr key:T
attr left,right: SAME

inorder!:T is -- yields elements in order
if self \= void then
loop res:=left.inorder!; yield end;
res:=key; yield;
loop res:=right.inorder!; yield end
end
end

closed_inorder!:T 1is -- yields elements in order, then yields void
loop res:=inorder!; yield end;
res:=void; yield

end

same_fringe(other:SAME) :BOOL is
-- returns whether ‘self’ and ‘other’ carry an equal
-- ordered sequence (‘fringe’) of elements
loop el:T:=inorder!; e2:T:=other.inorder!;

until! ((el=void) or (e1\=e2))

end;
res := el=e2

end

end

Figure 2: The Same Fringe Problem



The iter inorder will yield each tree’s elements in the proper order. Using a
general technique for closing such iters, iter closed_inorder uses inorder to yield
the same sequence, but yields void before quitting to indicate that the end of the
structure has been reached. (In a Sather library one could have a generic iter that can
be used to close arbitrary iters this way.) The same_fringe routine steps through
the elements of both trees simultaneously, stopping when either both trees have equal
fringes, or a difference has been found, or one of the trees has a shorter fringe than
the other one.

In this kind of situation with more than one structure, it is not possible to pass
the body of the routine to one of the trees for execution. Thus, in cases requir-
ing the traversal of multiple structures, this use of blocks or closures is impractical,
while the situation is easily handled by the iter construct. This advantage cannot be
materialized in CLU, which allows only a single iterator per loop.

Closures can be used to implement generators and multiple generators within a
common loop can be used to traverse multiple structures simultaneously. (This is
also possible in Sather using bound routines or bound iters.) However, as for cursors,
closures have the disadvantage of an unbounded lifetime of the closure state. While
this may be compensated for by extensive compile-time analysis, the explicit binding
of iters to loops solves this problem syntactically.

4 Operational Semantics and Basic Implementation

In this section we show how to translate the Sather iter construct to an assumed
C++-like language supporting coroutines. This approach allows us to semi-formally
define the operational semantics of iters in terms of the well-understood coroutine
semantics [8]. In a later section we show how various optimization steps may be used
to eliminate the coroutines, leading to more efficient iter implementations in many
important cases.

4.1 Elements of the Iter Construct

In the previous sections we informally introduced the iter construct, the elements of
which we will describe more precisely below.

e [oop statement: A control structure delimited using the keyword pair loop ... end
causing repeated execution of the enclosed statements. Loop termination is con-
trolled by iters called from within the loop.

o iter method: A routine qualified by an exclamation point following its name. Iter
methods can only be invoked from within a loop statement. Additionally to all
constructs allowed within a plain routine but return statements, an iter method
may contain yield and quit statements and may have constant parameters as

described below.



o iter call: A textual call to an iter from within a loop statement. Denoted by
the name of the iter followed by a list of arguments.

e constant parameter: Parameters of iter methods of a type that is not marked
using an exclamation point. The argument passed to a constant parameter is
supposed to not change its value after the first execution of the corresponding
iter call and before the corresponding loop statement terminates. To ensure a
defined iteration state during loop execution, parameters used for method dis-
patching are implicitly assumed to be constant parameters. Constant parame-
ters allow an implementation to avoid redundant evaluations of corresponding
iter arguments.

o yield statement: The yield statement, denoted by the keyword yield, may only
be used in the body of an iter method. Its execution causes return parameters
and control to be passed back to the calling loop statement, resuming execution
just after the iter call.

o quit statement: The quit statement, denoted by the keyword quit, may only be
used in the body of an iter method. Its execution causes the corresponding loop
statement to terminate immediately. Exiting from the body of an iter method
is considered an implicit execution of a quit statement.

Each textual iter call maintains the state of execution of its iter. When a loop is
first entered, the execution state of all enclosed iter calls is reinitialized. The first
time each iter call is encountered in the execution of the loop, each of the arguments
is evaluated. On subsequent calls, however, constant parameters retain their earlier
values. Only the expressions for arguments which are marked with an exclamation
point are re-evaluated. When an iter is first called, it begins execution with the first
statement in its body. If a yield statement is executed, control is returned to the
caller and the current values of return parameters, if any, are returned. A subsequent
call on the iter resume execution with the statement following this yield statement.
If an iter executes quit or reaches the end of its body, control passes immediately to
the end of the enclosing loop in the caller. In this case no values are returned.

4.2 Mapping Iters to Coroutines

We begin by considering non-dispatched calls to iters, i.e. ones close to routine calls,
and add dispatched iter calls only later. Also, we begin by ignoring constant param-
eters.

Consider the following Sather loop statement containing three statements Sy, S5,
and S3 not containing iter calls, plus two calls to iters I3 and I passing arguments
Ay and Aj,, respectively.

loop S1; I1(A1); S2; I2(Ag); S5 end

10



This is translated into the following code fragment:

int iter1(PARAMSp, coroutine) { ...}
int iter2(PARAMS);, coroutine) { ...}

void loop(int brk)

{ coroutine itl = new_coroutine(iterl);
coroutine it2 = new_coroutine(iter?2);
while(true) {

S1; itl->transfer(A;, current_coroutine);
if (brk) break;

Sy; it2->transfer(A,, current_coroutine);
if (brk) break;

Ss3;

The statements Sy, Sz, and S3, the iter parameter declarations PARAM S and
PARAM Sy, and the iter arguments A; and A; need to be expanded to reflect the
actual Sather code. A new coroutine activation is created using new_coroutine which
takes the implementing routine as an argument. The call c->transfer transfers con-
trol to the coroutine c. Here, we assumed that a coroutine declared with parameters
expects these parameters to be passed with each transfer of control to it. Executing
the loop corresponds to creating a coroutine with routine loop and transferring to it.

The extension to more than two iter calls and more complex structures of the loop
body is straightforward: Just insert the appropriate coroutine transfer for each iter
call.

Next, we need to show how to translate iter methods into coroutines. Consider
the Sather iter M with some parameter list pars:

MI (PARAMS) is Sy; yield; S3; quit; S; end;

This is translated into a coroutine cm:

int cm(pars, coroutine loop)
{ S1; loop->transfer(l);
Sy; loop->transfer(0);
/* this point is never reached: S; is never executed in M */

}

11



4.3 Mapping Constant Parameters

In a next step, we introduce constant parameters. Clearly, constant parameters do
not effect the translation of iter methods, but merely that of loop statements, or more
precisely, that of loop statements containing calls to iters with constant parameters.
Consider an iter method I0 with a split parameter list, the first part being constant
parameters:

IOV (CONST_PARAMS; PARAMS);
begin

Sy; yield; S; quit; S
end;

The following loop statement contains a call to an iter /.,,s; having constant param-
eters A.ynst in addition to regular parameters A. For the sake of simplicity, the loop
contains only a single iter call.

100P Sl; ]const(AconstyA); 52 end

This loop translates into the coroutine shown below. The idea is to use a freshly
introduced local variable params to hold copies of the constant arguments, and to
unroll the first loop iteration. Thereby, the original arguments A.,,s are indeed
evaluated once and in the correct context. Subsequent calls of the iter method use
the cached value in params.

int itero(CONST_PARAMS;o, PARAMS;o, coroutine) { ...}

void loop(int brk)
{ CONST_PARAMSo parans;
coroutine ito = new_coroutine(itero);
Sy; params = A.,st; ito->transfer(params, A, current coroutine);
while(true) {
Sy; itl->transfer(params, A, current coroutine);
1if(brk) Sy;
}
}

Again, Sy, S9, PARAM S0, etc. need to be filled in.

4.4 Mapping Dispatched Iter Calls

In a final step we generalize our construct by allowing dispatched iter calls. At this
point the introduction of constant parameters becomes essential: A parameter that

12



an iter call is dispatched on must follow the semantics of constant arguments. Other-
wise, each loop iteration could dispatch to a different iter implementation, effectively
destroying our iter semantics.

Note that while the Sather language uses single dispatch methods only, the iter
mechanism would readily fit into other languages based on multiple dispatch (some-
times called multi-methods [2]). Dispatched iters are implemented by relying on the
special semantics of constant parameters. When first evaluating the dispatching ar-
guments, the corresponding iter implementation is located, and the coroutine created.
Subsequent transfers always refer to the same iter implementation, hence making the
dynamic dispatch for these superfluous.

The support of object-oriented dispatch enables iters to be used to couple objects
of abstract types within a loop construct. Thus, providing sufficiently general iters
for generating and consuming elements of abstract container classes allows these iters
to take the role of a lingua franca among such classes.

4.5 Exception Handling and Iters

Exception handling is not directly within the scope of this paper. However, there
is an important interaction between loop statements and exceptions. Since a loop
statement bounds the lifetime of its enclosed iter calls, its termination may involve
some cleanup operations. For example, if the iter calls are directly implemented
using coroutines, the associated work-spaces have to be deallocated. This terminating
action of a loop statement has to be considered when allowing non-local exits such
as exception raising.

Another subtle problem results if an iter raises an exception that is caught within
the corresponding loop statement. An example in pseudo-Sather is shown in Fig. 3.

bad_guy! is
exception:=#MY_EXCEPTION; raise end

troubled_guy is
loop
protect bad_guy! against MY_EXCEPTION then end
end
end

Figure 3: Interaction of Iters and Exceptions

This situation causes many semantical difficulties. For example, should the aborted
iter be restarted the next time around the loop? If so, in what state? To avoid this
dilemma, the static semantics of Sather does not allow catching exceptions between
iter calls and corresponding loop statements.

13



5 Optimized Implementations

Clearly, the basic implementation described above and based on coroutines covers
all cases, but is not efficient enough to replace lightweight looping constructs. For
example, the simple Sather code used to add two vectors

loop c.set_elts(a.elts + b.elts) end

should really be compiled into something close to what the following C++ fragment
would:

{ int 1 = min(a.asize, b.asize, c.asize);
/* once allocated, the size of Sather arrays is invariant */
for(int i=0, i<1l, i++) {c[i] = ali] + b[i]l}

i

In other words, whenever iters are used to perform a simple task, it is important to
get rid of all routine calls.

In this section we introduce a quite general way to get rid of non-dispatched, non-
recursive iter calls. Thereafter, we use a simple example to show that this technique
indeed optimizes a very common iter form. Finally, we give some hints on how to
optimize the implementation of recursive and dispatched iters.

5.1 Optimizing Non-recursive Non-dispatched Iters

To begin with, consider the above vector addition loop and the translation to corou-
tines (cf. section 4). An iter coroutine has exactly j 4+ 1 entry points if it contains
7 yield statements. This can be used to transform an arbitrary non-recursive iter
coroutine into a plain routine: The entry point to be used is considered the state of a
finite state machine. The resulting routine has an additional input and an additional
output parameter to be used to signal the entry point to use and the one to be used
on the next iteration, respectively. Also, the local state of the iter has to be anchored
in the caller’s space and passed to the iter routine as an additional parameter.

After transforming a non-recursive iter into a plain routine containing a state
machine, this can be inlined into the loop statement if the iter call is non-dispatched
(or the dispatch can be statically eliminated by the compiler). To allow further
optimizations of the resulting loop code, the Cartesian product of the individual
state spaces is formed. While incrementally adding one iter state space after the
other to the Cartesian product, unreachable product states can be eliminated. In
turn, the loop is expanded by inserting the single minimized product state machine.
Finally, product states that are only reached once when beginning the iteration (or
just before exiting it) can be moved out of the iteration.

For further illustration we show how to apply this technique to a particularly
important form of iters, i.e. the ones conforming to the following pattern, where P,

14



U,V, W, and @) are arbitrary non-yielding Sather statement sequences, and CON D
is an arbitrary Sather expression:

I! (PARAMS) is
P
loop U;
if COND then V; yield; W end;
Q
end
end;

Note that all iters given in section 2 are covered by this pattern, as are many of the
important iters in the Sather library.

Iters of this form have exactly two entry points, corresponding to two states of
the resulting state machine. The state machine is entered in state 0 and switches to
state 1 after the first iteration, where it stays until the loop terminates. The actions
corresponding to the two states are:

/* State 0: */
P; U; if(COND) V;
while('COND) @Q;
state = 1;

/* State 1: *x/
W
do () until(COND);
Vi

In the following Sather loop, assume that [T} and [T, are arbitrary non-dispatched
iter calls to iters of the form introduces above, while S, S, and S3 are arbitrary
Sather statement sequences not containing iter calls:

loop S1; ITy; Sy; ITy; S3 end

We notice that the state machines corresponding to [Ty and IT; both begin in state
0 and after the first iteration are both in state 1 where they remain till the loop
terminates. Hence, the Cartesian product states (0,1) and (1,0) are unreachable.
The resulting loop can be unwound once to move code corresponding to states 0 out.

S1; ITi(stateg); Sa; ITs(stateg); Ss; /* evaluate constant arguments */
while(true) { Sy; [Ti(stater); Sz; [Ty(statey); S5 }

exit:

15



Since each of the statements could lead to a loop termination, we assume that every
occurrence of quit in I7) or I'T; is replaced by goto exit.

Also, the generalization to more than two iter calls is straightforward. Care must
be taken if the loop body is structured in a more complicated way: In this case some
of the product states eliminated above may actually be reachable.

Our current implementation work is focussing on the optimization of recursive
iters and some of the more complex loop structures. In appropriate circumstances,
recursive iters can use more efficient stack structures than the direct coroutine imple-
mentation would.

6 Conclusions

We have presented Sather iters as a new construct for encapsulating iteration and
shown several simple examples of its use. The real power, however, can only really be
seen in the context of a large system of classes. The Sather 0.2 libraries contained sev-
eral hundred classes and we have used iters extensively in converting them to Sather
1.0. In many cases, the use of iters allowed us to discover powertul new abstractions
for interacting with a class. Because much of the iteration bookkeeping now occurs in
the iter definitions rather than in each loop, many classes got dramatically smaller.
Iteration intensive classes such as those for vectors and matrices sometimes dropped
to less than one-third their former size! Using iters, the bodies of many routines were
reduced to a single line of code.

In addition to the examples described in this paper, we have found many other
ways of using iters. For example, they provide a natural lingua franca for transmit-
ting data between disparate data structures without having to allocate space for an
intermediate container object such as an array or linked list. We are finding that by
using iters our code gets simpler, easier to read, and less buggy. The interfaces to our
classes become more concise. In practice, the construct is easy to use and understand.
We are excited by the simplicity and power it brings to Sather and feel that other
languages could similarly benefit from it.

7 Acknowledgements

Many people were involved in the Sather 1.0 design discussions. Ari Huttunen in
particular made suggestions which improved the design of iters. Jerry Feldman, Chu-
Cheow Lim, Heinz Schmidt, and David Stoutamire also made useful suggestions.
Last but not least, we would like to thank Urs Holze for careful reading and valuable
comments on the structure of the paper.

16



References

[1]

2]

[14]

[15]

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-
pretation of Computer Programs. MIT Press, 1985.

Craig Chambers. Object-oriented Multi-Methods in Cecil. In Proceedings of
the Siath European Conference on Object-Oriented Programming (ECOOP’92),
Utrecht, 1992.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-
ual. Addison-Wesley, 1990.

Adele Goldberg and David Robson. Smalltalk-80, The Language and its Imple-
mentation. Addison-Wesley, 1985.

Carl Hewitt. Viewing control structures as patterns of passing messages. Artifi-

cial Intelligence, 8:323-364, 1977.
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

Barbara Liskov and John Guttag. Abstraction and Specification in Program
Development. MIT Press, 1986.

Christopher D. Marlin. Coroutines: A Programming Methodology, a Language
Design, and an Implementation. Springer-Verlag, Berlin, 1980.

Drew V. McDermott and Gerald Jay Sussman. The Conniver reference manual.

Technical Report Artificial Intelligence Memo 259a, MIT, May 1974.

Stephen Omohundro. Sather provides nonproprietary access to object-oriented
programming. Computers in Physics, 6(5):444-449, 1992.

Stephen Omohundro and Chu-Cheow Lim. The Sather language and libraries.
Technical Report TR-92-017, International Computer Science Institute, March
1992.

Guy L. Steele Jr. Common LISP, The Language. Digital Press, 2 edition, 1990.

Gerald J. Sussman and Guy L. Steele Jr. Scheme: An interpreter for Extended
Lambda Calculus. Technical Report Artificial Intelligence Memo 349, MIT, De-
cember 1975.

Clemens A. Szypersky. Insight ETHOS: On Object-Orientation in Operating Sys-
tems, volume 40 of Informatik-Dissertationen FE'TH Zurich. Verlag der Fachvere-
ine, Zurich, 1992.

Niklaus Wirth. Programming in Modula-2. Springer, 1983.

17



[16] Niklaus Wirth and Jirg Gutknecht. Project Oberon - The Design of an Operating
System and Compiler. Addison-Wesley, 1992.

18



