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Abstract

This paper studies tail bounds on supercritical branching processes with finite
distributions of offspring. Given a finite supercritical branching process {Z,}5°, we
derive upper bounds, decaying exponentially fast as ¢ increases, on the right-tail
probability Pr[Z, > c¢E(Z,)]. We obtain a similar upper bound on the left-tail
probability Pr[Z, < ﬂCZ—"Z] under the assumption that each individual generates at
least two offspring. As an application, we observe that the evaluation of an AND/OR
tree by a canonical algorithm in certain probabilistic models can be viewed as a two-
type supercritical finite branching process, and show that the execution time of this

algorithm is likely to concentrate around its expectation.
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1 Introduction

A branching process {Z,, }&° is a discrete Markov chain such that Zy = 1, Z; is a non-negative discrete

Z»Z:"l_l X; where X; ~ 77 are independent of each other and independent

of Z,_1. The probabilities p; = Pr[Z; = j] for j = 0,1,2,... are the offspring distribution of the

random variable, and Z, = )

branching process. Random variable 7, is the nth generation of the branching process. A branching
process can be viewed as a process, starting with a single element, of generating offspring in successive
generations such that each element of one generation independently generates j offspring of the next
generation with probability p;. The random variable Z, is thus the number of offspring in the nth
generation of this process. For convenience, we may also use Z, to refer to the set of offspring in
the nth generation. For an introduction to the theory of branching processes, see [5], [2].

The branching factor of a branching process is p = E(Z1) = E;io Jpj, which is the expected
number of offspring of a single element. The expected number of elements in the nth generation
is B(Zy) = B(E(Za|Znor) = B(E(D2 XilZoot) = B(Z)E(Zuot) = pE(Zno1) = p" as
X; ~ Zy are independent of Z,_1. A branching process is supercritical if p = E(Zy) > 1. Tt can
be shown that, unless p; = 1, a non-supercritical process will, with probability 1, vanish after some
generations, i.e., Z, = 0 for some n, whereas a supercritical process has a positive probability of
never vanishing. A branching process is finite if p; = 0 for j > d where d is some fixed positive
integer, i.e., each element generates at most d offspring for some fixed d.

In this paper, we study large deviations of the random variable 7, associated with a finite
supercritical branching process. We shall derive bounds on the probabilities that Z,, is substantially
larger or smaller than its expectation p™. In Section 2, we derive two upper bounds on the right-tail
probability Pr[Z, > c¢p”] that decay exponentially fast as ¢ increases. The first bound is for the
special case p > V/d, and is obtained by using Azuma’s martingale inequality. The second bound is
a general bound, and is obtained by a careful application of tail bounds on the sum of independent
bounded variables. These bounds are stronger than a previous bound for general supercritical
branching processes. In Section 4, we derive an exponential upper bound on the left-tail probability
Pr[Z, < p"/c] under the assumption that each individual generates at least two offspring. In
Section 3, we extend the special-case right-tail bound in Section 2 to multitype branching processes
with a growth rate greater than v/d. All these bounds are independent of n, because the tail
probabilities Pr[Z, > ¢p™] and Pr[Z, < p™/c] in general do not diminish as n increases.

Our motivation for studying finite branching processes originated from the problem of evaluating
AND/OR trees. The execution of a canonical algorithm for evaluating uniform AND/OR trees in
certain probabilistic models can be viewed as a two-type finite branching process. The probability
that the running time of this algorithm deviates from its expected value corresponds to the tail

probabilities of the associated two-type branching process. As an application, we show that the



running time of this algorithm for evaluating uniform AND/OR trees is likely to concentrate around

its expectation.

2 Right-Tail Bounds

In this section we study the right tail of the nth generation Z, of a finite supercritical branching
process {Z,}. The following theorem, due to K.B. Athreya, gives an exponential upper bound in ¢

on the probability Pr[Z, > cp"] for supercritical branching processes.

Theorem 1 Let {Z,} be a supercritical branching process with p = E(Zy) > 1. Suppose that
E(e?1) < co. Then there exist constants to > 0 and C(tg) > 0 such that (i) E(e“’zn/”n) < C(to) for
all n and (ii) for any ¢ > 1, Pr[Z, > ¢p"] < C(tg)e 0.

Proof. For (i), see [1, Theorem 4]. For (ii), by the Markov inequality and (i), for ¢¢ > 0, Pr[Z, >
cp”] = Pr[etDZ"/”n > elof] < e‘tDCE(etDZ"/pn) < Cltg)e~tc. O

The upper bound in Theorem 1 holds for general branching processes that are not necessarily
finite. For finite branching processes, we can derive stronger upper bounds on the right tail. We
shall derive two such bounds. One is a special bound for the case p > \/d. This bound will be
extended to the multitype case in Section 3. The other is a general bound for any finite supercritical

branching process.

2.1 A special bound

This section gives an upper bound on the right-tail probability Pr[Z, > c¢p”] for the special case
p> V/d. This bound uses the tools of martingales. A sequence of random variables Yy, Y7,...,Y,, is
called a martingale if E(Y;41|Y1,Ya,...,Y;) =Y, fori=0,1,...,n— 1. An example of a martingale
isY;, = 22:1 Xi for e =0,1,...,n, where X7, X5,..., X, are independent random variables with
mean 0. Another example is the Doob martingale Y; = E(Z|X1, Xo, ..., X;) where Z is a random
variable and X, Xs,..., X,, are a sequence of random variables [8, 4]. The following lemma is an

important inequality on martingales due to K. Azuma [3] (for a proof, see [16, pp. 55]).

Lemma 1 (Azuma’s Inequality) Let {Y;}7 be a martingale such that |Y; — Yi_1| < a; for i =
1,2,...,n where Y 7 a; > 0. Then for all X > 0, (i) Pr[Y, — Yy > A] < eI gnd (ii)
Pr[Yy— Y, > A < e ¥/ 2 o

Theorem 2 Let {Z,}5° be a finite branching process such that each element of the process has at
most d offspring and p = E(Z1) > Vd. Then, for any ¢ > 1,

Pr(Z, > ¢p"] < em(e=1)",

where a > 0 is a constant depending on d and p.



Proof. We associate with the branching process {Zy, Z1,...,Z,} a Doob martingale defined as
follows. For0 < m<n—-1land 1<i< 7, let X,,,; ~ Z; be the number of offspring generated by
the ith element of Z,, in some order, and let S, = {Xm1,Xm2,.. ., Xm, 2, }. Note Z,, < d™. For
0<m<n—1land 1<1<d™, let

Y. :{ E(Zy|S0,51,- -, Sm-1,Xm1, Xm2, -, Xmy), £1<i<Zy; "

’ Yo Zom if Zny < i< d™.
Let N = En L d™. Then the sequence of N + 1 random variables
Yo=E(Z,), Y01, Y11, Y1,4,Y21,.. Yo a2, Yao11, .. Y1 a1 = YN

is a Doob martingale with Yy = E(Z,) = p” and Yy = Z,.
We shall bound the differences of this martingale. Define D,, ; as follows for 0 <m < n —1 and
1<i<dm.

Dy1 = |Yo1—Yol,
Dni = |Ymi— Yoy gm-|for 1 <m<n—1,
Dm,i = |Ym,i - Ym,i—1| for 2 < i < dm.

Consider Dy 1 = |Yo1—Yo| = |E(Zn|X0,1)— E(Z,)|. Random variable X ; < d is the number of
offspring of the initial element, and each of these offspring is expected to contribute p” ~! descendants
in Z,. Hence, Dy < dp”~!. For each subsequent non-zero difference, the difference Dy, i is due
to the additional contribution of the ¢th element in Z,, with X,,; < d offspring, each of which is
expected to contribute p"~"~! descendants in Z,. So Dy, ; < dp"~™~!. Hence, for 0 < m <n —1
and 1 << d™,

Dy < dp" ™" = am, (2)
and
n—l am n—1
A = Cl ; Z dm+2p2(n—m—1)
m=0 i=1 " m=

() (5) ) e
= (Y (L)) < codp 3
<p2 p’ P’ ®)
since p> > d and 3, _,(d/p?)™ < cq for some constant co depending on d and p.
Let A= (¢c—1)p" > 0. Then Pr[Z, > cp”] = Pr[Yn—Yy > A as Yn = Z,, and Yy = E(Z,) = p".
By Lemma 1,
Pr[Zn > cp] < o= FAA < o= Hem1 P o _ =ale1)?

_ 1
Wherea_m>0. O



2.2 A General Bound

This section gives a right-tail bound that holds for any finite supercritical branching process. This
bound is asymptotically comparable to the bound in Theorem 2 when p > V/d. The technique used
to derive this bound is a careful application of tail bounds on the sum of bounded random variables
with identical means. This technique will be used again in Section 4 for an upper bound on the

left-tail probability, and in Section 5 in connection with AND/OR tree evaluation.

Lemma 2 Let X = Y " | X; where the X;, 1 < i < n, are independent random variables over
{0,1,...,d} with the same mean p > 0. Then (i) for § >0, Pr[X > (1 + f)un] < e3P wn/d* . (ii)
for0<pg <1, Pr[X <(1-p/)un] < e~ 38 un/d"

Proof. We use Azuma’s martingale inequality to derive these bounds. Let X/ = X;—pfor 1 <i < n.
Then Yy = 0 and Y; = 22:1 X!, 1 <i< n,is a martingale with ¥;, = X — ny. Since 0 < X; < d
and 0 < p < d, |V;=Yi_1| = |X; —pu| <d=ga;for 1 <i<mn. Set A= pFun. By Lemma 1(i), for
B>0,Pr[X > (14+8)un] =Pr[Y,—Yy > A] < e~ 3N /nd® — =38 n/d’ Similarly, by Lemma 1(ii),
for0<B<1,PrX <(1-B3)un]=Pr[Yo—-Y, > A] < e~ 3N nd® — —38% 0/

Lemma 3 (i) []:2 (1 - Z%) = %; (i) For anye > 0, [[;2 (1 + Z%) < 1+4¢€ for some integerty > 0.

=2 i=tg

Proof. For (i), [[;2, (1 — &) = 23 x 32 x 53%¢ x ... = $ by cancellation of terms. For (ii), the
infinite sum ) ;2 Z% converges, thus the infinite product []:2, (1 + Z%) converges and for any € > 0,

there exists some integer to > 0 such that [];2, (1+ %) <1+e€(cf [9, pp. 94-95]). O

Theorem 3 Let {Z,}5° be a finite supercritical branching process with branching factor p = E(Z1) >
1 such that each element of the process has at most d > 2 offspring. Assume that p < d. Then, for
any ¢ > 2,

2 41
2l 1t

Pr[Z, > ¢p"] < C’o(d)e_cti ,

where Co(d) is a constant depending on d, o > 0 is a fized constant, and 7 > 0 is any constant

satisfying d” > 2 and p**7 > d. In particular, if p > /d, one may take T = 1.

Proof. The idea behind the proof is that Z,, can be much larger than its expectation only if, at
some generation where the population is already fairly large, the population increases by a factor
significantly greater than p. We derive an upper bound on the probability that such an event occurs.

Let ko be a positive integer, let Go, 81, - -, Bn—k,—1 be positive reals, and let mg, my, -+ my_p,
be positive reals such that mg = d*°, m; = (14 Bi=1)pmi—1 and mp_p, < cp™. Note that Zj, < mg.
Thus Z, > cp” only if, for some i, 1 < ¢ < n — ko, Zrgti—1 < mi—1 and Zp,4; > m;. For
i=1,2,--- n— ko, let b = Pr[Zg,4i > mi|Zryric1 = mi—1]. Since Zp,4; is the sum of Zp,4;—1
independent bounded random variables, each distributed as Z; with mean p, we may apply Lemma

2 to obtain the inequality

‘ , _1g2 2. g2
b, = Pr[Zko—H > mi|Zk0+i_1 = mi_l] <e sfiap mioi/ .



Clearly, for any choice of Zj,4;—1 less than or equal to m;_1, Pr[Zg,4i > mi|Zr,+i-1] < Pr[Ze,4i >
mi|Zey+i—1 = mi—1] < b;. Hence, by unconditioning, Pr[Z¢,+i—1 < m;—1 and Zg,4; > my;] < by,

and it follows that, assuming m,_g, < cp”,

n—=kq

Pr(Z, > ¢p"] < Z b;.

i=0
We now describe how the above parameters are chosen in order to yield the conclusion of the
theorem. Let ko = max{k |e> Q(d/p)k} where ko > 0 is well defined as ¢ > 2 and p < d. Let
mg = d*® > 1. By Lemma 3, H;’itu (1+ Z%) < 2 for some integer t; > 0. Set §; = m for
0<i<n—ko Then [TI_o(1+4 Bi) <[Iiz,, (14 ) <2, and

i
m; = (1 +ﬁi_1)pmi_1 = mopi H(l —+ ﬁ]) < 27’77,0pZ
j=0

Then, noting my = d*°,

M kg < 2mop™ "0 = 2(d/p)*°p" < ep”,

as 2(d/p)fe < c. As ¢ < 2(d/p)*ot!, by the assumption that p'*7 > d,
¢ < 2(d/p)ttt < 2(pT) ot = 2(ptH)T
and again as ¢ < 2(d/p)ket!,
T < 9 (epho )T < 220 )T < (dPimg)”

where the last inequality is because mg = d*°, d > 2 and by assumption d” > 2. Hence,

o+
mo >~
. ) . 1
As my = mop' [[;_o(1 + Bj) > mop® for 1 <i < n—ko, and f; = (i+t0)?’
L2 o e __etttmy
by < e 2Pi-ap mi_1/ < e 2a%(Hto-17
Hence, noting mgy > Cl+%/d37
ko n—ko it g _p%mg n—ko R __e?_ a4+t
S S e < (14 S o) < e
i=1 i=1 i=2

where the function f(i) = 2d2(ip—|l-:—1)2
summation Z?I_Zku e~/ is bounded by a constant factor Co(d) depending on d. Hence, Pr[Z, >

¢p"] < 32 bi < Co(d)e

2
o . ..
~ 5z BIOWS exponentially fast as ¢ increases, and the

ap? 1417+
-
ad

, where o = 1/2t2. O



3 A Special Bound for the Multitype Case

We extend the special-case right-tail bound in Section 2.1 to finite branching processes with elements
of different types.

A multitype branching process with k types is a discrete vector Markov chain whose state set is N*
where N denotes the nonnegative integers. The chain is specified by k offspring distributions, each of
which is a probability distribution over N*. The probability of the k-tuple (ry,ra,---,7;) in the ith
offspring distribution is denoted by p’(ry,ra, ..., ), and represents the probability that an element
of type ¢ has r; offspring of type j, for j = 1,2,---,k. A multitype branching process is finite if, for
all i, p'(ry,72,...,7%) = 0 when E§:1 r; > d where d is some fixed positive integer. Let e; denote
the k-dimensional unit vector with a 1 in the ith coordinate. The successive states of the branching
process are Zg,Zi, -, Zn,-- -, where Zy = e; and, in general, Z, is a k-tuple (rn,1,7n,2, -, "n,k)
where 7, ; denotes the number of elements of type j in the nth generation. The population of the nth
generation is the sum Z, = Zle 7. The rule for generating Z, 41 from Z, = (rpn1,7n 2, -, o k)
is as follows: for each j, draw r, ; samples from the jth offspring distribution, and set 7,4, equal
to the sum of these samples. The mean matriz is the k x k matrix M = (m; ;) where m; ; is the
expected number of type j offspring of an element of type z.

A matrix M is strictly positive if all entries of M™ are positive for some integer n > 0. By
the Perron-Frobenius theorem, a strictly positive matrix M has a dominant eigenvalue p which is a
simple characteristic root greater in absolute value than any other characteristic root (for a proof,
see [8]). A multitype branching process is positive regular if its mean matrix M is strictly positive.
For a positive regular multitype branching process, we call the dominant eigenvalue p of its mean
matrix M the branching factor of the process. A positive regular multitype branching process is
supercritical if p > 1.

The following theorem characterizes the asymptotic growth of a supercritical multitype branching
process (for a proof, see [5, pp. 37-38,44] or [2, pp. 185,192]).

Theorem 4 Let {Z,} be a mullitype branching process with k types that is positive regular and

supercritical. Let p > 1 be its branching factor. Then, with probability 1, lim,_ o (%) =vW,
where v = (v1,v2,...,vk) is certain fized vector of constants (an eigenvector of p with respect to

M), and W is a nonnegative random variable such that E(W|Zy = ¢;) is bounded for alli=1,... k.

Corollary 1 Let {Z,} be a multitype branching process with k types that is positive regular and
supercritical. Then, there are constants g > 0 and $1 > 0 such that for alln >0 and 1 =1,2,...,k,

Bop" < E(Zn|Zo = e5) < Brp",
where Z, is the population of the nth generation Z,.

Proof. Immediate from Theorem 4. O

The following is the main theorem of this section. It extends the special bound in Theorem 2 to

the multitype case.



Theorem 5 Let 7y, Z1,...,7,, be a finite positive reqular multitype branching process such that
each element has at most d offspring. Suppose that the branching factor p > \/d. Then, for any

¢ > 1, regardless of the initial element,
Pr[Z, > cE(Zy)] < e~ (=17,
where o > 0 is a constant depending on d and p.

Proof. We use the same martingale argument used in Theorem 2. For0 < m < n—1land1<i< Z,,

J

m,i

of Z, in some order, and let S, = {Xmm1,Xmz2,...,X, 7 }. Define Y, ; according to (1) with
substitutions of Z,, with Z,, and Z,,, with Z,,. For 0 <m < n—1,let T,,, = Ym1,Ymo, ..., Ymam}.

Let N = En_lo d™. The sequence of N+ 1 random variables Yy = F(Z,),T1,T4,...,Th—1 is a Doob

m=

let Xpm; = (x,lmi, xfmi, e xﬁ“) where 7 . is the number of offspring of type j of the ith element

martingale with Yy =Y, _1 gn-1 = T

An element of type ¢ in Z,, initiates a multitype branching process with an initial element of
type i, and is expected to contribute E(Z,_|Zo = €;) to Z,. By Corollary 1, there is a universal
constant B; > 0 such that for 0 < m < n—1and 0 < i<k, E(Zn_m|Z0 = €;) < B1p"~™. Thus
the difference Dy, ; of (2) is bounded by dB3;p"#~1, and the summation of (3) converges to a value
bounded by coB1dp?* where cq > 0 is a constant.

Let A = (¢ — 1)E(Z,). By Corollary 1, A > (¢ — )Bop™. As Yy = E(Z,) and Yy = Z,,

Pr[Z, > cE(Z,)] = Pr[Yy — Yo > A] < e=(e=1)" where o = Zcf%. O

4 A Left-Tail Bound

We return to single-type branching processes and study the left tail of Z,,. We shall derive an upper
bound, exponential in ¢, on the left-tail probability Pr[Z, < p™/c] under the condition that each
element generates at least two offspring.

The requirement that each element generates at least two offspring, i.e., p; = Pr[Z; =i = 0
for i = 0,1, is a necessary condition for the probability Pr[Z, < p"/c] to decrease exponentially in
c. Consider the case that pg + p; > 0. If pg = Pr[Z; = 0] > 0, the process dies out immediately
with probability po, and Pr[Z, < p"/c] > po > 0. If po = 0 but p; > 0, then Pr[Z; = 1] = pf
for k > 1. In this case, choose ¢ = p*~!. Then Pr[Z, < p"/c] = Pr[Z, < p"~**1] > pt Pr[Z, <
PP Zy = 1) = Py Pr[Zn g < p Y] = pi Pr[Zag < pE(Za—r)] > (1= 1/p)prc!®B P by the
Markov inequality and p’f_l = ¢1°8,P1 The last bound does not diminish exponentially in c.

Given an integer A > 2, a branching process {Z,}5° is called A-definite if Pr[Z; = k] = 0
for k = 0,1,...,A — 1. We may assume that p = E(Z;) > A. A A-definite branching process is
supercritical with Z, > A® > 2", A A-definite branching process will never die, and grows by at

least a factor of A > 2 in each generation.



Theorem 6 Let {Z,}5° be a finite A-definite branching process in which each element has at most
d offspring. Assume that p = E(Z1) > A. Then, for any ¢ > 2,

p

n 2 L
c

where C1(d) is a constant depending on d, and 7 > 0 is any constant satisfying A" > 2 and A'*T7 > p.
In particular, if X > \/d, one may take A = \/d and 7 = 1.

Proof. The proof is similar to the proof of Theorem 3. We will be concise. By A-definiteness,
Zy > AF for any k. Let ko = max{/c|c > 2(p/)\)k} where kg > 0 is well-defined as ¢ > 2 and
p > A Let mg = Ao > @. By A-definiteness, Zp, > mg. Let m; = (1 — Bi_;)pm;_; for
i=1,2,...,n—kg, where parameters 3/_, will be assigned later so that m, _z, > %. Thus 7, < %
only if, for some ¢, 1 < i < n— ko, Zpgg4i—1 > mi—1 and g4 < my. For e =1,2,--- . n— ko, let
b = Pr[Zp,+i < mi|Zkyyi—1 = my—1]. Since Zp,4; is the sum of Zp,4;—1 independent random

variables, each distributed as Z;, by Lemma 2,
bi = Pr[Zpopi < Mi| Zpgpio1 = my_1] < e” BPimarimina /4

Clearly, Pr[Zg,4+i < mi|Zg,+i—1] < b; for any Zg,+i—1 > m;—1. By unconditioning, Pr[Zg,4+i—1 >
mi—1 and Zg,4+; < m;] < b;, and it follows that

Pr[Z, < p"/c] <by+ba+ -+ by_p,.

For 0 <i < n— ko, set §; = m By Lemma 3, ngo(l —Bi)>1IIi2, (1— %) = 3. Thus

g i
. mop
m; = (1= Bic1)pmicy = mop' [J(1 = 58;) >
j=0
k n—k n
and in particular, noting mg > 2%0, Mp—ky > mé’—o > £~ Thus, for i = 1,2,...,n — ko,

i+1
2 2 2 __P__ ™0
bi — 6_% 2ip*mi_a/d < e 4d2(i+1)?

As ¢ < 2(p/A)¥otl and by the assumptions that A2” > 2 and A7 > p,
c< Q(P/)\)k0+1 S /\27(/\7)130+1 _ ()\k0+3)7 _ (ABmO)T’

which gives mo > ¢'/7/A3. Hence,

1

n—ko i+1
o _ ot mg p2mg 21
Pr|Z,<—]| < Z e 12G+)? < Cy(d)e” 1z < Cy(d)e” 16a723 7

¢ i=1
where the summation converges to a limit proportional to the first term 6_%, with the constant

factor C1(d) depending on d. O



5 AND/OR Tree Evaluation

An AND/OR tree is a rooted tree in which an internal node of even (odd) distance from the root
is an AND-node (OR-node), and each leaf has a boolean value 0 or 1. The value of an AND-node
(OR-node) is recursively defined as the value of logical-AND(OR) of the values of its children. The
evaluation problem for an AND/OR tree is to determine the boolean value of the root by examining
values of the leaves. The goal is to minimize the number of leaves examined. A canonical algorithm
SOLVE for evaluating AND/OR trees is as follows: To evaluate a node v, evaluate v directly if v is
a leaf; otherwise, evaluate the children of v recursively in left-to-right order until the value of v can
be determined. A uniform tree of degree d and height n is a tree in which each internal node has
d children and there are n edges on each root-leaf path. A basic fact is that SOLVE, or any other
algorithm, must evaluate at least at least dL"/2 leaves on any instance of a uniform tree of height
n and degree d, as d"/?] leaf-values are required to certify the value of the root.

We shall study the behavior of SOLVE for evaluating uniform AND/OR trees in two probabilistic
models. One is the i.i.d. model in which the value of each leaf is determined randomly by a coin
toss with a fixed bias ¢, independent of the values of other leaves. The other is the randomized
model in which the children are evaluated in a random order instead of left-to-right order. We shall
observe that the execution of SOLVE in the i.i.d. model with a threshold bias and the execution of
randomized SOLVE on certain instances can each be viewed as a two-type finite branching process,
and show that the execution time of SOLVE is likely to concentrate around its expectation in these

cases.

5.1 The i.i.d. Model

Let T(n, d, ¢) denote a random uniform AND/OR-tree of degree d and height n in the i.i.d. model in
which the probability that a leaf is 0 is ¢. Let I(d, n, ¢) be the expected number of leaves evaluated
by SOLVE to evaluate T(n,d, ¢). The following theorem can be found in [12, pp. 262-263].

Theorem 7 Let £4 be the unique positive root of x®+z —1=0. Then, for anyn > 0 and d > 1,

(i) ifqg=2Ea, I(d,n,q) = [%]"’ where p = 1545’1 > \/E;
(ii) if ¢ # €q, limy—oo[I(d, n, 9)]" = Vd.

We shall focus on the case of the threshold bias &;. We observe that the execution of SOLVE
on random uniform tree with the threshold bias can be viewed as a two-type branching process.
To see this, we represent an AND/OR tree in an equivalent form as a NOR-tree by replacing each
AND-node and each OR-node with a NOR-node where a NOR-node is the negation of an OR-node.
Let ¢ = &; be the threshold bias and let T(n,d) denote the NOR-tree T(n,d,£). A node v is of
type-0 if the value of v is 0; otherwise, it is of type-1. In T'(n, d), with the NOR-tree representation,
the probability being of type-0 is ¢ for each node. This is because ¢ satisfies ¢ = 1 — 2, which is
precisely the condition that allows the probability being of type-0 to propagate from the children



to their parent node in T'(n,d). Let v be a node evaluated by SOLVE. We call the children of v
that are evaluated by SOLVE the offspring of v. For ¢,j € {0,1} and 0 < k < d, let p;;(k) be the
probability that a type-i node has k type-j offspring. We have p1g(d) = p11(0) = 1, po1(1) = 1,
poo(d) = 0 and poo(k) = €¥F~1(1 — €) for 0 < k < d — 1. Probabilities p;;(k) define the offspring
distribution of a finite two-type branching process {Z,} associated with the execution of SOLVE
where the initial element of {Z,} is of type-i if the root of the NOR-tree is evaluated to ¢, and the
population Z,, corresponds to the number of the leaves evaluated by SOLVE. Clearly, {Z,,} is finite,
positive regular, and has a branching factor p = £4/(1 — &4) > V/d by Theorem 7(i).

Lemma 4 Let SO be the number of elements of type-0 in Z,, with an initial element of type-0. Then

there are constants ¢ > co > 0 such that for alln > 0,
07" < E(Sy) < ey

where v/d < v = (1 + V72 +4d)/2 < d and 7 > 0 is the expected number of offspring of type-0 of a
single element of type-0.

Proof. Let f; and g be the expected number of elements of type-0 and type-1 in Zj, respectively.
Then fo =1,¢90=0,and forn >0, f, =7fn_1+dgn_1 and ¢, = frn_1. Thus f, = 7fn_1 + df_o.
The characteristic equation of the last recurrence is z? = 7x 4+ d with a unique positive solution

v = (1 + V12 +4d)/2 > /d. Hence, E(S°) = f, = O(7"). As f, < d*, y<d. O

The following is the main theorem of this section.

Theorem 8 Fori € {0,1}, let S;(n,d) be the random variable that is the number of leaves evaluated
by SOLVE to evaluate T(n,d) given that the value of the root is i. Then, forn >1,d > 2,

i) Pr[Si(n,d) > cE(Si(n,d))] < e=Co(e=1)" for ¢ > 2, where Cy > 0 is a constant depending on d;

ii) Pr[Si(n,d) < E(Si(n,d))/c] < C1e=2¢ for ¢ > 4c1d/co, where cg, ¢y are the constants stated in

Lemma 4, and Cy, Cs are constants depending on d.

Proof. Let Zy, Z1, ..., Z, be the two-type branching process associated with SOLVE. Then Z,, =
Si(n,d). The right-tail bound of (i) follows immediately from Theorem 5 in Section 3 and the fact
that {Z,,} is finite and positive regular with a branching factor greater than v/d.

Our task is to prove the left-tail bound of (ii). We observe that Zs; > d* for any k. This is
because a type-1 element generates d type-0 offspring and a type-0 element generates one type-1
offspring. Conceptually, one may think of this two-type branching process {Z,} as Vd-definite.
However, one cannot directly apply the left-tail bound of Theorem 6 in Section 4 to a two-type
branching process. Nevertheless, we will show that the proof technique can be extended, with some
efforts, to the specific two-type branching process {7, } to yield the left-tail bound of (ii).

To prove (ii), we may focus on the number of elements of type-0. Let S}; be the number of
elements of type-i in Z;. Then S;j(n,d) = Z, = S0 + S = 89 + 89 | as S} = S0

n—1

Pr[Si(n,d) < E(Si(n,d))/c] < Pr[SS < E(SS)/c] + Pr[S2_, < E(S2_;)/c]. Thus the bound in

and
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(i) holds if it holds for Pr[SS < E(S2)/c]. Moreover, we only need to prove (ii) for Sp(n,d). As
Si(n,d) = Ele X; where X; ~ Sp(n — 1,d), Si(n,d) < E(S1(n,d))/c only if X; < E(X;)/c for
some . It follows that Pr[S1(n,d) < E(S1(n,d))/c] < dPr[So(n—1,d) < E(So(n — 1,d))/c].

Our goal is thus to prove the upper bound of (ii) for Pr[SY < E(S?)/c] where SC is the number
of elements of type-0 in Z, when the initial element is of type-0. We shall follow the same line of
proof as the proofs of Theorem 3 in Section 2 and Theorem 6 in Section 4. A critical transformation
of the proof is the inequalities (11) and (12). These inequalities reduce the problem of bounding
52, which depends on both SY_, and Si_,, into a problem of bounding a sum involving only type-0
elements, which can be bounded as in the single-type case.

We first define the parameter ko that satisfies relations (4) and (5). Let Y be the random
variable that is the number of type-0 offspring of a single type-0 element. Let 7 = E(Y) > 0 and
let v = (1 4+ /72 4+ 4d)/2. By Lemma 4, for any n > 0, coy” < E(S2) < ¢4 for some constants co

and ¢, and Vd < v <d. Let
dey [ 2k
k) = max< k c>—<—) ,
0 { ez co \Vd

which is well-defined as v > v/d. By the assumption, ¢ > 4c¢1d/co. As v < d, (7/\/3)2 < d. Thus
¢ > dei(y/Vd)?/co and kfy > 1. Define

L _{ 2k, if S5, > d¥o/2
0=

2kl — 1 otherwise

Note that ko > 1 is a random variable which is either 2k{ or 2k{, — 1 depending on Lokt namely,
whether S9,, > dko /2.

As Zop, DZ d* for any k, 72% =Sy, + 5k, > dko. If S9. < dklll/?, then it must be that
S%kg = Sgké_l > dké/Q. Hence, by the degnition gf ko, '

k

dko 47

Shy >

v

(4)

By the definitions of kg,

S

N
=
o
o~
+
Z

4y (L)Z’%SK o
Co \/E &)
As 2k, — 1 < ko < 2kp, v > Vd and (y/Vd)? < d,

ko ko+3
4deq < ¥ ) 4deq < ¥ ) deq ko3
— | == <e< — | —= < —d 7. 5
o \Vd) =T \Va) = 5)

For 0 <i<mn—ky—1, define
fi = E(Sgo+i|2ku)i

which is the expected number of elements of type-0 in Zp,4; given Zj,. Note that the f; are
random variables depending on Zi,. By definition, fy = E(S£0|Zk0) = Sgo, fi= E(S,80+1|Zk0) =

11



TSh, +dSy, = 7fo+dSy,, and for i > 2, fi = TE(S}, 1i_1|Zko) + dE(Sg,4i-11Zke) = Tfic1 + dfi—s

1 _ QO
as Sko+i—1 = Sku+z'—2' Hence,

fo = S§,>0
fi = tfo+dSE,
fi = 7tfici+dfioy fori>2

We now define parameters mg, my, ..., my_g,. For 0 <i<n—ko—1,let B; = 1/(i+2)?. Define
mozS,gD:fo and for 1 < i <n — ko,

m; = (1= Bim)mi—1fi/ fiz1.

Note that the m; are random variables depending on Zj;, and well-defined as f; > 0. For 0 < ¢ <
n— ]{70 — 1,
migr =mo [[(1=8) [[p = firn [T = B5) > fira/2, (6)
j=0 j=0 j=0
as H?I_Ok”_l(l — ;) > 1/2 by Lemma 3.

We show that m,_x, > E(S2)/c. By (6), mn_ry, > fa—ko/2 = E(S3|Zk,)/2. Let v be an
element of type-0 in Zj,. The expected number of descendants of type-0 of v in S9 is E(Sg—k0)~
Thus, E(S2|Zg,) > SgDE(Sg_kD) > dk°/2E(Sg_kD)/2 as S,gﬂ > d*o/? by (4). By Lemma 4, oy’ <
E(S?2) < 19 for i > 0. By (5), ¢ > %(7/\/3)’“‘3. Hence,

mn—kg > E(SngkD)/Q
AP E(S) )4

> de/QCO,yn—kD/4
> coy"(Vd/y)*/4
> ay"/ec

> B(Sy)/e.

By the same argument,

i+kg

C - ko
fi = B(S}, 44l Zk) 2 E(SP)SY, > 57/ d ™ > chd ™

as y > V/d. Thus f; grows exponentially in 1.
Given mo = S, and m,_g, > E(S))/c, we can have S; < E(Sy)/c only if

i) either Sg,+1 < my or
ii) for some i, 2 < i < n — ko, Sl(c)g+i—2 > m;_o and S,?D_I_Z-_l > m;_1 but Sgo4i < my.
Let by = Pr[S} ., < m] and for i =2,3,...,n — ko,

0 0 0
by = Pr[Sy, 4 < mi| Sy, 4i_1 = my—1 and Sy ;5 = mi_3].
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Clearly, for i > 2, Pr[520+i < mi|520+i_1 > m;_1 and Sl(c)o+i—2 > mi_s] < Pr[S,?DH <
m; |S]80+i—

m;_1 and Sgu+i—2 > m;_s] < b;, and it follows that,

E(S°
(—"):| Sbl+b2+"'+bn—ku~

1 = mi_1 and Sl(c)g+z'—2 = m;_s] = b;. By unconditioning, Pr[S,SDH < m; and 520+i_1 >

Pr [52 <

Let Y; ~ Y be independent random variables, where Y is the number of type-0 offspring of a

single type-0 element. As Sgo = mg,

S’SD mo
Sterr = DY +dSi, =) Y +dS;,. (7)
ji=1 ji=1

. : 0 _ 0 _ : 1 _ 0
For 2 <i < n— kg, given Sku+z'—1 =m;_1 and Sku+i—2 = m;_», noting Sku+i—1 = Sk0+z'—2:

Skg+i-1 mi—1
Spoti = Z Yj +dSk, i1 = Z Y; + dm;_s. (8)
j=1 ji=1

Given mg = fy and f1 = 7fo + dSiD,
my = (1= Bo)mofi/fo = (1= Bo)rmo + (1 — Bo)dSy, 9)
and for 2 < i < n— ko, given f; = 7f;_1 + dfi_s,

m; = (1= fici)mi_1fi/fiza
= (I=Fic)mmi—1 + (L= Fio1)dmi_ fime/fica
= (I—=Bi—1)mmi—y + (1 — Bim1)(1 — Bi—z)dm;_». (10)

We now compare (7) and (9). As dS,%D > (1 - ﬁo)dS,%D, we conclude that S,SDH < my only if
E;n:ul Y; < (1= fo)rmg. Thus
by = Pr[SP 41 < ma] < Pr>_Y; < (1= Bo)rmo]. (11)
ji=1
Similarly, we compare (8) and (10). As dm;_a > (1 — B;_1)(1 — Bi—2)dm;_2, we conclude that
S,SDH < m;, given Sgu+i_1 = m;_1 and 520+i_2 = m;_s, only if ET:'II Y, < (1= Bi—1)tmi_q.
Thus, for 2 <i < n — ko,

b, = PI‘[S;SD_I_Z- < my |Sk0+i—1 = m;_1 and Sku+i—2 = mi_z]
< Pr[> Y < (1= Bisa)rmisy]. (12)
ji=1

Note that Y; are independent, each distributed as ¥ where Y < d —1and 7 = E(Y) > 0. By
Lemma 2, for 1 < ¢ < n — ko,

PT[Z Y < (1= fimy)rmi_g] < e” ¥am mima/(d-17

i=1

13



By (6), m; > fi/2. Hence, noting b; = 1/(i + 2)?,

2
T fi—1
b; < e—%ﬁf_l'r2m,_1/(d—1)2 < ¢ D2 (@-1)?

and
n—ko n—ko 25, 210 n—ko ) 215
Z b; < Z e 4(i+1)2(a-1)2 < e 18@-17 [ 1+ Z e—F(Z) < C’l(d)e_ 16(a—1)2
i=1 i=1 i=1
2 2 _ .
where F(i) = 4(Z.+T1)J;’(‘dl_1)2 - 16(Tdf01)2 grows exponentially in i since f; does, and E?:lku e~ F(0)

converges to a constant C1(d) depending on d.

By (5), ¢ < %dko;ra < %d?’ﬁfo, as fo=Sp, > %dk°/2. Let o = %dB/Q. Then fy > ¢/« and

E(S° __ %0 2%
C

2

16ad? " =

where Cy =

We make two remarks about the proof of Theorem 8. First, the parameters ky and m; are
random variables conditioned on random variables Z3, and Zi,. The given proof holds regardless
of the randomness of kg and m;. Secondly, the crucial inequalities (11) and (12) are derived by the
fact that the last terms in (7)—(10) are non-random, thus can be compared. That these terms are
non-random is due to the very fact that an element of type-1 deterministically generates d offspring

of type-0.

5.2 Randomized Model

A randomized version of SOLVE is as follows: To evaluate a node v, evaluate v directly if v is
a leaf; otherwise, do the following until the value of v can be determined: select an unevaluated
child of v randomly and evaluate this child recursively. The complexity of a randomized algorithm
is the maximum of the expected number of leaves evaluated by the algorithm over all instances.
The randomized complexity is the minimum of the complexities of algorithms over all randomized
algorithms. The randomized complexity of AND/OR tree evaluation was first studied by Saks
and Wigderson in [14] in which they showed that randomized SOLVE described above is optimal
for evaluating uniform AND/OR trees, and that the maximum of the expected number of leaves
evaluated by randomed SOLVE on uniform AND/OR trees of height n and degree d is © ((r4)")
where 14 = (d — 1 +Vd2 + 14d + 1)/4 ~ d/2 4+ O(1).

We represent an AND/OR tree as a NOR-tree, and let T'(n, d) denote the set of uniform NOR-
trees of height n and degree d. An instance of T(n,d) is uniformly-structured with parameter k,
where 1 < k < d, if each internal type-0 node has k type-1 children and d — k type-0 children. In
other words, a uniformly-structured instance is an instance in which the internal nodes have the
same number of children of the same value. For i = 0,1, an i-instance of T'(n,d) is a NOR-tree in
T(n,d) whose root value is i. A worst-case (best-case) instance of T(n, d) for randomized SOLVE

is an é-instance of T(n,d) that maximizes (minimizes) the expected number of leaves evaluated
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by randomized SOLVE on all i-instances. It is clear that the worst-case instances for randomized
SOLVE are the uniformly-structured instances with £ = 1 whereas the best-case instances are those
with k& = d.

The uniformly-structured instances of T'(n, d) represent those instances of T'(n, d) on which the
execution of randomized SOLVE is a two-type branching process. For the best-case instances with
k = d, the branching process is deterministic in which a type-0 element has no offspring of type-0.
When 1 < k < d, the branching process is a random process in which a type-0 element has j offspring

of type-0, where 0 < 5 < d — k, with probability % x dokol oo dokodHL kg particular,

a—1 d—j+1 a—j>
for the worst-case instances with & = 1, a type-0 element has j offspring of type-0 with probability
d;—l X Z:—% S X di;—il X d%j = %. For the uniformly-structured instances with 1 < k < d, the

associated two-type branching process is finite, positive regular, and supercritical with a branching

factor p > v/d where p depends on k.

Theorem 9 Fori= 0,1, let R;(n, d) be the expected number of leaves evaluated by randomed SOLVE
on an i-instance of an unform AND/OR tree of height n and degree d that is uniformly-structured
with parameter k. Then, form >1,d> 2, and 1 <k < d,

i) Pr[R;(n,d) > cE(R;i(n,d))] < e=Co(e=1 for ¢ > 2 where Cy > 0 is a constant depending on d
and k;

ii) Pr[R;(n,d) < E(Ri(n,d))/c] < C1e=2¢ for ¢ > a, where o, C1, Cy are constants depending on
d and k.

Proof. When k = d, the process is deterministic that the bounds of (i) and (ii) hold trivially. When
1 <k < d, the bounds of (i) and (ii) can be proved by a proof identical to that of Theorem 8. O

6 Conclusion

We have obtained strong upper bounds on the tail probabilities of supercritical branching processes
with a finite offspring distribution, and shown their application to AND/OR tree evaluation. Another
interesting application of finite branching processes is a tree-search problem studied in [7]. These
results demonstrate the usefulness of finite branching processes.

In the randomized model of AND/OR tree evaluation, we have shown that the execution time of
randomized SOLVE on the uniformly-structured instances of uniform AND/OR tree, in which the
internal nodes have the same number of children of the same value, is unlikely to deviate significantly
from its expected value. It would be desirable to show that the same conclusion holds for all instances

of uniform AND/OR trees.
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